PCF8534H [NXP]

Universal LCD driver for low multiplex rates; 低复用率的通用LCD驱动器
PCF8534H
型号: PCF8534H
厂家: NXP    NXP
描述:

Universal LCD driver for low multiplex rates
低复用率的通用LCD驱动器

显示驱动器 驱动程序和接口 接口集成电路 CD
文件: 总40页 (文件大小:867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8534  
Universal LCD driver for low multiplex rates  
Rev. 00.05 — 20 February 2007  
Preliminary datasheet  
1. General description  
The PCF8534 is a peripheral device which interfaces to almost any Liquid Crystal Display  
(LCD) with low multiplex rates. It generates the drive signals for any static or multiplexed  
LCD containing up to four backplanes and up to 60 segments and can easily be cascaded  
for larger LCD applications. The PCF8534 is compatible with most  
microprocessors / microcontrollers and communicates via a two-line bidirectional I2C-bus.  
Communication overheads are minimized using a display RAM with auto-incremented  
addressing, hardware subaddressing and display memory switching (static and duplex  
drive modes).  
2. Features  
„ Single-chip LCD controller / driver  
„ Selectable backplane drive  
configuration: static or 2 / 3 / 4  
backplane multiplexing  
„ Selectable display bias configuration:  
static, 12 or 13  
„ Internal LCD bias generation with  
voltage-follower buffers  
„ 60 segment drives: up to thirty  
8-segment numeric characters; up to  
sixteen 15-segment alphanumeric  
characters; or any graphics of up to  
240 elements  
„ 60 x 4-bit RAM for display data storage  
„ Auto-incremented display data loading „ Display memory bank switching in static  
across device subaddress boundaries  
and duplex drive modes  
„ Versatile blinking modes  
„ LCD and logic supplies may be  
separated  
„ Wide power supply range: from  
„ Wide LCD supply range: from 2.5 V for  
low threshold LCDs and up to 6.5 V for  
guest-host LCDs and high threshold  
(automobile) twisted nematic LCDs  
1.8 to 5.5 V  
„ Low power consumption  
„ TTL/CMOS compatible  
„ 400 kHz I2C-bus interface  
„ Compatible with 4-bit, 8-bit or 16-bit  
microprocessors/microcontrollers  
„ May be cascaded for 2 LCD applications „ No external components  
„ Manufactured in silicon gate CMOS  
process.  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
3. Ordering information  
Table 1.  
Ordering information  
Type number Topside  
mark  
Package  
Name  
Description  
Version  
PCF8534H  
PCF8534H LQFP80 plastic, low profile, quad flat package; 80 leads; body 12 x 12 x 1.4 mm SOT315-1  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
2 of 40  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
4. Block diagram  
%3ꢂ %3ꢅ %3ꢆ %3ꢇ  
6ꢂꢀWRꢀ6ꢃꢄ  
ꢁꢂ  
6,#$  
%DFNSODQHꢀ  
2XWSXWV  
'LVSOD\ꢀ6HJPHQWꢀ2XWSXWV  
/&'ꢀ9ROWDJHꢀ  
6HOHFWRU  
'LVSOD\ꢀ5HJLVWHU  
'LVSOD\  
&RQWURO  
2XWSXWꢀ%DQNꢀ6HOHFWꢀ  
DQGꢀ%OLQNꢀ&RQWURO  
/&'ꢀ%LDV  
*HQHUDWRU  
633  
0#&ꢀꢁꢂꢃ  
'LVSOD\ꢀ5$0  
%OLQNHU  
WLPHEDVH  
#,+  
&ORFNꢀ6HOHFW  
DQGꢀ7LPLQJ  
39.#  
3RZHUꢈRQ  
5HVHW  
&RPPDQG  
'HFRGH  
:ULWHꢀ'DWD  
&RQWURO  
'DWDꢀ3RLQWHUꢀDQG  
$XWRꢀ,QFUHPHQW  
2VFLOODWRU  
/3#  
3#,  
,&ꢈ%XVꢀ  
&RQWUROOHU  
6XE$GGUHVV  
&RXQWHU  
,QSXW  
)LOWHUV  
3$!  
6$$  
6$ꢂ  
$ꢂ $ꢅ $ꢆ  
-',ꢀꢁꢂVꢃꢄ  
Fig 1. PCF8534 block diagram  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
5. Pinning information  
5.1 Pinning  
60  
59  
58  
57  
56  
S10  
S9  
S8  
S7  
S6  
1
2
3
4
5
6
7
8
9
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
55 S5  
54 S4  
53 S3  
52 S2  
51 S1  
S40 10  
S41 11  
S42 12  
S43 13  
S44 14  
S45 15  
S46 16  
PCF8534  
50 S0  
49 VLCD  
48 VSS  
47 SA0  
46 A2  
45 A1  
44 A0  
17  
18  
19  
20  
S47  
S48  
S49  
S50  
43 OSC  
42 SYNC  
41 VDD  
MDB073v02  
Fig 2. PCF8534 pin configuration  
Table 2.  
Pin allocation table  
Pin  
1
Symbol  
S31  
Pin  
41  
42  
43  
44  
45  
46  
47  
48  
49  
Symbol  
VDD  
2
S32  
SYNC  
OSC  
A0  
3
S33  
4
S34  
5
S35  
A1  
6
S36  
A2  
7
S37  
SA0  
VSS  
8
S38  
9
S39  
VLCD  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
4 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 2.  
Pin allocation table …continued  
Pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Symbol  
S40  
S41  
S42  
S43  
S44  
S45  
S46  
S47  
S48  
S49  
S50  
S51  
S52  
S53  
S54  
S55  
S56  
S57  
S58  
S59  
BP0  
BP1  
BP2  
BP3  
n.c.  
Pin  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
Symbol  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
n.c.  
n.c.  
n.c.  
SDA  
SCL  
CLK  
5.2 Pin description  
Table 3.  
Symbol  
SDA  
Pin description  
Pin  
38  
39  
40  
41  
42  
Description  
I2C-bus serial data input / output  
I2C-bus serial clock input  
SCL  
CLK  
external clock input / output  
supply voltage  
VDD  
SYNC  
cascade synchronization input / output  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
5 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 3.  
Pin description  
Symbol  
Pin  
Description  
OSC  
43  
internal oscillator enable input  
A0, A1 and A2  
44 to 46  
47  
subaddress inputs  
SA0  
I2C-bus slave address input: [0]  
logic ground  
VSS  
48  
VLCD  
49  
LCD supply voltage  
LCD backplane outputs  
LCD segment outputs  
BP0, BP1, BP2 and BP3  
S0 to S59  
30 to 33  
50 to 80  
and 1 to 29  
6. Functional description  
The PCF8534 is a versatile peripheral device designed to interface any  
microprocessor/microcontroller to a wide variety of LCDs. It can directly drive any static or  
multiplexed LCD containing up to four backplanes and up to 60 segments.  
The display configurations possible with the PCF8534 depend on the number of active  
backplane outputs required; a selection of display configurations is given in Table 4.  
All of the display configurations given in Table 4 can be implemented in the typical system  
shown in Figure 3.  
The host microprocessor / microcontroller maintains the 2-line I2C-bus communication  
channel with the PCF8534. The internal oscillator is selected by connecting pad OSC  
to VSS. The appropriate biasing voltages for the multiplexed LCD waveforms are  
generated internally. The only other connections required to complete the system are the  
power supplies (VDD, VSS and VLCD) and the LCD panel selected for the application.  
Table 4.  
Selection of display configurations  
7 segment numeric  
Number of  
14 segment numeric  
Dot matrix  
Backplanes  
Segments  
Digits  
