PCF8534AH/1-T [NXP]

IC,LCD DISPLAY DRIVER,60-SEG,4-BP,CMOS,QFP,80PIN,PLASTIC;
PCF8534AH/1-T
型号: PCF8534AH/1-T
厂家: NXP    NXP
描述:

IC,LCD DISPLAY DRIVER,60-SEG,4-BP,CMOS,QFP,80PIN,PLASTIC

驱动器 CD
文件: 总44页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8534A  
Universal LCD driver for low multiplex rates  
Rev. 03 — 10 November 2008  
Product data sheet  
1. General description  
The PCF8534A is a peripheral device which interfaces to almost any LCD with low  
multiplex rates. It generates the drive signals for any static or multiplexed LCD containing  
up to four backplanes and up to 60 segments. In addition, the PCF8534A can be easily  
cascaded for larger LCD applications. The PCF8534A is compatible with most  
microprocessors or microcontrollers and communicates via a two-line bidirectional  
I2C-bus. Communication overheads are minimized using display RAM with  
auto-incremented addressing, hardware subaddressing and display memory switching  
(static and duplex drive modes).  
The PCF8534A complies with AEC-Q100 (automotive).  
2. Features  
I Single-chip LCD controller and driver  
I Selectable backplane drive configurations: static or 2, 3 or 4 backplane multiplexing  
I 60 segment drives:  
N 30 8-segment numeric characters  
N 16 15-segment alphanumeric characters  
N Any graphics of up to 240 elements  
I Cascading supported for larger applications  
I 60 × 4-bit display data storage RAM  
I Wide LCD supply range: from 2.5 V for low threshold LCDs up to 6.5 V for guest-host  
LCDs and high threshold (automobile) twisted nematic LCDs  
I Internal LCD bias generation with voltage follower buffers  
I Selectable display bias configurations: static, 12 or 13  
I Wide logic power supply range: from 1.8 V to 5.5 V  
I LCD and logic supplies may be separated  
I Low power consumption  
I 400 kHz I2C-bus interface  
I Compatible with any microprocessors or microcontrollers  
I No external components  
I Display memory bank switching in static and duplex drive modes  
I Auto-incremented display data loading  
I Versatile blinking modes  
I Silicon gate CMOS process  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Delivery form  
Version  
PCF8534AH/1  
LQFP80  
plastic low profile quad flat package;  
tape and reel  
SOT315-1  
80 leads; body 12 × 12 × 1.4 mm  
PCF8534AU/DA/1  
PCF8534AU  
wire bond die; 76 bonding pads;  
chip in tray  
PCF8534AU  
2.91 × 2.62 × 0.38 mm  
4. Marking  
Table 2.  
Marking codes  
Type number  
PCF8534AH/1  
Marking code  
PCF8534AH  
PCF8534AU/DA/1  
PC8534A-1  
5. Block diagram  
BP0 BP1 BP2 BP3  
S0 to S59  
60  
V
LCD  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT OUTPUTS  
DISPLAY REGISTER  
LCD  
VOLTAGE  
SELECTOR  
OUTPUT BANK SELECT  
AND BLINK CONTROL  
DISPLAY  
CONTROL  
LCD BIAS  
GENERATOR  
V
SS  
DISPLAY  
RAM  
PCF8534A  
CLK  
BLINKER  
CLOCK SELECT  
TIMEBASE  
AND TIMING  
SYNC  
COMMAND  
DECODE  
DATA POINTER AND  
AUTO INCREMENT  
WRITE DATA  
CONTROL  
POWER-ON  
RESET  
OSC  
OSCILLATOR  
SCL  
SDA  
2
SUBADDRESS  
COUNTER  
INPUT  
FILTERS  
I C-BUS  
CONTROLLER  
A0 A1 A2  
SA0  
V
DD  
001aah614  
Fig 1. Block diagram of PCF8534A  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
2 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6. Pinning information  
6.1 Pinning  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S10  
S9  
S8  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PCF8534AH  
V
V
LCD  
SS  
SA0  
A2  
A1  
A0  
OSC  
SYNC  
V
DD  
001aag092  
Top view. For mechanical details, see Figure 23.  
Fig 2. PCF8534AH/1 pin configuration (SOT315-1)  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
3 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
C1  
64  
C2  
S51  
S52  
S53  
S54  
S55  
S56  
65  
66  
67  
68  
69  
43  
42  
41  
40  
39  
38  
37  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
PCF8534A-1  
70  
71  
72  
73  
74  
75  
76  
S57  
S58  
S59  
BP0  
BP1  
BP2  
BP3  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
S11  
1
SDA  
2
SCL  
CLK  
3
F
Top view  
001aai648  
For mechanical details, see Figure 24.  
Fig 3. PCF8534AU/DA/1 pin configuration (bare die)  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
4 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.2 Pin description  
Table 3.  
Symbol  
Pin description  
Pin  
Description  
SOT315  
Bare die  
S31 to S59 1 to 29  
BP0 to BP3 30 to 33  
44 to 72  
LCD segment output 31 to 59  
LCD backplane output 0 to 3  
not connected  
I2C-bus serial data input and output  
I2C-bus serial clock input  
73 to 76  
n.c.  
34 to 37  
38  
-
SDA  
1
SCL  
39  
2
CLK  
40  
3
external clock input and output  
supply voltage  
VDD  
41  
4
SYNC  
OSC  
A0 to A2  
SA0  
42  
5
cascade synchronization input and output (active LOW)  
enable input for internal oscillator  
subaddress counter input 0 to 2  
I2C-bus slave address input 0  
ground  
43  
6
44 to 46  
47  
7 to 9  
10  
VSS  
48  
11[1]  
12  
VLCD  
S0 to S30  
49  
input of LCD supply voltage  
LCD segment output 0 to 30  
50 to 80  
13 to 43  
[1] The substrate (rear side of the die) is wired to VSS but should not be electrically connected.  
7. Functional description  
The PCF8534A is a versatile peripheral device designed to interface any microprocessor  
or microcontroller to a wide variety of LCDs. It can directly drive any static or multiplexed  
LCD containing up to four backplanes and up to 60 segments.  
The display configurations possible with the PCF8534A depend on the number of active  
backplane outputs required. Display configuration selection is shown in Table 4. All of the  
display configurations can be implemented in the typical system shown in Figure 4.  
Table 4.  
Selection of display configurations  
7-segment numeric  
Backplanes Segments  
14-segment numeric  
Indicator Characters Indicator  
Dot matrix  
Digits  
symbols  
symbols  
4
3
2
1
240  
180  
120  
60  
30  
22  
15  
7
30  
26  
15  
11  
16  
12  
8
16  
12  
8
240 (4 × 60)  
180 (3 × 60)  
120 (2 × 60)  
60 (1 × 60)  
4
4
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
5 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
V
DD  
t
r
R
2C  
b
V
DD  
V
LCD  
60 segment drives  
4 backplanes  
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
LCD PANEL  
PCF8534A  
(up to 240  
elements)  
OSC  
CONTROLLER  
A0 A1 A2 SA0  
V
SS  
001aah616  
V
SS  
Fig 4. Typical system configuration  
The host microprocessor or microcontroller maintains the 2-line I2C-bus communication  
channel with the PCF8534A.  
Biasing voltages for the multiplexed LCD waveforms are generated internally, removing  
the need for an external bias generator. The internal oscillator is selected by connecting  
pin OSC to VSS. The only other connections required to complete the system are the  
power supplies (pins VDD, VSS and VLCD) and the LCD panel selected for the application.  
7.1 Power-on reset  
At power-on the PCF8534A resets to a default starting condition:  
All backplane outputs are set to VLCD  
