SAA7105E/V1/S1,557 [NXP]

IC COLOR SIGNAL ENCODER, PBGA156, 15 X 15 MM, 1.15 MM HEIGHT, PLASTIC, MS-034, SOT-472-1, BGA-156, Color Signal Converter;
SAA7105E/V1/S1,557
型号: SAA7105E/V1/S1,557
厂家: NXP    NXP
描述:

IC COLOR SIGNAL ENCODER, PBGA156, 15 X 15 MM, 1.15 MM HEIGHT, PLASTIC, MS-034, SOT-472-1, BGA-156, Color Signal Converter

编码器 商用集成电路
文件: 总78页 (文件大小:331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SAA7104E; SAA7105E  
Digital video encoder  
Rev. 02 — 23 December 2005  
Product data sheet  
1. General description  
The SAA7104E; SAA7105E is an advanced next-generation video encoder which  
converts PC graphics data at maximum 1280 × 1024 resolution (optionally 1920 × 1080  
interlaced) to PAL (50 Hz) or NTSC (60 Hz) video signals. A programmable scaler and  
anti-flicker filter (maximum 5 lines) ensures properly sized and flicker-free TV display as  
CVBS or S-video output.  
Alternatively, the three Digital-to-Analog Converters (DACs) can output RGB signals  
together with a TTL composite sync to feed SCART connectors.  
When the scaler/interlacer is bypassed, a second VGA monitor can be connected to the  
RGB outputs and separate H and V-syncs as well, thereby serving as an auxiliary monitor  
at maximum 1280 × 1024 resolution/60 Hz (PIXCLK < 85 MHz). Alternatively this port  
can provide Y, PB and PR signals for HDTV monitors.  
The device includes a sync/clock generator and on-chip DACs.  
All inputs intended to interface to the host graphics controller are designed for low-voltage  
signals between down to 1.1 V and up to 3.6 V.  
2. Features  
Digital PAL/NTSC encoder with integrated high quality scaler and anti-flicker filter for  
TV output from a PC  
Supports Intel Digital Video Out (DVO) low voltage interfacing to graphics controller  
27 MHz crystal-stable subcarrier generation  
Maximum graphics pixel clock 85 MHz at double edged clocking, synthesized on-chip  
or from external source  
Programmable assignment of clock edge to bytes (in double edged mode)  
Synthesizable pixel clock (PIXCLK) with minimized output jitter, can be used as  
reference clock for the VGC, as well  
PIXCLK output and bi-phase PIXCLK input (VGC clock loop-through possible)  
Hot-plug detection through dedicated interrupt pin  
Supported VGA resolutions for PAL or NTSC legacy video output up to 1280 × 1024  
graphics data at 60 Hz or 50 Hz frame rate  
Supported VGA resolutions for HDTV output up to 1920 × 1080 interlaced graphics  
data at 60 Hz or 50 Hz frame rate  
Three Digital-to-Analog Converters (DACs) at 27 MHz sample rate for CVBS (BLUE,  
CB), VBS (GREEN, CVBS) and C (RED, CR) (signals in parenthesis are optional); all at  
10-bit resolution  
Non-Interlaced (NI) CB-Y-CR or RGB input at maximum 4 : 4 : 4 sampling  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Downscaling and upscaling from 50 % to 400 %  
Optional interlaced CB-Y-CR input of Digital Versatile Disc (DVD) signals  
Optional non-interlaced RGB output to drive second VGA monitor (bypass mode with  
maximum 85 MHz)  
3 bytes × 256 bytes RGB Look-Up Table (LUT)  
Support for hardware cursor  
HDTV up to 1920 × 1080 interlaced and 1280 × 720 progressive, including 3-level  
sync pulses  
Programmable border color of underscan area  
Programmable 5 line anti-flicker filter  
On-chip 27 MHz crystal oscillator (3rd-harmonic or fundamental 27 MHz crystal)  
Fast I2C-bus control port (400 kHz)  
Encoder can be master or slave  
Adjustable output levels for the DACs  
Programmable horizontal and vertical input synchronization phase  
Programmable horizontal sync output phase  
Internal Color Bar Generator (CBG)  
Optional support of various Vertical Blanking Interval (VBI) data insertion  
Macrovision Pay-per-View copy protection system rev. 7.01, rev. 6.1 and rev. 1.03  
(525p) as option; this applies to the SAA7104E only  
Optional cross-color reduction for PAL and NTSC CVBS outputs  
Power-save modes  
Joint Test Action Group (JTAG) Boundary Scan Test (BST)  
Monolithic CMOS 3.3 V device, 5 V tolerant I/Os  
3. Quick reference data  
Table 1:  
Quick reference data  
Symbol  
VDDA  
VDDD  
IDDA  
Parameter  
Conditions  
Min  
3.15  
3.15  
1
Typ  
3.3  
Max  
3.45  
3.45  
115  
200  
Unit  
V
analog supply voltage  
digital supply voltage  
analog supply current  
digital supply current  
input signal voltage levels  
3.3  
V
110  
175  
mA  
mA  
IDDD  
1
Vi  
TTL compatible  
Vo(p-p)  
analog CVBS output signal  
voltage for a 100/100 color  
bar at 75/2 load  
-
1.23  
-
V
(peak-to-peak value)  
RL  
load resistance  
-
-
37.5  
-
-
ILElf(DAC)  
low frequency integral  
linearity error of DACs  
±3  
LSB  
DLElf(DAC)  
Tamb  
low frequency differential  
linearity error of DACs  
-
-
-
±1  
LSB  
ambient temperature  
0
70  
°C  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
2 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
4. Ordering information  
Table 2:  
Ordering information  
Type number Package  
Name  
Description  
Version  
SAA7104E  
SAA7105E  
LBGA156  
plastic low profile ball grid array package;  
156 balls; body 15 × 15 × 1.05 mm  
SOT700-1  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
3 of 78  
 