Indicator  
Characters  
Indicator  
symbols  
symbols  
4
3
2
1
240  
180  
120  
60  
30  
22  
15  
7
30  
26  
15  
11  
16  
12  
8
16  
12  
8
240 (4 x 60)  
180 (3 x 60)  
120 (2 x 60)  
60 (1 x 60)  
4
4
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
6 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
V
DD  
t
r
R
2C  
B
V
V
DD  
LCD  
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
CONTROLLER  
60 segment drives  
4 backplanes  
LCD PANEL  
PCF8534  
(up to 240  
elements)  
OSC  
A0 A1 A2 SA0  
V
SS  
MGL744v02  
V
SS  
Fig 3. Typical system configuration  
6.1 Power-on-reset  
At power on the PCF8534 resets to a starting condition as follows:  
1. All backplane outputs are set to VLCD  
2. All segment outputs are set to VLCD  
.
.
3. The drive mode ‘1 : 4 multiplex with 13 bias’ is selected.  
4. Blinking is switched off.  
5. Input and output bank selectors are reset (as defined in Table 7 old datasheet).  
6. The I2C-bus interface is initialized.  
7. The data pointer and the subaddress counter are cleared.  
8. Display disabled.  
You must avoid data transfers on the I2C-bus for 1 ms following power on to allow the  
reset action to complete.  
6.2 LCD bias generator  
Fractional LCD biasing voltages are obtained from an internal voltage divider of the three  
series resistors connected between VLCD and VSS. The centre resistor can be switched  
out of the circuit to provide a 12 bias voltage level for the 1:2 multiplex configuration.  
6.3 LCD voltage selector  
The LCD voltage selector co-ordinates the multiplexing of the LCD in accordance with the  
selected LCD drive configuration. The operation of the voltage selector is controlled by  
MODE SET commands from the command decoder.  
The biasing configurations that apply to the preferred modes of operation, together with  
the biasing characteristics as functions of VOP and the resulting discrimination ratios (D),  
are shown in Table 5.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
7 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
A practical value for VOP is determined by equating VOFF(rms) with a defined LCD threshold  
voltage (VTH), typically when the LCD exhibits approximately 10% contrast. In the static  
drive mode a suitable choice is VOP > 3VTH  
.
Multiplex drive ratios of 1:3 and 1:4 with 12 bias are possible but the discrimination and  
hence the contrast ratios are smaller e.g.:  
21  
3
---------  
3 = 1.732 for 1:3 multiplex or  
= 1.528 for 1:4 multiplex  
The advantage of these modes is a reduction of the LCD full-scale voltage VOP as follows:  
1:3 multiplex (12 bias): VOP  
=
6 × VOFF(rms) = 2.449VOFF(rms)  
(4 × 3)  
1:4 multiplex (12 bias): VOP  
=
= 2.309VOFF(rms)  
--------------------  
3
These compare with VOP = 3 x VOFF(rms) when 13 bias is used. Note: VOP = VLCD  
.
Table 5.  
Preferred LCD drive modes: summary of characteristics  
LCD drive  
mode  
Number of:  
LCD bias  
configuration  
VON(ms)  
-------------------  
VOP  
VON(ms)  
----------------------  
VOFF(ms)  
VOFF(ms)  
----------------------  
VOP  
D =  
Backplanes  
Levels  
static  
1:2  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
2
1
1:2  
3
1
1:3  
3
1
1:4  
3
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
8 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.4 LCD drive mode waveforms  
6.4.1 Static drive mode  
The static LCD drive mode is used when a single backplane is provided in the LCD.  
Backplane and segment drive waveforms for this mode are shown in Figure 4.  
T
frame  
LCD segments  
V
LCD  
BP0  
V
SS  
state 1  
(on)  
state 2  
(off)  
V
LCD  
S
n
V
SS  
V
LCD  
S
n+1  
V
SS  
(a) Waveforms at driver.  
V
LCD  
state 1  
0 V  
V  
LCD  
V
LCD  
state 2  
0 V  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl745  
Vstate1(t) = Vsn(t) VBP0(t).  
VON(rms) = VLCD  
Vstate2(t) = V(sn + 1)(t) VBP0(t).  
OFF(rms) = 0 V.  
.
V
Fig 4. Static drive mode waveforms  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
9 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.4.2 1:2 Multiplex drive mode  
When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The  
PCF8534 allows the use of 12 bias or 13 bias in this mode as shown in Figure 5 and  
Figure 6.  
T
frame  
V
LCD  
LCD segments  
V
/2  
BP0  
BP1  
LCD  
V
V
SS  
state 1  
V
LCD  
state 2  
/2  
LCD  
SS  
V
V
LCD  
S
n
V
SS  
V
LCD  
S
n+1  
V
V
SS  
(a) Waveforms at driver.  
V
LCD  
/2  
LCD  
0 V  
state 1  
V  
/2  
LCD  
V  
LCD  
V
LCD  
V
/2  
LCD  
0 V  
state 2  
V  
V  
/2  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl746  
Vstate1(t) = Vsn(t) VBP0(t).  
VON(rms) = 0.791 VLCD  
Vstate2(t) = V(sn)(t) VBP1(t).  
OFF(rms) = 0.354 VLCD  
.
V
.
Fig 5. Waveforms for the 1:2 multiplex drive mode with 12 bias.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
10 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
T
frame  
V
LCD  
2V  
LCD segments  
/3  
LCD  
/3  
BP0  
BP1  
V
LCD  
V
SS  
state 1  
V
LCD  
2V  
state 2  
/3  
LCD  
/3  
V
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
/3  
S
n
V
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
/3  
S
n+1  
V
LCD  
V
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 1  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl747  
Vstate1(t) = Vsn(t) VBP0(t).  
VON(rms) = 0.745 VLCD  
state2(t) = V(sn)(t) VBP1(t).  
VOFF(rms) = 0.333 VLCD  
.
V
.
Fig 6. Waveforms for the 1:2 multiplex drive mode with 13 bias.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
11 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.4.3 1:3 Multiplex drive mode  
When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies, as  
shown in Figure 7.  
T
frame  
V
LCD  
2V  
LCD segments  
/3  
LCD  
/3  
BP0  
BP1  
BP2  
V
LCD  
V
SS  
state 1  
state 2  
V
LCD  
2V  
/3  
LCD  
/3  
V
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
/3  
V
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
/3  
S
n
V
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
/3  
S
n+1  
S
n+2  
V
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
/3  
V
LCD  
V
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
LCD  
/3  
V
LCD  
0 V  
V  
state 1  
/3  
LCD  
2V  
LCD  
/3  
LCD  
V  
V
LCD  
2V  
/3  
LCD  
/3  
V
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V /3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl748  