All segment outputs are set to VLCD  
The selected drive mode is: 1:4 multiplex with 13 bias  
Blinking is switched off  
Input and output bank selectors are reset  
The I2C-bus interface is initialized  
The data pointer and the subaddress counter are cleared (set to logic 0)  
The display is disabled  
Do not transfer data on the I2C-bus after a power-on for 1 ms to enable the reset action to  
complete.  
7.2 LCD bias generator  
Fractional LCD biasing voltages are obtained from an internal voltage divider comprising  
three series resistors connected between pins VLCD and VSS. The center resistor is  
switched out of the circuit to provide the 12 bias voltage level for the 1:2 multiplex  
configuration.  
7.3 LCD voltage selector  
The LCD voltage selector coordinates the multiplexing of the LCD based on the selected  
LCD drive configuration. The operation of the voltage selector is controlled by mode set  
commands from the command decoder.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
6 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 5 shows the biasing configurations applicable to the preferred operating modes  
together with the biasing characteristics as functions of Voper and the resulting  
discrimination ratios (D).  
A practical value for Voper is determined by equating Voff(RMS) with a defined LCD  
threshold voltage (Vth), typically when the LCD exhibits approximately 10 % contrast. In  
the static drive mode a suitable choice is Voper > 3Vth.  
Multiplex drive ratios of 1:3 and 1:4 with 12 bias are possible but the discrimination and  
hence the contrast ratios are smaller e.g.:  
21  
3
3 = 1.732 for 1:3 multiplex or --------- = 1.528 for 1:4 multiplex  
The advantage of these modes is the reduction of the LCD full-scale voltage Voper as  
follows:  
1:3 multiplex (12 bias): Voper  
1:4 multiplex (12 bias): Voper  
=
=
6 × Voff (RMS) = 2.449Voff (RMS)  
(4 × 3)  
--------------------  
= 2.309Voff (RMS)  
3
These compare with Voper = 3Voff(RMS) when 13 bias is used. It should be noted that  
Voper = VLCD  
.
Table 5.  
Preferred LCD drive modes: summary of characteristics  
LCD drive Number of  
mode  
LCD bias  
configuration  
Voff (RMS)  
Von(RMS)  
Von(RMS)  
------------------------  
----------------------  
D = ------------------------  
Backplanes Levels  
Voper  
Voper  
Voff (RMS)  
static  
1:2  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.234  
2.237  
1.915  
1.732  
2
1
1:2  
3
1
1:3  
3
1
1:4  
3
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
7 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4 LCD drive mode waveforms  
7.4.1 Static drive mode  
The static LCD drive mode is used when a single backplane is provided in the LCD.  
Backplane and segment drive waveforms for this mode are shown in Figure 5.  
T
fr  
LCD segments  
V
LCD  
BP0  
Sn  
V
SS  
state 1  
(on)  
state 2  
(off)  
V
LCD  
V
SS  
V
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
LCD  
state 1  
0 V  
V  
LCD  
V
LCD  
state 2  
0 V  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl745  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = VLCD  
.
Vstate2(t) = V(Sn + 1)(t) VBP0(t).  
Voff(RMS) = 0 V.  
Fig 5. Static drive mode waveforms  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
8 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.2 1:2 Multiplex drive mode  
When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The  
PCF8534A allows the use of 12 bias or 13 bias in this mode as shown in Figure 6 and  
Figure 7.  
T
fr  
V
LCD  
LCD segments  
V
V
/ 2  
/ 2  
BP0  
BP1  
Sn  
LCD  
SS  
state 1  
state 2  
V
LCD  
V
V
LCD  
SS  
V
LCD  
V
V
SS  
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
V
LCD  
/ 2  
LCD  
0 V  
V  
state 1  
/ 2  
LCD  
V  
LCD  
V
V
LCD  
/ 2  
LCD  
0 V  
state 2  
V  
/ 2  
LCD  
LCD  
V  
(b) Resultant waveforms  
at LCD segment.  
mgl746  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.791VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.354VLCD  
.
.
Fig 6. Waveforms for the 1:2 multiplex drive mode with 12 bias  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
9 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
T
fr  
V
LCD  
2V  
LCD segments  
/ 3  
LCD  
/ 3  
BP0  
BP1  
Sn  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
V
LCD  
2V  
/ 3  
/ 3  
LCD  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl747  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.745VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 7. Waveforms for the 1:2 multiplex drive mode with 13 bias  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
10 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.3 1:3 Multiplex drive mode  
When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies, as  
shown in Figure 8.  
T
fr  
V
LCD  
2V  
LCD segments  
/ 3  
LCD  
/ 3  
BP0  
BP1  
BP2  
Sn  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+2  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
V
LCD  
2V  
/ 3  
/ 3  
LCD  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl748  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.638VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 8. Waveforms for the 1:3 multiplex drive mode with 13 bias  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
11 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.4 1:4 Multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies, as  
shown in Figure 9.  
T
fr  
V
LCD segments  
LCD  
2V  
/ 3  
LCD  
/ 3  
BP0  
BP1  
BP2  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
BP3  
Sn  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+2  
Sn+3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
V
LCD  
2V  
/ 3  
/ 3  
LCD  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl749  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.577VLCD  
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD  
.
.
Fig 9. Waveforms for the 1:4 multiplex drive mode with 13 bias  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
12 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.5 Oscillator  
The internal logic and the LCD drive signals of the PCF8534A are timed by the frequency  
fclk, which equals either the built-in oscillator frequency fosc or the external clock frequency  
fclk(ext). The clock frequency fclk determines the LCD frame frequency (ffr).  
7.5.1 Internal clock  
The internal oscillator is enabled by connecting pin OSC to pin VSS. In this case, the  
output from pin CLK is the clock signal for any cascaded PCF8534A in the system. After  
power-on, SDA must be HIGH to guarantee that the clock starts.  
7.5.2 External clock  
Connecting pin OSC to VDD enables an external clock source. Pin CLK becomes the  
external clock input. A clock signal must always be applied to the device, removing the  
clock can freeze the LCD in a DC state.  
7.6 Timing  
The timing of the PCF8534A sequences the internal data flow of the device. This includes  
