TDA8023TT [NXP]

Low power IC card interface; 低功耗IC卡接口
TDA8023TT
型号: TDA8023TT
厂家: NXP    NXP
描述:

Low power IC card interface
低功耗IC卡接口

驱动程序和接口 接口集成电路 光电二极管
文件: 总32页 (文件大小:162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8023  
Low power IC card interface  
Rev. 01 — 16 July 2007  
Product data sheet  
1. General description  
The TDA8023 is a complete cost-efficient, low-power analog interface for synchronous or  
asynchronous smart cards. It can be placed between the card and the microcontroller with  
very few external components to perform all supply, protection and control functions.  
2. Features  
I I2C-bus controlled IC card interface in TSSOP28  
I Supply voltage from 2.7 V to 6.5 V  
I Independant supply voltage VDD(INTF) for interface signals with the microcontroller  
I Shutdown input for very low power consumption when the part is not used  
I Power reduction modes when the card is active  
I DC-to-DC converter for VCC generation (capacitive doubler, tripler, or inductive, or  
follower automatically selected according to supply voltage and card voltage)  
I 1 specific protected half duplex bidirectional buffered I/O line, with current limitation at  
±15 mA, maximum frequency 1 MHz  
I 2 auxiliary card I/O lines controlled by I2C-bus (C4 and C8)  
I VCC regulation: 5 V, 3 V or 1.8 V ± 8 %, ICC < 55 mA, current spikes of 40 nAs up to  
20 MHz, with controlled rise and fall times, filtered overload detection approximately  
80 mA, current limitation about 120 mA  
I Thermal and short-circuit protections on all card contacts  
I Automatic activation and deactivation sequences: initiated by software or by hardware  
in the event of a short-circuit, card take-off, overheating, VDD or VDD(DCDC) drop-out  
I Enhanced ElectroStatic Discharge (ESD) protection on card side (> 6 kV)  
I 20 MHz clock input  
I Clock generation for the card up to 10 MHz (CLKIN divided by 1, 2, 4 or 5) with  
synchronous frequency changes; stop HIGH or LOW or free running 1 MHz in cards  
Low-power mode; current limitation on pin CLK (C3)  
I RST signal (C2) with current limitation at 20 mA, controlled by an embedded  
programmable CLK pulse counter on asynchronous cards or by a register on  
synchronous cards  
I ISO 7816-3, GSM 11.11 and EMV 2000 (payment systems) compatibility  
I Supply voltage supervisor for spike killing during power-on and emergency  
deactivation at power-off: threshold internally fixed or set via an external resistor  
bridge; pulse width internally fixed or set via an external capacitor  
I Card presence input with 10 ms built-in debouncing system  
I One interrupt signal INT  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
3. Applications  
I Banking terminals  
I Internet terminals  
I Set-top boxes  
I Portable IC card readers  
4. Quick reference data  
Table 1.  
Quick reference data  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Supply  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
on pin VDD  
2.7  
2.7  
-
-
6.5  
6.5  
V
V
VDD(DCDC) DC-to-DC converter  
supply voltage  
on pin VDDP  
VDD(INTF)  
IDD  
interface supply voltage on pin VDDI  
supply current Shutdown mode  
1.5  
-
-
-
6.5  
10  
V
[1]  
[1]  
[1]  
-
-
µA  
µA  
Inactive mode; CLKIN LOW or HIGH  
Active mode; VCC = 5 V; fCLK = 5 MHz  
capacitive; ICC = 5 mA  
200  
-
-
-
-
-
-
-
-
-
-
15  
200  
15  
150  
2
mA  
mA  
mA  
mA  
mA  
capacitive; ICC = 55 mA  
inductive; ICC = 5 mA  
inductive; ICC = 55 mA  
[1]  
[3]  
Power-down mode; VCC = 5 V; ICC = 100 µA;  
CLK stopped; CLKIN HIGH or LOW;  
capacitive or inductive  
[2]  
Supply voltage for the card: pin VCC  
VCC supply voltage  
Active mode; 2.7 V < VDD < 6.5 V  
5 V card; ICC < 60 mA; VCC = 5 V  
3 V card; ICC < 55 mA; VCC = 3 V  
1.8 V card; ICC < 30 mA; VCC = 1.8 V  
4.75  
2.80  
1.65  
5
5.25  
3.15  
1.95  
V
V
V
3
1.8  
[3]  
Active mode; AC current pulses with  
I < 200 mA, t < 400 ns and f < 20 MHz  
5 V card; current pulses of 40 nAs  
3 V card; current pulses of 24 nAs  
1.8 V card; current pulses of 15 nAs  
on VCC; 20 kHz to 200 MHz  
4.65  
2.76  
1.62  
-
-
-
-
-
5.35  
3.24  
1.98  
350  
V
V
V
Vripple(p-p) peak-to-peak ripple  
voltage  
mV  
ICC  
supply current  
VDD > 2.7 V  
5 V card; VCC = 0 V to 5 V  
3 V card; VCC = 0 V to 3 V  
1.8 V card; VCC = 0 V to 1.8 V  
-
-
-
-
-
-
55  
55  
35  
mA  
mA  
mA  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
2 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
Table 1.  
Quick reference data …continued  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
General  
tdeact  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
deactivation time  
total sequence  
60  
-
80  
-
100  
500  
+85  
µs  
Ptot  
total power dissipation Tamb = 25 °C to +85 °C  
mW  
°C  
Tamb  
ambient temperature  
40  
-
[1] Sum of currents on pins VDD and VDDI  
.
[2] Two ceramic multilayer capacitors of minimum 100 nF with low Equivalent Series Resistance (ESR) should be used in order to meet  
these specifications.  