Vstate1(t) = Vsn(t) VBP0(t).  
VON(rms) = 0.638 VLCD  
Vstate2(t) = V(sn)(t) VBP1(t).  
OFF(rms) = 0.333 VLCD  
.
V
.
Fig 7. Waveforms for the 1:3 multiplex drive mode.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
12 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.4.4 1:4 Multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies, as  
shown in Figure 8.  
T
frame  
V
LCD segments  
LCD  
2V  
/3  
LCD  
BP0  
BP1  
BP2  
BP3  
V
/3  
LCD  
V
SS  
state 1  
state 2  
V
LCD  
2V  
/3  
LCD  
V
LCD  
/3  
V
SS  
V
LCD  
2V  
/3  
LCD  
/3  
V
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
V
LCD  
/3  
V
SS  
V
LCD  
2V  
/3  
LCD  
/3  
S
n
V
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
S
n+1  
V
LCD  
/3  
V
SS  
V
LCD  
2V  
/3  
LCD  
S
S
n+2  
n+3  
V /3  
LCD  
V
SS  
V
LCD  
2V  
/3  
LCD  
V /3  
LCD  
V
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
state 1  
0 V  
V  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
V
LCD  
2V  
/3  
LCD  
V /3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V /3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl749  
Vstate1(t) = Vsn(t) VBP0(t).  
VON(rms) = 0.577 VLCD  
state2(t) = V(sn)(t) VBP1(t).  
VOFF(rms) = 0.333 VLCD  
.
V
.
Fig 8. Waveforms for the 1:4 multiplex drive mode.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
13 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.5 Oscillator  
6.5.1 Internal clock  
The internal logic and the LCD drive signals of the PCF8534 are timed either by the  
built-in oscillator or from an external clock. When the internal oscillator is used, you must  
connect pad OSC to VSS. In this event, the output from pad CLK provides the clock signal  
for cascaded PCF8534’s in the system. After power-up, SDA must be HIGH to guarantee  
that the clock starts.  
6.5.2 External clock  
The condition for external clock is made by tying pad OSC to VDD; pad CLK then becomes  
the external clock input.  
The clock frequency (fCLK) determines the LCD frame frequency.  
A clock signal must always be supplied to the device; removing the clock may freeze the  
LCD in a DC state.  
6.6 Timing  
The timing of the PCF8534 organizes the internal data flow of the device. This includes  
the transfer of display data from the display RAM to the display segment outputs. In  
cascaded applications the synchronization signal (SYNC) maintains the correct timing  
relationship between the PCF8534’s in the system. The timing also generates the LCD  
frame frequency which it derives as an integer division of the clock frequency  
(see Table 6). The frame frequency is a fixed division of the internal clock or of the  
frequency applied to pad CLK when an external clock is used.  
6.7 Display register  
The display latch holds the display data while the corresponding multiplex signals are  
generated. There is a one-to-one relationship between the data in the display latch, the  
LCD segment outputs and one column of the display RAM.  
6.8 Segment outputs  
The LCD drive section includes 60 segment outputs (S0 to S59) which must be connected  
directly to the LCD. The segment output signals are generated in accordance with the  
multiplexed backplane signals and with data resident in the display latch. When less than  
60 segment outputs are required the unused segment outputs must be left open-circuit.  
6.9 Backplane outputs  
The LCD drive section includes four backplane outputs BP0 to BP3 which must be  
connected directly to the LCD. The backplane output signals are generated in accordance  
with the selected LCD drive mode. If less than four backplane outputs are required the  
unused outputs can be left open-circuit. In the 1:3 multiplex drive mode BP3 carries the  
same signal as BP1, therefore these two adjacent outputs can be tied together to give  
enhanced drive capabilities. In the 1:2 multiplex drive mode BP0 and BP2, BP1 and BP3  
respectively carry the same signals and may also be paired to increase the drive  
capabilities. In the static drive mode the same signal is carried by all four backplane  
outputs and they can be connected in parallel for very high drive requirements.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
14 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.10 Display RAM  
The display RAM is a static 60 x 4-bit RAM which stores LCD data. A logic 1 in the RAM  
bit map indicates the on-state of the corresponding LCD segment; similarly, a logic 0  
indicates the off-state. There is a one-to-one correspondence between the RAM  
addresses and the segment outputs, and between the individual bits of a RAM word and  
the backplane outputs. The first RAM column corresponds to the 60 segments operated  
with respect to backplane BP0 (see Figure 9). In multiplexed LCD applications the  
segment data of the second, third and fourth column of the display RAM are  
time-multiplexed with BP1, BP2 and BP3 respectively.  
When display data is transmitted to the PCF8534 the display bytes received are stored in  
the display RAM in accordance with the selected LCD drive mode. The data is stored as it  
arrives and does not wait for the acknowledge cycle as with the commands. Depending on  
the current mux mode data is stored singularly, in pairs, triplets or quadruplets. e.g. in 1:2  
mux mode the RAM data is stored every second bit. To illustrate the filling order, an  
example of a 7-segment numeric display showing all drive modes is given in Figure 10;  
the RAM filling organization depicted applies equally to other LCD types. With reference  
to Figure 10, in the static drive mode the eight transmitted data bits are placed in bit 0 of  
eight successive display RAM addresses. In the 1:2 multiplex drive mode the eight  
transmitted data bits are placed in bits 0 and 1 of four successive display RAM addresses.  
In the 1 : 3 multiplex drive mode these bits are placed in bits 0, 1 and 2 of three  
successive addresses, with bit 2 of the third address left unchanged. This last bit may, if  
necessary, be controlled by an additional transfer to this address but care should be taken  
to avoid overriding adjacent data because full bytes are always transmitted. In the 1:4  
multiplex drive mode the eight transmitted data bits are placed in bits 0, 1, 2 and 3 of two  
successive display RAM addresses.  
Table 6.  