the transfer of display data from the display RAM to the display segment outputs. In  
cascaded applications, the synchronization signal (SYNC) maintains the correct timing  
relationship between all the PCF8534As in the system. The timing also generates the  
LCD frame frequency which is derived as an integer division of the clock frequency  
(see Table 6). When an external clock is used, the frame frequency is a fixed division of  
the internal clock or the frequency applied to pin CLK.  
Table 6.  
LCD frame frequencies  
Frame frequency  
Nominal frame frequency (Hz)  
64  
f clk  
f fr = ---------  
24  
7.7 Display register  
The display register holds the display data while the corresponding multiplex signals are  
generated. There is a one-to-one relationship between the data in the display register, the  
LCD segment outputs and one column of the display RAM.  
7.8 Segment outputs  
The LCD drive section includes 60 segment outputs (S0 to S59) which must be connected  
directly to the LCD. The segment output signals are generated based on the multiplexed  
backplane signals and with data resident in the display register. When less than  
60 segment outputs are required the unused segment outputs must be left open-circuit.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
13 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.9 Backplane outputs  
The LCD drive section includes four backplane outputs: BP0 to BP3. The backplane  
output signals are generated based on the selected LCD drive mode.  
In 1:4 multiplex drive mode: BP0 to BP3 must be connected directly to the LCD.  
If less than four backplane outputs are required the unused outputs can be left as an  
open-circuit.  
In 1:3 multiplex drive mode: BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced drive capabilities.  
In 1:2 multiplex drive mode: BP0 and BP2, BP1 and BP3 respectively carry the same  
signals and can also be paired to increase the drive capabilities.  
In static drive mode: the same signal is carried by all four backplane outputs and they  
can be connected in parallel for very high drive requirements.  
7.10 Display RAM  
The display RAM is static 60 × 4-bit RAM which stores LCD data. Logic 1 in the RAM bit  
map indicates the on-state of the corresponding LCD segment, logic 0 indicates the  
off-state. There is a direct relationship between RAM addresses and the segment outputs  
and the individual bits of a RAM word and the backplane outputs. The first RAM row  
corresponds to the 60 segments operated with respect to backplane BP0 (see Figure 10).  
In multiplexed LCD applications, the segment data of rows 1 to 4 of the display RAM are  
time-multiplexed with BP0, BP1, BP2 and BP3, respectively.  
display RAM addresses (columns)/segment outputs (S)  
0
1
2
3
4
55 56 57 58 59  
0
1
2
3
display RAM bits  
(rows)/  
backplane outputs  
(BP)  
001aah617  
Display RAM bit map showing the direct relationship between backplane outputs, display RAM  
addresses and segment outputs and between bits in a RAM word and backplane outputs.  
Fig 10. Display RAM bit map  
When display data is transmitted to the PCF8534A, the display bytes received are stored  
in the display RAM based on the selected LCD drive mode. Data is stored as it arrives and  
does not wait for the acknowledge cycle. Depending on the current multiplexer mode data  
is stored singularly, in pairs, triplets or quadruplets. In 1:2 multiplexer mode for example,  
RAM data is stored every second bit. An example of a 7-segment numeric display  
illustrating the storage order for all drive modes is shown in Figure 11. The RAM storage  
organization applies equally to other LCD types.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
14 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
The following applies to Figure 11:  
Static drive mode: the eight transmitted data bits are placed in row 0 to eight  
successive display RAM addresses.  
1:2 multiplex drive mode: the eight transmitted data bits are placed in row 0 and 1 to  
four successive display RAM addresses.  
1:3 multiplex drive mode: the eight transmitted data bits are placed in row 0, 1 and 2  
to three successive addresses. However, bit 2 of the third address is left unchanged.  
This last bit can, if necessary, be controlled by an additional transfer to this address  
but avoid overriding adjacent data because full bytes are always transmitted.  
1:4 multiplex drive mode: the eight transmitted data bits are placed in  
row 0, 1, 2 and 3 to two successive display RAM addresses.  
7.11 Data pointer  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the load data pointer command. After this, the data byte is stored starting  
at the display RAM address indicated by the data pointer (see Figure 11). Once each byte  
is stored, the data pointer is automatically incremented based on the selected LCD  
configuration.  
The contents of the data pointer are incremented as follows:  
In static drive mode by eight.  
In 1:2 multiplex drive mode by four.  
In 1:3 multiplex drive mode by three.  
In 1:4 multiplex drive mode by two.  
If an I2C-bus data access terminates early, the state of the data pointer is unknown.  
Consequently, the data pointer must be rewritten prior to further RAM accesses.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
15 of 44  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
drive mode  
LCD segments  
a
LCD backplanes  
display RAM filling order  
transmitted display byte  
S
n+2  
n
n
1
n
2
n
3
n
4
n
5
n
6
n 7  
b
BP0  
f
S
S
n+3  
n+1  
MSB  
LSB  
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
bit/  
BP  
g
S
n+4  
S
n
x
x
x
x
x
x
c
b
a
f
g
e
d
DP  
static  
e
S
S
S
n+5  
n+7  
DP  
c
d
n+6  
BP0  
S
n
a
n
n
n
n
1
1
1
n
2
n 3  
b
b
b
1:2  
f
S
n+1  
MSB  
LSB  
DP  
0
1
2
3
a
b
x
x
f
e
c
x
x
d
bit/  
BP  
g
g
x
x
DP  
x
x
a
b
f
g
e c d  
BP1  
multiplex  
S
S
e
n+2  
n+3  
c
c
c
d
d
d
DP  
BP0  
BP1  
S
n+1  
a
n
n 2  
S
S
n
f
1:3  
n+2  
MSB  
LSB  
e
0
1
2
3
b
DP  
c
a
d
g
x
f
bit/  
BP  
g
e
x
x
BP2  
multiplex  
b
DP  
c
a
d
g
f
e
x
DP  
S
n
a
n
BP2  
BP3  
BP0  
BP1  
f
1:4  
0
1
2
3
a
c
f
bit/  
BP  
MSB  
LSB  
d
g
e
g
d
multiplex  
b
DP  
e
a
c
b
DP  
f
e
g
S
n+1  
DP  
mgl751  
x = data bit unchanged.  
Fig 11. Relationship between LCD layout, drive mode, display RAM storage order and display data transmitted over the I2C-bus  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.12 Subaddress counter  
The storage of display data is conditioned by the contents of the subaddress counter.  
Storage is allowed only when the contents of the subaddress counter agree with the  
hardware subaddress applied to A0, A1 and A2. The subaddress counter value is defined  
by the device select command (see Table 12). If the contents of the subaddress counter  
and the hardware subaddress do not agree then data storage is blocked but the data  
pointer will be incremented as if data storage had taken place.  
In cascaded applications each PCF8534A in the cascade must be addressed separately.  