[3] Output voltage towards the card, including ripple.  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA8023TT  
TSSOP28  
plastic thin shrink small outline package; 28 leads; body width 4.4 mm  
SOT361-1  
6. Block diagram  
optional  
100 nF  
1 µF  
100 nF  
100 nF  
external  
resistor  
bridge  
V
V
DDP  
DD  
SBP SBM SAM SAP  
27 25 23 28  
22  
26  
R2  
PORADJ 20  
CDEL 21  
24 GNDP  
R1  
SUPPLY  
SUPERVISOR  
DC-TO-DC CONVERTER  
C
VUP  
1
CDEL  
GND 10  
100 nF  
TDA8023  
17  
4
V
CC  
V
DDI  
100 nF  
3
SDWN  
SDA  
5
18  
16  
14  
13  
12  
19  
15  
RST  
6
SCL  
CLK  
I/O  
SEQUENCER  
9
2
CLKIN  
I/OUC  
INT  
I C-BUS  
CARD  
DRIVERS  
11  
2
INTERFACE  
CLOCK  
COUNTER  
C4  
C8  
8
SPRES  
SAD0  
PRES  
GNDC  
7
001aag336  
Fig 1. Block diagram with capacitive DC-to-DC converter  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
3 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
optional  
external  
resistor  
bridge  
LX  
100 nF  
6.8 µH  
10 µF  
V
V
DDP  
DD  
SBP SBM SAM SAP  
27 25 23 28  
22  
26  
R2  
PORADJ 20  
CDEL 21  
24 GNDP  
R1  
SUPPLY  
SUPERVISOR  
DC-TO-DC CONVERTER  
C
VUP  
1
CDEL  
GND 10  
100 nF  
4.7 µF  
TDA8023  
17  
4
V
CC  
100 nF  
V
DDI  
3
SDWN  
SDA  
5
18  
16  
14  
13  
12  
19  
15  
RST  
6
SCL  
CLK  
I/O  
SEQUENCER  
9
2
CLKIN  
I/OUC  
INT  
I C-BUS  
CARD  
DRIVERS  
11  
2
INTERFACE  
CLOCK  
COUNTER  
C4  
C8  
8
SPRES  
SAD0  
PRES  
GNDC  
7
001aag337  
Fig 2. Block diagram with inductive DC-to-DC converter  
7. Pinning information  
7.1 Pinning  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VUP  
INT  
SAP  
SBP  
3
SDWN  
V
DDP  
4
V
SBM  
DDI  
5
SDA  
SCL  
GNDP  
SAM  
6
7
SAD0  
SPRES  
CLKIN  
GND  
I/OUC  
C8  
V
DD  
TDA8023TT  
8
CDEL  
9
PORADJ  
PRES  
RST  
10  
11  
12  
13  
14  
V
CC  
C4  
CLK  
I/O  
GNDC  
001aag338  
Fig 3. Pin configuration TDA8023TT  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
4 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
7.2 Pin description  
Table 3.  
Symbol  
VUP  
Pin description  
Pin  
1
Type[1] Description  
O
O
output of the DC-to-DC converter  
INT  
2
Negative-channel Metal Oxide Semiconductor (NMOS) interrupt  
to the host (active LOW and open-drain) (see fault detection in  
Section 8.7 “Protection”)  
SDWN  
VDDI  
3
I
shutdown and reset input  
4
S
interface positive supply voltage  
SDA  
5
I/O  
serial data line to/from the I2C-bus master (open-drain)  
serial clock line from the I2C-bus master  
I2C-bus address selection  
SCL  
6
I
SAD0  
SPRES  
CLKIN  
GND  
I/OUC  
C8  
7
I
8
I
select PRES mode[2]  
9
I
external clock input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
S
I/O[3]  
I/O[4]  
I/O[4]  
ground connection  
data in/out from/to microcontroller  
auxiliary input/output to/from the card (contact C8)  
auxiliary input/output to/from the card (contact C4)  
data input/output to/from (contact C7 of) the card  
ground connection for the card (contact C5)  
clock output to (contact C3 of) the card  
supply voltage for the card (contact C1)  
reset output to (contact C2 of) the card  
card presence input with a 10 ms built-in debouncing system[2]  
C4  
I/O  
I/O[4]  
GNDC  
CLK  
S
O
S
O
I
VCC  
RST  
PRES  
PORADJ  
I
input for changing the power-on reset threshold with an external  
resistor bridge.  
In case no external resistor bridge is used, it is mandatory to  
connect this pin to GND to avoid possible perturbations.  
CDEL  
21  
C
delay capacitor connection for the voltage supervisor (1 ms per  
2 nF)  
VDD  
22  
23  
24  
25  
26  
27  
28  
S
C
S
C
S
C
C
power supply  
SAM  
GNDP  
SBM  
VDDP  
SBP  
SAP  
connection for the DC-to-DC converter  
ground connection for the DC-to-DC converter  
connection for the DC-to-DC converter  
positive supply for the DC-to-DC converter  
connection for the DC-to-DC converter  
connection for the DC-to-DC converter  
[1] I = input, O = output, S = supply, C = configuration.  
[2] PRES is active-HIGH when SPRES = LOW and PRES is active-LOW when SPRES = HIGH.  
[3] With integrated pull-up to VDD(INTF)  
.
[4] With integrated pull-up to VCC  
.
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
5 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
8. Functional description  
Remark: Throughout this document, it is assumed that the reader is familiar with  
ISO 7816 and EMV 2000 terminology.  
8.1 Power supplies  
The supply pins for the TDA8023 are VDD and GND. VDD should be in the range from  
2.7 V to 6.5 V. The supply voltages VDD, VDD(INTF) and VDD(DCDC) may be applied to the  
TDA8023 in any time sequence.  
All interface signals with the system controller are referenced to a separate supply voltage  
VDD(INTF) on pin VDDI, that may be lower or higher than VDD  
.
For generating a supply voltage VCC of 5 V ± 5 % or 3 V ± 5 % used by the card, an  
integrated DC-to-DC converter is incorporated. This DC-to-DC converter should be  
separately supplied by VDD(DCDC) on pin VDDP and GNDP (from 2.7 V to 6.5 V).  
The I2C-bus signals SDA and SCL may be externally referenced to a voltage higher than  
VDD  
.