LCD frame frequencies  
Frame frequency  
Nominal frame frequency (Hz)  
fCLK  
----------  
24  
64  
DISPLAY 2!- ADDRESSES ꢊROWSꢋ ꢌ SEGMENT OUTPUTS ꢊ3ꢋ  
ꢅꢅ ꢅꢆ ꢅꢇ ꢅꢈ ꢅꢉ  
U
DISPLAY 2!- BITS  
ꢊCOLUMNSꢋ ꢌ  
BACKPLANE OUTPUTS  
ꢊ"0ꢋ  
-',ꢀꢅꢃVꢃꢄ  
Fig 9. Display RAM bit map showing direct relationship between backplane outputs, display RAM addresses and  
segment outputs, and between bits in a RAM word and backplane outputs.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
15 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.11 Data pointer  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte, or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the LOAD DATA POINTER command. Following this, an arriving data byte  
is stored starting at the display RAM address indicated by the data pointer thereby  
observing the filling order shown in Figure 10. The data pointer is automatically  
incremented in accordance with the chosen LCD configuration. That is, after each byte is  
stored, the contents of the data pointer are incremented by eight (static drive mode), by  
four (1:2 multiplex drive mode), by three (1:3 multiplex drive mode) or by two (1:4  
multiplex drive mode). If an I2C-bus data access is terminated early then the state of the  
data pointer is unknown. The data pointer must be re-written prior to further RAM  
accesses.  
6.12 Subaddress counter  
The storage of display data is conditioned by the contents of the subaddress counter.  
Storage is allowed to take place only when the contents of the subaddress counter agree  
with the hardware subaddress applied to A0, A1 and A2. The subaddress counter value is  
defined by the DEVICE SELECT command. If the contents of the subaddress counter and  
the hardware subaddress do not agree then data storage is inhibited but the data pointer  
is incremented as if data storage had taken place.  
The subaddress counter is also incremented when the data pointer overflows.  
The storage arrangements described lead to extremely efficient data loading in cascaded  
applications. When a series of display bytes are sent to the display RAM, automatic  
wrap-over to the next PCF8534 occurs when the last RAM address is exceeded.  
Subaddressing across device boundaries is successful even if the change to the next  
device in the cascade occurs within a transmitted character (such as during the 27th  
display data byte transmitted in 1 : 3 multiplex mode).  
The hardware subaddress should not be changed whilst the device is being accessed on  
the I2C-bus interface.  
6.13 Output bank selector  
The output bank selector selects one of the four bits per display RAM address for transfer  
to the display latch. The actual bit selected depends on the particular LCD drive mode in  
operation and on the instant in the multiplex sequence. In 1:4 multiplex, all RAM  
addresses of bit 0 are selected, these are followed by the contents of bit 1, bit 2 and then  
bit 3. Similarly in 1:3 multiplex, bits 0, 1 and 2 are selected sequentially. In 1:2 multiplex,  
bits 0 and 1 are selected and, in the static mode, bit 0 is selected.  
The SYNC signal will reset these sequences to the following starting points; bit 3 for 1:4  
multiplex, bit 2 for 1:3 multiplex, bit 1 for 1:2 multiplex and bit 0 for static mode.  
The PCF8534 includes a RAM bank switching feature in the static and 1:2 multiplex drive  
modes. In the static drive mode, the BANK SELECT command may request the contents  
of bit 2 to be selected for display instead of the contents of bit 0. In the 1:2 drive mode, the  
contents of bits 2 and 3 may be selected instead of bits 0 and 1. This gives the provision  
for preparing display information in an alternative bank and to be able to switch to it once  
it is assembled.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
16 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.14 Input bank selector  
The input bank selector loads display data into the display RAM in accordance with the  
selected LCD drive configuration. Display data can be loaded in bit 2 in static drive mode  
or in bits 2 and 3 in 1:2 drive mode by using the BANK SELECT command. The input  
bank selector functions independently to the output bank selector.  
6.15 Blinker  
The display blinking capabilities of the PCF8534 are very versatile. The whole display can  
be blinked at frequencies selected by the BLINK command. The blinking frequencies are  
integer multiples of the clock frequency. The ratios between the clock and blinking  
frequencies depend on the mode in which the device is operating, see Table 7.  
An additional feature is for an arbitrary selection of LCD segments to be blinked. This  
applies to the static and 1:2 LCD drive modes and is implemented without any  
communication overheads. By means of the output bank selector, the displayed RAM  
banks are exchanged with alternate RAM banks at the blinking frequency. This mode can  
also be specified by the BLINK command.  
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of  
LCD segments can be blinked by selectively changing the display RAM data at fixed time  
intervals.  
If the entire display is to be blinked at a frequency other than the nominal blinking  
frequency, this can be effectively performed by resetting and setting the display enable  
bit E at the required rate using the MODE SET command.  
Table 7.  
Blinking frequencies  
Blinking mode  
Normal operating mode  
ratio  
Normal blinking frequency  
Off  
-
Blinking off  
2 Hz  
fCLK  
----------  
768  
2 Hz  
fCLK  
-----------  
1536  
1 Hz  
1 Hz  
fCLK  
-----------  
3072  
0.5 Hz  
0.5 Hz  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
17 of 40  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
drive mode  
LCD segments  
LCD backplanes  
display RAM filling order  
transmitted display byte  
a
S
n+2  
n
n
1
n
2
n
3
n
4
n
5
n
6
n 7  
b
BP0  
f
S
n+3  
S
n+1  
MSB  
LSB  
DP  
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
bit/  
BP  
g
S
n+4  
S
n
x
x
x
x
x
x
c
b
a
f
g e d  
static  
e
S
S
n+7  
n+5  
n+6  
c
d
DP  
S
BP0  
S
n
a
n
n
n
n
1
1
1
n
2
n 3  
b
b
b
1 : 2  
f
S
n+1  
MSB  
LSB  
DP  
0
1
2
3
a
b
x
x
f
e
c
x
x
d
bit/  
BP  
g
g
x
x
DP  
x
x
a
b
f
g
e c d  
BP1  
S
S
e
multiplex  
n+2  
n+3  
c
c
c
d
d
d
DP  
BP0  
BP1  
S
n+1  
a
n
n 2  
S
S
n
f
1 : 3  
n+2  
MSB  
LSB  
e
0
1
2
3