Initially, the first PCF8534A is selected by sending the device select command matching  
the first device's hardware subaddress. Then the data pointer is set to the preferred  
display RAM address by sending the load data pointer command.  
Once the display RAM of the first PCF8534A has been written, the second PCF8534A is  
selected by sending the device select command again. This time however the command  
matches the second device's hardware subaddress. Next the load data pointer command  
is sent to select the preferred display RAM address of the second PCF8534A.  
This last step is very important because during writing data to the first PCF8534A, the  
data pointer of the second PCF8534A is incremented. In addition, the hardware  
subaddress should not be changed whilst the device is being accessed on the I2C-bus  
interface.  
7.13 Output bank selector  
The output bank selector (see Table 13), selects one of the four bits per display RAM  
address for transfer to the display register. The actual bit selected depends on the LCD  
drive mode in operation and on the instant in the multiplex sequence.  
In 1:4 multiplex mode: all RAM addresses of bit 0 are selected, followed sequentially  
by the contents of bit 1, bit 2 and then bit 3.  
In 1:3 multiplex mode: bits 0, 1 and 2 are selected sequentially.  
In 1:2 multiplex mode: bits 0 and 1 are selected.  
In the static mode: bit 0 is selected.  
The SYNC signal resets these sequences to the following starting points: bit 3 for  
1:4 multiplex, bit 2 for 1:3 multiplex, bit 1 for 1:2 multiplex and bit 0 for static mode.  
The PCF8534A includes a RAM bank switching feature in the static and 1:2 multiplex  
drive modes. In static drive mode, the bank select command may request the contents of  
bit 2 to be selected for display instead of the contents of bit 0. In 1:2 multiplex drive mode,  
the contents of bits 2 and 3 may be selected instead of bits 0 and 1. This enables  
preparation of display information in an alternative bank and the ability to switch to it once  
it has been assembled.  
7.14 Input bank selector  
The input bank selector loads display data into the display RAM based on the selected  
LCD drive configuration. Using the bank select command, display data can be loaded in  
bit 2 into static drive mode or in bits 2 and 3 into 1:2 multiplex drive mode. The input bank  
selector functions independently to the output bank selector.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
17 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.15 Blinker  
The display blinking capabilities of the PCF8534A are very versatile. The whole display  
can be blinked at frequencies set by the blink select command (see Table 14). The  
blinking frequencies are fractions of the clock frequency. The ratios between the clock and  
blinking frequencies depend on the mode in which the device is operating (see Table 7).  
Table 7.  
Blink frequencies  
Assuming that fclk = 1536 Hz.  
Blink mode  
Operating mode ratio  
Blink frequency  
Blinking off  
2 Hz  
Off  
1
-
f clk  
f blink = ---------  
768  
2
3
1 Hz  
f clk  
f blink = -----------  
1536  
0.5 Hz  
f clk  
f blink = -----------  
3072  
An additional feature is for the arbitrary selection of LCD segments to be blinked. This  
applies to the static and 1:2 multiplex drive modes and is implemented without any  
communication overheads. Using the output bank selector, the displayed RAM banks are  
exchanged with alternate RAM banks at the blinking frequency. This mode can also be  
specified by the blink select command.  
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of  
LCD segments can be blinked by selectively changing the display RAM data at fixed time  
intervals.  
If the entire display needs to be blinked at a frequency other than the nominal blinking  
frequency, this can be done using the mode set command to set and reset the display  
enable bit E at the required rate (see Table 10).  
8. Basic architecture  
8.1 Characteristics of the I2C-bus  
The I2C-bus provides bidirectional, two-line communication between different ICs or  
modules. The two lines are a Serial Data line (SDA) and a Serial Clock Line (SCL). When  
connected to the output stages of a device, both lines must be connected to a positive  
supply via a pull-up resistor. Data transfer is initiated only when the bus is not busy.  
8.1.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse. Changes in the data line at this time will  
be interpreted as a control signal. Bit transfer is illustrated in Figure 12.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
18 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 12. Bit transfer  
8.1.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW change  
of the data line, while the clock is HIGH, is defined as the START condition (S).  
A LOW-to-HIGH change of the data line, while the clock is HIGH, is defined as the STOP  
condition (P). The START and STOP conditions are illustrated in Figure 13.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 13. Definition of START and STOP conditions  
8.1.2 System configuration  
A device generating a message is a ‘transmitter’ and a device receiving a message is the  
‘receiver’. The device that controls the message is the ‘master’ and the devices which are  
controlled by the master are the ‘slaves’. The system configuration is illustrated in  
Figure 14.  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 14. System configuration  
8.1.3 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during  
which time the master generates an extra acknowledge related clock pulse.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
19 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte.  
A master receiver must generate an acknowledge after the reception of each byte that  
has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be taken into  
consideration).  
A master receiver must signal an end-of-data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
master receiver must leave the data line HIGH during the 9th pulse to not  
acknowledge. The master will now generate a STOP condition.  
Acknowledgement on the I2C-bus is illustrated in Figure 15.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 15. Acknowledgement of the I2C-bus  
8.1.4 PCF8534A I2C-bus controller  
The PCF8534A acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. The only data output from the PCF8534A are  
the acknowledge signals of the selected devices. Device selection depends on the  
I2C-bus slave address, the transferred command data and the hardware subaddress.  
In single device application, the hardware subaddress inputs A0, A1 and A2 are normally  
tied to VSS which defines the hardware subaddress 0. In multiple device applications  
A0, A1 and A2 are tied to VSS or VDD using a binary coding scheme so that no two  
devices with a common I2C-bus slave address have the same hardware subaddress.  