8.2 Voltage supervisor  
8.2.1 Without external divider on pin PORADJ  
The voltage supervisor surveys the VDD supply voltage. It is used as Power-On Reset  
(POR) and as supply dropout detection during a card session. Supply dropout detection  
ensures that a proper deactivation sequence is followed before the voltage is too low. A  
reset pulse of duration tW (see Figure 4) is used internally for maintaining the TDA8023 in  
the Inactive mode during powering up or powering down of VDD  
.
As long as VDD is less than Vth(POR)H the TDA8023 will remain inactive whatever the levels  
on the command lines are. This also lasts for the duration of tW after VDD has reached a  
level higher than Vth(POR)H. When VDD falls below Vth(POR)L an automatic deactivation  
sequence of the contacts is performed.  
In this case (no external resistor bridge) it is mandatory to connect pin PORADJ to GND.  
power on  
shutdown mode  
power off  
V
V
th(POR)H  
th(POR)L  
V
DD  
V
hys(POR)  
status read  
status read  
INT  
t
t
W
W
SDWN  
bus unresponsive  
bus unresponsive  
bus unresponsive  
001aag339  
Fig 4. Voltage supervisor and Shutdown mode  
Rev. 01 — 16 July 2007  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
6 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
8.2.2 With external divider on pin PORADJ  
If an external resistor bridge is connected to pin PORADJ (R1 to GND and R2 to VDD as  
shown in Figure 1 and Figure 2), then the internal threshold voltages and the internal  
hysteresis voltage are overridden by externally determined ones.  
The voltage on pin PORADJ is:  
R1  
R1 + R2  
VPORADJ  
where  
k =  
=
× V  
= k × VDD  
DD  
-------------------  
R1  
--------------------  
R1 + R2  
The thresholds that are applied by the TDA8023 to this voltage VPORADJ are:  
Vhys  
Vth(H)(PORADJ) = Vbg(int)  
+
(rising)  
(falling)  
----------  
2
Vhys  
Vth(L)(PORADJ) = Vbg(int)  
where  
----------  
2
V
bg(int) = 1.25 V (typ)  
Vhys = 60 mV (typ)  
The thresholds and hysteresis on VDD can then be calculated from:  
Vhys  
Vbg(int)  
+
----------  
Vth(H)(PORADJ)  
2
Vth(POR)H  
=
=
(rising)  
(falling)  
-------------------------------------  
-----------------------------------------  
k
k
Vhys  
Vbg(int)  
----------  
Vth(L)(PORADJ)  
2
Vth(POR)L  
=
=
------------------------------------  
----------------------------------------  
k
k
Vhys  
Vhys(POR)  
=
----------  
k
The minimum threshold voltage Vth(POR)L should be chosen higher than 2 V.  
Input PORADJ is biased internally with a pull-down current source of 4 µA which is cut  
when the voltage on this pin exceeds 1 V. This ensures that after detection of the external  
bridge during power-on, the input current on this pin does not cause inaccuracy of the  
bridge voltage.  
8.2.3 External capacitor on pin CDEL  
The width of the POR pulse (tW) is externally set by the value of the CDEL capacitor: the  
typical value is 1 ms per 2 nF. Usually CCDEL = 22 nF, therefore tW = 10 ms (typ).  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
7 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
8.2.4 Shutdown mode  
When pin SDWN = HIGH, the TDA8023 is in Shutdown mode; the consumption in this  
mode is less than 10 µA. The I2C-bus is unresponsive.  
If the card is extracted or inserted when the TDA8023 is in Power-down mode, pin INT  
becomes LOW and stays LOW as long as pin SDWN = HIGH.  
When pin SDWN is pulled LOW, the TDA8023 leaves Shutdown mode and executes a  
complete power-on reset sequence.  
8.3 I2C-bus  
A 400 kHz I2C-bus slave interface is used for configuring the TDA8023 and reading the  
status.  
8.3.1 I2C-bus protocol  
The I2C-bus is for 2-way 2-line communication between ICs or modules. The serial bus  
consists of two bidirectional lines: one for data signals (SDA) and one for clock signals  
(SCL).  
Both the SDA and SCL lines must be connected to a positive supply voltage via a pull-up  
resistor.  
The following protocol has been defined:  
Data transfer may be initiated only when the bus is not busy  
During data transfer, the data line must remain stable whenever the clock line is  
HIGH; changes in the data line while the clock line is HIGH will be interpreted as  
control signals  
8.3.2 Bus conditions  
The following bus conditions have been defined.  
Bus not busy — Both data and clock lines remain HIGH.  
Start data transfer — A change in the state of the data line from HIGH to LOW, while the  
clock is HIGH, defines the START condition.  
Stop data transfer — A change in the state of the data line from LOW to HIGH, while the  
clock is HIGH, defines the STOP condition.  
Data valid — The state of the data line represents valid data when, after a START  
condition, the data line is stable for the duration of the HIGH period of the clock signal.  
There is one clock pulse per bit of data.  
8.3.3 Data transfer  
Each data transfer is initiated with a START condition and terminated with a STOP  
condition (see Figure 7). See Table 15 for timing information.  
Data transfer is unlimited in the Read mode. The information is transmitted in bytes and  
each receiver acknowledges with a 9th bit.  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
8 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
Within the I2C-bus specifications, a Standard mode (100 kHz clock rate) and a Fast-speed  
mode (400 kHz clock rate) are defined. The TDA8023 operates in both Fast-speed and  
Standard modes.  
By definition, a device that sends a signal is called a transmitter and a device that receives  
the signal is called a receiver. The device that controls the signal is called the master. The  
devices that are controlled by the master are called slaves.  
Each byte is followed by one acknowledge bit. This acknowledge bit is a HIGH level, put  
on the bus by the transmitter. The master generates an extra acknowledge-related clock  
pulse. The slave receiver that is addressed is obliged to generate an acknowledge after  
the reception of each byte.  
The master receiver must generate an acknowledge after the reception of each byte that  
has been clocked out of the slave transmitter.  
The device that acknowledges has to pull down the SDA line during the acknowledge  
clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the  
acknowledge-related clock pulse.  