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SSD4  
DDA1  
DDA2  
DDA3  
DDA4  
SSA1  
SSA2  
A8  
DDD1  
DDD2  
D4  
DDD3  
D4  
DDD4  
D4  
SSD1  
SSD2  
SSD3  
A10, B9, B6  
C9, D9  
D6  
B6  
B8  
F4  
C5, D5, C5, D5, C5, D5, C5, D5,  
E4 E4 E4 E4  
C1, C2, B1, B2,  
A2, B4, B3, A3,  
F3, H1,  
A4  
TRST  
DUMP  
RSET  
TDI  
A7, B7  
A9  
LUT  
+
CURSOR  
FIFO  
+
UPSAMPLING  
H2, H3  
PD11 to  
PD0  
INPUT  
RGB TO Y-C -C  
B
R
FORMATTER  
MATRIX  
B5  
D1  
TDO  
TMS  
TCK  
D3  
DECIMATOR  
4 : 4 : 4 to  
4 : 2 : 2  
HORIZONTAL  
SCALER  
VERTICAL  
SCALER  
VERTICAL  
FILTER  
E1  
F2  
PIXCLKI  
C6  
C7  
C8  
BLUE_CB_CVBS  
BORDER  
GENERATOR  
VIDEO  
ENCODER  
TRIPLE  
DAC  
FIFO  
GREEN_VBS_CVBS  
RED_CR_C_CVBS  
HD  
OUTPUT  
SAA7104E  
SAA7105E  
D7  
D8  
VSM  
G4  
2
PIXEL CLOCK  
SYNTHESIZER  
CRYSTAL  
TIMING  
GENERATOR  
HSM_CSYNC  
TVD  
I C-BUS  
PIXCLKO  
F12  
OSCILLATOR  
CONTROL  
A5  
A6  
XTALO  
C3  
G1 F1 G3 E3  
C4  
G2  
E2  
D2  
mhc572  
XTALI  
FSVGC CBO  
VSVGC HSVGC  
TTXRQ_XCLKO2 SDA  
SCL RESET  
27 MHz  
TTX_SRES  
Fig 1. Block diagram  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
6. Pinning information  
6.1 Pinning  
ball A1  
index area  
1
2 3 4 5 6 7 8 9 10 11 12 13 14  
A
B
C
D
E
F
G
H
J
SAA7104E  
SAA7105E  
K
L
M
N
P
001aad370  
Transparent top view  
Fig 2. Pin configuration  
Table 3:  
Pin  
A2  
Pin allocation table  
Symbol  
Pin  
A3  
A5  
A7  
A9  
B1  
B3  
B5  
B7  
B9  
C2  
C4  
C6  
C8  
D1  
D3  
D5  
D7  
D9  
E2  
E4  
Symbol  
PD4  
PD7  
A4  
TRST  
XTALI  
A6  
XTALO  
VSSA2  
DUMP  
A8  
RSET  
A10  
B2  
VDDA1  
PD9  
PD8  
PD5  
B4  
PD6  
TDI  
B6  
VDDA2, VDDA4  
VSSA1  
DUMP  
B8  
VDDA1  
C1  
C3  
C5  
C7  
C9  
D2  
D4  
D6  
D8  
E1  
PD11  
PD10  
TTX_SRES  
TTXRQ_XCLKO2  
VSSD1, VSSD2, VSSD3, VSSD4  
GREEN_VBS_CVBS  
VDDA1  
BLUE_CB_CVBS  
RED_CR_C_CVBS  
TDO  
RESET  
TMS  
VDDD2, VDDD3, VDDD4  
VDDA3  
VSSD1, VSSD2, VSSD3, VSSD4  
VSM  
HSM_CSYNC  
TCK  
VDDA1  
SCL  
E3  
HSVGC  
VSSD1, VSSD2, VSSD3, VSSD4  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
5 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 3:  
Pin  
E12  
F2  
Pin allocation table…continued  
Symbol  
Pin  
F1  
Symbol  
VSVGC  
PD3  
reserved  
PIXCLKI  
VDDD1  
FSVGC  
CBO  
F3  
F4  
F12  
G2  
G4  
H2  
TVD  
G1  
SDA  
G3  
PIXCLKO  
PD1  
H1  
PD2  
H3  
PD0  
6.2 Pin description  
Table 4:  
Symbol  
PD7  
Pin description  
Pin  
A2  
Type[1] Description  
I
pixel data 7[2]; MSB with CB-Y-CR 4 : 2 : 2  
PD4  
A3  
I
pixel data 4[2]; MSB 3 with CB-Y-CR 4 : 2 : 2  
[5]  
TRST  
XTALI  
XTALO  
DUMP  
A4  
I/pu  
I
test reset input for BST; active LOW[3]  
,
[4] and  
A5  
crystal oscillator input  
A6  
O
crystal oscillator output  
A7, B7  
O
DAC reference pin; connected via 12 resistor to  
analog ground  
VSSA2  
RSET  
A8  
A9  
S
analog ground 2  
O
DAC reference pin; connected via 1 kresistor to  
analog ground (do not use capacitor in parallel with  
1 kresistor)  
VDDA1  
A10, B9,  
C9, D9  
S
analog supply voltage 1 (3.3 V for DACs)  
PD9  
B1  
B2  
B3  
B4  
B5  
B6  
B6  
B8  
C1  
C2  
C3  
C4  
I
pixel data 9[2]  
pixel data 8[2]  
PD8  
I
PD5  
I
pixel data 5[2]; MSB 2 with CB-Y-CR 4 : 2 : 2  
pixel data 6[2]; MSB 1 with CB-Y-CR 4 : 2 : 2  
test data input for BST[3]  
analog supply voltage 2 (3.3 V for DACs)  
analog supply voltage 4 (3.3 V)  
analog ground 1  
PD6  
I
TDI  
I
VDDA2  
S
S
S
I
VDDA4  
VSSA1  
PD11  
pixel data 11[2]  
pixel data 10[2]  
PD10  
I
TTX_SRES  
TTXRQ_XCLKO2  
I
teletext input or sync reset input  
O
teletext request output or 13.5 MHz clock output of  
the crystal oscillator[6]  
VSSD1  
C5, D5, E4 S  
C5, D5, E4 S  
C5, D5, E4 S  
C5, D5, E4 S  
digital ground 1  
VSSD2  
digital ground 2  
VSSD3  
digital ground 3  
VSSD4  
digital ground 4  
BLUE_CB_CVBS  
C6  
O
analog output of BLUE or CB or CVBS signal  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
6 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 4:  
Symbol  
Pin description…continued  
Pin  
Type[1] Description  
GREEN_VBS_CVBS C7  
RED_CR_C_CVBS C8  
O
O
O
I
analog output of GREEN or VBS or CVBS signal  
analog output of RED or CR or C or CVBS signal  
test data output for BST[3]  
TDO  
D1  
D2  
D3  
D4  
D4  
D4  
D6  
D7  
RESET  
TMS  
reset input; active LOW  
test mode select input for BST[3]  
I/pu  
S
VDDD2  
VDDD3  
VDDD4  
VDDA3  
VSM  
digital supply voltage 2 (3.3 V for I/Os)  
digital supply voltage 3 (3.3 V for core)  
digital supply voltage 4 (3.3 V for core)  
analog supply voltage 3 (3.3 V for oscillator)  
S
S
S
O
vertical synchronization output to monitor  
(non-interlaced auxiliary RGB)  
HSM_CSYNC  
D8  
O
horizontal synchronization output to monitor  
(non-interlaced auxiliary RGB) or composite sync for  
RGB-SCART  
TCK  
E1  
E2  
E3  
I/pu  
I(/O)  
I/O  
test clock input for BST[3]  
serial clock input (I2C-bus) with inactive output path  
SCL  
HSVGC  
horizontal synchronization output to VGC (optional  
input)[6]  
reserved  
VSVGC  
E12  
F1  
-
to be reserved for future applications  
I/O  
vertical synchronization output to VGC (optional  
input)[6]  
PIXCLKI  
PD3  
F2  
F3  
F4  
I
pixel clock input (looped through)  
pixel data 3[2]; MSB 4 with CB-Y-CR 4 : 2 : 2  
I
VDDD1  
S
digital supply voltage 1 for pins PD11 to PD0,  
PIXCLKI, PIXCLKO, FSVGC, VSVGC, HSVGC, CBO  
and TVD  
TVD  
F12  
G1  
O
interrupt if TV is detected at DAC output  
FSVGC  
I/O  
frame synchronization output to Video Graphics  
Controller (VGC) (optional input)[6]  
SDA  
G2  
G3  
G4  
H1  
H2  
H3  
I/O  
serial data input/output (I2C-bus)  
composite blanking output to VGC; active LOW[6]  
CBO  
I/O  
PIXCLKO  
PD2  
O
I
pixel clock output to VGC  
pixel data 2[2]; MSB 5 with CB-Y-CR 4 : 2 : 2  
pixel data 1[2]; MSB 6 with CB-Y-CR 4 : 2 : 2  
pixel data 0[2]; MSB 7 with CB-Y-CR 4 : 2 : 2  
PD1  
I
PD0  
I
[1] Pin type: I = input, O = output, S = supply, pu = pull-up.  
[2] See Table 12 to Table 18 for pin assignment.  
[3] In accordance with the ‘IEEE1149.1’ standard the pins TDI, TMS, TCK and TRST are input pins with an  
internal pull-up resistor and TDO is a 3-state output pin.  
[4] For board design without boundary scan implementation connect TRST to ground.  
[5] This pin provides easy initialization of the BST circuit. TRST can be used to force the Test Access Port  
(TAP) controller to the TEST_LOGIC_RESET state (normal operation) at once.  
[6] Pins FSVGC, VSVGC, CBO, HSVGC and TTXRQ_XCLKO2 are used for bootstrapping; see Section 7.1.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
7 of 78  
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
7. Functional description  
The digital video encoder encodes digital luminance and color difference signals  
(CB-Y-CR) or digital RGB signals into analog CVBS, S-video and, optionally, RGB or  
CR-Y-CB signals. NTSC M, PAL B/G and sub-standards are supported.  
The SAA7104E; SAA7105E can be directly connected to a PC video graphics controller  
with a maximum resolution of 1280 × 1024 (progressive) or 1920 × 1080 (interlaced) at a  
50 Hz or 60 Hz frame rate. A programmable scaler scales the computer graphics picture  
so that it will fit into a standard TV screen with an adjustable underscan area.  
Non-interlaced-to-interlaced conversion is optimized with an adjustable anti-flicker filter for  
a flicker-free display at a very high sharpness.  
Besides the most common 16-bit 4 : 2 : 2 CB-Y-CR input format (using 8 pins with double  
edge clocking), other CB-Y-CR and RGB formats are also supported;  
see Table 12 to Table 18.  
A complete 3 bytes × 256 bytes Look-Up Table (LUT), which can be used, for example, as  
a separate gamma corrector, is located in the RGB domain; it can be loaded either  
through the video input port Pixel Data (PD) or via the I2C-bus.  
The SAA7104E; SAA7105E supports a 32-bit × 32-bit × 2-bit hardware cursor, the pattern  
of which can also be loaded through the video input port or via the I2C-bus.  
It is also possible to encode interlaced 4 : 2 : 2 video signals such as PC-DVD; for that the  
anti-flicker filter, and in most cases the scaler, will simply be bypassed.  
Besides the applications for video output, the SAA7104E; SAA7105E can also be used for  
generating a kind of auxiliary VGA output, when the RGB non-interlaced input signal is fed  
to the DACs. This may be of interest for example, when the graphics controller provides a  
second graphics window at its video output port.  
The basic encoder function consists of subcarrier generation, color modulation and  
insertion of synchronization signals at a crystal-stable clock rate of 13.5 MHz  
(independent of the actual pixel clock used at the input side), corresponding to an internal  
4 : 2 : 2 bandwidth in the luminance/color difference domain. Luminance and  
chrominance signals are filtered in accordance with the standard requirements of  
‘RS-170-A’ and ‘ITU-R BT.470-3’.  
For ease of analog post filtering the signals are twice oversampled to 27 MHz before  
digital-to-analog conversion.  
The total filter transfer characteristics (scaler and anti-flicker filter are not taken into  
account) are illustrated in Figure 6 to Figure 11. All three DACs are realized with full 10-bit  
resolution. The CR-Y-CB to RGB dematrix can be bypassed (optionally) in order to provide  
the upsampled CR-Y-CB input signals.  
The 8-bit multiplexed CB-Y-CR formats are ‘ITU-R BT.656’ (D1 format) compatible, but the  
SAV and EAV codes can be decoded optionally, when the device is operated in Slave  
mode. For assignment of the input data to the rising or falling clock edge  
see Table 12 to Table 18.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
8 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
In order to display interlaced RGB signals through a euro-connector TV set, a separate  
digital composite sync signal (pin HSM_CSYNC) can be generated; it can be advanced  
up to 31 periods of the 27 MHz crystal clock in order to be adapted to the RGB processing  
of a TV set.  
The SAA7104E; SAA7105E synthesizes all necessary internal signals, color subcarrier  
frequency and synchronization signals from that clock.  
Wide screen signalling data can be loaded via the I2C-bus and is inserted into line 23 for  
standards using a 50 Hz field rate.  
VPS data for program dependent automatic start and stop of such featured VCRs is  
loadable via the I2C-bus.  
The IC also contains closed caption and extended data services encoding (line 21), and  
supports teletext insertion for the appropriate bit stream format at a 27 MHz clock rate  
(see Figure 15). It is also possible to load data for the copy generation management  
system into line 20 of every field (525/60 line counting).  
A number of possibilities are provided for setting different video parameters such as:  
Black and blanking level control  
Color subcarrier frequency  
Variable burst amplitude etc.  
7.1 Reset conditions  
To activate the reset a pulse at least of 2 crystal clocks duration is required.  
During reset (RESET = LOW) plus an extra 32 crystal clock periods, FSVGC, VSVGC,  
CBO, HSVGC and TTX_SRES are set to input mode and HSM_CSYNC and VSM are set  
to 3-state. A reset also forces the I2C-bus interface to abort any running bus transfer and  
sets it into receive condition.  
After reset, the state of the I/Os and other functions is defined by the strapping pins until  
an I2C-bus access redefines the corresponding registers; see Table 5.  
Table 5:  
Pin  
Strapping pins  
Tied  
Preset  
FSVGC  
LOW  
NTSC M encoding, PIXCLK fits to 640 × 480 graphics input  
PAL B/G encoding, PIXCLK fits to 640 × 480 graphics input  
4 : 2 : 2 Y-CB-CR graphics input (format 0)  
4 : 4 : 4 RGB graphics input (format 3)  
input demultiplex phase: LSB = LOW  
input demultiplex phase: LSB = HIGH  
input demultiplex phase: MSB = LOW  
input demultiplex phase: MSB = HIGH  
HIGH  
VSVGC  
CBO  
LOW  
HIGH  
LOW  
HIGH  
HSVGC  
LOW  
HIGH  
TTXRQ_XCLKO2 LOW  
slave (FSVGC, VSVGC and HSVGC are inputs, internal color bar  
is active)  
HIGH  
master (FSVGC, VSVGC and HSVGC are outputs)  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
9 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
7.2 Input formatter  
The input formatter converts all accepted PD input data formats, either RGB or Y-CB-CR,  
to a common internal RGB or Y-CB-CR data stream.  
When double-edge clocking is used, the data is internally split into portions PPD1 and  
PPD2. The clock edge assignment must be set according to the I2C-bus control bits SLOT  
and EDGE for correct operation.  
If Y-CB-CR is being applied as a 27 MB/s data stream, the output of the input formatter can  
be used directly to feed the video encoder block.  
The horizontal upscaling is supported via the input formatter. According to the  
programming of the pixel clock dividers (see Section 7.10), it will sample up the data  
stream to 1 ×, 2 × or 4 × the input data rate. An optional interpolation filter is available. The  
clock domain transition is handled by a 4 entries wide FIFO which gets initialized every  
field or explicitly at request. A bypass for the FIFO is available, especially for high input  
data rates.  
7.3 RGB LUT  
The three 256 byte RAMs of this block can be addressed by three 8-bit wide signals, thus  
it can be used to build any transformation, e.g. a gamma correction for RGB signals. In the  
event that the indexed color data is applied, the RAMs are addressed in parallel.  
The LUTs can either be loaded by an I2C-bus write access or can be part of the pixel data  
input through the PD port. In the latter case, 256 bytes × 3 bytes for the R, G and B LUT  
are expected at the beginning of the input video line, two lines before the line that has  
been defined as first active line, until the middle of the line immediately preceding the first  
active line. The first 3 bytes represent the first RGB LUT data, and so on.  
7.4 Cursor insertion  
A 32 dots × 32 dots cursor can be overlaid as an option; the bit map of the cursor can be  
uploaded by an I2C-bus write access to specific registers or in the pixel data input through  
the PD port. In the latter case, the 256 bytes defining the cursor bit map (2 bits per pixel)  
are expected immediately following the last RGB LUT data in the line preceding the first  
active line.  
The cursor bit map is set up as follows: each pixel occupies 2 bits. The meaning of these  
bits depends on the CMODE I2C-bus register as described in Table 8. Transparent means  
that the input pixels are passed through, the ‘cursor colors’ can be programmed in  
separate registers.  
The bit map is stored with 4 pixels per byte, aligned to the least significant bit. So the first  
pixel is in bits 0 and 1, the next pixel in bits 3 and 4 and so on. The first index is the  
column, followed by the row; index 0,0 is the upper left corner.  
Table 6:  
7
Layout of a byte in the cursor bit map  
6
5
4
3
2
1
0
pixel n + 3  
pixel n + 2  
pixel n + 1  
pixel n  
D1  
D0  
D1  
D0  
D1  
D0  
D1  
D0  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
10 of 78  
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
For each direction, there are 2 registers controlling the position of the cursor, one controls  
the position of the ‘hot spot’, the other register controls the insertion position. The hot spot  
is the ‘tip’ of the pointer arrow. It can have any position in the bit map. The actual position  
registers describe the co-ordinates of the hot spot. Again 0,0 is the upper left corner.  
While it is not possible to move the hot spot beyond the left respectively upper screen  
border this is perfectly legal for the right respectively lower border. It should be noted that  
the cursor position is described relative to the input resolution.  
Table 7:  
Cursor bit map  
7
Byte  
0
6
5
4
3
2
1
0
row 0 column 3  
row 0 column 7  
row 0 column 11  
...  
row 0 column 2  
row 0 column 6  
row 0 column 10  
...  
row 0 column 1  
row 0 column 5  
row 0 column 9  
...  
row 0 column 0  
row 0 column 4  
row 0 column 8  
...  
1
2
...  
6
row 0 column 27  
row 0 column 31  
...  
row 0 column 26  
row 0 column 30  
...  
row 0 column 25  
row 0 column 29  
...  
row 0 column 24  
row 0 column 28  
...  
7
...  
254  
255  
row 31 column 27 row 31 column 26 row 31 column 25 row 31 column 24  
row 31 column 31 row 31 column 30 row 31 column 29 row 31 column 28  
Table 8:  
Cursor modes  
Cursor pattern  
Cursor mode  
CMODE = 0  
CMODE = 1  
00  
01  
10  
11  
second cursor color  
first cursor color  
transparent  
second cursor color  
first cursor color  
transparent  
inverted input  
auxiliary cursor color  
7.5 RGB Y-CB-CR matrix  
RGB input signals to be encoded to PAL or NTSC are converted to the Y-CB-CR color  
space in this block. The color difference signals are fed through low-pass filters and  
formatted to a ITU-R BT.601 like 4 : 2 : 2 data stream for further processing.  
A gain adjust option corrects the level swing of the graphics world (black-to-white as  
0 to 255) to the required range of 16 to 235.  
The matrix and formatting blocks can be bypassed for Y-CB-CR graphics input.  
When the auxiliary VGA mode is selected, the output of the cursor insertion block is  
immediately directed to the triple DAC.  
7.6 Horizontal scaler  
The high quality horizontal scaler operates on the 4 : 2 : 2 data stream. Its control engines  
compensate the color phase offset automatically.  
The scaler starts processing after a programmable horizontal offset and continues with a  
number of input pixels. Each input pixel is a programmable fraction of the current output  
pixel (XINC/4096). A special case is XINC = 0, this sets the scaling factor to 1.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
11 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
If the SAA7104E; SAA7105E input data is in accordance with ‘ITU-R BT.656’, the scaler  
enters another mode. In this event, XINC needs to be set to 2048 for a scaling factor of 1.  
With higher values, upscaling will occur.  
The phase resolution of the circuit is 12 bits, giving a maximum offset of 0.2 after  
800 input pixels. Small FIFOs rearrange a 4 : 2 : 2 data stream at the scaler output.  
7.7 Vertical scaler and anti-flicker filter  
The functions scaling, Anti-Flicker Filter (AFF) and re-interlacing are implemented in the  
vertical scaler.  
Besides the entire input frame, it receives the first and last lines of the border to allow  
anti-flicker filtering.  
The circuit generates the interlaced output fields by scaling down the input frames with  
different offsets for odd and even fields. Increasing the YSKIP setting reduces the  
anti-flicker function. A YSKIP value of 4095 switches it off; see Table 78.  
An additional, programmable vertical filter supports the anti-flicker function. This filter is  
not available at upscaling factors of more than 2.  
The programming is similar to the horizontal scaler. For the re-interlacing, the resolutions  
of the offset registers are not sufficient, so the weighting factors for the first lines can also  
be adjusted. YINC = 0 sets the scaling factor to 1; YIWGTO and YIWGTE must not be 0.  
Due to the re-interlacing, the circuit can perform upscaling by a maximum factor of 2. The  
maximum factor depends on the setting of the anti-flicker function and can be derived from  
the formulae given in Section 7.20.  
An additional upscaling mode allows to increase the upscaling factor to maximum 4 as it is  
required for the old VGA modes like 320 × 240.  
7.8 FIFO  
The FIFO acts as a buffer to translate from the PIXCLK clock domain to the XTAL clock  
domain. The write clock is PIXCLK and the read clock is XTAL. An underflow or overflow  
condition can be detected via the I2C-bus read access.  
In order to avoid underflows and overflows, it is essential that the frequency of the  
synthesized PIXCLK matches to the input graphics resolution and the desired scaling  
factor.  
7.9 Border generator  
When the graphics picture is to be displayed as interlaced PAL, NTSC, S-video or RGB on  
a TV screen, it is desired in many cases not to lose picture information due to the inherent  
overscanning of a TV set. The desired amount of underscan area, which is achieved  
through appropriate scaling in the vertical and horizontal direction, can be filled in the  
border generator with an arbitrary true color tint.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
12 of 78  
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
7.10 Oscillator and Discrete Time Oscillator (DTO)  
The master clock generation is realized as a 27 MHz crystal oscillator, which can operate  
with either a fundamental wave crystal or a 3rd-harmonic crystal.  
The crystal clock supplies the DTO of the pixel clock synthesizer, the video encoder and  
the I2C-bus control block. It also usually supplies the triple DAC, with the exception of the  
auxiliary VGA or HDTV mode, where the triple DAC is clocked by the pixel clock  
(PIXCLK).  
The DTO can be programmed to synthesize all relevant pixel clock frequencies between  
circa 40 MHz and 85 MHz. Two programmable dividers provide the actual clock to be  
used externally and internally. The dividers can be programmed to factors of 1, 2, 4 and 8.  
For the internal pixel clock, a divider ratio of 8 makes no sense and is thus forbidden.  
The internal clock can be switched completely to the pixel clock input. In this event, the  
input FIFO is useless and will be bypassed.  
The entire pixel clock generation can be locked to the vertical frequency. Both pixel clock  
dividers get re-initialized every field. Optionally, the DTO can be cleared with each V-sync.  
At proper programming, this will make the pixel clock frequency a precise multiple of the  
vertical and horizontal frequencies. This is required for some graphic controllers.  
7.11 Low-pass Clock Generation Circuit (CGC)  
This block reduces the phase jitter of the synthesized pixel clock. It works as a tracking  
filter for all relevant synthesized pixel clock frequencies.  
7.12 Encoder  
7.12.1 Video path  
The encoder generates luminance and color subcarrier output signals from the Y,  
CB and CR baseband signals, which are suitable for use as CVBS or separate Yand C  
signals.  
Input to the encoder, at 27 MHz clock (e.g. DVD), is either originated from computer  
graphics at pixel clock, fed through the FIFO and border generator, or a ITU-R BT.656  
style signal.  
Luminance is modified in gain and in offset (the offset is programmable in a certain range  
to enable different black level set-ups). A blanking level can be set after insertion of a fixed  
synchronization pulse tip level, in accordance with standard composite synchronization  
schemes. Other manipulations used for the Macrovision anti-taping process, such as  
additional insertion of AGC super-white pulses (programmable in height), are supported  
by the SAA7104E only.  
To enable easy analog post filtering, luminance is interpolated from a 13.5 MHz data rate  
to a 27 MHz data rate, thereby providing luminance in a 10-bit resolution. The transfer  
characteristics of the luminance interpolation filter are illustrated in Figure 8 and Figure 9.  
Appropriate transients at start/end of active video and for synchronization pulses are  
ensured.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
13 of 78  
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Chrominance is modified in gain (programmable separately for CB and CR), and a  
standard dependent burst is inserted, before baseband color signals are interpolated from  
a 6.75 MHz data rate to a 27 MHz data rate. One of the interpolation stages can be  
bypassed, thus providing a higher color bandwidth, which can be used for the Yand C  
output. The transfer characteristics of the chrominance interpolation filter are illustrated in  
Figure 6 and Figure 7.  
The amplitude (beginning and ending) of the inserted burst, is programmable in a certain  
range that is suitable for standard signals and for special effects. After the succeeding  
quadrature modulator, color is provided on the subcarrier in 10-bit resolution.  
The numeric ratio between the Yand C outputs is in accordance with the standards.  
7.12.2 Teletext insertion and encoding (not simultaneously with real-time control)  
Pin TTX_SRES receives a WST or NABTS teletext bitstream sampled at the crystal clock.  
At each rising edge of the output signal (TTXRQ) a single teletext bit has to be provided  
after a programmable delay at input pin TTX_SRES.  
Phase variant interpolation is achieved on this bitstream in the internal teletext encoder,  
providing sufficient small phase jitter on the output text lines.  
TTXRQ_XCLKO2 provides a fully programmable request signal to the teletext source,  
indicating the insertion period of bitstream at lines which can be selected independently  
for both fields. The internal insertion window for text is set to 360 (PAL WST),  
296 (NTSC WST) or 288 (NABTS) teletext bits including clock run-in bits. The protocol  
and timing are illustrated in Figure 15.  
Alternatively, this pin can be provided with a buffered crystal clock (XCLK) of 13.5 MHz.  
7.12.3 Video Programming System (VPS) encoding  
Five bytes of VPS information can be loaded via the I2C-bus and will be encoded in the  
appropriate format into line 16.  
7.12.4 Closed caption encoder  
Using this circuit, data in accordance with the specification of closed caption or extended  
data service, delivered by the control interface, can be encoded (line 21). Two dedicated  
pairs of bytes (two bytes per field), each pair preceded by run-in clocks and framing code,  
are possible.  
The actual line number in which data is to be encoded, can be modified in a certain range.  
The data clock frequency is in accordance with the definition for NTSC M standard  
32 times horizontal line frequency.  
Data LOW at the output of the DACs corresponds to 0 IRE, data HIGH at the output of the  
DACs corresponds to approximately 50 IRE.  
It is also possible to encode closed caption data for 50 Hz field frequencies at 32 times the  
horizontal line frequency.  
7.12.5 Anti-taping (SAA7104E only)  
For more information contact your nearest Philips Semiconductors sales office.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
14 of 78  
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
7.13 RGB processor  
This block contains a dematrix in order to produce RED, GREEN and BLUE signals to be  
fed to a SCART plug.  
Before Y, CB and CR signals are de-matrixed, individual gain adjustment for Y and color  
difference signals and 2 times oversampling for luminance and 4 times oversampling for  
color difference signals is performed. The transfer curves of luminance and color  
difference components of RGB are illustrated in Figure 10 and Figure 11.  
7.14 Triple DAC  
Both Yand C signals are converted from digital-to-analog in a 10-bit resolution at the  
output of the video encoder. Yand C signals are also combined into a 10-bit CVBS signal.  
The CVBS output signal occurs with the same processing delay as the Y, C and optional  
RGB or CR-Y-CB outputs. Absolute amplitude at the input of the DAC for CVBS is reduced  
by 15  
16 with respect to Yand C DACs to make maximum use of the conversion ranges.  
RED, GREEN and BLUE signals are also converted from digital-to-analog, each providing  
a 10-bit resolution.  
The reference currents of all three DACs can be adjusted individually in order to adapt for  
different output signals. In addition, all reference currents can be adjusted commonly to  
compensate for small tolerances of the on-chip band gap reference voltage.  