8.1.5 Input filters  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
20 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8.2 I2C-bus protocol  
Two I2C-bus slave addresses (0111 000 and 0111 001) are reserved for the PCF8534A.  
The least significant bit of the slave address is bit R/W. The PCF8534A is a write-only  
device. It will not respond to a read access, so this bit should always be logic 0. The  
second bit of the slave address is defined by the level tied at input SA0. Two displays  
controlled by PCF8534A can be recognized on the same I2C-bus which allows:  
Up to 16 PCF8534As on the same I2C-bus for very large LCD applications  
The use of two types of LCD multiplex on the same I2C-bus  
The I2C-bus protocol is shown in Figure 17. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of the available PCF8534A  
slave addresses. All PCF8534As with the same SA0 level acknowledge in parallel to the  
slave address. All PCF8534As with the alternative SA0 level ignore the whole I2C-bus  
transfer.  
After acknowledgement, the control byte is sent defining if the next byte is RAM or  
command information. The control byte also defines if the next byte is a control byte or  
further RAM/command data (see Figure 16 and Table 8). In this way it is possible to  
configure the device and then fill the display RAM with little overhead.  
MSB  
LSB  
7
6
5
4
3
2
1
0
CO RS  
not relevant  
mgl753  
Fig 16. Control byte format  
Table 8.  
Load data pointer command bit description  
Bit  
Symbol Value  
Description  
continue bit  
last control byte  
7
CO  
0
1
control bytes continue  
register selection  
command register  
data register  
6
RS  
0
1
5 to 0  
-
not relevant  
The command bytes and control bytes are also acknowledged by all addressed  
PCF8534As connected to the bus.  
The display bytes are stored in the display RAM at the address specified by the data  
pointer and the subaddress counter. Both data pointer and subaddress counter are  
automatically updated.  
The acknowledgement after each byte is made only by the (A0, A1 and A2) addressed  
PCF8534A. After the last display byte, the I2C-bus master issues a STOP condition (P).  
Alternatively a START may be issued to RESTART I2C-bus access.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
21 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
R/W = 0  
slave address  
control byte  
RAM/command byte  
S
A
0
M
S
B
L
S
B
C
O
R
S
S
0
1
1
1
0
0
0
A
P
A
EXAMPLES  
a) transmit two bytes of RAM data  
S
S
0
1
1
1
0
0
A
0
0
A
0
1
1
0
RAM DATA  
COMMAND  
COMMAND  
RAM DATA  
A
A
A
A
A
A
P
A
A
A
b) transmit two command bytes  
S
S
0
1
1
1
0
0
A
0
0
A
0
0
0
1
COMMAND  
RAM DATA  
A
A
P
c) transmit one command byte and two RAM date bytes  
S
S
0
1
1
1
0
0
A
0
0
A
1
0
RAM DATA  
A
P
mgl752  
Fig 17. I2C-bus protocol  
8.3 Command decoder  
The command decoder identifies command bytes that arrive on the I2C-bus. There are  
five commands:  
Table 9.  
Definition of commands  
Opcode  
Command  
Mode set  
Reference  
Table 10  
Table 11  
Table 12  
Table 13  
1
0
1
1
1
1
0
0
E
P3  
0
B
M1  
P1  
A1  
I
M0  
P0  
A0  
O
Load data pointer  
Device select  
Bank select  
Blink select  
P6  
1
P5  
1
P4  
0
P2  
A2  
0
1
1
1
1
1
1
1
0
A
BF1 BF0 Table 14  
Table 10. Mode set command bit description  
Bit  
7 to 4  
3
Symbol Value  
Description  
fixed value  
-
1100  
E
display status  
the possibility to disable the display allows implementation of  
blinking under external control  
0
1
disabled (blank)  
enable  
2
B
LCD bias configuration  
13 bias  
12 bias  
0
1
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
22 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 10. Mode set command bit description …continued  
Bit  
Symbol Value  
Description  
1 to 0  
M[1:0]  
01  
LCD drive mode selection  
static; 1 backplane  
10  
1:2 multiplex; 2 backplanes  
1:3 multiplex; 3 backplanes  
1:4 multiplex; 4 backplanes  
11  
00  
Table 11. Load data pointer command bit description  
See Section 7.11.  
Bit  
7
Symbol Value  
Description  
-
0
fixed value  
6 to 0  
P[6:0]  
000 0000 to 7-bit binary value of 0 to 59  
011 1011  
Table 12. Device select command bit description  
See Section 7.12.  
Bit  
Symbol Value  
Description  
7 to 3  
2 to 0  
-
1 1100  
fixed value  
A[2:0]  
000 to 111 3-bit binary value of 0 to 7  
Table 13. Bank select command bit description  
See Section 7.10, Section 7.11, Section 7.12, Section 7.13 and Section 7.14.  
Bit  
Symbol  
Value  
Description  
Static  
1:2 multiplex[1]  
7 to 2  
1
-
I
11 1110  
fixed value  
input bank selection: storage of arriving display data  
0
1
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
O
output bank selection: retrieval of LCD display data  
0
1
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
[1] The bank select command has no effect in 1:3 or 1:4 multiplex drive modes.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
23 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 14. Blink select command bit description  
See Section 7.15.  
Bit  
7 to 3  
2
Symbol Value  
Description  
-
1 1110  
fixed value  
A
blink mode selection  
0
1
normal blinking[1]  
blinking by alternating display RAM banks  
1 to 0  
BF[1:0]  
blink frequency selection  
00  
01  
10  
11  
off  
1
2
3
[1] Only normal blinking can be selected in multiplexer 1:3 or 1:4 drive modes.  
8.4 Display controller  
The display controller executes the commands identified by the command decoder. It  
contains the status registers of the PCF8534A and coordinates their effects.  
The controller also loads display data into the display RAM as required by the storage  
order.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
24 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
9. Internal circuitry  
V
V
DD  
DD  
SA0  
CLK  
V
V
V
SS  
DD  
SS  
SCL  
V
V
SS  
DD  
V
SS  
OSC  
V
V
SS  
DD  
SDA  
SYNC  
V
V
V
SS  
SS  
DD  
A0, A1, A2  
V
LCD  
V
V
SS  
LCD  
V
SS  
BP0, BP1,  
BP2, BP3  
V
V
SS  
LCD  
S0 to S59  
V
001aah615  
SS  
Fig 18. Device protection diagram  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
25 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
10. Limiting values  
CAUTION  
Static voltages across the liquid crystal display can build up when the LCD supply voltage  
(VLCD) is on while the IC supply voltage (VDD) is off, or vice versa. This may cause unwanted  
display artifacts. To avoid such artifacts, VLCD and VDD must be applied or removed together.  
Table 15. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
0.5  
50  
0.5  
50  
50  
0.5  
10  
0.5  
0.5  
10  
-
Max  
+6.5  
+50  
Unit  
V
VDD  
IDD  
supply voltage  
supply current  
mA  
V
VLCD  
IDD(LCD)  
ISS  
LCD supply voltage  
LCD supply current  
ground supply current  
input voltage  
+7.5  
+50  
mA  
mA  
V
+50  
[1]  
[1]  
VI  
+6.5  
+10  
II  
input current  
mA  
V
[1]  
VO  
output voltage  
+6.5  
+7.5  
+10  
[2]  
V
[1][2]  
IO  
output current  
mA  
mW  
mW  
°C  
V
Ptot  
P/out  