Set-up and hold times must be taken into account. A master receiver must signal an end  
of data to the slave transmitter by not generating an acknowledge on the last byte that has  
been clocked out of the slave. In this event, the transmitter must leave the data line HIGH  
to enable the master generation of the STOP condition.  
8.3.4 Device addressing  
Each TDA8023 has 2 different addresses, one for each of its two registers.  
Two TDA8023s may be used in parallel due to the address selection pin SAD0. Pin SAD0  
is externally hardwired to pin VDD or pin GND. The voltage on pin SAD0 sets address bit  
b2: HIGH sets bit b2 to logic 1, LOW resets b2 to logic 0.  
Address bit b1 selects Register 0 or Register 1.  
Address bit b0 defines Read or Write operation: 1 means Read, 0 means Write.  
The addresses for the TDA8023 are shown in Table 4 and Table 5.  
Table 4.  
Device addressing  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
0
1
0
0
0
SAD0  
0/1  
R/W  
Table 5.  
I2C-bus addresses for write mode  
Pin SAD0  
Register 0  
40h  
Register 1  
42h  
L
H
44h  
46h  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
9 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
8.3.5 Registers  
Table 6.  
Bit  
Table of registers  
Register 0  
Register 1  
Read/Write mode  
REG1 = 0  
REG0 = 0  
TEST  
Read mode  
Status  
Write mode  
Command  
REG1 = 1  
REG0 = 1  
D7  
REG0 = 0  
C15  
C14  
C13  
C12  
C11  
C10  
C9  
REG0 = 1  
C7  
7
6
5
4
3
2
1
0
ACTIVE  
EARLY  
MUTE  
PROT  
VCC1V8  
I/OEN  
RSTIN  
D6  
C6  
REG1  
C8  
D5  
C5  
REG0  
C4  
D4  
C4  
SUPL  
PDWN  
5V/3VN  
WARM  
START  
CLKPD2  
CLKPD1  
CLKDIV2  
CLKDIV1  
D3  
C3  
CLKSW  
PRESL  
PRES  
D2  
C2  
D1  
C1  
D0  
C8  
C0  
Table 7.  
Status - Register 0 in Read mode bit description  
Bit  
7
Symbol  
ACTIVE  
EARLY  
Description  
set if the card is active; reset if the card is inactive  
6
set during Answer To Reset (ATR) when the selected card has answered  
too early  
5
4
3
2
1
0
MUTE  
PROT  
SUPL  
set during ATR when the card has not answered during the ISO 7816  
time slots  
set when an overload or an overheating has occurred during a session;  
reset when the status has been read  
set when the voltage supervisor has signalled a fault; reset when the  
status has been read  
CLKSW  
PRESL  
PRES  
set when the TDA8023 is in Power-down mode and the clock has  
changed  
set when the card has been inserted or extracted; reset when the status  
has been read  
set when the card is present; reset when the card is not present  
When at least one of the bits PRESL, PROT, MUTE and EARLY is set, pin INT goes LOW  
until the status byte has been read. After power-on, bit SUPL is set until the status byte  
has been read, and pin INT = LOW until the voltage supervisor becomes inactive.  
Table 8.  
Command - Register 0 in Write mode bit description  
Bit  
Symbol  
Description  
7
VCC1V8  
1: VCC = 1.8 V  
0: VCC is defined by bit 5V/3VN  
this bit can not change if bit START is logic 1  
1: signal on pin I/OUC is transferred to pin I/O  
0: pin I/OUC and pin I/O are high-impedance  
selection of subaddress in Register 1 (see Table 9, 10, 11 and 12)  
6
I/OEN  
5 and 4 REG[1:0]  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
10 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
Table 8.  
Command - Register 0 in Write mode bit description …continued  
Bit  
Symbol  
Description  
3
PDWN  
1: applies on pin CLK the frequency that is defined by bits CLKPD[2:1]  
and reduces power consumption (in Synchronous mode); this bit can not  
change if bit START is logic 1  
2
5V/3VN  
1: VCC = 5 V  
0: VCC = 3 V  
this bit can not change if bit START is logic 1  
1: initiates a warm reset procedure  
1
0
WARM  
START  
this bit will be automatically reset by hardware when bit MUTE is set to  
logic 1  
1: initiates an activation sequence and a cold reset procedure (only if bit  
SUPL = 0 and the bit PRES = 1)  
0: initiates a deactivation sequence  
Table 9.  
R1_00 - Register 1 subaddress 00 in Read/Write mode bit description  
Bit  
Symbol  
Description  
7
TEST  
1: the circuit is in Test mode  
0: the circuit is in Operational mode  
6
5
4
RSTIN[1]  
C8  
defines the voltage on pin RST:  
1: VCC  
0: 0 V  
defines the voltage on pin C8:  
1: VCC  
0: 0 V  
C4  
defines the voltage on pin C4:  
1: VCC  
0: 0 V  
3 and 2 CLKPD[2:1] clock pulse definition:  
00: CLK stop LOW  
01: CLK stop HIGH  
10: frequency on pin CLK: fCLK = fosc(int) / 2  
11: no change  
in Synchronous mode bit CLKPD2 is always logic 0 by hardware and bit  
CLKPD1 controls the voltage on pin CLK:  
1: VCC  
0: 0 V  
1 and 0 CLKDIV[2:1] clock divider:  
00: fCLK = fCLKIN  
01: fCLK = fCLKIN / 2  
10: fCLK = fCLKIN / 4  
11: fCLK = fCLKIN / 5  
in Synchronous mode, bits CLKDIV[2:1] are always 00 by hardware  
[1] Synchronous or asynchronous cards management are defined when bit START is set: the TDA8023 will be  
in asynchronous cards management when bit RSTIN = 1 when bit START is set to logic 1.  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
11 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
Table 10. R1_01 - Register 1 subaddress 01 in Read/Write mode bit description  
Bit  
Symbol  
Description  
7 to 0  
D[7:0]  
8-bit programmable CLK period count register;  
range: 0 to 255;  
initial value: 170  
Table 11. R1_10 - Register 1 subaddress 10 in Read/Write mode bit description  
Bit  
Symbol  
Description  
7 to 0  
C[15:8]  
8-bit programmable CLK period count register;  
range in combination with C[7:0]: 0 to 65535;  
initial value: 164  
Table 12. R1_11 - Register 1 subaddress 11 in Read/Write mode bit description  
Bit  
Symbol  
Description  
7 to 0  
C[7:0]  
8-bit programmable CLK period count register;  
range in combination with C[15:8]: 0 to 65535;  
initial value: 116  
If bit RSTIN = 0 when bit START is set to logic 1, then pin RST is controlled by bit RSTIN.  