Alternatively, all currents can be switched off to reduce power dissipation.  
All three outputs can be used to sense for an external load (usually 75 ) during a  
pre-defined output. A flag in the I2C-bus status byte reflects whether a load is applied or  
not. In addition, an automatic sense mode can be activated which indicates a 75 load at  
any of the three outputs at the dedicated interrupt pin TVD.  
If the SAA7104E; SAA7105E is required to drive a second (auxiliary) VGA monitor or an  
HDTV set, the DACs receive the signal coming from the HD data path. In this event, the  
DACs are clocked at the incoming PIXCLKI instead of the 27 MHz crystal clock used in  
the video encoder.  
7.15 HD data path  
This data path allows the SAA7104E; SAA7105E to be used with VGA or HDTV monitors.  
It receives its data directly from the cursor generator and supports RGB and Y-PB-PR  
output formats (RGB not with Y-PB-PR input formats). No scaling is done in this mode.  
A gain adjustment either leads the full level swing to the digital-to-analog converters or  
reduces the amplitude by a factor of 0.69. This enables sync pulses to be added to the  
signal as it is required for display units expecting signals with sync pulses, either regular or  
3-level syncs.  
7.16 Timing generator  
The synchronization of the SAA7104E; SAA7105E is able to operate in two modes; Slave  
mode and Master mode.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
15 of 78  
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
In Slave mode, the circuit accepts sync pulses on the bidirectional FSVGC (frame sync),  
VSVGC (vertical sync) and HSVGC (horizontal sync) pins: the polarities of the signals can  
be programmed. The frame sync signal is only necessary when the input signal is  
interlaced, in other cases it may be omitted. If the frame sync signal is present, it is  
possible to derive the vertical and the horizontal phase from it by setting the HFS and VFS  
bits. HSVGC and VSVGC are not necessary in this case, so it is possible to switch the  
pins to output mode.  
Alternatively, the device can be triggered by auxiliary codes in a ITU-R BT.656 data  
stream via PD7 to PD0.  
Only vertical frequencies of 50 Hz and 60 Hz are allowed with the SAA7104E;  
SAA7105E. In Slave mode, it is not possible to lock the encoders color carrier to the line  
frequency with the PHRES bits.  
In the (more common) Master mode, the time base of the circuit is continuously  
free-running. The IC can output a frame sync at pin FSVGC, a vertical sync at pin VSVGC,  
a horizontal sync at pin HSVGC and a composite blanking signal at pin CBO. All of these  
signals are defined in the PIXCLK domain. The duration of HSVGC and VSVGC are fixed,  
they are 64 clocks for HSVGC and 1 line for VSVGC. The leading slopes are in phase and  
the polarities can be programmed.  
The input line length can be programmed. The field length is always derived from the field  
length of the encoder and the pixel clock frequency that is being used.  
CBO acts as a data request signal. The circuit accepts input data at a programmable  
number of clocks after CBO goes active. This signal is programmable and it is possible to  
adjust the following (see Figure 13 and Figure 14):  
The horizontal offset  
The length of the active part of the line  
The distance from active start to first expected data  
The vertical offset separately for odd and even fields  
The number of lines per input field  
In most cases, the vertical offsets for odd and even fields are equal. If they are not, then  
the even field will start later. The SAA7104E; SAA7105E will also request the first input  
lines in the even field, the total number of requested lines will increase by the difference of  
the offsets.  
As stated above, the circuit can be programmed to accept the look-up and cursor data in  
the first 2 lines of each field. The timing generator provides normal data request pulses for  
these lines; the duration is the same as for regular lines. The additional request pulses will  
be suppressed with LUTL set to logic 0; see Table 103. The other vertical timings do not  
change in this case, so the first active line can be number 2, counted from 0.  
7.17 Pattern generator for HD sync pulses  
The pattern generator provides appropriate synchronization patterns for the video data  
path in auxiliary monitor or HDTV mode. It provides maximum flexibility in terms of raster  
generation for all interlaced and non-interlaced computer graphics or ATSC formats. The  
sync engine is capable of providing a combination of event-value pairs which can be used  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
16 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
to insert certain values in the outgoing data stream at specified times. It can also be used  
to generate digital signals associated with time events. These can be used as digital  
horizontal and vertical synchronization signals on pins HSM_CSYNC and VSM.  
The picture position is adjustable through the programmable relationship between the  
sync pulses and the video contents.  
The generation of embedded analog sync pulses is bound to a number of events which  
can be defined for a line. Several of these line timing definitions can exist in parallel. For  
the final sync raster composition a certain sequence of lines with different sync event  
properties has to be defined. The sequence specifies a series of line types and the  
number of occurrences of this specific line type. Once the sequence has been completed,  
it restarts from the beginning. All pulse shapes are filtered internally in order to avoid  
ringing after analog post filters.  
The sequence of the generated pulse stream must fit precisely to the incoming data  
stream in terms of the total number of pixels per line and lines per frame.  
The sync engines flexibility is achieved by using a sequence of linked lists carrying the  
properties for the image, the lines as well as fractions of lines. Figure 3 illustrates the  
context between the various tables.  
4-bit line type index  
10-bit line count  
line  
count  
pointer  
LINE COUNT ARRAY  
16 entries  
line type pointer  
3
3
3
3
3
3
3
3
3
3
3
3
pattern pointer  
LINE TYPE ARRAY  
15 entries  
3
3
3
3
event type pointer  
10-bit duration  
10-bit duration  
10-bit duration  
4-bit value index  
10-bit duration  
4-bit value index  
4-bit value index  
4-bit value index  
LINE PATTERN ARRAY  
7 entries  
8 + 2-bit value  
VALUE ARRAY  
8 entries  
line pattern pointer  
mhc573  
Fig 3. Context between the pattern generator tables for DH sync pulses  
The first table serves as an array to hold the correct sequence of lines that compose the  
synchronization raster; it can contain up to 16 entries. Each entry holds a 4-bit index to  
the next table and a 10-bit counter value which specifies how often this particular line is  
invoked. If the necessary line count for a particular line exceeds the 10 bits, it has to use  
two table entries.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
17 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
The 4-bit index in the line count array points to the line type array. It holds up to 15 entries  
(index 0 is not used), index 1 points to the first entry, index 2 to the second entry of the line  
type array etc.  
Each entry of the line type array can hold up to 8 index pointers to another table. These  
indices point to portions of a line pulse pattern: A line could be split up e.g. into a sync,  
a blank, and an active portion followed by another blank portion, occupying four entries in  
one table line.  
Each index of this table points to a particular line of the next table in the linked list. This  
table is called the line pattern array and each of the up to seven entries stores up to four  
pairs of a duration in pixel clock cycles and an index to a value table. The table entries are  
used to define portions of a line representing a certain value for a certain number of clock  
cycles.  
The value specified in this table is actually another 3-bit index into a value array which can  
hold up to eight 8-bit values. If bit 4 (MSB) of the index is logic 1, the value is inserted into  
the G or Y signal, only; if bit 4 = 0, the associated value is inserted into all three signals.  
Two additional bits of the entries in the value array (LSBs of the second byte) determine if  
the associated events appear as a digital pulse on the HSM_CSYNC and/or VSM outputs.  
To ease the trigger set-up for the sync generation module, a set of registers is provided to  
set up the screen raster which is defined as width and height. A trigger position can be  
specified as an x, y co-ordinate within the overall dimensions of the screen raster. If the  
x, y counter matches the specified co-ordinates, a trigger pulse is generated which  
pre-loads the tables with their initial values.  
The listing in Table 9 outlines an example on how to set up the sync tables for a 1080i HD  
raster.  
Important note:  
Due to a problem in the programming interface, writing to the line pattern array  
(address D2) might destroy the data of the line type array (address D1). A work around is  
to write the line pattern array data before writing the line type array. Reading of the arrays  
is possible but all address pointers must be initialized before the next write operation.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
18 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 9:  
Example for set-up of the sync tables  
Comment  
Sequence  
Write to subaddress D0h  
00  
points to first entry of line count array (index 0)  
05 20  
generate 5 lines of line type index 2 (this is the second entry of the line type array); will be the  
first vertical raster pulse  
01 40  
generate 1 line of line type index 4; will be sync-black-sync-black sequence after the first vertical  
pulse  
0E 60  
1C 12  
02 60  
01 50  
generate 14 lines of line type index 6; will be the following lines with sync-black sequence  
generate 540 lines of line type index 1; will be lines with sync and active video  
generate 2 lines of line type index 6; will be the following lines with sync-black sequence  
generate 1 line of line type index 5; will be the following line (line 563) with  
sync-black-sync-black-null sequence (null is equivalent to sync tip)  
04 20  
01 30  
0F 60  
1C 12  
02 60  
generate 4 lines of line type index 2; will be the second vertical raster pulse  
generate 1 line of line type index 3; will be the following line with sync-null-sync-black sequence  
generate 15 lines of line type index 6; will be the following lines with sync-black sequence  
generate 540 lines of line type index 1; will be lines with sync and active video  
generate 2 lines of line type index 6; will be the following lines with sync-black sequence; now,  
1125 lines are defined  
Write to subaddress D2h (insertion is done into all three analog output signals)  
00 points to first entry of line pattern array (index 1)  
6F 33 2B 30 00 00 00 00 880 × value(3) + 44 × value(3); (subtract 1 from real duration)  
6F 43 2B 30 00 00 00 00 880 × value(4) + 44 × value(3)  
3B 30 BF 03 BF 03 2B 30 60 × value(3) + 960 × value(0) + 960 × value(0) + 44 × value(3)  
2B 10 2B 20 57 30 00 00 44 × value(1) + 44 × value(2) + 88 × value(3)  
3B 30 BF 33 BF 33 2B 30 60 × value(3) + 960 × value(3) + 960 × value(3) + 44 × value(3)  
Write to subaddress D1h  
00  
points to first entry of line type array (index 1)  
34 00 00 00  
24 24 00 00  
24 14 00 00  
14 14 00 00  
14 24 00 00  
54 00 00 00  
use pattern entries 4 and 3 in this sequence (for sync and active video)  
use pattern entries 4, 2, 4 and 2 in this sequence (for 2 × sync-black-null-black)  
use pattern entries 4, 2, 4 and 1 in this sequence (for sync-black-null-black-null)  
use pattern entries 4, 1, 4 and 1 in this sequence (for sync-black-sync-black)  
use pattern entries 4, 1, 4 and 2 in this sequence (for sync-black-sync-black-null)  
use pattern entries 4 and 5 in this sequence (for sync-black)  
Write to subaddress D3h (no signals are directed to pins HSM_CSYNC and VSM)  
00  
points to first entry of value array (index 0)  
black level, to be added during active video  
sync level LOW (minimum output voltage)  
sync level HIGH (3-level sync)  
CC 00  
80 00  
0A 00  
CC 00  
black level (needed elsewhere)  
80 00  
null (identical to sync level LOW)  
Write to subaddress DCh  
0B  
insertion is active, gain for signal is adapted accordingly  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
19 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
7.18 I2C-bus interface  
The I2C-bus interface is a standard slave transceiver, supporting 7-bit slave addresses  
and 400 kbit/s guaranteed transfer rate. It uses 8-bit subaddressing with an  
auto-increment function. All registers are write and read, except two read only status  
bytes.  
The register bit map consists of an RGB Look-Up Table (LUT), a cursor bit map and  
control registers. The LUT contains three banks of 256 bytes, where each RGB triplet is  
assigned to one address. Thus a write access needs the LUT address and three data  
bytes following subaddress FFh. For further write access auto-incrementing of the LUT  
address is performed. The cursor bit map access is similar to the LUT access but contains  
only a single byte per address.  
The I2C-bus slave address is defined as 88h.  
7.19 Power-down modes  
In order to reduce the power consumption, the SAA7104E; SAA7105E supports  
2 Power-down modes, accessible via the I2C-bus. The analog Power-down mode  
(DOWNA = 1) turns off the digital-to-analog converters and the pixel clock synthesizer.  
The digital Power-down mode (DOWND = 1) turns off all internal clocks and sets the  
digital outputs to LOW except the I2C-bus interface. The IC keeps its programming and  
can still be accessed in this mode, however not all registers can be read or written to.  
Reading or writing to the look-up tables, the cursor and the HD sync generator require a  
valid pixel clock. The typical supply current in full power-down is approximately 5 mA.  
Because the analog Power-down mode turns off the pixel clock synthesizer, there are  
limitations in some applications. If there is no pixel clock, the IC is not able to set its  
outputs to LOW. So, in most cases, DOWNA and DOWND should be set to logic 1  
simultaneously. If the EIDIV bit is logic 1, it should be set to logic 0 before power-down.  
7.20 Programming the SAA7104E; SAA7105E  
The SAA7104E; SAA7105E needs to provide a continuous data stream at its analog  
outputs as well as receive a continuous stream of data from its data source. Because  
there is no frame memory isolating the data streams, restrictions apply to the input frame  
timings.  
Input and output processing of the SAA7104E; SAA7105E are only coupled through the  
vertical frequencies. In Master mode, the encoder provides a vertical sync and an  
odd/even pulse to the input processing. In Slave mode, the encoder receives them.  
The parameters of the input field are mainly given by the memory capacity of the  
SAA7104E; SAA7105E. The rule is that the scaler and thus the input processing needs to  
provide the video data in the same time frames as the encoder reads them. Therefore, the  
vertical active video times (and the vertical frequencies) need to be the same.  
The second rule is that there has to be data in the buffer FIFO when the encoder enters  
the active video area. Therefore, the vertical offset in the input path needs to be a bit  
shorter than the offset of the encoder.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
20 of 78  
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
The following Sections give the set of equations required to program the IC for the most  
common application: A post processor in Master mode with non-interlaced video input  
data.  
Some variables are defined below:  
InPix: the number of active pixels per input line  
InPpl: the length of the entire input line in pixel clocks  
InLin: the number of active lines per input field/frame  
TPclk: the pixel clock period  
RiePclk: the ratio of internal to external pixel clock  
OutPix: the number of active pixels per output line  
OutLin: the number of active lines per output field  
TXclk: the encoder clock period (37.037 ns)  
7.20.1 TV display window  
At 60 Hz, the first visible pixel has the index 256, 710 pixels can be encoded; at 50 Hz, the  
index is 284, 702 pixels can be visible.  
The output lines should be centred on the screen. It should be noted that the encoder has  
2 clocks per pixel; see Table 47.  
ADWHS = 256 + 710 OutPix (60 Hz); ADWHS = 284 + 702 OutPix (50 Hz);  
ADWHE = ADWHS + OutPix × 2 (all frequencies)  
For vertical, the procedure is the same. At 60 Hz, the first line with video information is  
number 19, 240 lines can be active. For 50 Hz, the numbers are 23 and 287; see Table 55  
to Table 57.  
240 – OutLin  
-------------------------------  
2
287 – OutLin  
-------------------------------  
2
FAL = 19 +  
(60 Hz); FAL = 23 +  
(50 Hz);  
LAL = FAL + OutLin (all frequencies)  
Most TV sets use overscan, and not all pixels respectively lines are visible. There is no  
standard for the factor, it is highly recommended to make the number of output pixels and  
lines adjustable. A reasonable underscan factor is 10 %, giving approximately 640 output  
pixels per line.  
7.20.2 Input frame and pixel clock  
The total number of pixel clocks per line and the input horizontal offset need to be chosen  
next. The only constraint is that the horizontal blanking has at least 10 clock pulses.  
The required pixel clock frequency can be determined in the following way: Due to the  
limited internal FIFO size, the input path has to provide all pixels in the same time frame  
as the encoders vertical active time. The scaler also has to process the first and last  
border lines for the anti-flicker function. Thus:  
262.5 × 1716 × TXclk  
TPclk =  
(60 Hz)  
-----------------------------------------------------------------------------------  
InLin + 2  
InPpl × integer  
× 262.5  
----------------------  
OutLin  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
21 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
312.5 × 1728 × TXclk  
TPclk =  
(50 Hz) and for the pixel clock generator  
-----------------------------------------------------------------------------------  
InLin + 2  
InPpl × integer  
× 312.5  
----------------------  
OutLin  
TXclk  
20 + PCLE  
PCL =  
× 2  
(all frequencies); see Table 59 and Table 60. The divider PCLE  
--------------  
TPclk  
should be set according to Table 60. PCLI may be set to a lower or the same value.  
Setting a lower value means that the internal pixel clock is higher and the data get  
sampled up. The difference may be 1 at 640 × 480 pixels resolution and 2 at resolutions  
with 320 pixels per line as a rule of thumb. This allows horizontal upscaling by a maximum  
factor of 2 respectively 4 (this is the parameter RiePclk).  
logRiePclk  
PCLI = PCLE –  
(all frequencies)  
--------------------------  
log2  
The equations ensure that the last line of the field has the full number of clock cycles.  
Many graphic controllers require this. Note that the bit PCLSY needs to be set to ensure  
that there is not even a fraction of a clock left at the end of the field.  
7.20.3 Horizontal scaler  
XOFS can be chosen arbitrarily, the condition being that XOFS + XPIX HLEN is fulfilled.  
Values given by the VESA display timings are preferred.  
HLEN = InPpl × RiePclk 1  
InPix  
2
XPIX =  
XINC =  
× RiePclk  
------------  
OutPix  
4096  
×
---------------- ------------------  
InPix RiePclk  
XINC needs to be rounded up, it needs to be set to 0 for a scaling factor of 1.  
7.20.4 Vertical scaler  
The input vertical offset can be taken from the assumption that the scaler should just have  
finished writing the first line when the encoder starts reading it:  
FAL × 1716 × TXclk  
---------------------------------------------------  
InPpl × TPclk  
FAL × 1728 × TXclk  
---------------------------------------------------  
InPpl × TPclk  
YOFS =  
– 2.5 (60 Hz) YOFS =  
– 2.5 (50 Hz)  
In most cases the vertical offsets will be the same for odd and even fields. The results  
should be rounded down.  
YPIX = InLin  
YSKIP defines the anti-flicker function. 0 means maximum flicker reduction but minimum  
vertical bandwidth, 4095 gives no flicker reduction and maximum bandwidth. Note that the  
maximum value for YINC is 4095. It might be necessary to reduce the value of YSKIP to  
fulfil this requirement.  
OutLin  
----------------------  
InLin + 2  
YSKIP  
----------------  
4095  
YINC =  
× 1 +  
× 4096  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
22 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
YINC  
--------------  
2
YIWGTO =  
+ 2048  
YINC – YSKIP  
-------------------------------------  
2
YIWGTE =  
When YINC = 0 it sets the scaler to scaling factor 1. The initial weighting factors must not  
be set to 0 in this case. YIWGTE may go negative. In this event, YINC should be added  
and YOFSE incremented. This can be repeated as often as necessary to make YIWGTE  
positive.  
It should be noted that these equations assume that the input is non-interlaced but the  
output is interlaced. If the input is interlaced, the initial weighting factors need to be  
adapted to obtain the proper phase offsets in the output frame.  
If vertical upscaling beyond the upper capabilities is required, the parameter YUPSC may  
be set to logic 1. This extends the maximum vertical scaling factor by a factor of 2. Only  
the parameter YINC is affected, it needs to be divided by two to get the same effect.  
There are restrictions in this mode:  
The vertical filter YFILT is not available in this mode; the circuit will ignore this value  
The horizontal blanking needs to be long enough to transfer an output line between  
2 memory locations. This is 710 internal pixel clocks.  
Or the upscaling factor needs to be limited to 1.5 and the horizontal upscaling factor is  
also limited to less than 1.5. In this case a normal blanking length is sufficient.  
7.21 Input levels and formats  
The SAA7104E; SAA7105E accepts digital Y, CB, CR or RGB data with levels (digital  
codes) in accordance with ‘ITU-R BT.601’. An optional gain adjustment also allows to  
accept data with the full level swing of 0 to 255.  
For C and CVBS outputs, deviating amplitudes of the color difference signals can be  
compensated for by independent gain control setting, while gain for luminance is set to  
predefined values, distinguishable for 7.5 IRE set-up or without set-up.  
The RGB, respectively CR-Y-CB path features an individual gain setting for luminance  
(GY) and color difference signals (GCD). Reference levels are measured with a color bar,  
100 % white, 100 % amplitude and 100 % saturation.  
The SAA7104E; SAA7105E has special input cells for the VGC port. They operate at a  
wider supply voltage range and have a strict input threshold at 12VDDD. To achieve full  
speed of these cells, the EIDIV bit needs to be set to logic 1. Note that the impedance of  
these cells is approximately 6 k. This may cause trouble with the bootstrapping pins of  
some graphic chips. So the power-on reset forces the bit to logic 0, the input impedance is  
regular in this mode.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
23 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 10: ‘ITU-R BT.601’ signal component levels  
Color  
Signals[1]  
Y
CB  
CR  
R
G
B
White  
Yellow  
Cyan  
235  
210  
170  
145  
106  
81  
128  
16  
128  
146  
16  
235  
235  
16  
235  
235  
235  
235  
16  
235  
16  
166  
54  
235  
16  
Green  
Magenta  
Red  
34  
16  
202  
90  
222  
240  
110  
128  
235  
235  
16  
235  
16  
16  
Blue  
41  
240  
128  
16  
235  
16  
Black  
16  
16  
16  
[1] Transformation:  
R = Y + 1.3707 × (CR 128)  
G = Y 0.3365 × (CB 128) 0.6982 × (CR 128)  
B = Y + 1.7324 × (CB 128).  
Table 11: Usage of bits SLOT and EDGE  
Data slot control (example for format 0)  
SLOT  
EDGE  
1st data  
2nd data  
0
0
1
1
0
1
0
1
at rising edge G3/Y3  
at falling edge G3/Y3  
at rising edge R7/CR7  
at falling edge R7/CR7  
at falling edge R7/CR7  
at rising edge R7/CR7  
at falling edge G3/Y3  
at rising edge G3/Y3  
Table 12: Pin assignment for input format 0  
8 + 8 + 8-bit 4 : 4 : 4 non-interlaced RGB/CB-Y-CR  
Pin  
Falling clock edge  
G3/Y3  
Rising clock edge  
R7/CR7  
R6/CR6  
R5/CR5  
R4/CR4  
R3/CR3  
R2/CR2  
R1/CR1  
R0/CR0  
G7/Y7  
PD11  
PD10  
PD9  
PD8  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G2/Y2  
G1/Y1  
G0/Y0  
B7/CB7  
B6/CB6  
B5/CB5  
B4/CB4  
B3/CB3  
B2/CB2  
B1/CB1  
B0/CB0  
G6/Y6  
G5/Y5  
G4/Y4  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
24 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 13: Pin assignment for input format 1  
5 + 5 + 5-bit 4 : 4 : 4 non-interlaced RGB  
Pin  
Falling clock edge  
Rising clock edge  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G2  
G1  
G0  
B4  
B3  
B2  
B1  
B0  
X
R4  
R3  
R2  
R1  
R0  
G4  
G3  
Table 14: Pin assignment for input format 2  
5 + 6 + 5-bit 4 : 4 : 4 non-interlaced RGB  
Pin  
Falling clock edge  
Rising clock edge  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G2  
G1  
G0  
B4  
B3  
B2  
B1  
B0  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
Table 15: Pin assignment for input format 3  
8 + 8 + 8-bit 4 : 2 : 2 non-interlaced CB-Y-CR  
Pin  
Falling clock  
edge n  
Rising clock  
edge n  
Falling clock  
Rising clock  
edge n + 1  
edge n + 1  
CR7(0)  
CR6(0)  
CR5(0)  
CR4(0)  
CR3(0)  
CR2(0)  
CR1(0)  
CR0(0)  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
CB7(0)  
CB6(0)  
CB5(0)  
CB4(0)  
CB3(0)  
CB2(0)  
CB1(0)  
CB0(0)  
Y7(0)  
Y6(0)  
Y5(0)  
Y4(0)  
Y3(0)  
Y2(0)  
Y1(0)  
Y0(0)  
Y7(1)  
Y6(1)  
Y5(1)  
Y4(1)  
Y3(1)  
Y2(1)  
Y1(1)  
Y0(1)  
Table 16: Pin assignment for input format 4  
8 + 8 + 8-bit 4 : 2 : 2 interlaced CB-Y-CR (ITU-R BT.656, 27 MHz clock)  
Pin  
Rising clock  
edge n  
Rising clock  
edge n + 1  
Rising clock  
edge n + 2  
Rising clock  
edge n + 3  
PD7  
PD6  
PD5  
CB7(0)  
CB6(0)  
CB5(0)  
Y7(0)  
Y6(0)  
Y5(0)  
CR7(0)  
CR6(0)  
CR5(0)  
Y7(1)  
Y6(1)  
Y5(1)  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
25 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 16: Pin assignment for input format 4…continued  
8 + 8 + 8-bit 4 : 2 : 2 interlaced CB-Y-CR (ITU-R BT.656, 27 MHz clock)  
Pin  
Rising clock  
edge n  
Rising clock  
edge n + 1  
Rising clock  
edge n + 2  
Rising clock  
edge n + 3  
PD4  
PD3  
PD2  
PD1  
PD0  
CB4(0)  
CB3(0)  
CB2(0)  
CB1(0)  
CB0(0)  
Y4(0)  
Y3(0)  
Y2(0)  
Y1(0)  
Y0(0)  
CR4(0)  
CR3(0)  
CR2(0)  
CR1(0)  
CR0(0)  
Y4(1)  
Y3(1)  
Y2(1)  
Y1(1)  
Y0(1)  
Table 17: Pin assignment for input format 5[1]  
8-bit non-interlaced index color  
Pin  
Falling clock edge  
Rising clock edge  
PD11  
PD10  
PD9  
PD8  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INDEX7  
INDEX6  
INDEX5  
INDEX4  
INDEX3  
INDEX2  
INDEX1  
INDEX0  
[1] X = don’t care.  
Table 18: Pin assignment for input format 6  
8 + 8 + 8-bit 4 : 4 : 4 non-interlaced RGB/CB-Y-CR  
Pin  
Falling clock edge  
G4/Y4  
Rising clock edge  
R7/CR7  
R6/CR6  
R5/CR5  
R4/CR4  
R3/CR3  
G7/Y7  
PD11  
PD10  
PD9  
PD8  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G3/Y3  
G2/Y2  
B7/CB7  
B6/CB6  
B5/CB5  
B4/CB4  
B3/CB3  
G0/Y0  
G6/Y6  
G5/Y5  
R2/CR2  
R1/CR1  
R0/CR0  
G1/Y1  
B2/CB2  
B1/CB1  
B0/CB0  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
26 of 78  
 