Tstg  
Vesd  
total power dissipation  
power dissipation per output  
storage temperature  
400  
-
100  
65  
-
+150  
±2000  
±200  
±2000  
100  
[3]  
[4]  
[5]  
[6]  
electrostatic discharge voltage  
HBM  
MM  
-
V
CDM  
-
V
Ilu  
latch-up current  
-
mA  
[1] Pins SDA, SCL, CLK, SYNC, SA0, OSC and A0 to A2.  
[2] Pins S0 to S59 and BP0 to BP3.  
[3] HBM: Human Body Model, according to JESD22-A114.  
[4] MM: Machine Model, according to JESD22-A115.  
[5] CDM: Charged Device Model, according to JESD22-C101.  
[6] Latch-up testing, according to JESD78.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
26 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
11. Static characteristics  
Table 16. Static characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Supplies  
Conditions  
Min  
Typ  
Max  
Unit  
VDD  
VLCD  
IDD  
supply voltage  
1.8  
2.5  
-
-
5.5  
6.5  
20  
V
LCD supply voltage  
supply current  
-
V
[1]  
[1]  
fclk = 1536 Hz  
fclk = 1536 Hz  
8
24  
µA  
µA  
IDD(LCD)  
Logic  
VI  
LCD supply current  
-
60  
input voltage  
VSS 0.5  
VDD + 0.5 V  
VIL  
LOW-level input voltage  
on pins CLK, SYNC, OSC, A0 to A2  
and SA0  
VSS  
-
-
0.3VDD  
V
VIH  
HIGH-level input voltage  
on pins CLK, SYNC, OSC, A0 to A2  
and SA0  
0.7VDD  
VDD  
V
VPOR  
IOL  
power-on reset voltage  
LOW-level output current  
1.0  
1
1.3  
-
1.6  
-
V
VOL = 0.4 V; VDD = 5 V; on pins CLK  
and SYNC  
mA  
IOH  
IL  
HIGH-level output current  
leakage current  
VOH = 4.6 V; VDD = 5 V; on pin CLK  
1  
1  
-
-
-
mA  
VI = VDD or VSS; on pins SA0, A0 to  
A2 and CLK  
+1  
µA  
VI = VDD; on pin OSC  
1  
-
-
+1  
7
µA  
[2]  
CI  
input capacitance  
-
pF  
I2C-bus; pins SDA and SCL  
VI  
input voltage  
V
SS 0.5  
-
-
-
-
-
-
-
5.5  
V
VIL  
LOW-level input voltage  
pin SCL  
pin SDA  
VSS  
0.3VDD  
V
VSS  
0.2VDD  
V
VIH  
IOL  
IL  
HIGH-level input voltage  
LOW-level output current  
leakage current  
0.7VDD  
5.5  
-
V
VOL = 0.4 V; VDD = 5 V; on pin SDA  
VI = VDD or VSS  
3
mA  
µA  
pF  
1  
-
+1  
7
[2]  
Ci  
input capacitance  
LCD outputs  
Output pins BP0, BP1, BP2 and BP3  
[3]  
[4]  
VBP  
RBP  
voltage on pin BP  
Cbpl = 35 nF  
VLCD = 5 V  
100  
-
+100  
10  
mV  
resistance on pin BP  
-
1.5  
kΩ  
Output pins S0 to S59  
[5]  
[4]  
VS  
RS  
voltage on pin S  
resistance on pin S  
Csgm = 35 nF  
VLCD = 5 V  
100  
-
+100  
13.5  
mV  
-
6.0  
kΩ  
[1] LCD outputs are open circuit; inputs at VSS or VDD; external clock with 50 % duty factor; I2C-bus inactive.  
[2] Not tested, design specification only.  
[3] Cbpl = backplane capacitance.  
[4] Outputs measured individually and sequentially.  
[5] Csgm = segment capacitance.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
27 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
12. Dynamic characteristics  
Table 17. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Clock  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal: output pin CLK  
[1]  
fosc  
oscillator frequency  
VDD = 5 V  
VDD = 5 V  
960  
1536  
3046  
Hz  
External: input pin CLK  
fclk(ext)  
tclk(H)  
tclk(L)  
external clock frequency  
797  
130  
130  
1536  
3046  
Hz  
µs  
µs  
HIGH-level clock time  
LOW-level clock time  
-
-
-
-
Synchronization: input pin SYNC  
tPD(SYNC_N) SYNC propagation delay  
-
30  
-
-
-
ns  
tSYNC_NL  
Outputs: pins BP0 to BP3 and S0 to S59  
tPD(drv) driver propagation delay  
SYNC LOW time  
1
µs  
VLCD = 5 V  
-
-
30  
µs  
I2C-bus: timing[2]  
Pin SCL  
fSCL  
SCL frequency  
-
-
-
-
400  
kHz  
µs  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1.3  
0.6  
-
-
tHIGH  
µs  
Pin SDA  
tSU;DAT  
tHD;DAT  
data set-up time  
data hold time  
100  
0
-
-
-
-
ns  
ns  
Pins SCL and SDA  
tBUF  
bus free time between a STOP and  
1.3  
-
-
µs  
START condition  
tSU;STO  
tHD;STA  
tSU;STA  
set-up time for STOP condition  
hold time (repeated) START condition  
0.6  
0.6  
0.6  
-
-
-
-
-
-
µs  
µs  
µs  
set-up time for a repeated START  
condition  
tr  
rise time of both SDA and SCL signals  
fall time of both SDA and SCL signals  
capacitive load for each bus line  
spike pulse width  
-
-
-
-
-
-
-
-
0.3  
0.3  
400  
50  
µs  
µs  
pF  
ns  
tf  
Cb  
tw(spike)  
[1] Typical output (duty cycle δ = 50 %).  
[2] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VIL and VIH with an  
input voltage swing of VSS to VDD  
.
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
28 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1 / f  
clk  
t
t
clk(L)  
clk(H)  
0.7V  
DD  
CLK  
0.3V  
DD  
0.7V  
DD  
DD  
SYNC  
0.3V  
t
t
PD(SYNC_N)  
PD(SYNC_N)  
t
SYNC_NL  
0.5 V  
(V  
BP0 to BP3,  
and S0 to S59  
= 5 V)  
DD  
0.5 V  
t
PD(drv)  
001aah618  
Fig 19. Driver timing waveforms  
SDA  
t
t
t
f
BUF  
LOW  
SCL  
SDA  
t
HD;STA  
t
t
t
SU;DAT  
r
HD;DAT  
t
HIGH  
t
SU;STA  
t
SU;STO  
mga728  
Fig 20. I2C-bus timing waveforms  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
29 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
13. Application information  
13.1 Cascaded operation  
Large display configurations of up to 16 PCF8534As can be recognized on the same  
I2C-bus by using the 3-bit hardware subaddress (A0, A1 and A2) and the programmable  
I2C-bus slave address (SA0).  
Table 18. Addressing cascaded PCF8534A  
Cluster  
Bit SA0  
Pin A2  
Pin A1  
Pin A0  
Device  
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
2
1
8
9
10  
11  
12  
13  
14  
15  
If cascaded PCF8534As are synchronized, they can share the backplane signals from  
one of the devices in the cascade. This is cost-effective in large LCD applications because  
the backplane outputs of only one device need to be through-plated to the backplane  
electrodes of the display. The other PCF8534As in the cascade contribute additional  
segment outputs but their backplane outputs are left open-circuit (see Figure 21).  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
30 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
V
V
LCD  
DD  
SDA  
SCL  
60 segment drives  
SYNC  
CLK  
PCF8534A  
BP0 to BP3  
OSC  
(open-circuit)  
A0 A1 A2 SA0 V  
SS  
LCD PANEL  
V
LCD  
V
DD  
t
r
R
2C  
V
V
LCD  
b
DD  
60 segment drives  
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
CONTROLLER  
SYNC  
4 backplanes  
BP0 to BP3  
PCF8534A  
CLK  
OSC  
A0 A1 A2 SA0  
V
SS  
V
SS  
001aah619  
Fig 21. Cascaded PCF8534A configuration  
The SYNC line is provided to maintain the correct synchronization between all cascaded  
PCF8534As. Synchronization is guaranteed after a power-on reset. The only time that  
SYNC is likely to be needed is if synchronization is accidentally lost (e.g. by noise in  
adverse electrical environments or by defining a multiplex mode when PCF8534As with  
different SA0 levels are cascaded).  
SYNC is organized as an input/output pin. The output selection is realized as an  
open-drain driver with an internal pull-up resistor. A PCF8534A asserts the SYNC line at  