Else, pin RST = LOW during a number of CLK periods, defined by the 16-bit CLK count  
register C[15:0], and goes HIGH afterwards.  
There are two synchronous card management types:  
If bit PDWN = 0 when bit START is set to logic 1, then the output CLK is controlled by  
input CLKIN (without division)  
If bit PDWN = 1 when bit START is set to logic 1, then the output CLK is controlled by  
bit CLKPD1  
8.4 DC-to-DC converter  
For generating a supply voltage VCC of 5 V ± 5 % or 3 V ± 5 % to the card, an integrated  
voltage converter is incorporated. This DC-to-DC converter should be separately supplied  
by VDD(DCDC) on pin VDDP and GNDP (from 2.7 V to 6.5 V).  
The DC-to-DC conversion is either capacitive or inductive, according to the external  
components (automatic detection).  
8.4.1 Capacitive configuration  
The external components are three 100 nF capacitors (low-ESR), see Figure 1.  
The DC-to-DC converter is either tripler, doubler or follower according to the respective  
values of VCC and VDD(DCDC). An hysteresis of 100 mV is present on both thresholds:  
Follower:  
If VCC = 5 V and VDD(DCDC) > 5.8 V  
If VCC = 3 V and VDD(DCDC) > 4 V  
If VCC = 1.8 V  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
12 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
Doubler:  
If VCC = 5 V and VDD(DCDC) = 4 V to 5.8 V  
If VCC = 3 V and VDD(DCDC) < 4 V  
Tripler:  
If VCC = 5 V and VDD(DCDC) < 4 V  
8.4.2 Inductive configuration  
The external components are a diode, a coil of 6.8 µH and a capacitor of 4.7 µF (see  
Figure 2). In this configuration the DC-to-DC converter acts as follows.  
If VCC = 5 V then VVUP is regulated at 5.5 V  
If VCC = 3 V then VVUP is regulated at 4 V  
If VCC = 1.8 V then the DC-to-DC converter acts as a follower  
8.5 VCC buffer  
In all modes (follower, doubler, tripler), the DC-to-DC converter is able to deliver 60 mA  
over the whole VDD range (2.7 V to 6.5 V) or 90 mA if VDD > 3 V.  
The current on the VCC buffer has an internal limitation of around 90 mA. When this limit is  
reached, an automatic deactivation sequence is performed.  
The VCC voltage should be decoupled with a low-ESR capacitor between 100 nF and  
168 nF. If the card socket is not very close to the TDA8023, one capacitor should be  
placed near the TDA8023, and a second one near the card contacts.  
8.6 Sequencer and clock counter  
The sequencer takes care of ensuring activation and deactivation sequences according to  
ISO 7816 and EMV 2000, even in case of emergency (card removal during transaction,  
supply dropout or hardware problem).  
The sequencer is clocked with an internal oscillator.  
The activation of a card is initiated by setting bit START in the Command register, which is  
only possible if the card is present and if the voltage supervisor is not active. The  
activation sequence is described in Section 8.6.1.  
The deactivation is initiated either by the system controller or automatically in case of a  
hardware problem or a supply dropout. The deactivation sequence is described in  
Section 8.6.2.  
Outside a session, card contacts are forced low-impedance with respect to pin GNDC.  
8.6.1 Activation sequence  
When the card is inactive, pins VCC, CLK, RST and I/O are LOW, which is low-impedance  
with respect to pin GNDC. The DC-to-DC converter is stopped.  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
13 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
When everything is satisfactorily present (voltage supply, card present, no hardware  
problems) the system controller may initiate an activation sequence of a present card:  
1. The internal oscillator changes to its high frequency (t0, see Figure 5).  
2. The DC-to-DC converter is started (t1).  
3. VCC starts rising from 0 V to 5 V, 3 V or 1.8 V with a controlled rise time (t2).  
4. The voltage on pin I/O rises to VCC, due to integrated 14 kpull-ups to VCC (t3).  
5. CLK is sent to the card and pin RST is enabled (t4 = tact).  
During the activation sequence, the answer from the card (ATR) is monitored and the  
steps are the following:  
1. If a start bit is detected on pin I/O during the first 200 CLK pulses, then it is simply  
ignored, and the CLK count goes on.  
2. If a start bit is detected whilst pin RST = LOW (between 200 and 42100 CLK pulses or  
the value written in C[15:0]), then the bits EARLY and MUTE are set in the Status  
register. Pin RST will remain LOW. It is up to the software to decide whether to accept  
the card or not.  
3. If no start bit has been detected within 42100 CLK pulses, then pin RST is toggled to  
HIGH (t5).  
4. If, again, a start bit is detected within 370 CLK pulses (200 + 170 or the value defined  
in D[7:0]), bit EARLY in the Status register is set.  
5. If the card does not answer within 42100 new CLK pulses, then bit MUTE in the  
Status register is set.  
6. If the card answers within the correct time window, then the CLK count is stopped and  
the system controller can send commands to the card.  
f osc(int)  
The sequencer is clocked by  
which leads to a time interval T = 25 µs (typical).  
-------------------  
64  
T
64  
3T  
2
7T  
2
Thus t1 = 0 s to  
, t = t +  
, t = t +  
and t4 = t1 + 4T .  