 
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
8.1 Bit allocation map  
Table 19: Slave receiver (slave address 88h)  
Register function  
Subaddress  
7
6
5
4
3
2
1
0
(hexadecimal)  
Status byte (read only)  
Null  
00  
VER2  
VER1  
VER0  
CCRDO  
CCRDE  
-
FSEQ  
O_E  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
01 to 15  
16  
[1]  
[1]  
[1]  
[1]  
[1]  
Common DAC adjust fine  
R DAC adjust coarse  
G DAC adjust coarse  
B DAC adjust coarse  
MSM threshold  
DACF3  
DACF2  
RDACC2  
GDACC2  
BDACC2  
MSMT2  
RCOMP  
CID2  
DACF1  
RDACC1  
GDACC1  
BDACC1  
MSMT1  
GCOMP  
CID1  
DACF0  
RDACC0  
GDACC0  
BDACC0  
MSMT0  
BCOMP  
CID0  
17  
RDACC4  
GDACC4  
BDACC4  
RDACC3  
GDACC3  
BDACC3  
18  
19  
1A  
MSMT7  
MSM  
MSMT6  
MSA  
MSMT5  
MSOE  
CID5  
MSMT4  
MSMT3  
[1]  
[1]  
Monitor sense mode  
1B  
Chip ID (04h or 05h, read only) 1C  
CID7  
CID6  
CID4  
WSS4  
WSS12  
BS4  
CID3  
Wide screen signal  
26  
27  
28  
29  
2A  
2B  
WSS7  
WSS6  
WSS5  
WSS13  
BS5  
WSS3  
WSS11  
BS3  
WSS2  
WSS10  
BS2  
WSS1  
WSS9  
BS1  
WSS0  
WSS8  
BS0  
[1]  
Wide screen signal  
WSSON  
[1]  
[1]  
[1]  
Real-time control, burst start  
Sync reset enable, burst end  
Copy generation 0  
SRES  
CG07  
CG15  
CGEN  
BE5  
BE4  
BE3  
BE2  
BE1  
BE0  
CG06  
CG05  
CG04  
CG03  
CG11  
CG19  
CG02  
CG01  
CG00  
Copy generation 1  
CG14  
CG13  
CG12  
CG10  
CG09  
CG08  
[1]  
[1]  
[1]  
CG enable, copy generation 2 2C  
CG18  
CG17  
CG16  
[1]  
Output port control  
Null  
2D  
VBSEN  
CVBSEN1 CVBSEN0 CEN  
ENCOFF  
CLK2EN  
CVBSEN2  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
2E to 36  
37  
[1]  
[1]  
[1]  
[1]  
Input path control  
Gain luminance for RGB  
YUPSC  
YFIL1  
YFIL0  
CZOOM  
GY2  
IGAIN  
XINT  
[1]  
[1]  
38  
GY4  
GY3  
GY1  
GY0  
[1]  
[1]  
[1]  
[1]  
Gain color difference for RGB 39  
GCD4  
GCD3  
GCD2  
GCD1  
Y2C  
GCD0  
UV2C  
Input port control 1  
VPS enable, input control 2  
VPS byte 5  
3A  
54  
55  
56  
57  
58  
59  
5A  
CBENB  
VPSEN  
VPS57  
SYNTV  
GPVAL  
VPS55  
SYMP  
GPEN  
VPS54  
VPS114  
VPS124  
VPS134  
VPS144  
CHPS4  
DEMOFF  
CSYNC  
[1]  
[1]  
EDGE  
VPS51  
VPS111  
VPS121  
VPS131  
VPS141  
CHPS1  
SLOT  
VPS56  
VPS53  
VPS52  
VPS50  
VPS110  
VPS120  
VPS130  
VPS140  
CHPS0  
VPS byte 11  
VPS117  
VPS127  
VPS137  
VPS147  
CHPS7  
VPS116  
VPS126  
VPS136  
VPS146  
CHPS6  
VPS115  
VPS125  
VPS135  
VPS145  
CHPS5  
VPS113  
VPS123  
VPS133  
VPS143  
CHPS3  
VPS112  
VPS122  
VPS132  
VPS142  
CHPS2  
VPS byte 12  
VPS byte 13  
VPS byte 14  
Chrominance phase  
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 19: Slave receiver (slave address 88h)…continued  
Register function  
Subaddress  
7
6
5
4
3
2
1
0
(hexadecimal)  
Gain U  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
GAINU7  
GAINV7  
GAINU8  
GAINV8  
GAINU6  
GAINU5  
GAINV5  
BLCKL5  
BLNNL5  
GAINU4  
GAINV4  
BLCKL4  
BLNNL4  
GAINU3  
GAINV3  
BLCKL3  
BLNNL3  
GAINU2  
GAINV2  
BLCKL2  
BLNNL2  
GAINU1  
GAINV1  
BLCKL1  
BLNNL1  
GAINU0  
GAINV0  
BLCKL0  
BLNNL0  
Gain V  
GAINV6  
[1]  
Gain U MSB, black level  
Gain V MSB, blanking level  
CCR, blanking level VBI  
Null  
[1]  
CCRS1  
CCRS0  
BLNVB5  
BLNVB4  
BLNVB3  
BLNVB2  
BLNVB1  
BLNVB0  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
Standard control  
Burst amplitude  
Subcarrier 0  
DOWND  
RTCE  
DOWNA  
BSTA6  
FSC06  
FSC14  
FSC22  
FSC30  
L21O06  
L21O16  
L21E06  
INPI  
YGS  
SCBW  
BSTA2  
FSC02  
FSC10  
FSC18  
FSC26  
L21O02  
L21O12  
L21E02  
PAL  
FISE  
BSTA5  
FSC05  
FSC13  
FSC21  
FSC29  
L21O05  
L21O15  
L21E05  
BSTA4  
FSC04  
FSC12  
FSC20  
FSC28  
L21O04  
L21O14  
L21E04  
BSTA3  
FSC03  
FSC11  
FSC19  
FSC27  
L21O03  
L21O13  
L21E03  
BSTA1  
FSC01  
FSC09  
FSC17  
FSC25  
L21O01  
L21O11  
L21E01  
BSTA0  
FSC00  
FSC08  
FSC16  
FSC24  
L21O00  
L21O10  
L21E00  
FSC07  
FSC15  
FSC23  
FSC31  
L21O07  
L21O17  
L21E07  
Subcarrier 1  
Subcarrier 2  
Subcarrier 3  
Line 21 odd 0  
Line 21 odd 1  
Line 21 even 0  
Line 21 even 1  
Null  
L21E17  
L21E16  
L21E15  
L21E14  
L21E13  
L21E12  
L21E11  
L21E10  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
Trigger control  
Trigger control  
Multi control  
HTRIG7  
HTRIG10  
NVTRIG  
CCEN1  
HTRIG6  
HTRIG9  
BLCKON  
CCEN0  
HTRIG5  
HTRIG8  
PHRES1  
TTXEN  
HTRIG4  
VTRIG4  
PHRES0  
SCCLN4  
HTRIG3  
VTRIG3  
LDEL1  
HTRIG2  
VTRIG2  
LDEL0  
HTRIG1  
VTRIG1  
FLC1  
HTRIG0  
VTRIG0  
FLC0  
Closed caption, teletext enable 6F  
SCCLN3  
SCCLN2  
ADWHS2  
SCCLN1  
SCCLN0  
Active display window  
horizontal start  
70  
ADWHS7  
ADWHS6  
ADWHS5 ADWHS4 ADWHS3  
ADWHS1 ADWHS0  
Active display window  
horizontal end  
71  
ADWHE7  
ADWHE6  
ADWHE5 ADWHE4 ADWHE3  
ADWHE2  
ADWHE1 ADWHE0  
[1]  
[1]  
MSBs ADWH  
72  
73  
74  
75  
ADWHE10 ADWHE9 ADWHE8  
ADWHS10 ADWHS9 ADWHS8  
TTX request horizontal start  
TTX request horizontal delay  
CSYNC advance  
TTXHS7  
TTXHS6  
TTXHS5  
TTXHS4  
TTXHS3  
TTXHD3  
TTXHS2  
TTXHS1  
TTXHS0  
[1]  
[1]  
[1]  
[1]  
TTXHD2  
TTXHD1  
TTXHD0  
[1]  
[1]  
[1]  
CSYNCA4 CSYNCA3 CSYNCA2 CSYNCA1 CSYNCA0  
TTXOVS7 TTXOVS6 TTXOVS5 TTXOVS4 TTXOVS3  
TTXOVE7 TTXOVE6 TTXOVE5 TTXOVE4 TTXOVE3  
TTX odd request vertical start 76  
TTX odd request vertical end 77  
TTXOVS2  
TTXOVE2  
TTXOVS1 TTXOVS0  
TTXOVE1 TTXOVE0  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 19: Slave receiver (slave address 88h)…continued  
Register function  
Subaddress  
7
6
5
4
3
2
1
0
(hexadecimal)  
TTX even request vertical start 78  
TTX even request vertical end 79  
TTXEVS7  
TTXEVE7  
FAL7  
TTXEVS6  
TTXEVE6  
FAL6  
TTXEVS5 TTXEVS4 TTXEVS3  
TTXEVE5 TTXEVE4 TTXEVE3  
TTXEVS2  
TTXEVE2  
FAL2  
TTXEVS1 TTXEVS0  
TTXEVE1 TTXEVE0  
First active line  
Last active line  
TTX mode, MSB vertical  
Null  
7A  
7B  
7C  
7D  
7E  
7F  
80  
FAL5  
LAL5  
FAL4  
LAL4  
FAL3  
LAL3  
FAL1  
LAL1  
FAL0  
LAL0  
LAL7  
LAL6  
LAL2  
TTX60  
LAL8  
TTXO  
FAL8  
TTXEVE8  
TTXOVE8  
TTXEVS8 TTXOVS8  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
Disable TTX line  
Disable TTX line  
FIFO status (read only)  
Pixel clock 0  
LINE12  
LINE20  
-
LINE11  
LINE19  
-
LINE10  
LINE18  
-
LINE9  
LINE17  
-
LINE8  
LINE7  
LINE6  
LINE14  
OVFL  
LINE5  
LINE13  
UDFL  
LINE16  
IFERR  
PCL03  
PCL11  
PCL19  
PCLE1  
LINE15  
BFERR  
PCL02  
PCL10  
PCL18  
PCLE0  
81  
PCL07  
PCL15  
PCL23  
DCLK  
PCL06  
PCL14  
PCL22  
PCL05  
PCL13  
PCL21  
PCL04  
PCL12  
PCL20  
PCL01  
PCL09  
PCL17  
PCLI1  
PCL00  
PCL08  
PCL16  
PCLI0  
Pixel clock 1  
82  
Pixel clock 2  
83  
Pixel clock control  
FIFO control  
84  
PCLSY  
IFRA  
IFBP  
[1]  
[1]  
[1]  
85  
EIDIV  
FILI3  
FILI2  
FILI1  
FILI0  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
Null  
86 to 8F  
90  
Horizontal offset  
Pixel number  
XOFS7  
XPIX7  
YOFSO7  
YOFSE7  
YOFSE9  
YPIX7  
EFS  
XOFS6  
XPIX6  
XOFS5  
XPIX5  
XOFS4  
XPIX4  
YOFSO4  
YOFSE4  
YOFSO8  
YPIX4  
ILC  
XOFS3  
XPIX3  
YOFSO3  
YOFSE3  
XPIX9  
YPIX3  
YFIL  
XOFS2  
XPIX2  
XOFS1  
XPIX1  
YOFSO1  
YOFSE1  
XOFS9  
YPIX1  
YPIX9  
OHS  
XOFS0  
XPIX0  
YOFSO0  
YOFSE0  
XOFS8  
YPIX0  
YPIX8  
PHS  
91  
Vertical offset odd  
Vertical offset even  
MSBs  
92  
YOFSO6  
YOFSE6  
YOFSE8  
YPIX6  
YOFSO5  
YOFSE5  
YOFSO9  
YPIX5  
YOFSO2  
YOFSE2  
XPIX8  
93  
94  
Line number  
95  
YPIX2  
[1]  
Scaler CTRL, MCB YPIX  
Sync control  
96  
PCBN  
SLAVE  
OFS  
97  
HFS  
VFS  
PFS  
OVS  
PVS  
Line length  
98  
HLEN7  
IDEL3  
HLEN6  
IDEL2  
HLEN5  
IDEL1  
HLEN4  
IDEL0  
XINC4  
YINC4  
YINC8  
HLEN3  
HLEN11  
XINC3  
YINC3  
XINC11  
HLEN2  
HLEN10  
XINC2  
YINC2  
XINC10  
HLEN1  
HLEN9  
XINC1  
YINC1  
XINC9  
HLEN0  
HLEN8  
XINC0  
YINC0  
XINC8  
Input delay, MSB line length  
Horizontal increment  
Vertical increment  
99  
9A  
9B  
9C  
XINC7  
YINC7  
YINC11  
XINC6  
YINC6  
YINC10  
XINC5  
YINC5  
YINC9  
MSBs vertical and horizontal  
increment  
Weighting factor odd  
9D  
YIWGTO7 YIWGTO6 YIWGTO5 YIWGTO4 YIWGTO3 YIWGTO2 YIWGTO1 YIWGTO0  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 19: Slave receiver (slave address 88h)…continued  
Register function  
Subaddress  
7
6
5
4
3
2
1
0
(hexadecimal)  
Weighting factor even  
Weighting factor MSB  
Vertical line skip  
9E  
9F  
A0  
A1  
YIWGTE7 YIWGTE6 YIWGTE5 YIWGTE4 YIWGTE3  
YIWGTE2  
YIWGTE1 YIWGTE0  
YIWGTE11 YIWGTE10 YIWGTE9 YIWGTE8 YIWGTO11 YIWGTO10 YIWGTO9 YIWGTO8  
YSKIP7  
BLEN  
YSKIP6  
YSKIP5  
YSKIP4  
YSKIP3  
YSKIP2  
YSKIP1  
YSKIP9  
YSKIP0  
YSKIP8  
[1]  
[1]  
[1]  
Blank enable for NI-bypass,  
vertical line skip MSB  
YSKIP11  
YSKIP10  
Border color Y  
A2  
A3  
A4  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
BCY7  
BCU7  
BCV7  
BCY6  
BCU6  
BCV6  
BCY5  
BCU5  
BCV5  
BCY4  
BCU4  
BCV4  
BCY3  
BCU3  
BCV3  
BCY2  
BCU2  
BCV2  
BCY1  
BCU1  
BCV1  
BCY0  
BCU0  
BCV0  
Border color U  
Border color V  
HD sync line count array  
HD sync line type array  
HD sync line pattern array  
HD sync value array  
HD sync trigger state 1  
HD sync trigger state 2  
HD sync trigger state 3  
HD sync trigger state 4  
HD sync trigger phase x  
RAM address (see Table 83)  
RAM address (see Table 85)  
RAM address (see Table 87)  
RAM address (see Table 89)  
HLCT7  
HLCT6  
HLCPT2  
HDCT6  
HEPT2  
HLCT5  
HLCPT1  
HDCT5  
HEPT1  
HLCT4  
HLCPT0  
HDCT4  
HEPT0  
HLCT3  
HLCT2  
HLCT1  
HLCT9  
HDCT1  
HDCT9  
HTX1  
HLCT0  
HLCT8  
HDCT0  
HDCT8  
HTX0  
HLCPT3  
HLPPT1  
HLPPT0  
HDCT7  
HDCT3  
HDCT2  
[1]  
[1]  
[1]  
HTX7  
HTX6  
HTX5  
HTX4  
HTX3  
HTX2  
[1]  
[1]  
[1]  
[1]  
HTX11  
HTX10  
HTX9  
HTX8  
HD sync trigger phase y  
HTY7  
HTY6  
HTY5  
HTY4  
HTY3  
HTY2  
HTY1  
HTY0  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
HTY9  
HTY8  
[1]  
[1]  
[1]  
[1]  
HD output control  
Cursor color 1 R  
HDSYE  
CC1R3  
CC1G3  
CC1B3  
CC2R3  
CC2G3  
CC2B3  
AUXR3  
AUXG3  
AUXB3  
HDTC  
HDGY  
CC1R1  
CC1G1  
CC1B1  
CC2R1  
CC2G1  
CC2B1  
AUXR1  
AUXG1  
AUXB1  
HDIP  
CC1R7  
CC1G7  
CC1B7  
CC2R7  
CC2G7  
CC2B7  
AUXR7  
AUXG7  
AUXB7  
CC1R6  
CC1G6  
CC1B6  
CC2R6  
CC2G6  
CC2B6  
AUXR6  
AUXG6  
AUXB6  
CC1R5  
CC1G5  
CC1B5  
CC2R5  
CC2G5  
CC2B5  
AUXR5  
AUXG5  
AUXB5  
CC1R4  
CC1G4  
CC1B4  
CC2R4  
CC2G4  
CC2B4  
AUXR4  
AUXG4  
AUXB4  
CC1R2  
CC1G2  
CC1B2  
CC2R2  
CC2G2  
CC2B2  
AUXR2  
AUXG2  
AUXB2  
CC1R0  
CC1G0  
CC1B0  
CC2R0  
CC2G0  
CC2B0  
AUXR0  
AUXG0  
AUXB0  
Cursor color 1 G  
Cursor color 1 B  
Cursor color 2 R  
Cursor color 2 G  
Cursor color 2 B  
Auxiliary cursor color R  
Auxiliary cursor color G  
Auxiliary cursor color B  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 19: Slave receiver (slave address 88h)…continued  
Register function  
Subaddress  
7
6
5
4
3
2
1
0
(hexadecimal)  
Horizontal cursor position  
F9  
XCP7  
XCP6  
XCP5  
XHS2  
YCP5  
YHS2  
LUTL  
XCP4  
XHS1  
YCP4  
YHS1  
IF2  
XCP3  
XCP2  
XCP1  
XCP0  
XCP8  
YCP0  
YCP8  
DFOFF  
Horizontal hot spot, MSB XCP FA  
XHS4  
XHS3  
XHS0  
YCP3  
YHS0  
IF1  
XCP10  
XCP9  
Vertical cursor position  
Vertical hot spot, MSB YCP  
Input path control  
FB  
FC  
FD  
FE  
FF  
YCP7  
YCP6  
YCP2  
YCP1  
[1]  
YHS4  
YHS3  
YCP9  
LUTOFF  
CMODE  
IF0  
MATOFF  
Cursor bit map  
RAM address (see Table 104)  
RAM address (see Table 105)  
Color look-up table  
[1] All unused control bits must be programmed with logic 0 to ensure compatibility to future enhancements.  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
8.2 I2C-bus format  
S
S
S
S
1000 1000  
A
SUBADDRESS  
A
DATA 0  
A
............  
DATA n  
A
P
001aad411  
a. to control registers  
1000 1000  
A
D0h  
A
RAM ADDRESS  
A
DATA 00  
A
DATA 01  
A
............ DATA n  
A
P
001aad412  
b. to the HD line count array (subaddress D0h)  
1000 1000  
A
FEh  
A
RAM ADDRESS  
A
DATA 0  
A
............  
DATA n  
A
P
001aad413  
c. to cursor bit map (subaddress FEh)  
1000 1000  
A
FFh  
A
RAM ADDRESS  
A
DATA 0R  
A
DATA 0G  
A
DATA 0B  
A
............  
P
001aad414  
d. to color look-up table (subaddress FFh)  
See Table 20 for explanations.  
Fig 4. I2C-bus write access  
S
1000 1000  
A
SUBADDRESS  
A
Sr 1000 1001  
A
DATA 0  
Am ............ DATA n Am  
P
001aad415  
a. to control registers  
FEh  
S
1000 1000  
A
A
RAM ADDRESS  
A
Sr 1000 1001  
A
DATA 0 Am .......... DATA n Am  
P
or  
FFh  
001aad416  
b. to cursor bit map or color LUT  
See Table 20 for explanations.  
Fig 5. I2C-bus read access  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
32 of 78  
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 20: Explanations of Figure 4 and Figure 5  
Code  
Description  
S
START condition  
Sr  
repeated START condition  
slave address  
1000 100X[1]  
A
acknowledge generated by the slave  
acknowledge generated by the master  
subaddress byte  
Am  
SUBADDRESS[2]  
DATA  
data byte  
--------  
continued data bytes and acknowledges  
STOP condition  
P
RAM ADDRESS  
start address for RAM access  
[1] X is the read/write control bit; X = logic 0 is order to write; X = logic 1 is order to read.  
[2] If more than 1 byte of DATA is transmitted, then auto-increment of the subaddress is performed.  
8.3 Slave receiver  
Table 21: Common DAC adjust fine register, subaddress 16h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7 to 4 -  
R/W  
0
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
3 to 0 DACF[3:0] R/W  
DAC fine output voltage adjustment, 1 % steps for all DACs  
0111 7 %  
0110 6 %  
0101 5 %  
0100 4 %  
0011 3 %  
0010 2 %  
0001 1 %  
0000* 0 %  
1000 0 %  
1001 1 %  
1010 2 %  
1011 3 %  
1100 4 %  
1101 5 %  
1110 6 %  
1111 7 %  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
33 of 78  
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 22: RGB DAC adjust coarse registers, subaddresses 17h to 19h, bit description  
Subaddress Bit  
Symbol  
Description  
17h to 19h  
7 to 5 -  
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
17h  
4 to 0 RDACC[4:0] output level coarse adjustment for RED DAC; default after  
reset is 1Bh for output of C signal  
0 0000b 0.585 V to 1 1111b 1.240 V at 37.5 nominal for  
full-scale conversion  
18h  
19h  
4 to 0 GDACC[4:0] output level coarse adjustment for GREEN DAC; default after  
reset is 1Bh for output of VBS signal  
0 0000b 0.585 V to 1 1111b 1.240 V at 37.5 nominal for  
full-scale conversion  
4 to 0 BDACC[4:0] output level coarse adjustment for BLUE DAC; default after  
reset is 1Fh for output of CVBS signal  
0 0000b 0.585 V to 1 1111b 1.240 V at 37.5 nominal for  
full-scale conversion  
Table 23: MSM threshold, subaddress 1Ah, bit description  
Bit Symbol Description  
7 to 0 MSMT[7:0] monitor sense mode threshold for DAC output voltage, should be set to 70h  
Table 24: Monitor sense mode register, subaddress 1Bh, bit description  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
7
MSM  
MSA  
R/W  
R/W  
monitor sense mode  
0*  
1
off; RCOMP, GCOMP and BCOMP bits are not valid  
on  
6
5
automatic monitor sense mode  
off; RCOMP, GCOMP and BCOMP bits are not valid  
on if MSM = 0  
0*  
1
MSOE  
R/W  
R/W  
0
pin TVD is active  
1*  
0
pin TVD is 3-state  
4 and 3 -  
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
2
1
0
RCOMP R  
check comparator at DAC on pin RED_CR_C_CVBS  
active, output is loaded  
0
1
inactive, output is not loaded  
GCOMP R  
check comparator at DAC on pin GREEN_VBS_CVBS  
active, output is loaded  
0
1
inactive, output is not loaded  
BCOMP  
R
check comparator at DAC on pin BLUE_CB_CVBS  
active, output is loaded  
0
1
inactive, output is not loaded  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
34 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 25: Wide screen signal registers, subaddresses 26h and 27h, bit description  
Legend: * = default value after reset.  
Subaddress Bit  
Symbol  
Access Value Description  
27h  
7
6
WSSON  
R/W  
R/W  
0*  
1
wide screen signalling output is disabled  
wide screen signalling output is enabled  
-
0
must be programmed with logic 0 to ensure  
compatibility to future enhancements  
5 to 3 WSS[13:11] R/W  
2 to 0 WSS[10:8] R/W  
-
-
-
wide screen signalling bits, reserved  
wide screen signalling bits, subtitles  
26h  
7 to 4 WSS[7:4]  
R/W  
wide screen signalling bits, enhanced  
services  
3 to 0 WSS[3:0]  
R/W  
-
wide screen signalling bits, aspect ratio  
Table 26: Real-time control and burst start register, subaddress 28h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
7 and 6 -  
R/W  
0
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
5 to 0  
BS[5:0] R/W  
starting point of burst in clock cycles  
21h* PAL: BS = 33; strapping pin FSVGC tied to HIGH  
19h* NTSC: BS = 25; strapping pin FSVGC tied to LOW  
Table 27: Sync reset enable and burst end register, subaddress 29h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
7
SRES  
R/W  
0*  
1
pin TTX_SRES accepts a teletext bit stream (TTX)  
pin TTX_SRES accepts a sync reset input (SRES); a HIGH  
impulse resets synchronization of the encoder (first field, first  
line)  
6
-
R/W  
0
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
5 to 0  
BE[5:0] R/W  
ending point of burst in clock cycles  
1Dh* PAL: BE = 29; strapping pin FSVGC tied to HIGH  
1Dh* NTSC: BE = 29; strapping pin FSVGC tied to LOW  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
35 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 28: Copy generation 0, 1, 2 and CG enable registers, subaddresses 2Ah to 2Ch, bit  
description  
Legend: * = default value after reset.  
Subaddress Bit  
Symbol  
Access Value Description  
2Ch  
7
CGEN  
R/W  
copy generation data output  
0*  
1
disabled  
enabled  
6 to 4 -  
R/W  
0
must be programmed with logic 0 to ensure  
compatibility to future enhancements  
3 to 0 CG[19:16] R/W  
7 to 0 CG[15:8]  
-
LSBs of the respective bytes are encoded  
immediately after run-in, the MSBs of the  
respective bytes have to carry the CRCC bits,  
in accordance with the definition of copy  
generation management system encoding  
format.  
2Bh  
2Ah  
7 to 0 CG[7:0]  
Table 29: Output port control register, subaddress 2Dh, bit description  
Legend: * = default value after reset.  
Bit Symbol  
Access Value Description  
R/W pin GREEN_VBS_CVBS provides a  
7
VBSEN  
0
component GREEN signal (CVBSEN1 = 0) or CVBS signal  
(CVBSEN1 = 1)  
1*  
luminance (VBS) signal  
6
5
4
3
CVBSEN1 R/W  
CVBSEN0 R/W  
pin GREEN_VBS_CVBS provides a  
component GREEN (G) or luminance (VBS) signal  
CVBS signal  
0*  
1
pin BLUE_CB_CVBS provides a  
component BLUE (B) or color difference BLUE (CB) signal  
CVBS signal  
0
1*  
CEN  
R/W  
pin RED_CR_C_CVBS provides a  
component RED (R) or color difference RED (CR) signal  
chrominance signal (C) as modulated subcarrier for S-video  
encoder  
0
1*  
ENCOFF R/W  
0*  
1
active  
bypass, DACs are provided with RGB signal after cursor  
insertion block  
2
1
0
CLK2EN  
R/W  
pin TTXRQ_XCLKO2 provides  
teletext request signal (TTXRQ)  
buffered crystal clock divided by two (13.5 MHz)  
pin RED_CR_C_CVBS provides a  
signal according to CEN  
0
1*  
CVBSEN2 R/W  
0*  
1
CVBS signal  
-
R/W  
0
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
36 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 30: Input path control register, subaddress 37h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
7
-
R/W  
0
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
6
YUPSC R/W  
vertical scaler  
0*  
1
normal operation  
upscaling is enabled  
5 and 4 YFIL[1:0] R/W  
vertical interpolation filter control; the filter is not available if  
YUPSC = 1  
00*  
01  
no filter active  
filter is inserted before vertical scaling  
10  
filter is inserted after vertical scaling; YSKIP should be  
logic 0  
11  
0
reserved  
3
2
-
R/W  
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
CZOOM R/W  
cursor generator  
0*  
1
normal operation  
cursor will be zoomed by a factor of 2 in both directions  
expected input level swing is  
16 to 235 (8-bit RGB)  
1
0
IGAIN  
XINT  
R/W  
R/W  
0*  
1
0 to 255 (8-bit RGB)  
interpolation filter for horizontal upscaling  
not active  
0*  
1
active  
Table 31: Gain luminance for RGB register, subaddress 38h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
7 to 5  
-
R/W  
0
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
4 to 0  
GY[4:0] R/W  
-
Gain luminance of RGB (CR, Yand CB) output, ranging from  
(1 1632) to (1 + 1532). Suggested nominal value = 0,  
depending on external application.  
Table 32: Gain color difference for RGB register, subaddress 39h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
7 to 5  
-
R/W  
0
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
4 to 0  
GCD[4:0] R/W  
-
Gain color difference of RGB (CR, Yand CB) output, ranging  
from (1 1632) to (1 + 1532). Suggested nominal value = 0,  
depending on external application.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
37 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 33: Input port control 1 register, subaddress 3Ah, bit description  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
7
CBENB R/W  
0
1
0
data from input ports is encoded  
color bar with fixed colors is encoded  
6
5
-
R/W  
R/W  
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
SYNTV  
in Slave mode  
0*  
1
the encoder is only synchronized at the beginning of an odd  
field  
the encoder receives a vertical sync signal  
horizontal and vertical trigger  
taken from FSVGC or both VSVGC and HSVGC  
decoded out of ‘ITU-R BT.656’ compatible data at PD port  
Y-CB-CR to RGB dematrix  
4
3
2
SYMP  
R/W  
0*  
1
DEMOFF R/W  
CSYNC R/W  
0*  
1
active  
bypassed  
pin HSM_CSYNC provides  
0
1
horizontal sync for non-interlaced VGA components output  
(at PIXCLK)  
composite sync for interlaced components output (at XTAL  
clock)  
1
0
Y2C  
R/W  
R/W  
input luminance data  
0
twos complement from PD input port  
straight binary from PD input port  
input color difference data  
1*  
UV2C  
0
twos complement from PD input port  
straight binary from PD input port  
1*  
Table 34: VPS enable, input control 2, subaddress 54h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
VPSEN R/W video programming system data insertion  
7
0*  
1
is disabled  
in line 16 is enabled  
6
5
-
R/W  
0
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
GPVAL R/W  
if GPEN = 1, pin VSM provides  
LOW level  
0
1
HIGH level  
4
GPEN R/W  
pin VSM provides  
0*  
1
vertical sync for a monitor  
constant signal according to GPVAL  
3 and 2 -  
R/W  
0
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
38 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 34: VPS enable, input control 2, subaddress 54h, bit description…continued  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
EDGE R/W input data is sampled with  
1
0
inverse clock edges  
1*  
0*  
1
the clock edges specified in Table 12 to Table 18  
normal assignment of the input data to the clock edge  
0
SLOT  
R/W  
correct time misalignment due to inverted assignment of input  
data to the clock edge  
Table 35: VPS byte 5, 11, 12, 13 and 14 registers, subaddresses 55h to 59h, bit  
description[1]  
Subaddress Bit  
Symbol  
Access Value Description  
55h  
56h  
7 to 0 VPS5[7:0] R/W  
7 to 0 VPS11[7:0] R/W  
-
-
fifth byte of video programming system data  
eleventh byte of video programming system  
data  
57h  
58h  
59h  
7 to 0 VPS12[7:0] R/W  
7 to 0 VPS13[7:0] R/W  
7 to 0 VPS14[7:0] R/W  
-
-
-
twelfth byte of video programming system  
data  
thirteenth byte of video programming system  
data  
fourteenth byte of video programming system  
data  
[1] In line 16; LSB first; all other bytes are not relevant for VPS.  
Table 36: Chrominance phase register, subaddress 5Ah, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7 to 0  
CHPS[7:0] R/W  
00h* phase of encoded color subcarrier (including burst) relative  
to horizontal sync; can be adjusted in steps of  
360/256 degrees  
6Bh  
16h  
25h  
46h  
PAL B/G and data from input ports in Master mode  
PAL B/G and data from look-up table  
NTSC M and data from input ports in Master mode  
NTSC M and data from look-up table  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
39 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 37: Gain U and gain U MSB, black level registers, subaddresses 5Bh and 5Dh, bit description  
Subaddress Bit  
Symbol  
Conditions  
Remarks  
5Bh  
5Dh  
7 to 0  
GAINU[8:0][1]  
white-to-black = 92.5 IRE  
GAINU = 0  
GAINU = 2.17 × nominal to +2.16 × nominal  
output subcarrier of U contribution = 0  
output subcarrier of U contribution = nominal  
GAINU = 2.05 × nominal to +2.04 × nominal  
output subcarrier of U contribution = 0  
output subcarrier of U contribution = nominal  
7
GAINU = 118 (76h)  
white-to-black = 100 IRE  
GAINU = 0  
GAINU = 125 (7Dh)  
6
-
must be programmed with logic 0 to ensure compatibility to future  
enhancements  
5 to 0  
BLCKL[5:0][2]  
white-to-sync = 140 IRE[3] recommended value: BLCKL = 58 (3Ah)  
BLCKL = 0[3]  
output black level = 29 IRE  
BLCKL = 63 (3Fh)[3]  
output black level = 49 IRE  
white-to-sync = 143 IRE[4] recommended value: BLCKL = 51 (33h)  
BLCKL = 0[4]  
BLCKL = 63 (3Fh)[4]  
output black level = 27 IRE  
output black level = 47 IRE  
[1] Variable gain for CB signal; input representation in accordance with ‘ITU-R BT.601’.  
[2] Variable black level; input representation in accordance with ‘ITU-R BT.601’.  
[3] Output black level/IRE = BLCKL × 2/6.29 + 28.9.  
[4] Output black level/IRE = BLCKL × 2/6.18 + 26.5.  
Table 38: Gain V and gain V MSB, blanking level registers, subaddresses 5Ch and 5Eh, bit description  
Subaddress Bit  
Symbol  
Conditions  
Remarks  
5Ch  
5Eh  
7 to 0  
GAINV[8:0][1]  
white-to-black = 92.5 IRE  
GAINV = 0  
GAINV = 1.55 × nominal to +1.55 × nominal  
output subcarrier of V contribution = 0  
output subcarrier of V contribution = nominal  
GAINV = 1.46 × nominal to +1.46 × nominal  
output subcarrier of V contribution = 0  
output subcarrier of V contribution = nominal  
7
GAINV = 165 (A5h)  
white-to-black = 100 IRE  
GAINV = 0  
GAINV = 175 (AFh)  
6
-
must be programmed with logic 0 to ensure compatibility to future  
enhancements  
5 to 0  
BLNNL[5:0][2]  
white-to-sync = 140 IRE[3] recommended value: BLNNL = 46 (2Eh)  
BLNNL = 0[3]  
output blanking level = 25 IRE  
BLNNL = 63 (3Fh)[3]  
output blanking level = 45 IRE  
white-to-sync = 143 IRE[4] recommended value: BLNNL = 53 (35h)  
BLNNL = 0[4]  
BLNNL = 63 (3Fh)[4]  
output blanking level = 26 IRE  
output blanking level = 46 IRE  
[1] Variable gain for CR signal; input representation in accordance with ‘ITU-R BT.601’.  
[2] Variable blanking level.  
[3] Output black level/IRE = BLNNL × 2/6.29 + 25.4.  
[4] Output black level/IRE = BLNNL × 2/6.18 + 25.9; default after reset: 35h.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
40 of 78  
 