the onset of its last active backplane signal and monitors the SYNC line at all other times.  
If synchronization in the cascade is lost, it is restored by the first PCF8534A to assert  
SYNC. The timing relationship between the backplane waveforms and the SYNC signal  
for the various drive modes of the PCF8534A are shown in Figure 22.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
31 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1
T
=
fr  
f
fr  
BP0  
SYNC  
(a) static drive mode.  
BP0  
(1/2 bias)  
BP0  
(1/3 bias)  
SYNC  
(b) 1:2 multiplex drive mode.  
BP0  
(1/3 bias)  
SYNC  
(c) 1:3 multiplex drive mode.  
BP0  
(1/3 bias)  
SYNC  
(d) 1:4 multiplex drive mode.  
mgl755  
Fig 22. Synchronization of the cascade for various PCF8534A drive modes  
The contact resistance between the SYNC pins of cascaded devices must be controlled. If  
the resistance is too high, the device will not be able to synchronize properly.  
Table 19 shows the maximum contact resistance values.  
Table 19. SYNC contact resistance  
Number of devices  
Maximum contact resistance  
2
6000 Ω  
2200 Ω  
1200 Ω  
700 Ω  
3 to 5  
6 to 10  
11 to 16  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
32 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
14. Package outline  
LQFP80: plastic low profile quad flat package; 80 leads; body 12 x 12 x 1.4 mm  
SOT315-1  
y
X
A
60  
41  
Z
61  
40  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
L
pin 1 index  
80  
21  
detail X  
1
20  
Z
D
v
M
A
e
w M  
b
p
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
D
E
p
D
E
max.  
7o  
0o  
0.16 1.5  
0.04 1.3  
0.27 0.18 12.1 12.1  
0.13 0.12 11.9 11.9  
14.15 14.15  
13.85 13.85  
0.75  
0.30  
1.45 1.45  
1.05 1.05  
mm  
1.6  
0.25  
0.5  
1
0.2 0.15 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT315-1  
136E15  
MS-026  
Fig 23. Package outline SOT315-1 (LQFP80)  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
33 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
15. Bare die outline  
Wire bond die; 76 bonding pads; 2.91 x 2.62 x 0.38 mm  
PCF8534AU  
D
e
A
63  
44  
C1  
C2  
64  
e
43  
PC8534A-1(3)  
x
E
0
0
76  
y
1
24  
3
F
4
23  
X
0
0.5  
1 mm  
scale  
P
P
3
4
DIMENSIONS (mm are the original dimensions)  
(1)  
(2)  
(1)  
(2)  
UNIT  
max  
A
D
E
e
P
P
P
P
4
1
2
3
P
P
2
mm  
nom 0.38 2.91 2.62  
min  
0.06 0.05 0.10 0.09  
1
0.08  
detail X  
Notes  
1. Pad size  
2. Passivation opening  
3. Marking code  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
PCF8534AU  
08-08-06  
Fig 24. PCF8534AU die outline  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
34 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 20. Bonding pad locations  
Symbol  
Pad Coordinates[1]  
Description  
X (µm)  
1384.4  
1384.4  
1384.4  
978.7  
829.3  
714.3  
584.3  
454.3  
324.3  
194.3  
64.3  
Y (µm)  
SDA  
SCL  
CLK  
VDD  
SYNC  
OSC  
A0  
1
280  
I2C-bus serial data input and output  
I2C-bus serial clock input  
2
760.5  
945  
3
external clock input and output  
supply voltage  
4
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
1238  
841  
5
cascade synchronization input and output  
enable input for internal oscillator  
subaddress counter input  
6
7
A1  
8
A2  
9
SA0  
VSS  
VLCD  
S0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
I2C-bus slave address input 0  
ground  
68.7  
input of LCD supply voltage  
LCD segment output  
173.7  
S1  
253.7  
S2  
333.7  
S3  
413.7  
S4  
493.7  
S5  
573.7  
S6  
653.7  
S7  
733.7  
S8  
813.7  
S9  
893.7  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
973.7  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
761  
681  
601  
521  
441  
361  
281  
201  
121  
41  
39  
119  
301.6  
381.6  
461.6  
541.6  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
35 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 20. Bonding pad locations …continued  
Symbol  
Pad Coordinates[1]  
Description  
X (µm)  
1384.4  
1384.4  
1384.4  
896.5  
Y (µm)  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S51  
S52  
S53  
S54  
S55  
S56  
S57  
S58  
S59  
BP0  
BP1  
BP2  
BP3  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
621.6  
701.6  
781.6  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
1239.4  
935  
LCD segment output  
816.5  
736.5  
576.5  
496.5  
416.5  
336.5  
256.5  
176.5  
96.5  
16.5  
63.5  
143.5  
223.5  
303.5  
463.5  
543.5  
623.5  
703.5  
783.5  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
1384.4  
855  
775  
695  
615  
535  
375  
295  
215  
125  
LCD backplane output  
45  
35  
115  
[1] All coordinates are referenced in µm to the center of the die (see Figure 24).  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
36 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
REF  
REF  
C1  
C2  
REF  
F
001aai649  
Fig 25. Alignment marks  
Table 21. Alignment mark locations [1]  
Symbol  
X (µm)  
1387  
1335  
Y (µm)  
1190  
C1  
C2  
F
1242  
1345  
1173  
[1] All coordinates are referenced in µm to the center of the die (see Figure 24).  
16. Handling information  
Inputs and outputs are protected against electrostatic discharge in normal handling.  
However, to be completely safe you must take normal precautions appropriate to handling  
MOS devices; see JESD625-A and/or IEC61340-5.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
37 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
17. Packing information  
A
C
1.1  
1.2  
1.3  
2.1  
2.2  
3.1  
x.1  
D
F
B
1.y  
y
E
x
001aai625  
Fig 26. Tray details for PCF8534AU/DA/1  
PC8534A-1  
001aai650  
Fig 27. Tray alignment for PCF8534AU/DA/1  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
38 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 22. Tray dimensions  
Symbol  
Description  
Value  
A
B
C
D
E
F
pocket pitch in x direction  
pocket pitch in y direction  
pocket width in x direction  
pocket width in y direction  
tray width in x direction  
5.5 mm  
4.9 mm  
3.08 mm  
2.79 mm  
50.8 mm  
50.8 mm  
8
tray width in y direction  
N
M
number of pockets, x direction  
number of pockets, y direction  
9
18. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
18.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
18.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
39 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
18.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
18.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 28) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 23 and 24  
Table 23. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 24. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 28.  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
40 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 28. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
19. Abbreviations  
Table 25. Abbreviations  
Acronym  
CDM  
CMOS  
ESD  
Description  
Charged Device Model  
Complementary Metal-Oxide Semiconductor  
ElectroStatic Discharge  
Human Body Model  
HBM  
IC  
Integrated Circuit  