------  
-----  
------  
2
3
1
1
START  
VUP  
V
CC  
I/O  
CLK  
RST  
t
t
t
t
t
t
5
ATR  
0
1
2
3
4
001aag340  
t
act  
Fig 5. Activation sequence  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
14 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
8.6.2 Deactivation sequence  
When the session is completed, the microcontroller resets bit START to logic 0 (t10, see  
Figure 6). The circuit then executes an automatic deactivation sequence:  
1. Card reset: pin RST falls to LOW (t11).  
2. CLK is stopped (t12).  
3. Pin I/O falls to 0 V (t13).  
4. Pin VCC falls to 0 V with a controlled slew rate (t14).  
5. The DC-to-DC converter is stopped and pins CLK, RST, VCC and I/O become  
low-impedance with relation to GNDC (t15).  
6. The internal oscillator changes to its low frequency (t15).  
T
T
---  
2
3T  
------  
2
7T  
------  
2
t11 = t10  
+
, t = t  
+
, t = t + T , t14 = t +  
11  
and t15 = t11  
+
.
-----  
64  
12  
13  
11  
11  
The deactivation time tdeact is the time that VCC needs for going down to less than 0.4 V,  
counted from the moment bit START is reset.  
START  
RST  
CLK  
I/O  
V
CC  
VUP  
t
t
t
t
t
t
15  
001aag619  
10  
11  
12  
13  
14  
t
deact  
Fig 6. Deactivation sequence  
8.7 Protection  
All card contacts are protected against any short with any other card contact.  
The currents on various pins are limited:  
on pin CLK: limited to ±70 mA  
on pin I/O: limited to ±10 mA (typical value)  
on pin RST: limited (only when this pin is LOW) to ±20 mA  
on pin VCC: limited to 90 mA  
If any of these currents exceeds its limit, an emergency deactivation sequence is  
performed: pin INT is pulled LOW and bit PROT in the Status register is set.  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
15 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
In case of overcurrent on pin VCC, removal of the card during a session, overheating,  
supply dropout, DC-to-DC out of limits, or overcurrent on pin RST, the TDA8023 performs  
an automatic emergency deactivation sequence on the card, resets bit START and pulls  
pin INT LOW.  
9. Limiting values  
Table 13. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
on pin VDD  
on pin VDDP  
Min  
0.5  
0.5  
Max  
+6.5  
+6.5  
Unit  
V
VDD  
supply voltage  
VDD(DCDC) DC-to-DC converter  
supply voltage  
V
VDD(INTF)  
VIH  
interface supply voltage on pin VDDI  
HIGH-level input voltage on pins SAP, SAM, SBP, SBM, VUP  
on pins SDA, SCL  
0.5  
0.5  
0.5  
0.5  
-
+6.5  
+7.5  
+6.5  
V
V
V
on all other pins  
VDD + 0.5 V  
Ptot  
Tstg  
Tj  
total power dissipation  
storage temperature  
junction temperature  
Tamb = 25 °C to +85 °C  
500  
mW  
55  
-
+150  
150  
°C  
°C  
[1]  
Vesd  
electrostatic discharge  
voltage  
Human Body Model (HBM)  
on card pins I/O, VCC, CLK, GNDC, PRES, RST  
on all other pins  
6  
2  
+6  
+2  
kV  
kV  
Machine Model (MM)  
all pins, excluding card pins  
200  
+200  
V
[1] Every pin withstands the ESD test according to MIL-STD-883C class 3 for card contacts, class 2 for the remaining. Method 3015 (HBM;  
1500 ; 100 pF) defines 3 pulses positive and 3 pulses negative on each pin referenced to ground.  
10. Thermal characteristics  
Table 14. Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Rth(j-a)  
thermal resistance from junction to ambient  
in free air  
100  
K/W  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
16 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
11. Characteristics  
Table 15. Supply  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
VDD  
Parameter  
Conditions  
on pin VDD  
on pin VDDP  
Min  
2.7  
2.7  
Typ  
Max Unit  
supply voltage  
-
-
6.5  
6.5  
V
V
VDD(DCDC)  
DC-to-DC converter  
supply voltage  
VDD(INTF)  
IDD  
interface supply voltage  
supply current  
on pin VDDI  
1.5  
-
-
-
6.5  
10  
V
[1]  
[1]  
[1]  
Shutdown mode  
-
-
µA  
µA  
Inactive mode; CLKIN LOW or HIGH  
Active mode; VCC = 5 V; fCLK = 5 MHz  
capacitive; ICC = 5 mA  
capacitive; ICC = 55 mA  
inductive; ICC = 5 mA  
200  
-
-
-
-
-
-
-
-
-
-
15  
200  
15  
mA  
mA  
mA  
mA  
mA  
inductive; ICC = 55 mA  
150  
2
[1]  
Power-down mode; VCC = 5 V; ICC = 100 µA;  
CLK stopped; CLKIN HIGH or LOW;  
capacitive or inductive  
IDD(INTF)  
Vth(POR)L  
interface supply current  
on pin VDDI  
-
-
-
120  
µA  
LOW-level power-on reset decreasing voltage on pin VDD; see Figure 4  
threshold voltage  
2.30  
2.60  
V
Vhys(POR)  
power-on reset hysteresis on pin VDD; see Figure 4  
voltage  
50  
-
150  
mV  
[1] Sum of currents on pins VDD and VDDI  
.