b
DP  
c
a
d
g
x
f
bit/  
BP  
g
e
x
x
BP2  
b DP  
c
a
d
g
f
e
multiplex  
x
DP  
S
n
a
n
BP2  
BP3  
BP0  
BP1  
f
1 : 4  
0
1
2
3
a
c
f
bit/  
BP  
MSB  
LSB  
d
g
e
g
d
b
DP  
e
multiplex  
a
c
b
DP  
f
e
g
S
n+1  
DP  
mgl751  
X = data bit unchanged  
Fig 10. Relationship between LCD layout, drive mode, display RAM filling order and display data transmitted over the I2C bus.  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7. Application design-in information  
7.1 Characteristics of the I2C bus  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial Data line (SDA) and a Serial Clock Line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor when connected to the output  
stages of a device. Data transfer is initiated only when the bus is not busy.  
7.2 Bit transfer  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable during the HIGH period of the clock pulse as  
changes in the data line at this time will be interpreted as a control signal. Bit transfer is  
illustrated in Figure 11.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 11. Bit transfer  
7.3 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line, while the clock is HIGH is defined as the START condition (S).  
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition (P). The START and STOP conditions are illustrated in Figure 12.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 12. Definition of START and STOP conditions  
7.4 System configuration  
A device generating a message is a ‘transmitter’, a device receiving a message is the  
‘receiver’. The device that controls the message is the ‘master’ and the devices which are  
controlled by the master are the ‘slaves’. The system configuration is illustrated in  
Figure 13.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
19 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 13. System configuration  
7.5 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during  
which time the master generates an extra acknowledge related clock pulse. A slave  
receiver which is addressed must generate an acknowledge after the reception of each  
byte. Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter. The device that acknowledges  
must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is  
stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and  
hold times must be taken into consideration). A master receiver must signal an end of data  
to the transmitter by not generating an acknowledge on the last byte that has been  
clocked out of the slave. In this event the transmitter must leave the data line HIGH to  
enable the master to generate a STOP condition. Acknowledgement on the I2C-bus is  
illustrated in Figure 14.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 14. Acknowledgement of the I2C-bus  
7.6 PCF8534 I2C-bus controller  
The PCF8534 acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. The only data output from the PCF8534 are  
the acknowledge signals of the selected devices. Device selection depends on the  
I2C-bus slave address, on the transferred command data and on the hardware  
subaddress.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
20 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
In single device application, the hardware subaddress inputs A0, A1 and A2 are normally  
tied to VSS which defines the hardware subaddress 0. In multiple device applications  
A0, A1 and A2 are tied to VSS or VDD in accordance with a binary coding scheme such  
that no two devices with a common I2C-bus slave address have the same hardware  
subaddress.  
7.7 Input filters  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
7.8 I2C-bus protocol  
Two I2C-bus slave addresses (01110000 and 01110010) are reserved for the PCF8534.  
The least significant bit of the slave address that a PCF8534 will respond to is defined by  
the level tied at its input SA0. The PCF8534 is a write only device and will not respond to  
a read access. Therefore, two types of PCF8534 can be distinguished on the same  
I2C-bus which allows:  
1. Up to 16 PCF8534’s on the same I2C-bus for very large LCD applications  
2. The use of two types of LCD multiplex on the same I2C-bus.  
The I2C-bus protocol is shown in Figure 15. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of the two PCF8534 slave  
addresses available. All PCF8534’s with the corresponding SA0 level acknowledge in  
parallel to the slave address, but all PCF8534’s with the alternative SA0 level ignore the  
whole I2C-bus transfer.  
After acknowledgement, a control byte follows which defines if the next byte is RAM or  
command information. The control byte also defines if the next following byte is a control  
byte or further RAM/command data.  
In this way it is possible to configure the device then fill the display RAM with little  
overhead.  
The command bytes and control bytes are also acknowledged by all addressed  
PCF8534’s connected to the bus.  
The display bytes are stored in the display RAM at the address specified by the data  
pointer and the subaddress counter. Both data pointer and subaddress counter are  
automatically updated and the data is directed to the intended PCF8534 device.  
The acknowledgement after each byte is made only by the (A0, A1 and A2) addressed  
PCF8534. After the last display byte, the I2C-bus master issues a STOP condition (P).  
Alternatively a START may be issued to RESTART an I2C-bus access.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
21 of 40  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
R/W = 0  
slave address  
control byte  
A CoRS  
0
RAM/command byte  
S
A
0
M
S
B
L
S
B
S
0
1
1
1
0
0
P
A
EXAMPLES  
a) transmit two bytes of RAM data  
S
A
S
0
1
1
1
0
0
0
0
1
1
0
A
0
A
A
A
RAM DATA  
COMMAND  
COMMAND  
A
A
A
RAM DATA  
A
A
A
P
b) transmit two command bytes  
S
A
S
0
1
1
1
0
0
0
0
0
0
1
A
0
COMMAND  
RAM DATA  
A
A
P
c) transmit one command byte and two RAM bytes  
S
A
1 0  
S
0
1
1
1
0
0
0
A
0
RAM DATA  
A P  
MGL752  
Fig 15. I2C-bus protocol  
MSB  
Co RS  
LSB  
UNUSED  
MGL753  
(1) C0 = 0; last control byte  
(2) C0 = 1; control bytes continue  
(3) RS = 0; data is a command byte  
(4) Rs = 1; data is a display byte  
Fig 16. Control byte format  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.9 Command decoder  
The command decoder identifies command bytes that arrive on the I2C-bus. The five  