 
 
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 39: CCR and blanking level VBI register, subaddress 5Fh, bit description  
Bit Symbol Access Value Description  
7 and 6 CCRS[1:0] R/W  
select cross-color reduction filter in luminance; for overall  
transfer characteristic of luminance see Figure 8  
00  
01  
10  
11  
-
no cross-color reduction  
cross-color reduction #1 active  
cross-color reduction #2 active  
cross-color reduction #3 active  
5 to 0  
BLNVB[5:0] R/W  
variable blanking level during vertical blanking interval is  
typically identical to value of BLNNL  
Table 40: Standard control register, subaddress 61h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7
DOWND  
R/W  
R/W  
R/W  
R/W  
digital core  
0*  
1
in normal operational mode  
in Sleep mode and is reactivated with an I2C-bus address  
DACs  
6
5
4
DOWNA  
INPI  
0*  
1
in normal operational mode  
in Power-down mode  
PAL switch  
0*  
1
phase is nominal  
is inverted compared to nominal if RTCE = 1  
luminance gain for white black  
100 IRE  
YGS  
0
1
0
92.5 IRE including 7.5 IRE set-up of black  
3
2
-
R/W  
R/W  
must be programmed with logic 0 to ensure compatibility  
to future enhancements  
SCBW  
bandwidth for chrominance encoding (for overall transfer  
characteristic of chrominance in baseband representation  
see Figure 6 and Figure 7)  
0
enlarged  
1*  
standard  
1
0
PAL  
R/W  
R/W  
encoding  
0
1
NTSC (non-alternating V component)  
PAL (alternating V component)  
FISE  
total pixel clocks per line  
0
1
864  
858  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
41 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 41: Burst amplitude register, subaddress 62h, bit description  
Legend: * = default value after reset, ^ = recommended value.  
Bit  
Symbol Access Value Description  
7
RTCE  
R/W  
real-time control  
0*  
1
no real-time control of generated subcarrier frequency  
real-time control of generated subcarrier frequency through a  
Philips video decoder; for a specification of the RTC protocol  
see document ‘RTC Functional Description’, available on  
request  
6 to 0 BSTA[6:0] R/W  
amplitude of color burst; input representation in accordance  
with ‘ITU-R BT.601’  
3Fh  
white-to-black = 92.5 IRE; burst = 40 IRE; NTSC encoding;  
(63)^ BSTA = 0 to 2.02 × nominal  
2Dh white-to-black = 92.5 IRE; burst = 40 IRE; PAL encoding;  
(45)^ BSTA = 0 to 2.82 × nominal  
43h  
white-to-black = 100 IRE; burst = 43 IRE; NTSC encoding;  
(67)^ BSTA = 0 to 1.90 × nominal  
2Fh white-to-black = 100 IRE; burst = 43 IRE; PAL encoding;  
(47)*^ BSTA = 0 to 3.02 × nominal  
Table 42: Subcarrier 0, 1, 2 and 3 registers, subaddresses 63h to 66h, bit description  
Subaddress Bit Symbol Access Value Description  
66h  
65h  
64h  
63h  
7 to 0 FSC[31:24] R/W  
7 to 0 FSC[23:16] R/W  
7 to 0 FSC[15:08] R/W  
7 to 0 FSC[07:00] R/W  
-
-
-
-
ffsc = subcarrier frequency (in multiples of line  
frequency); fllc = clock frequency (in multiples  
of line frequency); FSC[31:24] = most  
significant byte; FSC[07:00] = least significant  
byte[1]  
f
32  
fsc  
[1] FSC = round  
× 2  
---------  
f
llc  
Examples:  
a) NTSC M: ffsc = 227.5, fllc = 1716 FSC = 569408543 (21F0 7C1Fh).  
b) PAL B/G: ffsc = 283.7516, fllc = 1728 FSC = 705268427 (2A09 8ACBh).  
Table 43: Line 21 odd 0, 1 and even 0, 1 registers, subaddresses 67h to 6Ah, bit  
description[1]  
Subaddress Bit  
Symbol  
Access Value Description  
67h  
68h  
69h  
6Ah  
7 to 0 L21O[07:00] R/W  
7 to 0 L21O[17:10] R/W  
7 to 0 L21E[07:00] R/W  
7 to 0 L21E[17:10] R/W  
-
-
-
-
first byte of captioning data, odd field  
second byte of captioning data, odd field  
first byte of extended data, even field  
second byte of extended data, even field  
[1] LSBs of the respective bytes are encoded immediately after run-in and framing code, the MSBs of the  
respective bytes have to carry the parity bit, in accordance with the definition of line 21 encoding format.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
42 of 78  
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 44: Trigger control registers, subaddresses 6Ch and 6Dh, bit description  
Legend: * = default value after reset.  
Subaddress Bit Symbol  
Access Value Description  
6Ch  
6Dh  
7 to 0 HTRIG[7:0] R/W  
7 to 5 HTRIG[10:8] R/W  
4 to 0 VTRIG[4:0] R/W  
00h* sets the horizontal trigger phase related to  
chip-internal horizontal input[1]  
0h*  
00h* sets the vertical trigger phase related to  
chip-internal vertical input[2]  
[1] Values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed; increasing HTRIG decreases delays of  
all internally generated timing signals.  
[2] Increasing VTRIG decreases delays of all internally generated timing signals, measured in half lines;  
variation range of VTRIG = 0 to 31 (1Fh).  
Table 45: Multi control register, subaddress 6Eh, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7
NVTRIG  
R/W  
R/W  
values of the VTRIG register are  
0
positive  
1
negative  
6
BLCKON  
0*  
1
encoder in normal operation mode  
output signal is forced to blanking level  
5 and 4 PHRES[1:0] R/W  
selects the phase reset mode of the color subcarrier  
generator  
00  
01  
10  
11  
no subcarrier reset  
subcarrier reset every two lines  
subcarrier reset every eight fields  
subcarrier reset every four fields  
3 and 2 LDEL[1:0]  
R/W  
R/W  
selects the delay on luminance path with reference to  
chrominance path  
00*  
01  
10  
11  
no luminance delay  
1 LLC luminance delay  
2 LLC luminance delay  
3 LLC luminance delay  
field length control  
1 and 0 FLC[1:0]  
00*  
01  
10  
11  
interlaced 312.5 lines/field at 50 Hz, 262.5 lines/field at  
60 Hz  
non-interlaced 312 lines/field at 50 Hz, 262 lines/field at  
60 Hz  
non-interlaced 313 lines/field at 50 Hz, 263 lines/field at  
60 Hz  
non-interlaced 313 lines/field at 50 Hz, 263 lines/field at  
60 Hz  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
43 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 46: Closed caption, teletext enable register, subaddress 6Fh, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7 and 6 CCEN[1:0] R/W  
enables individual line 21 encoding  
line 21 encoding off  
00*  
01  
10  
11  
enables encoding in field 1 (odd)  
enables encoding in field 2 (even)  
enables encoding in both fields  
teletext insertion  
5
TTXEN  
R/W  
0*  
1
-
disabled  
enabled  
4 to 0  
SCCLN[4:0] R/W  
selects the actual line, where closed caption or extended  
data are encoded; line = (SCCLN + 4) for M-systems;  
line = (SCCLN + 1) for other systems  
Table 47: Active Display Window Horizontal (ADWH) start and end registers,  
subaddresses 70h to 72h, bit description  
Subaddress Bit  
Symbol  
Access Value Description  
70h  
71h  
72h  
7 to 0 ADWHS[7:0] R/W  
-
active display window horizontal start;  
defines the start of the active TV display  
portion after the border color [1]  
7 to 0 ADWHE[7:0] R/W  
-
active display window horizontal end;  
defines the end of the active TV display  
portion before the border color[1]  
7
-
R/W  
0
-
must be programmed with logic 0 to ensure  
compatibility to future enhancements  
6 to 4 ADWHE[10:8] R/W  
active display window horizontal end;  
defines the end of the active TV display  
portion before the border color[1]  
3
-
R/W  
0
-
must be programmed with logic 0 to ensure  
compatibility to future enhancements  
2 to 0 ADWHS[10:8] R/W  
active display window horizontal start;  
defines the start of the active TV display  
portion after the border color [1]  
[1] Values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed.  
Table 48: TTX request horizontal start register, subaddress 73h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7 to 0  
TTXHS[7:0] R/W  
start of signal TTXRQ on pin TTXRQ_XCLKO2  
(CLK2EN = 0); see Figure 15  
42h* if strapped to PAL  
54h* if strapped to NTSC  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
44 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 49: TTX request horizontal delay register, subaddress 74h, bit description  
Legend: * = default value after reset and minimum value.  
Bit  
Symbol  
Access Value Description  
7 to 4 -  
R/W  
0h  
must be programmed with logic 0 to ensure compatibility  
to future enhancements  
3 to 0 TTXHD[3:0] R/W  
2h*  
indicates the delay in clock cycles between rising edge of  
TTXRQ output signal on pin TTXRQ_XCLKO2  
(CLK2EN = 0) and valid data at pin TTX_SRES  
Table 50: CSYNC advance register, subaddress 75h, bit description  
Bit Symbol Access Value Description  
7 to 3 CSYNCA[4:0] R/W  
-
advanced composite sync against RGB output from  
0 XTAL clocks to 31 XTAL clocks  
2 to 0 -  
R/W  
000  
must be programmed with logic 0 to ensure compatibility  
to future enhancements  
Table 51: TTX odd request vertical start register, subaddress 76h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7 to 0 TTXOVS[7:0] R/W  
with TTXOVS8 (see Table 57) first line of occurrence of  
signal TTXRQ on pin TTXRQ_XCLKO2 (CLK2EN = 0) in  
odd field, line = (TTXOVS + 4) for M-systems and  
line = (TTXOVS + 1) for other systems  
05h* if strapped to PAL  
06h* if strapped to NTSC  
Table 52: TTX odd request vertical end register, subaddress 77h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7 to 0 TTXOVE[7:0] R/W  
with TTXOVE8 (see Table 57) last line of occurrence of  
signal TTXRQ on pin TTXRQ_XCLKO2 (CLK2EN = 0) in  
odd field, line = (TTXOVE + 3) for M-systems and  
line = TTXOVE for other systems  
16h* if strapped to PAL  
10h* if strapped to NTSC  
Table 53: TTX even request vertical start register, subaddress 78h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7 to 0 TTXEVS[7:0] R/W  
with TTXEVS8 (see Table 57) first line of occurrence of  
signal TTXRQ on pin TTXRQ_XCLKO2 (CLK2EN = 0) in  
even field, line = (TTXEVS + 4) for M-systems and  
line = (TTXEVS + 1) for other systems  
04h* if strapped to PAL  
05h* if strapped to NTSC  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
45 of 78  
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 54: TTX even request vertical end register, subaddress 79h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7 to 0 TTXEVE[7:0] R/W  
with TTXEVE8 (see Table 57) last line of occurrence of  
signal TTXRQ on pin TTXRQ_XCLKO2 (CLK2EN = 0) in  
even field, line = (TTXEVE + 3) for M-systems and  
line = TTXEVE for other systems  
16h* if strapped to PAL  
10h* if strapped to NTSC  
Table 55: First active line register, subaddress 7Ah, bit description  
Bit Symbol Access Value Description  
7 to 0 FAL[7:0] R/W with FAL8 (see Table 57) first active line = (FAL + 4) for  
M-systems and (FAL + 1) for other systems, measured in  
lines  
00h  
coincides with the first field synchronization pulse  
Table 56: Last active line register, subaddress 7Bh, bit description  
Bit Symbol Access Value Description  
7 to 0 LAL[7:0] R/W with LAL8 (see Table 57) last active line = (LAL + 3) for  
M-systems and LAL for other system, measured in lines  
00h  
coincides with the first field synchronization pulse  
Table 57: TTX mode, MSB vertical register, subaddress 7Ch, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7
TTX60  
R/W  
0*  
1
enables NABTS (FISE = 1) or European TTX (FISE = 0)  
enables world standard teletext 60 Hz (FISE = 1)  
see Table 56  
6
5
LAL8  
R/W  
R/W  
TTXO  
teletext protocol selected (see Figure 15)  
0*  
1
new teletext protocol selected; at each rising edge of  
TTXRQ a single teletext bit is requested  
old teletext protocol selected; the encoder provides a  
window of TTXRQ going HIGH; the length of the window  
depends on the chosen teletext standard  
4
3
2
1
0
FAL8  
R/W  
R/W  
R/W  
R/W  
R/W  
see Table 55  
see Table 54  
see Table 52  
see Table 53  
see Table 51  
TTXEVE8  
TTXOVE8  
TTXEVS8  
TTXOVS8  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
46 of 78  
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 58: Disable TTX line registers, subaddresses 7Eh and 7Fh, bit description[1]  
Subaddress Bit Symbol Access Value Description  
7Eh  
7Fh  
7 to 0 LINE[12:5] R/W  
7 to 0 LINE[20:13] R/W  
-
-
individual lines in both fields (PAL counting)  
can be disabled for insertion of teletext by the  
respective bits, disabled line = LINExx (50 Hz  
field rate)  
[1] This bit mask is effective only if the lines are enabled by TTXOVS/TTXOVE and TTXEVS/TTXEVE.  
Table 59: Pixel clock 0, 1 and 2 registers, subaddresses 81h to 83h, bit description  
Subaddress Bit  
Symbol  
Access Value  
Description  
81h  
82h  
83h  
7 to 0 PCL[07:00] R/W  
7 to 0 PCL[15:08]  
defines the frequency of the synthesized  
pixel clock PIXCLKO;  
PCL  
7 to 0 PCL[23:16]  
;
× 8  
XTAL  
f
=
× f  
----------  
24  
PIXCLK  
2
fXTAL = 27 MHz nominal  
20 F63Bh 640 × 480 to NTSC M  
1B 5A73h 640 × 480 to PAL B/G (as by strapping  
pins)  
Table 60: Pixel clock control register, subaddress 84h, bit description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7
DCLK  
R/W  
R/W  
0*  
1
set to logic 1  
set to logic 1  
6
5
4
PCLSY  
IFRA  
pixel clock generator  
0*  
1
runs free  
gets synchronized with the vertical sync  
input FIFO gets reset  
R/W  
R/W  
0
explicitly at falling edge  
every field  
1*  
IFBP  
input FIFO  
0
active  
1*  
bypassed  
3 and 2 PCLE[1:0] R/W  
controls the divider for the external pixel clock  
divider ratio for PIXCLK output is 1  
divider ratio for PIXCLK output is 2  
divider ratio for PIXCLK output is 4  
divider ratio for PIXCLK output is 8  
controls the divider for the internal pixel clock  
divider ratio for internal PIXCLK is 1  
divider ratio for internal PIXCLK is 2  
divider ratio for internal PIXCLK is 4  
not allowed  
00  
01*  
10  
11  
1 and 0 PCLI[1:0] R/W  
00  
01*  
10  
11  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
47 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 61: FIFO control register, subaddress 85h, bit description  
Legend: * = default value after reset, ^ = nominal value.  
Bit  
Symbol Access Value Description  
7
EIDIV  
-
R/W  
R/W  
0*  
DVO compliant signals are applied  
1
non-DVO compliant signals are applied  
6 to 4  
3 to 0  
000  
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
FILI[3:0] R/W  
8h*^ threshold for FIFO internal transfers  
Table 62: Horizontal offset register, subaddress 90h, bit description  
Bit  
Symbol  
Description  
7 to 0  
XOFS[7:0]  
with XOFS[9:8] (see Table 66) horizontal offset; defines the number of  
PIXCLKs from horizontal sync (HSVGC) output to composite blanking  
(CBO) output  
Table 63: Pixel number register, subaddress 91h, bit description  
Bit  
Symbol  
Description  
7 to 0  
XPIX[7:0]  
with XPIX[9:8] (see Table 66) pixel in X direction; defines half the number  
of active pixels per input line (identical to the length of CBO pulses)  
Table 64: Vertical offset odd register, subaddress 92h, bit description  
Bit  
Symbol  
Description  
7 to 0  
YOFSO[7:0] with YOFSO[9:8] (see Table 66) vertical offset in odd field; defines (in the  
odd field) the number of lines from VSVGC to first line with active CBO; if  
no LUT data is requested, the first active CBO will be output at  
YOFSO + 2; usually, YOFSO = YOFSE with the exception of extreme  
vertical downscaling and interlacing  
Table 65: Vertical offset even register, subaddress 93h, bit description  
Bit  
Symbol  
Description  
7 to 0  
YOFSE[7:0] with YOFSE[9:8] (see Table 66) vertical offset in even field; defines (in the  
even field) the number of lines from VSVGC to first line with active CBO; if  
no LUT data is requested, the first active CBO will be output at  
YOFSE + 2; usually, YOFSE = YOFSO with the exception of extreme  
vertical downscaling and interlacing  
Table 66: MSBs register, subaddress 94h, bit description  
Bit Symbol Description  
7 and 6 YOFSE[9:8] see Table 65  
5 and 4 YOFSO[9:8] see Table 64  
3 and 2 XPIX[9:8]  
1 and 0 XOFS[9:8]  
see Table 63  
see Table 62  
Table 67: Line number register, subaddress 95h, bit description  
Bit  
Symbol  
Description  
7 to 0  
YPIX[7:0]  
with YPIX[9:8] (see Table 68) defines the number of requested input lines  
from the feeding device; number of requested  
lines = YPIX + YOFSE YOFSO  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
48 of 78  
 