Table 16. Supply supervisor  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Pin PORADJ  
Vth(H)(PORADJ)  
HIGH-level threshold voltage rising voltage;  
1.25 1.28 1.31  
1.19 1.22 1.25  
V
on pin PORADJ  
see Section 8.2.2  
Vth(L)(PORADJ)  
LOW-level threshold voltage  
on pin PORADJ  
falling voltage;  
see Section 8.2.2  
V
Vhys  
Vth/T  
IL  
hysteresis voltage  
V
th(H)(PORADJ) Vth(L)(PORADJ)  
;
30  
-
60  
-
90  
mV  
mV/°C  
see Section 8.2.2  
threshold voltage variation  
with temperature  
on Vth(H)(PORADJ)  
and Vth(L)(PORADJ)  
0.25  
leakage current  
VPORADJ < 0.6 V  
VPORADJ > 0.8 V  
0
4
-
10  
+1  
µA  
µA  
1  
Pin CDEL  
VCDEL  
voltage on pin CDEL  
current on pin CDEL  
-
-
-
-
-
VDD + 0.3  
V
ICDEL  
pin grounded (charge)  
VCDEL = VDD (discharge)  
internal alarm pulse;  
2  
5  
10  
0
-
µA  
mA  
ms  
tW  
pulse width  
-
C
CDEL = 22 nF  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
17 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
Table 17. DC-to-DC converter  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
fosc(int)  
VVUP  
Parameter  
Conditions  
Min  
2
Typ  
Max Unit  
internal oscillator frequency  
voltage on pin VUP  
2.5  
3
MHz  
V
5 V card  
5.3  
3.5  
-
5.5  
5.8  
4.2  
-
3 V card  
4
V
1.8 V card  
VDD(DCDC)  
V
Vdet  
detection voltage  
on pin VDDP  
5 V card; Follower mode  
3 V card; Follower mode  
5 V card; Tripler mode  
5.5  
3.8  
-
5.8  
4
6
V
V
V
4.2  
-
3.5  
Table 18. Card drivers  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
Supply voltage for the card: pin VCC  
Vo(inact)  
inactive mode output  
voltage  
no load  
0
0
-
-
-
-
0.1  
0.3  
1  
V
Io(inact) = 1 mA  
at grounded pin VCC  
V
Io(inact)  
VCC  
inactive mode output  
current  
mA  
[2]  
[2]  
supply voltage  
Active mode; 2.7 V < VDD < 6.5 V  
5 V card; ICC < 60 mA; VCC = 5 V  
3 V card; ICC < 55 mA; VCC = 3 V  
1.8 V card; ICC < 30 mA; VCC = 1.8 V  
4.75  
2.80  
1.65  
5
5.25  
3.15  
1.95  
V
V
V
3
1.8  
Active mode; AC current pulses with  
I < 200 mA, t < 400 ns and f < 20 MHz  
5 V card; current pulses of 40 nAs  
3 V card; current pulses of 24 nAs  
1.8 V card; current pulses of 15 nAs  
on VCC; 20 kHz < f < 200 MHz  
4.65  
2.76  
1.62  
-
-
-
-
-
5.35  
3.24  
1.98  
350  
V
V
V
Vripple(p-p) peak-to-peak ripple  
voltage  
mV  
ICC  
supply current  
VDD > 2.7 V  
5 V card; VCC = 0 V to 5 V  
3 V card; VCC = 0 V to 3 V  
1.8 V card; VCC = 0 V to 1.8 V  
VCC shorted to GND  
5 V card or 3 V card  
1.8 V card  
-
-
-
-
-
-
55  
55  
35  
mA  
mA  
mA  
-
-
90  
70  
120  
90  
mA  
mA  
SR  
slew rate  
rise or fall; maximum load capacitor  
CL = 300 nF  
5 V card  
3 V card  
1.8 V card  
0.080  
0.050  
0.025  
0.140 0.200  
0.080 0.110  
0.045 0.080  
V/µs  
V/µs  
V/µs  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
18 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
Table 18. Card drivers …continued  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Reset output to the card: pin RST  
Vo(inact)  
inactive mode output  
voltage  
no load  
0
0
0
-
-
-
0.1  
0.3  
1  
V
Io(inact) = 1 mA  
at grounded pin RST  
V
Io(inact)  
VOL  
inactive mode output  
current  
mA  
LOW-level output  
voltage  
IOL = 200 µA  
0
-
0.3  
V
V
VOH  
HIGH-level output  
voltage  
IOH < 200 µA  
V
CC 0.5 -  
VCC  
tr  
tf  
rise time  
fall time  
CL = 30 pF  
CL = 30 pF  
-
-
-
-
0.1  
0.1  
µs  
µs  
Clock output to the card: pin CLK  
Vo(inact)  
inactive mode output  
voltage  
no load  
0
0
0
-
-
-
0.1  
0.3  
1  
V
Io(inact) = 1 mA  
at grounded pin CLK  
V
Io(inact)  
VOL  
inactive mode output  
current  
mA  
LOW-level output  
voltage  
IOL = 200 µA  
0
-
0.3  
V
V
VOH  
HIGH-level output  
voltage  
IOH < 200 µA  
V
CC 0.5 -  
VCC  
tr  
rise time  
CL = 30 pF  
-
-
-
-
-
-
8
ns  
tf  
fall time  
CL = 30 pF  
-
8
ns  
fCLK  
δ
frequency on pin CLK  
clock duty cycle  
slew rate  
operational  
0
10  
55  
-
MHz  
%
CL = 30 pF  
45  
0.2  
SR  
rise and fall; CL = 30 pF  
V/ns  
Data lines: pins I/O, C4 and C8  
Vo(inact)  
inactive mode output  
voltage  
no load  
0
-
-
-
-
0.1  
0.3  
1  
V
Io(inact) = 1 mA  
at grounded pin I/O  
V
[3]  
Io(inact)  
VOL  
inactive mode output  
current  
-
mA  
LOW-level output  
voltage  
IOL = 1 mA  
0
-
0.3  
V
VOH  
HIGH-level output  
voltage  
no DC load  
IOH < 20 µA  
IOH < 40 µA  
0.9VCC  
0.8VCC  
0.75VCC  
0.3  
-
-
-
-
-
VCC + 0.1 V  
VCC + 0.1 V  
VCC + 0.1 V  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
+0.8  
VCC  
V
V
1.5  
[3]  
[3]  
LOW-level input current at pin I/O; VIL = 0 V  
VCC = 5 V  
VCC = 3 V  
-
-
-
-
-
-
600  
500  
10  
µA  
µA  
µA  
ILIH  
HIGH-level input  
leakage current  
at pin I/O; VIH = VCC  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
19 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
Table 18. Card drivers …continued  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
pull-up current  
delay time  
Conditions  
Min  
1  
-
Typ  
-
Max  
-
Unit  
mA  
ns  
[3]  
Ipu  
td  
at pin I/O; VOH = 0.9VCC; CL = 30 pF  
[3][4]  
between edges on pin I/O and pin  
I/OUC; corresponds to width of active  
pull-up pulse  
500  
650  
tr  
rise time  
inputs; from VIL(max) to VIH(min)  
-
-
-
-
1.5  
0.1  
µs  
µs  
tTLH  
clock rise time  
output transition time; from 10 % of VCC  
to 90 % of VCC; CL < 30 pF; no DC load  
[3]  
[3]  
Ci  
input capacitance  
on pin I/O  
-
-
10  
pF  
Rpu(int)  
internal pull-up  
resistance  
between pin I/O and VCC  
10  
13.5 17  
kΩ  
[3]  
fmax  
maximum input clock  
frequency  
on pin I/O  
-
-
500  
kHz  
Card presence input: pin PRES, active-HIGH when pin SPRES = LOW or active-LOW when pin SPRES = HIGH  
VIL  
VIH  
ILIL  
LOW-level input voltage  
-
-
-
-
-
-
-
0.3VDD  
V
HIGH-level input voltage  
0.7VDD  
0
-
V
LOW-level input leakage VI = 0.3VDD; pin SPRES = HIGH  
current  
5
µA  
µA  
µA  
µA  
VI = 0.3VDD; pin SPRES = LOW  
10  
40  
10  
0
ILIH  
HIGH-level input  
leakage current  
VI = 0.7VDD; pin SPRES = HIGH  
VI = 0.7VDD; pin SPRES = LOW  
40  
5  
[1] Two ceramic multilayer capacitors of minimum 100 nF with low Equivalent Series Resistance (ESR) should be used in order to meet  
these specifications.  