commands available to the PCF8534 are defined in Table 8.  
Table 8.  
Definition of PCF8534 commands  
OPCODE  
Command  
Mode set  
Options  
Table 9  
Description  
1 1 0 0 E B M1 M0  
defines LCD drive mode  
defines LCD bias configuration  
Table 10  
Table 11  
defines display status; the possibility to disable  
the display allows implementation of blinking  
under external control  
Load data pointer  
Device select  
Bank select  
0 P6 P5 P4 P3 P2 P1 P0  
1 1 1 0 0 A2 A1 A0  
1 1 1 1 1 0 I O  
Table 12  
Table 13  
7 bits of immediate data, bits P6 to P0, are  
transferred to the data pointer to define one of 8  
hardware subaddresses  
3 bits of immediate data, bits A0 to A3 are  
transferred to the subaddress counter to define  
one of 8 hardware subaddresses  
Table 14  
Table 15  
defines input bank selection (storage of arriving  
display data)  
defines output bank selection (retrieval of LCD  
display data); the BANK SELECT command has  
no effect in 1:3 or 1:4 multiplex drive modes  
Blink  
1 1 1 1 0 A BF BF  
1 0  
Table 16  
Table 17  
defines the blinking frequency  
selects the blinking mode; normal operation with  
frequency set by BF1, BF0 or blinking by  
alteration of display RAM banks. Alteration  
blinking does not apply in 1:3 or 1:4 multiplex  
drive modes.  
Table 9.  
Mode set option 1  
LCD drive mode  
Bits  
Drive mode  
Backplane  
1 BP  
M1  
0
M0  
1
static  
1:2  
MUX (2BP)  
MUX (3BP)  
MUX (4BP)  
1
0
1:3  
1
1
1:4  
0
0
Table 10. Mode set option 2  
LCD bias  
13 bias  
12 bias  
Bit B  
0
1
Table 11. Mode set option 3  
Display status  
Bit E  
disabled (blank)  
0
1
enabled  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
23 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 12. Load data pointer option 1  
Description  
Bits  
P6  
7 bit ordinary value of 0 to 59  
P5  
P4  
P3  
P2  
A1  
P1  
P0  
Table 13. Device selected option 1  
Description  
Bits  
A2  
3 bit binary value of 0 to 7  
A0  
Table 14. Blank select option 1 (input)  
Static  
1:2 MUX  
Bit I  
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
Table 15. Blank select option 2 (output)  
Static  
1:2 MUX  
Bit O  
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
Table 16. Blink option 1  
Blink frequency  
Bits  
BF1  
0
BF0  
0
off  
2 Hz  
1 Hz  
1.5 Hz  
0
1
1
0
1
1
Table 17. Blink option 2  
Blink mode  
Bit A  
[1]  
normal blinking  
0
1
alteration blinking  
[1] Normal blinking is assumed when the multiplex rates 1:3 or 1:4 are selected.  
7.10 Display controller  
The display controller executes the commands identified by the command decoder. It  
contains the status registers of the PCF8534 and co-ordinates their effects.  
The controller is also responsible for loading display data into the display RAM as required  
by the filling order.  
7.11 Cascaded operation  
In large display configurations, up to 16 PCF8534’s can be distinguished on the same  
I2C-bus by using the 3-bit hardware subaddress (A0, A1 and A2) and the programmable  
I2C-bus slave address (SA0). When cascaded PCF8534’s are synchronized they can  
share the backplane signals from one of the devices in the cascade. Such an  
arrangement is cost-effective in large LCD applications since the backplane outputs of  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
24 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
only one device need to be through-plated to the backplane electrodes of the display. The  
other PCF8534’s of the cascade contribute additional segment outputs but their  
backplane outputs are left open-circuit (see Figure 17).  
The SYNC line is provided to maintain the correct synchronization between all cascaded  
PCF8534’s. This synchronization is guaranteed after the power-on reset. The only time  
that SYNC is likely to be needed is if synchronization is accidentally lost (e.g. by noise in  
adverse electrical environments, or by the definition of a multiplex mode when PCF8534’s  
with different SA0 levels are cascaded). SYNC is organized as an input / output pad; the  
output selection being realized as an open-drain driver with an internal pull-up resistor. A  
PCF8534 asserts the SYNC line at the onset of its last active backplane signal and  
monitors the SYNC line at all other times. If synchronization in the cascade is lost, it is  
restored by the first PCF8534 to assert SYNC. The timing relationship between the  
backplane waveforms and the SYNC signal for the various drive modes of the PCF8534  
are shown in Figure 18.  
The contact resistance between the SYNC pads of cascaded devices must be controlled.  
If the resistance is too high then the device will not be able to synchronize properly.  
Table 18 shows the limiting values for contact resistance.  
Table 18. SYNC contact resistance  
Number of devices  
Maximum contact resistance  
2
6000 Ω  
2200 Ω  
1200 Ω  
700 Ω  
3 to 5  
6 to 10  
11 to 16  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
25 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
V
V
DD  
LCD  
SDA  
SCL  
60 segment drives  
LCD PANEL  
SYNC  
CLK  
PCF8534  
OSC  
BP0 to BP3  
(open-circuit)  
A0 A1 A2 SA0 V  
SS  
V
LCD  
V
t
DD  
r
R
2C  
V
V
LCD  
DD  
B
SDA  
SCL  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
60 segment drives  
SYNC  
PCF8534  
CONTROLLER  
4 backplanes  
BP0 to BP3  
CLK  
OSC  
A0 A1 A2 SA0  
V
V
SS  
SS  
MGL754v02  
Fig 17. Cascaded PCF8534 configuration  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
26 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1
T
= f  
frame  
frame  
BP0  
SYNC  
(a) static drive mode.  
BP1  
(1/2 bias)  
BP1  
(1/3 bias)  
SYNC  
(b) 1 : 2 multiplex drive mode.  
BP2  
SYNC  
(c) 1 : 3 multiplex drive mode.  
BP3  
SYNC  
mgl755  
(d) 1 : 4 multiplex drive mode.  
Fig 18. Synchronization of the cascade for various PCF8534 drive modes  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
27 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8. Limiting values  
Table 19. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
Parameter  
Min  
Max  
Unit  
V
supply voltage  
0.5  
+6.5  
IDD  
supply current  
50  
+50  
mA  
V
VLCD  
ILCD  
LCD supply voltage  
LCD supply current  
negative supply current  
VSS 0.5  
50  
+7.5  
+50  
mA  
mA  
V
ISS  
50  
+50  
VI(n)  