 
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 68: Scaler CTRL, MCB and YPIX register, subaddress 96h, bit description  
Bit  
Symbol Access Value Description  
7
EFS  
R/W  
R/W  
R/W  
in Slave mode frame sync signal at pin FSVGC  
ignored  
0
1
accepted  
6
5
PCBN  
SLAVE  
polarity of CBO signal  
0
1
normal (HIGH during active video)  
inverted (LOW during active video)  
from the SAA7104E; SAA7105E the timing to the graphics  
controller is  
0
1
master  
slave  
4
3
2
ILC  
YFIL  
-
R/W  
R/W  
R/W  
if hardware cursor insertion is active  
set LOW for non-interlaced input signals  
set HIGH for interlaced input signals  
luminance sharpness booster  
disabled  
0
1
0
1
0
enabled  
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
1 and 0 YPIX[9:8]  
see Table 67  
Table 69: Sync control register, subaddress 97h, bit description  
Bit  
Symbol Access Value Description  
7
HFS  
R/W  
horizontal sync is derived from  
0
1
input signal (Save mode) at pin HSVGC  
a frame sync signal (Slave mode) at pin FSVGC (only if EFS  
is set HIGH)  
6
VFS  
R/W  
vertical sync (field sync) is derived from  
input signal (Slave mode) at pin VSVGC  
0
1
a frame sync signal (Slave mode) at pin FSVGC (only if EFS  
is set HIGH)  
5
4
OFS  
PFS  
R/W  
R/W  
pin FSVGC is  
input  
0
1
active output  
polarity of signal at pin FSVGC in output mode (Master  
mode) is  
0
1
active HIGH; rising edge of the input signal is used in Slave  
mode  
active LOW; falling edge of the input signal is used in Slave  
mode  
3
OVS  
R/W  
pin VSVGC is  
input  
0
1
active output  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
49 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 69: Sync control register, subaddress 97h, bit description…continued  
Bit  
Symbol Access Value Description  
2
PVS  
R/W  
polarity of signal at pin VSVGC in output mode (Master  
mode) is  
0
1
active HIGH; rising edge of the input signal is used in Slave  
mode  
active LOW; falling edge of the input signal is used in Slave  
mode  
1
0
OHS  
PHS  
R/W  
R/W  
pin HSVGC is  
input  
0
1
active output  
polarity of signal at pin HSVGC in output mode (Master  
mode) is  
0
1
active HIGH; rising edge of the input signal is used in Slave  
mode  
active LOW; falling edge of the input signal is used in Slave  
mode  
Table 70: Line length register, subaddress 98h, bit description  
Bit Symbol Description  
7 to 0 HLEN[7:0] with HLEN[11:8] (see Table 71) horizontal length;  
number of PIXCLKs  
HLEN =  
1  
-------------------------------------------------  
line  
Table 71: Input delay, MSB line length register, subaddress 99h, bit description  
Bit  
Symbol  
Description  
7 to 4 IDEL[3:0]  
input delay; defines the distance in PIXCLKs between the active edge of  
CBO and the first received valid pixel  
3 to 0 HLEN[11:8] see Table 70  
Table 72: Horizontal increment register, subaddress 9Ah, bit description  
Bit  
Symbol  
Description  
7 to 0 XINC[7:0]  
with XINC[11:8] (see Table 74) incremental fraction of the horizontal scaling  
number of output pixels  
--------------------------------------------------------  
line  
engine; XINC =  
× 4096  
---------------------------------------------------------  
number of input pixels  
-----------------------------------------------------  
line  
Table 73: Vertical increment register, subaddress 9Bh, bit description  
Bit  
Symbol  
Description  
7 to 0 YINC[7:0]  
with YINC[11:8] (see Table 74) incremental fraction of the vertical scaling  
number of active output lines  
number of active input lines  
engine; YINC =  
× 4096  
---------------------------------------------------------------------  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
50 of 78  
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 74: MSBs vertical and horizontal increment register, subaddress 9Ch, bit description  
Bit  
Symbol  
Description  
see Table 73  
see Table 72  
7 to 4  
3 to 0  
YINC[11:8]  
XINC[11:8]  
Table 75: Weighting factor odd register, subaddress 9Dh, bit description  
Bit  
Symbol  
Description  
7 to 0  
YIWGTO[7:0] with YIWGTO[11:8] (see Table 77) weighting factor for the first line  
YINC  
2
of the odd field; YIWGTO =  
+ 2048  
--------------  
Table 76: Weighting factor even, subaddress 9Eh, bit description  
Bit  
Symbol  
Description  
7 to 0  
YIWGTE[7:0] with YIWGTE[11:8] (see Table 77) weighting factor for the first line  
YINC – YSKIP  
of the even field; YIWGTE =  
-------------------------------------  
2
Table 77: Weighting factor MSB register, subaddress 9Fh, bit description  
Bit  
Symbol  
Description  
7 to 4  
3 to 0  
YIWGTE[11:8] see Table 76  
YIWGTO[11:8] see Table 75  
Table 78: Vertical line skip register, subaddress A0h, bit description  
Bit  
Symbol  
Access Value Description  
R/W with YSKIP[11:8] (see Table 79) vertical line skip;  
defines the effectiveness of the anti-flicker filter  
000h most effective  
FFFh anti-flicker filter switched off  
7 to 0  
YSKIP[7:0]  
Table 79: Blank enable for NI-bypass, vertical line skip MSB register, subaddress A1h, bit  
description  
Legend: * = default value after reset.  
Bit  
Symbol  
Access Value Description  
7
BLEN  
R/W  
for non-interlaced graphics in bypass mode  
0*  
no internal blanking  
1
forced internal blanking  
6 to 4  
3 to 0  
-
R/W  
R/W  
000  
must be programmed with logic 0 to ensure  
compatibility to future enhancements  
YSKIP[11:8]  
see Table 78  
Table 80: Border color Y register, subaddress A2h, bit description  
Bit  
Symbol  
Description  
7 to 0  
BCY[7:0]  
luminance portion of border color in underscan area  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
51 of 78  
 