LCD  
Liquid Crystal Display  
Machine Model  
MM  
RAM  
Random Access Memory  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
41 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
20. Revision history  
Table 26. Revision history  
Document ID  
PCF8534A_3  
Modifications:  
PCF8534A_2  
Modifications:  
Release date  
20081110  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF8534A_2  
Added bare die product and document sections  
20080604 Product data sheet  
-
PCF8534A_1  
Changes in Section 7.10 on page 14 and Section 7.12 on page 17.  
Added Caution to Section 10 on page 26.  
Changed Figure 22 on page 32.  
PCF8534A_1  
20080423  
Product data sheet  
-
-
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
42 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
21. Legal information  
21.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Limiting values — Stress above one or more limiting values (as defined in  
21.2 Definitions  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
21.3 Disclaimers  
Bare die — All die are tested on compliance with their related technical  
specifications as stated in this data sheet up to the point of wafer sawing and  
are handled in accordance with the NXP Semiconductors storage and  
transportation conditions. If there are data sheet limits not guaranteed, these  
will be separately indicated in the data sheet. There are no post-packing tests  
performed on individual die or wafers.  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
NXP Semiconductors has no control of third party procedures in the sawing,  
handling, packing or assembly of the die. Accordingly, NXP Semiconductors  
assumes no liability for device functionality or performance of the die or  
systems after third party sawing, handling, packing or assembly of the die. It  
is the responsibility of the customer to test and qualify their application in  
which the die is used.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
All die sales are conditioned upon and subject to the customer entering into a  
written die sale agreement with NXP Semiconductors through its legal  
department.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
21.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
I2C-bus — logo is a trademark of NXP B.V.  
22. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF8534A_3  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 03 — 10 November 2008  
43 of 44  
PCF8534A  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
23. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
13.1  
14  
Cascaded operation. . . . . . . . . . . . . . . . . . . . 30  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 33  
Bare die outline . . . . . . . . . . . . . . . . . . . . . . . . 34  
Handling information . . . . . . . . . . . . . . . . . . . 37  
Packing information . . . . . . . . . . . . . . . . . . . . 38  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
15  
16  
17  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
18  
Soldering of SMD packages . . . . . . . . . . . . . . 39  
Introduction to soldering. . . . . . . . . . . . . . . . . 39  
Wave and reflow soldering . . . . . . . . . . . . . . . 39  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 40  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 40  
18.1  
18.2  
18.3  
18.4  
7
7.1  
7.2  
7.3  
Functional description . . . . . . . . . . . . . . . . . . . 5  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . 6  
LCD bias generator. . . . . . . . . . . . . . . . . . . . . . 6  
LCD voltage selector . . . . . . . . . . . . . . . . . . . . 6  
LCD drive mode waveforms . . . . . . . . . . . . . . . 8  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . . 8  
1:2 Multiplex drive mode. . . . . . . . . . . . . . . . . . 9  
1:3 Multiplex drive mode. . . . . . . . . . . . . . . . . 11  
1:4 Multiplex drive mode. . . . . . . . . . . . . . . . . 12  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Internal clock. . . . . . . . . . . . . . . . . . . . . . . . . . 13  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 13  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 13  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 14  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Subaddress counter . . . . . . . . . . . . . . . . . . . . 17  
Output bank selector. . . . . . . . . . . . . . . . . . . . 17  
Input bank selector . . . . . . . . . . . . . . . . . . . . . 17  
Blinker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
19  
20  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 42  
7.4  
21  
Legal information . . . . . . . . . . . . . . . . . . . . . . 43  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 43  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.5  
7.5.1  
7.5.2  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
21.1  
21.2  
21.3  
21.4  
22  
23  
Contact information . . . . . . . . . . . . . . . . . . . . 43  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8
8.1  
Basic architecture . . . . . . . . . . . . . . . . . . . . . . 18  
Characteristics of the I2C-bus. . . . . . . . . . . . . 18  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
START and STOP conditions . . . . . . . . . . . . . 19  
System configuration . . . . . . . . . . . . . . . . . . . 19  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 19  
PCF8534A I2C-bus controller . . . . . . . . . . . . . 20  
Input filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 21  
Command decoder . . . . . . . . . . . . . . . . . . . . . 22  
Display controller . . . . . . . . . . . . . . . . . . . . . . 24  
8.1.1  
8.1.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.2  
8.3  
8.4  
9
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 25  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 26  
Static characteristics. . . . . . . . . . . . . . . . . . . . 27  
Dynamic characteristics . . . . . . . . . . . . . . . . . 28  
Application information. . . . . . . . . . . . . . . . . . 30  
10  
11  
12  
13  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 10 November 2008  
Document identifier: PCF8534A_3  

相关型号:

PCF8534AHL/1

Universal LCD driver for low multiplex rates
NXP

PCF8534AU/DA/1

Universal LCD driver for low multiplex rates
NXP

PCF8534A_08

Universal LCD driver for low multiplex rates
NXP

PCF8534A_09

Universal LCD driver for low multiplex rates
NXP

PCF8534H

Universal LCD driver for low multiplex rates
NXP

PCF8535

65 x 133 pixel matrix driver
NXP

PCF8535U

65 x 133 pixel matrix driver
NXP

PCF8535U/2

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC273, DIE-273, Display Driver
NXP

PCF8536

I2C/SPI LCD and PWM LED controller for industrial and automotive applications
NXP

PCF85363A

Tiny Real-Time Clock/calendar with alarm function and I2C-bus
NXP

PCF85363ATL/A

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I2C-bus
NXP

PCF85363ATL/AX

PCF85363A - Tiny real-time clock/calendar DFN 10-Pin
NXP