input voltage on pads SDA,  
SCL, CLK, SYNC, SA0, OSC  
and A0 to A2  
VSS 0.5  
VDD + 0.5  
VO(n)  
output voltage on pads s= to  
S59 and BP0 to BP3  
VSS 0.5  
VLCD + 0.5  
V
II  
DC input current  
10  
10  
-
+10  
+10  
400  
100  
+150  
mA  
mA  
mW  
mW  
°C  
IO  
DC output current  
PTOT  
P / out  
TSTG  
total power dissipation  
power dissipation per output  
storage temperature  
-
65  
8.1 ESD values  
ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per  
JESD22-A115 and 2000 V CDM per JESD22-C101.  
Latch-up testing is done to JEDEC standard JESD78 which exceeds 100 mA.  
9. Static characteristics  
Table 20. Static characteristics  
VDD = 1.8 to 5.5 V; VSS = 0 V; VLCD = 2.5 to 6.5 V; TAMB = 40 to +85°C; unless otherwise specified  
Symbol  
Supplies  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
1.8  
2.5  
-
-
5.5  
6.5  
20  
V
VLCD  
IDD  
LCD supply voltage  
supply current  
-
μA  
μA  
μA  
[1]  
[1]  
fCLK = 1536 Hz  
fCLK = 1536 Hz  
8
24  
ILCD  
LCD supply current  
-
60  
Logic  
VIL  
Low-level input  
voltage  
VSS  
-
-
-
0.3 VDD  
V
VIH  
High-level input  
voltage  
0.7 VDD  
1
VDD  
-
V
IOL1  
Low-level output  
current on pads CLK  
and SYNC  
VOL = 0.4 V; VDD = 5 V  
mA  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
28 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 20. Static characteristics  
VDD = 1.8 to 5.5 V; VSS = 0 V; VLCD = 2.5 to 6.5 V; TAMB = 40 to +85°C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IOH1  
High-level output  
current pad CLK  
VOH = 4.6 V; VDD = 5 v  
1  
-
-
mA  
IOL2  
IL1  
Low-level output  
current pad SDA  
VOL = 0.4 V; VDD = 5 V  
3
-
-
-
mA  
leakage current pads V1 = VDD or VSS  
SA0, A0 to A2, CLK,  
1  
+1  
μA  
SDA and SCL  
IL2  
leakage current pad  
OSC  
V1 = VDD  
1  
-
+1  
μA  
[2]  
C1  
input capacitance  
-
-
7
pF  
V
VPOR  
power on reset  
voltage level  
1.0  
1.3  
1.6  
LCD outputs  
VBP  
DC voltage  
component on pads  
BP0 to BP3  
CBP = 35 nF  
CS = 5 nF  
100  
100  
-
-
+100  
+100  
mV  
mV  
VS  
DC voltage  
component on pads  
S0 to S59  
[3]  
[3]  
RBP  
RS  
output resistance at  
pads BP0 to BP3  
VLCD = 5 V  
VLCD = 5 V  
-
-
1.5  
6.0  
10  
kΩ  
kΩ  
output resistance at  
pads S0 to S59  
13.5  
[1] LCD outputs are open circuit; inputs at VSS or VDD; external clock with 50% duty factor; I2C-bus inactive.  
[2] Not tested, design spec only.  
[3] Outputs measured individually and sequentially.  
10. Dynamic characteristics  
Table 21. Dynamic characteristics  
VDD = 1.8 to 5.5 V; VSS = 0 V; VLCD = 2.5 to 6.5 V; TAMB = 40 to +85°C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
960  
797  
130  
130  
-
Typ  
Max  
Unit  
[1]  
fCLK(int)  
fCLK(ext)  
tCLKH  
tCLKL  
oscillator frequency on pad CLK (internal clock) VDD = 5 V  
oscillator frequency on pad CLK (external clock) VDD = 5 V  
input CLK HIGH time  
1536  
3046  
Hz  
Hz  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
1536  
3046  
-
-
input CLK LOW time  
-
-
tr  
CLK rise time  
-
-
tf  
CLK fall time  
-
-
-
td(p)SYNC  
tSYNCL  
td(PLCD)  
SYNC propagation delay time  
SYNC LOW time  
-
30  
-
-
1
-
driver delays with test loads  
VLCD = 5 V  
-
-
30  
[2]  
Timing characteristic: I2C bus  
fSCL  
tBUF  
SCL clock frequency  
-
-
-
400  
-
kHz  
bus free time between a stop and a start  
1.3  
μs  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
29 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 21. Dynamic characteristics  
VDD = 1.8 to 5.5 V; VSS = 0 V; VLCD = 2.5 to 6.5 V; TAMB = 40 to +85°C; unless otherwise specified  
Symbol  
tHD;STA  
tSU;STA  
tLOW  
Parameter  
Conditions  
Min  
0.6  
0.6  
1.3  
0.6  
-
Typ  
Max  
Unit  
μs  
μs  
μs  
μs  
μs  
μs  
pF  
ns  
ns  
μs  
ns  
start condition hold time  
set-up time for a repeated start condition  
SCL LOW time  
-
-
-
-
-
-
-
-
tHIGH  
tr  
SCL HIGH time  
-
SCL and SDA rise time  
SCL and SDA fall time  
capacitive bus line load  
data set-up time  
0.3  
0.3  
400  
tf  
-
Cb  
-
-
tSU;DAT  
tHD;DAT  
tSU;STO  
tSW  
100  
0
data hold time  
-
-
-
-
set up time for stop condition  
tolerable spike width on bus  
0.6  
-
-
50  
[1] Typical output duty cycle of 50%.  
[2] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VIL and VIH with an  
input voltage swing of VSS to VDD.  
6.8 Ω  
e
SYNC  
CLK  
V
DD  
(2%)  
3.3 kΩ  
1.5 kΩ  
SDA,  
SCL  
0.5V  
V
DD  
DD  
(2%)  
(2%)  
1 nF  
BP0 to BP3, and  
S0 to S59  
V
SS  
MGS120v02  
Fig 19. Test loads  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
30 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1/ f  
CLK  
t
t
CLKL  
CLKH  
0.7V  
DD  
CLK  
0.3V  
DD  
t
t
r
f
0.7V  
DD  
SYNC  
0.3V  
DD  
t
t
d(p)(SYNC)  
d(p)(SYNC)  
t
SYNCL  
0.5 V  
BP0 to BP3,  
and S0 to S59  
(V  
= 5 V)  
DD  
0.5 V  
t
MGL761v03  
PLCD  
Fig 20. Driver timing waveforms  
SDA  
t
t
t
f
BUF  
LOW  
SCL  
SDA  
t
HD;STA  
t
t
t
SU;DAT  
r
HD;DAT  
t
HIGH  
t
SU;STA  
t
SU;STO  
mga728  
Fig 21. I2C-bus timing waveforms  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
31 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
11. Package outline  
LQFP80: plastic low profile quad flat package; 80 leads; body 12 x 12 x 1.4 mm  
SOT315-1  
y
X
A
60  
41  
Z
61  
40  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w
p
M
θ
b
L
p
L
pin 1 index  
80  
21  
detail X  
1
20  
Z
D
v
M
A
e
w
M
b
p
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
p
v
w
y
Z
Z
θ
1
2
3
p
E
D
E
max.  
7o  
0o  
0.16 1.5  
0.04 1.3  
0.27 0.18 12.1 12.1  
0.13 0.12 11.9 11.9  
14.15 14.15  
13.85 13.85  
0.75  
0.30  
1.45 1.45  
1.05 1.05  
mm  
1.6  
0.25  
0.5  
1
0.2 0.15 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT315-1  
136E15  
MS-026  
Fig 22. Package outline LQFP80  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
32 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
12. Handling information  
V
V
DD  
DD  
SA0  
V
V
V
SS  
SS  
DD  
CLK  
OSC  
SCL  
V
V
SS  
DD  
V
SS  
V
V
SS  
SDA  
DD  
SYNC  
V
V
V
SS  
SS  
DD  
A0, A1 A2  
V
V
SS  
LCD  
BP0, BP1,  
BP2, BP3  
V
V
SS  
V
LCD  
LCD  
S0 to S59  
V
V
SS  
SS  
MGL760v02  
Fig 23. Device protection diagram  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
33 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
13. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