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 81: Border color U register, subaddress A3h, bit description  
Bit  
Symbol  
Description  
color difference portion of border color in underscan area  
7 to 0  
BCU[7:0]  
Table 82: Border color V register, subaddress A4h, bit description  
Bit  
Symbol  
Description  
7 to 0  
BCV[7:0]  
color difference portion of border color in underscan area  
Table 83: Subaddress D0h  
Data byte  
Description  
HLCA  
RAM start address for the HD sync line count array; the byte following subaddress  
D0 points to the first cell to be loaded with the next transmitted byte; succeeding cells  
are loaded by auto-incrementing until stop condition. Each line count array entry  
consists of 2 bytes; see Table 84. The array has 15 entries.  
HLC  
HLT  
HD line counter. The system will repeat the pattern described in ‘HLT’ HLC times and  
then start with the next entry in line count array.  
HD line type pointer. If not 0, the value points into the line type array, index HLT 1  
with the description of the current line. 0 means the entry is not used.  
Table 84: Layout of the data bytes in the line count array  
Byte  
Description  
0
1
HLC7  
HLT3  
HLC6  
HLT2  
HLC5  
HLT1  
HLC4  
HLT0  
HLC3  
0
HLC2  
0
HLC1  
HLC9  
HLC0  
HLC8  
Table 85: Subaddress D1h  
Data byte  
Description  
HLTA  
RAM start address for the HD sync line type array; the byte following subaddress D1  
points to the first cell to be loaded with the next transmitted byte; succeeding cells  
are loaded by auto-incrementing until stop condition. Each line type array entry  
consists of 4 bytes; see Table 86. The array has 15 entries.  
HLP  
HD line type; if not 0, the value points into the line pattern array. The index used is  
HLP 1. It consists of value-duration pairs. Each entry consists of 8 pointers, used  
from index 0 to 7. The value 0 means that the entry is not used.  
Table 86: Layout of the data bytes in the line type array  
Byte  
Description  
0
1
2
3
0
0
0
0
HLP12  
HLP11  
HLP31  
HLP51  
HLP71  
HLP10  
HLP30  
HLP50  
HLP70  
0
0
0
0
HLP02  
HLP22  
HLP42  
HLP62  
HLP01  
HLP21  
HLP41  
HLP61  
HLP00  
HLP20  
HLP40  
HLP60  
HLP32  
HLP52  
HLP72  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
52 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 87: Subaddress D2h  
Data byte  
Description  
HLPA  
RAM start address for the HD sync line pattern array; the byte following  
subaddress D2 points to the first cell to be loaded with the next transmitted byte;  
succeeding cells are loaded by auto-incrementing until stop condition. Each line  
pattern array entry consists of 4 value-duration pairs occupying 2 bytes;  
see Table 88. The array has 7 entries.  
HPD  
HPV  
HD pattern duration. The value defines the time in pixel clocks (HPD + 1) the  
corresponding value HPV is added to the HD output signal. If 0, this entry will be  
skipped.  
HD pattern value pointer. This gives the index in the HD value array containing the  
level to be inserted into the HD output path. If the MSB of HPV is logic 1, the value  
will only be inserted into the Y/GREEN channel of the HD data path, the other  
channels remain unchanged.  
Table 88: Layout of the data bytes in the line pattern array  
Byte  
Description  
0
1
2
3
4
5
6
7
HPD07  
HPV03  
HPD17  
HPV13  
HPD27  
HPV23  
HPD37  
HPV33  
HPD06  
HPD05  
HPV01  
HPD14  
HPV11  
HPD25  
HPV21  
HPD35  
HPV31  
HPD04  
HPV00  
HPD14  
HPV10  
HPD24  
HPV20  
HPD34  
HPV30  
HPD03  
HPD02  
HPD01  
HPD09  
HPD11  
HPD19  
HPD21  
HPD29  
HPD31  
HPD39  
HPD00  
HPD08  
HPD10  
HPD18  
HPD20  
HPD28  
HPD30  
HPD38  
HPV02  
HPD16  
HPV12  
HPD26  
HPV22  
HPD36  
HPV32  
0
0
HPD13  
HPD12  
0
0
HPD23  
HPD22  
0
0
HPD33  
0
HPD32  
0
Table 89: Subaddress D3h  
Data byte  
Description  
HPVA  
RAM start address for the HD sync value array; the byte following subaddress D3  
points to the first cell to be loaded with the next transmitted byte; succeeding cells  
are loaded by auto-incrementing until stop condition. Each line pattern array entry  
consists of 2 bytes. The array has 8 entries.  
HPVE  
HHS  
HVS  
HD pattern value entry. The HD path will insert a level of (HPV + 52) × 0.66 IRE into  
the data path. The value is signed 8-bits wide; see Table 90.  
HD horizontal sync. If the HD engine is active, this value will be provided at  
pin HSM_CSYNC; see Table 90.  
HD vertical sync. If the HD engine is active, this value will be provided at pin VSM;  
see Table 90.  
Table 90: Layout of the data bytes in the value array  
Byte  
Description  
0
1
HPVE7 HPVE6 HPVE5 HPVE4 HPVE3 HPVE2 HPVE1 HPVE0  
0
0
0
0
0
0
HVS  
HHS  
Table 91: HD sync trigger state 1 register, subaddress D4h, bit description  
Bit Symbol Description  
7 to 0 HLCT[7:0] with HLCT[9:8] (see Table 92) state of the HD line counter after trigger (counts  
backwards)  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
53 of 78  
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 92: HD sync trigger state 2 register, subaddress D5h, bit description  
Bit  
Symbol  
Description  
7 to 4  
HLCPT[3:0] state of the HD line type pointer after trigger  
3 and 2 HLPPT[1:0] state of the HD pattern pointer after trigger  
1 and 0 HLCT[9:8] see Table 91  
Table 93: HD sync trigger state 3 register, subaddress D6h, bit description  
Bit  
Symbol  
Description  
7 to 0  
HDCT[7:0] with HDCT[9:8] (see Table 94) state of the HD duration counter after trigger  
(counts backwards)  
Table 94: HD sync trigger state 4 register, subaddress D7h, bit description  
Bit  
Symbol  
Description  
7
-
must be programmed with logic 0 to ensure compatibility to future  
enhancements  
6 to 4  
HEPT[2:0] state of the HD event type pointer in the line type array after trigger  
3 and 2 -  
must be programmed with logic 0 to ensure compatibility to future  
enhancements  
1 and 0 HDCT[9:8] see Table 93  
Table 95: HD sync trigger phase x registers, subaddresses D8h and D9h, bit description  
Subaddress Bit  
Symbol  
Description  
D9h  
7 to 4 -  
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
3 to 0 HTX[11:8] horizontal trigger phase for the HD sync engine in pixel clocks  
7 to 0 HTX[7:0]  
D8h  
Table 96: HD sync trigger phase y registers, subaddresses DAh and DBh, bit description  
Subaddress Bit Symbol Description  
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
1 and 0 HTY[9:8] vertical trigger phase for the HD sync engine in input lines  
7 to 0 HTY[7:0]  
DBh  
DAh  
7 to 2  
-
Table 97: HD output control register, subaddress DCh, bit description  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
7 to 4  
-
R/W  
0
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
3
2
HDSYE R/W  
HD sync engine  
0*  
1
off  
active  
HDTC  
R/W  
HD output path processes  
0*  
1
RGB  
YUV  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
54 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 97: HD output control register, subaddress DCh, bit description…continued  
Legend: * = default value after reset.  
Bit  
Symbol Access Value Description  
1
HDGY R/W  
0*  
gain in the HD output path is reduced, insertion of sync pulses  
is possible  
1
full level swing at the input causes full level swing at the DACs  
in HD mode  
0
HDIP  
R/W  
interpolator for the color difference signal in the HD output  
path  
0*  
1
active  
off  
Table 98: Cursor color 1 R, G and B registers, subaddresses F0h to F2h, bit description  
Subaddress Bit Symbol Description  
F0h  
F1h  
F2h  
7 to 0  
CC1R[7:0] RED portion of first cursor color  
CC1G[7:0] GREEN portion of first cursor color  
CC1B[7:0] BLUE portion of first cursor color  
7 to 0  
7 to 0  
Table 99: Cursor color 2 R, G and B registers, subaddresses F3h to F5h, bit description  
Subaddress Bit Symbol Description  
F3h  
F4h  
F5h  
7 to 0  
CC2R[7:0] RED portion of second cursor color  
CC2G[7:0] GREEN portion of second cursor color  
CC2B[7:0] BLUE portion of second cursor color  
7 to 0  
7 to 0  
Table 100: Auxiliary cursor color R, G and B registers, subaddresses F6h to F8h, bit  
description  
Subaddress Bit  
Symbol  
Description  
F6h  
F7h  
F8h  
7 to 0  
AUXR[7:0] RED portion of auxiliary cursor color  
AUXG[7:0] GREEN portion of auxiliary cursor color  
AUXB[7:0] BLUE portion of auxiliary cursor color  
7 to 0  
7 to 0  
Table 101: Horizontal cursor position and horizontal hot spot, MSB XCP registers,  
subaddresses F9h and FAh, bit description  
Subaddress Bit  
Symbol  
Description  
FAh  
F9h  
7 to 3  
XHS[4:0] horizontal hot spot of cursor  
XCP[10:8] horizontal cursor position  
XCP[7:0]  
2 to 0  
7 to 0  
Table 102: Vertical cursor position and vertical hot spot, MSB YCP registers, subaddresses  
FBh and FCh, bit description  
Subaddress Bit  
Symbol  
YHS[4:0] vertical hot spot of cursor  
must be programmed with logic 0 to ensure compatibility to  
future enhancements  
1 and 0 YCP[9:8] vertical cursor position  
Description  
FCh  
7 to 3  
2
-
FBh  
7 to 0  
YCP[7:0]  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
55 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 103: Input path control register, subaddress FDh, bit description  
Bit  
Symbol Access Value Description  
7
LUTOFF R/W  
color look-up table  
0
1
active  
bypassed  
6
5
CMODE R/W  
cursor mode  
0
1
cursor mode; input color will be inverted  
auxiliary cursor color will be inserted  
LUT loading via input data stream  
inactive  
LUTL  
R/W  
R/W  
0
1
color and cursor LUTs are loaded  
input format  
4 to 2 IF[2:0]  
000  
001  
010  
011  
100  
8 + 8 + 8-bit 4 : 4 : 4 non-interlaced RGB or CB-Y-CR  
5 + 5 + 5-bit 4 : 4 : 4 non-interlaced RGB  
5 + 6 + 5-bit 4 : 4 : 4 non-interlaced RGB  
8 + 8 + 8-bit 4 : 2 : 2 non-interlaced CB-Y-CR  
8 + 8 + 8-bit 4 : 2 : 2 interlaced CB-Y-CR (ITU-R BT.656,  
27 MHz clock) (in subaddresses 91h and 94h set  
XPIX = number of active pixels/line)  
101  
110  
8-bit non-interlaced index color  
8 + 8 + 8-bit 4 : 4 : 4 non-interlaced RGB or CB-Y-CR (special  
bit ordering)  
1
0
MATOFF R/W  
DFOFF R/W  
RGB to CR-Y-CB matrix  
0
1
active  
bypassed  
down formatter  
0
1
(4 : 4 : 4 to 4 : 2 : 2) in input path is active  
bypassed  
Table 104: Cursor bit map register, subaddress FEh, bit description  
Data byte  
Description  
CURSA  
RAM start address for cursor bit map; the byte following subaddress FEh points to  
the first cell to be loaded with the next transmitted byte; succeeding cells are loaded  
by auto-incrementing until stop condition  
Table 105: Color look-up table register, subaddress FFh, bit description  
Data byte  
Description  
COLSA  
RAM start address for color LUT; the byte following subaddress FFh points to the  
first cell to be loaded with the next transmitted byte; succeeding cells are loaded by  
auto-incrementing until stop condition  
In subaddresses 5Bh, 5Ch, 5Dh, 5Eh, 62h and D3h all IRE values are rounded up.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
56 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
8.4 Slave transmitter  
Table 106: Status byte register, subaddress 00h, bit description  
Bit Symbol Access Value Description  
7 to 5 VER[2:0] R  
101  
version identification of the device: it will be changed with all  
versions of the IC that have different programming models;  
current version is 101 binary  
4
3
CCRDO  
CCRDE  
R
R
1
0
1
0
set immediately after the closed caption bytes of the odd field  
have been encoded  
reset after information has been written to the  
subaddresses 67h and 68h  
set immediately after the closed caption bytes of the even field  
have been encoded  
reset after information has been written to the  
subaddresses 69h and 6Ah  
2
1
-
R
R
0
1
-
FSEQ  
during first field of a sequence (repetition rate:  
NTSC = 4 fields, PAL = 8 fields)  
0
1
0
not first field of a sequence  
during even field  
0
O_E  
R
during odd field  
Table 107: Slave transmitter (slave address 89h)  
Register  
function  
Subaddress Data byte  
D7 D6  
VER2 VER1 VER0 CCRDO CCRDE 0  
D5  
D4  
D3  
D2  
D1  
D0  
Status byte 00h  
FSEQ O_E  
Chip ID  
1Ch  
CID7  
0
CID6  
0
CID5  
0
CID4  
0
CID3  
0
CID2 CID1  
CID0  
FIFO status 80h  
0
OVFL UDFL  
Table 108: Chip ID register, subaddress 1Ch, bit description  
Bit Symbol Access Value Description  
7 to 0 CID[7:0] R  
chip ID  
04h  
05h  
SAA7104E  
SAA7105E  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
57 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 109: FIFO status register, subaddress 80h, bit description  
Bit Symbol Access Value Description  
7 to 4 -  
R
R
0h  
0
-
3
2
1
IFERR  
normal FIFO state  
1
input FIFO overflow/underflow has occurred  
normal FIFO state  
BFERR  
OVFL  
R
R
0
1
buffer FIFO overflow, only if YUPSC = 1  
no FIFO overflow  
0
1
FIFO overflow has occurred; this bit is reset after this  
subaddress has been read  
0
UDFL  
R
0
1
no FIFO underflow  
FIFO underflow has occurred; this bit is reset after this  
subaddress has been read  
mbe737  
6
G
(dB)  
v
0
6  
12  
18  
24  
30  
36  
42  
48  
54  
(1)  
(2)  
0
2
4
6
8
10  
12  
14  
f (MHz)  
(1) SCBW = 1.  
(2) SCBW = 0.  
Fig 6. Chrominance transfer characteristic 1  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
58 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
mbe735  
2
G
v
(dB)  
0
(1)  
(2)  
2  
4  
6  
0
0.4  
0.8  
1.2  
1.6  
f (MHz)  
(1) SCBW = 1.  
(2) SCBW = 0.  
Fig 7. Chrominance transfer characteristic 2  
mgd672  
6
(4)  
G
(dB)  
v
0
(2)  
(3)  
6  
(1)  
12  
18  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
(1) CCRS[1:0] = 01.  
(2) CCRS[1:0] = 10.  
(3) CCRS[1:0] = 11.  
(4) CCRS[1:0] = 00.  
Fig 8. Luminance transfer characteristic 1 (excluding scaler)  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
59 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
mbe736  
1
0
G
v
(dB)  
(1)  
1  
2  
3  
4  
5  
0
2
4
6
f (MHz)  
(1) CCRS[1:0] = 00  
Fig 9. Luminance transfer characteristic 2 (excluding scaler)  
mgb708  
6
G
(dB)  
v
0
6  
12  
18  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig 10. Luminance transfer characteristic in RGB (excluding scaler)  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
60 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
mgb706  
6
0
G
v
(dB)  
6  
12  
18  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig 11. Color difference transfer characteristic in RGB (excluding scaler)  
9. Limiting values  
Table 110: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). All ground pins connected  
together and grounded (0 V); all supply pins connected together.  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
V
VDDD  
VDDA  
Vi(A)  
digital supply voltage  
0.5 +4.6  
0.5 +4.6  
0.5 +4.6  
analog supply voltage  
V
input voltage at analog inputs  
V
Vi(n)  
input voltage at pins XTALI, SDA  
and SCL  
0.5 VDDD + 0.5 V  
Vi(D)  
input voltage at digital inputs or outputs in 3-state  
0.5 +4.6  
0.5 +5.5  
V
I/O pins  
[1]  
outputs in 3-state  
V
VSS  
voltage difference between  
-
100  
mV  
VSSA(n) and VSSD(n)  
Tstg  
storage temperature  
65  
+150  
70  
°C  
°C  
V
Tamb  
Vesd  
ambient temperature  
0
-
[2]  
[3]  
electrostatic discharge voltage  
human body model  
machine model  
±2000  
±200  
-
V
[1] Condition for maximum voltage at digital inputs or I/O pins: 3.0 V < VDDD < 3.6 V.  
[2] Class 2 according to JESD22-A114-B.  
[3] Class B according to EIA/JESD22-A115-A.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
61 of 78  
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
10. Thermal characteristics  
Table 111: Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Rth(j-a)  
thermal resistance from junction to ambient in free air  
38[1]  
K/W  
[1] The overall Rth(j-a) value can vary depending on the board layout. To minimize the effective Rth(j-a) all power and ground pins must be  
connected to the power and ground layers directly. An ample copper area directly under the SAA7104E; SAA7105E with a number of  
through-hole plating, connected to the ground layer (four-layer board: second layer), can also reduce the effective Rth(j-a). Please do not  
use any solder-stop varnish under the chip. In addition the usage of soldering glue with a high thermal conductance after curing is  
recommended.  
11. Characteristics  
Table 112: Characteristics  
Tamb = 0 °C to 70 °C (typical values excluded); unless otherwise specified.  
Symbol  
Supplies  
VDDA  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
analog supply voltage  
digital supply voltage  
digital supply voltage  
digital supply voltage  
3.15  
3.15  
3.15  
3.15  
1.045  
1.425  
1.71  
2.375  
3.135  
1
3.3  
3.3  
3.3  
3.3  
1.1  
1.5  
1.8  
2.5  
3.3  
110  
175  
3.45  
3.45  
3.45  
3.45  
1.155  
1.575  
1.89  
2.625  
3.465  
115  
V
VDDD2  
VDDD3  
VDDD4  
VDDD1  
V
V
V
digital supply voltage  
(DVO)  
V
V
V
V
V
[1]  
[2]  
IDDA  
IDDD  
Inputs  
VIL  
analog supply current  
digital supply current  
mA  
mA  
1
200  
[3]  
[3]  
LOW-level input voltage VDDD1 = 1.1 V, 1.5 V, 1.8 V or 2.5 V  
VDDD1 = 3.3 V  
0.1  
0.5  
0.5  
-
-
-
+0.2  
+0.8  
+0.8  
V
V
V
pins RESET, TMS, TCK, TRST and  
TDI  
[3]  
[3]  
VIH  
HIGH-level input voltage VDDD1 = 1.1 V, 1.5 V, 1.8 V or 2.5 V  
VDDD1 = 3.3 V  
V
2
2
DDD1 0.2 -  
VDDD1 + 0.1  
VDDD1 + 0.3  
VDDD2 + 0.3  
V
V
V
-
-
pins RESET, TMS, TCK, TRST and  
TDI  
ILI  
Ci  
input leakage current  
-
-
-
-
-
-
-
-
10  
10  
10  
10  
µA  
pF  
pF  
pF  
input capacitance  
clocks  
data  
I/Os at high-impedance  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
62 of 78  
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 112: Characteristics…continued  
Tamb = 0 °C to 70 °C (typical values excluded); unless otherwise specified.  
Symbol  
Outputs  
VOL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[3]  
[3]  
LOW-level output  
voltage  
VDDD1 = 1.1 V, 1.5 V, 1.8 V or 2.5 V  
VDDD1 = 3.3 V  
0
0
0
-
-
-
0.1  
0.4  
0.4  
V
V
V
pins TDO, TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
[3]  
[3]  
VOH  
HIGH-level output  
voltage  
VDDD1 = 1.1 V, 1.5 V, 1.8 V or 2.5 V  
VDDD1 = 3.3 V  
V
DDD1 0.1 -  
VDDD1  
VDDD1  
VDDD2  
V
V
V
2.4  
2.4  
-
-
pins TDO, TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
I2C-bus; pins SDA and SCL  
VIL  
VIH  
Ii  
LOW-level input voltage  
0.5  
-
-
-
-
0.3VDDD2  
VDDD2 + 0.3  
+10  
V
HIGH-level input voltage  
input current  
0.7VDDD2  
V
Vi = LOW or HIGH  
IOL = 3 mA  
10  
µA  
V
VOL  
LOW-level output  
voltage (pin SDA)  
-
0.4  
Io  
output current  
during acknowledge  
3
-
-
mA  
Clock timing; pins PIXCLKI and PIXCLKO  
[4]  
[5]  
TPIXCLK  
td(CLKD)  
cycle time  
12  
-
-
-
-
-
ns  
ns  
delay from PIXCLKO to  
PIXCLKI  
[4]  
δ
duty factor  
tHIGH/TPIXCLK  
40  
40  
-
50  
50  
-
60  
%
%
ns  
ns  
tHIGH/TCLKO2; output  
60  
[4]  
[4]  
tr  
rise time  
fall time  
1.5  
1.5  
tf  
-
-
Input timing  
tSU;DAT  
input data set-up time  
input data hold time  
pins PD11 to PD0  
2
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
[6]  
[6]  
pins HSVGC, VSVGC and FSVGC  
pins PD11 to PD0  
2
tHD;DAT  
0.9  
1.5  
pins HSVGC, VSVGC and FSVGC  
Crystal oscillator  
fnom  
nominal frequency  
-
27  
-
-
MHz  
[7]  
f/fnom  
permissible deviation of  
nominal frequency  
50 × 106  
+50 × 106  
Crystal specification  
Tamb  
CL  
ambient temperature  
0
-
70  
-
°C  
pF  
load capacitance  
series resistance  
8
-
RS  
-
-
80  
1.8  
C1  
motional capacitance  
(typical)  
1.2  
1.5  
fF  
C0  
parallel capacitance  
(typical)  
2.8  
3.5  
4.2  
pF  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
63 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
Table 112: Characteristics…continued  
Tamb = 0 °C to 70 °C (typical values excluded); unless otherwise specified.  
Symbol Parameter Conditions  
Data and reference signal output timing  
Min  
Typ  
Max  
Unit  
Co(L)  
output load capacitance  
8
-
-
40  
-
pF  
ns  
to(h)(gfx)  
output hold time to  
graphics controller  
pins HSVGC, VSVGC, FSVGC and  
CBO  
1.5  
to(d)(gfx)  
to(h)  
output delay time to  
graphics controller  
pins HSVGC, VSVGC, FSVGC and  
CBO  
-
-
-
-
10  
-
ns  
ns  
ns  
output hold time  
pins TDO, TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
3
-
to(d)  
output delay time  
pins TDO, TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
25  
CVBS and RGB outputs  
Vo(CVBS)(p-p) output voltage CVBS  
(peak-to-peak value)  
see Table 113  
see Table 113  
-
-
1.23  
1
-
-
V
V
Vo(VBS)(p-p) output voltage VBS  
(S-video)  
(peak-to-peak value)  
Vo(C)(p-p)  
output voltage C  
(S-video)  
(peak-to-peak value)  
see Table 113  
see Table 113  
-
0.89  
-
V
Vo(RGB)(p-p) output voltage R, G, B  
(peak-to-peak value)  
-
-
0.7  
2
-
-
V
Vo  
inequality of output  
signal voltages  
%
Ro(L)  
BDAC  
output load resistance  
-
-
37.5  
170  
-
-
[8]  
output signal bandwidth 3 dB  
MHz  
of DACs  
ILElf(DAC)  
low frequency integral  
linearity error of DACs  
-
-
-
-
±3  
±1  
LSB  
LSB  
DLElf(DAC)  
low frequency  
differential linearity error  
of DACs  
[1] Minimum value for I2C-bus bit DOWNA = 1.  
[2] Minimum value for I2C-bus bit DOWND = 1.  
[3] Levels refer to pins PD11 to PD0, FSVGC, PIXCLKI, VSVGC, PIXCLKO, CBO, TVD, and HSVGC, being inputs or outputs directly  
connected to a graphics controller. Input sensitivity is 12VDDD2 + 100 mV for HIGH and 12VDDD2 100 mV for LOW. The reference  
voltage 12VDDD2 is generated on chip.  
[4] The data is for both input and output direction.  
[5] This parameter is arbitrary, if PIXCLKI is looped through the VGC.  
[6] Tested with programming IFBP = 1.  
[7] If an internal oscillator is used, crystal deviation of nominal frequency is directly proportional to the deviation of subcarrier frequency and  
line/field frequency.  
1
[8]  
B
=
with RL = 37.5 and Cext = 20 pF (typical).  
---------------------------------------------  
–3 dB  
2πR (C + 5 pF)  
L
ext  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
64 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
T
PIXCLK  
t
HIGH  
V
OH  
0.5V  
PIXCLKO  
DDD1  
DDD1  
V
OL  
t
t
r
t
f
d(CLKD)  
V
IH  
PIXCLKI  
0.5V  
V
IL  
t
t
HD;DAT  
HD;DAT  
t
t
SU;DAT  
SU;DAT  
V
V
IH  
IL  
PDn  
t
o(d)  
t
o(h)  
V
V
OH  
OL  
any output  
mhc567  
Fig 12. Input/output timing specification  
HSVGC  
CBO  
PD  
XOFS  
IDEL  
XPIX  
HLEN  
mhb905  
Fig 13. Horizontal input timing  
HSVGC  
VSVGC  
CBO  
YOFS  
YPIX  
mhb906  
Fig 14. Vertical input timing  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
65 of 78  
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
11.1 Teletext timing  
Time tFD is the time needed to interpolate input data TTX and insert it into the CVBS and  
VBS output signal, such that it appears at tTTX = 9.78 µs (PAL) or tTTX = 10.5 µs (NTSC)  
after the leading edge of the horizontal synchronization pulse.  
Time tPD is the pipeline delay time introduced by the source that is gated by  
TTXRQ_XCLKO2 in order to deliver TTX data. This delay is programmable by register  
TTXHD. For every active HIGH state at output pin TTXRQ_XCLKO2, a new teletext bit  
must be provided by the source.  
Since the beginning of the pulses representing the TTXRQ signal and the delay between  
the rising edge of TTXRQ and valid teletext input data are fully programmable (TTXHS  
and TTXHD), the TTX data is always inserted at the correct position after the leading edge  
of the outgoing horizontal synchronization pulse.  
Time ti(TTXW) is the internally used insertion window for TTX data; it has a constant length  
that allows insertion of 360 teletext bits at a text data rate of 6.9375 Mbit/s (PAL),  
296 teletext bits at a text data rate of 5.7272 Mbit/s (world standard TTX) or 288 teletext  
bits at a text data rate of 5.7272 Mbit/s (NABTS). The insertion window is not opened if  
the control bit TTXEN is zero.  
Using appropriate programming, all suitable lines of the odd field (TTXOVS and TTXOVE)  
plus all suitable lines of the even field (TTXEVS and TTXEVE) can be used for teletext  
insertion.  
It is essential to note that the two pins used for teletext insertion must be  
configured for this purpose by the correct I2C-bus register settings.  
CVBS/Y  
t
t
TTX  
i(TTXW)  
text bit #:  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
TTX_SRES  
t
t
FD  
PD  
TTXRQ_XCLKO2  
mhb891  
Fig 15. Teletext timing  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
66 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
12. Application information  
DVO  
supply  
+3.3 V digital  
supply  
+3.3 V analog  
supply  
AGND  
0.1 µF  
0.1 µF  
0.1 µF  
1 nF  
DGND  
DGND  
AGND  
10 pF  
10 pF  
use one capacitor  
use one capacitor  
0.1 µH  
for each V  
for each V  
27 MHz  
DDD  
DDA  
V
DDD1  
V
to V  
DDD4  
V
to V  
DDA3  
XTALI  
XTALO  
DDD2  
DDA1  
VSM, HSM_CSYNC  
GREEN_VBS_CVBS  
FLTR0  
U
U
U
75 Ω  
75 Ω  
Y
AGND  
RED_CR_C_CVBS  
FLTR1  
AGND  
AGND  
SAA7104E  
SAA7105E  
digital  
inputs  
and  
75 Ω  
75 Ω  
C
outputs  
AGND  
BLUE_CB_CVBS  
FLTR2  
AGND  
AGND  
75 Ω  
75 Ω  
CVBS  
AGND  
DUMP  
AGND  
AGND  
V
to V  
V
SSA  
RSET  
SSD1  
SSD4  
1 kΩ  
12 Ω  
mhc574  
DGND  
AGND  
AGND  
AGND  
Fig 16. Application circuit  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
67 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
C16  
120 pF  
L2  
L3  
2.7 µH  
2.7 µH  
C10  
C13  
390 pF  
560 pF  
AGND  
JP11  
JP12  
FIN  
FOUT  
FILTER 1  
= byp.  
ll act.  
mhb912  
Fig 17. FLTR0, FLTR1 and FLTR2 of Figure 16  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
68 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
SAA7104E  
SAA7105E  
A5  
SAA7104E  
SAA7105E  
A6  
XTALO  
A5  
A6  
XTALO  
XTALI  
XTALI  
27.00 MHz  
27.00 MHz  
39 pF  
4.7 µH  
18 pF  
18 pF  
39 pF  
1 nF  
001aad417  
001aad418  
a. With 3rd harmonic quartz.  
Crystal load = 8 pF.  
b. With fundamental quartz.  
Crystal load = 20 pF.  
SAA7104E  
SAA7105E  
A5  
SAA7104E  
SAA7105E  
A5  
A6  
A6  
XTALI  
XTALO  
XTALI  
XTALO  
R
s
n.c.  
27.00 MHz  
clock  
001aad419  
001aad420  
c. With direct clock.  
d. With fundamental quartz and restricted drive level.  
When Pdrive of the internal oscillator is too high, a  
resistance Rs can be placed in series with the  
oscillator output XTALO.  
Note: The decreased crystal amplitude results in a  
lower drive level but on the other hand the jitter  
performance will decrease.  
Fig 18. Oscillator application  
12.1 Reconstruction filter  
Figure 17 shows a possible reconstruction filter for the digital-to-analog converters. Due to  
its cut-off frequency of 6 MHz, it is not suitable for HDTV applications.  
12.2 Analog output voltages  
The analog output voltages are dependent on the total load (typical value 37.5 ), the  
digital gain parameters and the I2C-bus settings of the DAC reference currents (analog  
settings).  
The digital output signals in front of the DACs under nominal (nominal here stands for the  
settings given in Table 37 to Table 41 for example a standard PAL or NTSC signal)  
conditions occupy different conversion ranges, as indicated in Table 113 for a 100  
bar signal.  
100 color  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
69 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
By setting the reference currents of the DACs as shown in Table 113, standard compliant  
amplitudes can be achieved for all signal combinations; it is assumed that in  
subaddress 16h, parameter DACF = 0000b, that means the fine adjustment for all DACs  
in common is set to 0 %.  
If S-video output is desired, the adjustment for the C (chrominance subcarrier) output  
should be identical to the one for VBS (luminance plus sync) output.  
Table 113: Digital output signals conversion range  
Set/out  
CVBS, sync tip-to-white  
see Table 37 to Table 41  
1014  
VBS, sync tip-to-white  
see Table 37 to Table 41  
881  
RGB, black-to-white  
see Table 31 and Table 32  
876  
Digital settings  
Digital output  
Analog settings  
Analog output  
e.g. B DAC = 1Fh  
1.23 V (p-p)  
e.g. G DAC = 1Bh  
1.00 V (p-p)  
e.g. R DAC = G DAC = B DAC = 0Bh  
0.70 V (p-p)  
12.3 Suggestions for a board layout  
Use separate ground planes for analog and digital ground. Connect these planes only at  
one point directly under the device, by using a 0 resistor directly at the supply stage.  
Use separate supply lines for the analog and digital supply. Place the supply decoupling  
capacitors close to the supply pins.  
Use Lbead (ferrite coil) in each digital supply line close to the decoupling capacitors to  
minimize radiation energy (EMC).  
Place the analog coupling (clamp) capacitors close to the analog input pins. Place the  
analog termination resistors close to the coupling capacitors.  
Be careful of hidden layout capacitors around the crystal application.  
Use serial resistors in clock, sync and data lines, to avoid clock or data reflection effects  
and to soften data energy.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
70 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
13. Test information  
13.1 Boundary scan test  
The SAA7104E; SAA7105E has built-in logic and 5 dedicated pins to support boundary  
scan testing which allows board testing without special hardware (nails). The SAA7104E;  
SAA7105E follows the ‘IEEE Std. 1149.1 - Standard Test Access Port and Boundary-Scan  
Architecture’ set by the Joint Test Action Group (JTAG) chaired by Philips.  
The 5 special pins are Test Mode Select (TMS), Test Clock (TCK), Test Reset (TRST),  
Test Data Input (TDI) and Test Data Output (TDO).  
The Boundary Scan Test (BST) functions BYPASS, EXTEST, SAMPLE, CLAMP and  
IDCODE are all supported; see Table 114. Details about the JTAG BST-TEST can be  
found in the specification ‘IEEE Std. 1149.1’. A file containing the detailed Boundary Scan  
Description Language (BSDL) of the SAA7104E; SAA7105E is available on request.  
Table 114: BST instructions supported by the SAA7104E; SAA7105E  
Instruction Description  
BYPASS  
EXTEST  
SAMPLE  
This mandatory instruction provides a minimum length serial path (1 bit) between  
TDI and TDO when no test operation of the component is required.  
This mandatory instruction allows testing of off-chip circuitry and board level  
interconnections.  
This mandatory instruction can be used to take a sample of the inputs during  
normal operation of the component. It can also be used to preload data values into  
the latched outputs of the boundary scan register.  
CLAMP  
This optional instruction is useful for testing when not all ICs have BST. This  
instruction addresses the bypass register while the boundary scan register is in  
external test mode.  
IDCODE  
This optional instruction will provide information on the components manufacturer,  
part number and version number.  
13.1.1 Initialization of boundary scan circuit  
The Test Access Port (TAP) controller of an IC should be in the reset state  
(TEST_LOGIC_RESET) when the IC is in functional mode. This reset state also forces  
the instruction register into a functional instruction such as IDCODE or BYPASS.  
To solve the power-up reset, the standard specifies that the TAP controller will be forced  
asynchronously to the TEST_LOGIC_RESET state by setting the TRST pin LOW.  
13.1.2 Device identification codes  
A device identification register is specified in ‘IEEE Std. 1149.1b-1994’. It is a 32-bit  
register which contains fields for the specification of the IC manufacturer, the IC part  
number and the IC version number. Its biggest advantage is the possibility to check for the  
correct ICs mounted after production and to determine the version number of the ICs  
during field service.  
When the IDCODE instruction is loaded into the BST instruction register, the identification  
register will be connected between pins TDI and TDO of the IC. The identification register  
will load a component specific code during the CAPTURE_DATA_REGISTER state of the  
TAP controller, this code can subsequently be shifted out. At board level this code can be  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
71 of 78  
 