13.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
13.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
13.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
34 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
13.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 24) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 22 and 23  
Table 22. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 23. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 24.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
35 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 24. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
36 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
14. Revision history  
Table 24. Revision history  
Document ID  
PCF8534_00.04  
Modifications:  
Release date  
tbd  
Data sheet status  
Change notice  
Supersedes  
Preliminary  
PCF8534_00.03  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Table 21: clock oscillator frequency (added external)  
PCF8534_00.03  
Modifications:  
20060829  
Objective  
PCF8534_00.02  
Table 1:added column for ‘Topside mark’  
Section 8.1: added ESD values.  
PCF8534_00.02  
Modifications:  
20060725  
Objective  
PCF8534_00.01  
first release  
transfer to TDM format  
20060628  
PCF8534_00.01  
Objective  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
37 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
15. Legal information  
15.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
15.2 Definitions  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
15.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
15.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
16. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
38 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Notes  
PCF8534_0  
© NXP B.V. 2007. All rights reserved.  
Preliminary datasheet  
Rev. 00.05 — 20 February 2007  
39 of 40  
PCF8534  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
17. Contents  
1
2
3
4
General description . . . . . . . . . . . . . . . . . . . . . . 1  
12  
Handling information . . . . . . . . . . . . . . . . . . . 33  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
13  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Introduction to soldering. . . . . . . . . . . . . . . . . 34  
Wave and reflow soldering. . . . . . . . . . . . . . . 34  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 34  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 35  
13.1  
13.2  
13.3  
13.4  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
14  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 37  
15  
Legal information . . . . . . . . . . . . . . . . . . . . . . 38  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 38  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6
6.1  
6.2  
6.3  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Power-on-reset. . . . . . . . . . . . . . . . . . . . . . . . . 7  
LCD bias generator . . . . . . . . . . . . . . . . . . . . . 7  
LCD voltage selector . . . . . . . . . . . . . . . . . . . . 7  
LCD drive mode waveforms . . . . . . . . . . . . . . . 9  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . . 9  
1:2 Multiplex drive mode. . . . . . . . . . . . . . . . . 10  
1:3 Multiplex drive mode. . . . . . . . . . . . . . . . . 12  
1:4 Multiplex drive mode. . . . . . . . . . . . . . . . . 13  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Internal clock . . . . . . . . . . . . . . . . . . . . . . . . . 14  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 14  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 14  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 14  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Subaddress counter . . . . . . . . . . . . . . . . . . . . 16  
Output bank selector . . . . . . . . . . . . . . . . . . . 16  
Input bank selector . . . . . . . . . . . . . . . . . . . . . 17  
Blinker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
15.1  
15.2  
15.3  
15.4  
6.4  
16  
17  
Contact information . . . . . . . . . . . . . . . . . . . . 38  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.5  
6.5.1  
6.5.2  
6.6  
6.7  
6.8  
6.9  
6.10  
6.11  
6.12  
6.13  
6.14  
6.15  
7
Application design-in information . . . . . . . . . 19  
Characteristics of the I2C bus. . . . . . . . . . . . . 19  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
START and STOP conditions . . . . . . . . . . . . . 19  
System configuration . . . . . . . . . . . . . . . . . . . 19  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 20  
PCF8534 I2C-bus controller. . . . . . . . . . . . . . 20  
Input filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 21  
Command decoder . . . . . . . . . . . . . . . . . . . . . 23  
Display controller . . . . . . . . . . . . . . . . . . . . . . 24  
Cascaded operation . . . . . . . . . . . . . . . . . . . . 24  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
8
8.1  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 28  
ESD values. . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Static characteristics. . . . . . . . . . . . . . . . . . . . 28  
Dynamic characteristics . . . . . . . . . . . . . . . . . 29  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 32  
10  
11  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 20 February 2007  
Document identifier: PCF8534_0  

相关型号:

PCF8535

65 x 133 pixel matrix driver
NXP

PCF8535U

65 x 133 pixel matrix driver
NXP

PCF8535U/2

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC273, DIE-273, Display Driver
NXP

PCF8536

I2C/SPI LCD and PWM LED controller for industrial and automotive applications
NXP

PCF85363A

Tiny Real-Time Clock/calendar with alarm function and I2C-bus
NXP

PCF85363ATL/A

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I2C-bus
NXP

PCF85363ATL/AX

PCF85363A - Tiny real-time clock/calendar DFN 10-Pin
NXP

PCF85363ATT/A

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I2C-bus
NXP

PCF85363ATT/AJ

PCF85363A - Tiny real-time clock/calendar TSSOP 8-Pin
NXP

PCF85363ATT1/A

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I2C-bus
NXP

PCF85363ATT1/AJ

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I2C-bus
NXP

PCF85363ATT1/AZ

Tiny Real-Time Clock/calendar with 64 byte RAM, alarm function, battery switch-over time stamp input, and I2C-bus
NXP