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
used to verify component manufacturer, type and version number. The device  
identification register contains 32 bits, numbered 31 to 0, where bit 31 is the most  
significant bit (nearest to TDI) and bit 0 is the least significant bit (nearest to TDO);  
see Figure 19.  
MSB  
31  
LSB  
28 27  
12 11  
1
0
TDI  
TDO  
0101  
1
0111 0001 0000 0100  
16-bit part number  
000 0001 0101  
4-bit  
version  
code  
11-bit manufacturer  
identification  
mhc568  
a. SAA7104E.  
MSB  
31  
LSB  
28 27  
12 11  
1
0
TDI  
TDO  
0101  
1
0111 0001 0000 0101  
16-bit part number  
000 0001 0101  
4-bit  
version  
code  
11-bit manufacturer  
identification  
mhc569  
b. SAA7105E.  
Fig 19. 32 bits of identification code  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
72 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
14. Package outline  
LBGA156: plastic low profile ball grid array package; 156 balls; body 15 x 15 x 1.05 mm  
SOT700-1  
A
B
D
ball A1  
index area  
A
2
A
A
1
E
detail X  
C
e
1
y
y
1/2 e  
v M  
b
C
C
A
B
C
1
e
w M  
P
N
L
e
M
K
H
F
J
e
2
G
E
C
A
1/2 e  
D
B
ball A1  
index area  
1
3
5
7
9
11  
13  
2
4
6
8
10  
12  
14  
X
5
10 mm  
0
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
e
e
e
2
y
D
E
v
w
y
1
1
2
1
max.  
0.45 1.20 0.55 15.2 15.2  
0.35 0.95 0.45 14.8 14.8  
mm 1.65  
0.12 0.35  
1
13  
13  
0.25  
0.1  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
01-05-11  
01-11-06  
SOT700-1  
- - -  
MO-192  
- - -  
Fig 20. Package outline SOT700-1 (LBGA156)  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
73 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
15. Soldering  
15.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
15.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
15.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
74 of 78  
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
15.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
15.5 Package related soldering information  
Table 115: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
75 of 78  
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
16. Revision history  
Table 116: Revision history  
Document ID  
Release date Data sheet status Change notice Doc. number Supersedes  
Product data sheet CPCN SAA7104E_SAA7105E_1  
200505019  
SAA7104E_SAA7105E_2 20051223  
-
Modifications:  
The format of this data sheet has been redesigned to comply with the new presentation and  
information standard of Philips Semiconductors  
Table 4: updated description for pin E2  
Package outline changed from SOT472-1 to SOT700-1  
SAA7104E_SAA7105E_1 20040304  
Product  
specification  
-
9397 750  
11436  
-
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
76 of 78  
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
17. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
Right to make changes — Philips Semiconductors reserves the right to  
18. Definitions  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
ICs with Macrovision copyright protection technology — This product  
incorporates copyright protection technology that is protected by method  
claims of certain U.S. patents and other intellectual property rights owned by  
Macrovision Corporation and other rights owners. Use of this copyright  
protection technology must be authorized by Macrovision Corporation and is  
intended for home and other limited viewing uses only, unless otherwise  
authorized by Macrovision Corporation. Reverse engineering or disassembly  
is prohibited.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
makes no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
19. Disclaimers  
20. Trademarks  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Notice — All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
I2C-bus — logo is a trademark of Koninklijke Philips Electronics N.V.  
21. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
SAA7104E_SAA7105E_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02 — 23 December 2005  
77 of 78  
 
 
 
 
SAA7104E; SAA7105E  
Philips Semiconductors  
Digital video encoder  
22. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
10  
Thermal characteristics . . . . . . . . . . . . . . . . . 62  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 62  
Teletext timing . . . . . . . . . . . . . . . . . . . . . . . . 66  
11  
11.1  
12  
Application information . . . . . . . . . . . . . . . . . 67  
Reconstruction filter . . . . . . . . . . . . . . . . . . . . 69  
Analog output voltages. . . . . . . . . . . . . . . . . . 69  
Suggestions for a board layout. . . . . . . . . . . . 70  
12.1  
12.2  
12.3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
13  
13.1  
13.1.1  
13.1.2  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 71  
Boundary scan test . . . . . . . . . . . . . . . . . . . . 71  
Initialization of boundary scan circuit . . . . . . . 71  
Device identification codes. . . . . . . . . . . . . . . 71  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Functional description . . . . . . . . . . . . . . . . . . . 8  
Reset conditions . . . . . . . . . . . . . . . . . . . . . . . . 9  
Input formatter . . . . . . . . . . . . . . . . . . . . . . . . 10  
RGB LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Cursor insertion . . . . . . . . . . . . . . . . . . . . . . . 10  
RGB Y-CB-CR matrix. . . . . . . . . . . . . . . . . . . . 11  
Horizontal scaler. . . . . . . . . . . . . . . . . . . . . . . 11  
Vertical scaler and anti-flicker filter . . . . . . . . . 12  
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Border generator. . . . . . . . . . . . . . . . . . . . . . . 12  
Oscillator and Discrete Time Oscillator (DTO) 13  
Low-pass Clock Generation Circuit (CGC) . . . 13  
Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Video path. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Teletext insertion and encoding (not  
simultaneously with real-time control). . . . . . . 14  
Video Programming System (VPS) encoding. 14  
Closed caption encoder . . . . . . . . . . . . . . . . . 14  
Anti-taping (SAA7104E only) . . . . . . . . . . . . . 14  
RGB processor . . . . . . . . . . . . . . . . . . . . . . . . 15  
Triple DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
HD data path. . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Timing generator. . . . . . . . . . . . . . . . . . . . . . . 15  
Pattern generator for HD sync pulses. . . . . . . 16  
I2C-bus interface. . . . . . . . . . . . . . . . . . . . . . . 20  
Power-down modes . . . . . . . . . . . . . . . . . . . . 20  
Programming the SAA7104E; SAA7105E . . . 20  
TV display window . . . . . . . . . . . . . . . . . . . . . 21  
Input frame and pixel clock . . . . . . . . . . . . . . . 21  
Horizontal scaler. . . . . . . . . . . . . . . . . . . . . . . 22  
Vertical scaler . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Input levels and formats . . . . . . . . . . . . . . . . . 23  
14  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 73  
15  
15.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 74  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 74  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 75  
Package related soldering information. . . . . . 75  
15.2  
15.3  
15.4  
15.5  
7.8  
7.9  
7.10  
7.11  
7.12  
7.12.1  
7.12.2  
16  
17  
18  
19  
20  
21  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 76  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 77  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Contact information . . . . . . . . . . . . . . . . . . . . 77  
7.12.3  
7.12.4  
7.12.5  
7.13  
7.14  
7.15  
7.16  
7.17  
7.18  
7.19  
7.20  
7.20.1  
7.20.2  
7.20.3  
7.20.4  
7.21  
8
Register description . . . . . . . . . . . . . . . . . . . . 27  
Bit allocation map . . . . . . . . . . . . . . . . . . . . . . 27  
I2C-bus format. . . . . . . . . . . . . . . . . . . . . . . . . 32  
Slave receiver . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Slave transmitter. . . . . . . . . . . . . . . . . . . . . . . 57  
8.1  
8.2  
8.3  
8.4  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 61  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 23 December 2005  
Document number: SAA7104E_SAA7105E_2  
Published in The Netherlands  

相关型号:

SAA7105E_05

Digital video encoder
NXP

SAA7105H

Digital video encoder
NXP

SAA7105H/V1

IC,TV/VIDEO CIRCUIT,VIDEO ENCODER,CMOS,QFP,64PIN,PLASTIC
NXP

SAA7105H/V1,518

IC COLOR SIGNAL ENCODER, PQFP64, 14 X 14 MM, 2.70 MM HEIGHT, PLASTIC, MS-022, SOT-393-1, QFP-64, Color Signal Converter
NXP

SAA7105H/V1,557

IC COLOR SIGNAL ENCODER, PQFP64, 14 X 14 MM, 2.70 MM HEIGHT, PLASTIC, MS-022, SOT-393-1, QFP-64, Color Signal Converter
NXP

SAA7105HBG

IC COLOR SIGNAL ENCODER, PQFP64, 14 X 14 MM, 2.70 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MS-022, SOT-393-1, QFP-64, Color Signal Converter
NXP

SAA7108

PC-CODEC
NXP

SAA7108AE

HD-CODEC
NXP

SAA7108E

PC-CODEC
NXP

SAA7108EEB

IC SPECIALTY CONSUMER CIRCUIT, PBGA156, 15 X 15 MM, 1.15 MM HEIGHT, PLASTIC, SOT-472-1, BGA-156, Consumer IC:Other
NXP

SAA7109

PC-CODEC
NXP

SAA7109A

HD-CODEC
NXP