[2] Output voltage towards the card, including ripple.  
[3] Pin I/O has an internal 15 kpull-up resistor to VCC  
.
[4] Pin I/OUC has an internal 11 kpull-up resistor to VDD(INTF)  
.
Table 19. Sequencer and clock counter  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
-
Typ  
-
Max Unit  
tact  
activation time  
total sequence  
total sequence  
135  
100  
µs  
µs  
tdeact  
deactivation time  
60  
80  
Table 20. Interface signals to host controller  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Data line: pin I/OUC[1]  
Conditions  
Min  
Typ Max  
Unit  
VOL  
VOH  
LOW-level output voltage  
IOL = 1 mA  
no DC load  
IOH < 10 µA  
0
-
-
-
-
-
-
-
0.3  
V
HIGH-level output voltage  
0.9VDD(INTF)  
VDD(INTF) + 0.2  
VDD(INTF) + 0.2  
0.25VDD(INTF)  
VDD(INTF) + 0.3  
600  
V
0.75VDD(INTF)  
V
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
0.3  
V
0.7VDD(INTF)  
V
VIL = 0 V  
-
-
µA  
µA  
ILIH  
HIGH-level input leakage  
current  
VIH = VDD(INTF)  
10  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
20 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
Table 20. Interface signals to host controller …continued  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ Max  
Unit  
µs  
tr  
rise time  
input; from VIL(max) to VIH(min)  
-
-
-
-
1
tTLH  
clock rise time  
output transition time; from  
0.1  
µs  
10 % to 90 % of VDD(INTF)  
;
CL < 30 pF  
[1]  
Rpu(int)  
internal pull-up resistance  
between pin I/OUC and pin  
VDDI  
11  
15  
19  
kΩ  
Clock input: pin CLKIN  
fCLKIN frequency on pin CLKIN  
VIL  
0
-
-
-
-
-
-
-
25  
MHz  
V
LOW-level input voltage  
HIGH-level input voltage  
VDD(INTF) > 2 V  
0
0.3VDD(INTF)  
0.15VDD(INTF)  
VDD(INTF) + 0.3  
1.5 V < VDD(INTF) < 2 V  
VDD(INTF) > 2 V  
0
V
VIH  
0.7VDD(INTF)  
V
1.5 V < VDD(INTF) < 2 V  
0.85VDD(INTF)  
VDD(INTF) + 0.3 ns  
tr  
tf  
rise time  
fall time  
-
-
0.1 / fCLKIN  
0.1 / fCLKIN  
ns  
ns  
Logic inputs: pins SAD0, SPRES and SDWN  
VIL  
VIH  
ILIL  
LOW-level input voltage  
HIGH-level input voltage  
0.3  
0.7VDD  
-
-
-
-
0.3VDD(INTF)  
VDD(INTF) + 0.3  
±1  
V
V
LOW-level input leakage  
current  
µA  
ILIH  
HIGH-level input leakage  
current  
-
-
-
-
±1  
µA  
Ci  
input capacitance  
10  
pF  
Interrupt line: pin INT; open-drain active-LOW output  
VOL  
ILH  
LOW-level output voltage  
HIGH-level leakage current  
Io = 2 mA  
-
-
-
-
0.3  
10  
V
µA  
Serial data input/output: pin SDA; open-drain  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level output voltage  
HIGH-level leakage current  
LOW-level leakage current  
0.3  
-
-
-
-
-
0.3VDD  
V
VIH  
VOL1  
ILH  
0.7VDD  
6.5  
0.3  
1
V
IOL = 3 mA  
-
-
-
V
input or output  
µA  
µA  
ILL  
depends on the pull-up  
1
resistance; input or output  
Serial clock input: pin SCL  
VIL  
VIH  
ILIH  
LOW-level input voltage  
0.3  
0.7VDD  
-
-
-
-
0.3VDD  
6.5  
V
HIGH-level input voltage  
V
HIGH-level input leakage  
current  
1
µA  
IIL  
LOW-level input current  
depends on the pull-up  
resistance  
-
-
1
µA  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
21 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
Table 20. Interface signals to host controller …continued  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ Max  
Unit  
I2C-bus timing; see Figure 7  
fSCL  
tBUF  
SCL clock frequency  
0
-
-
400  
-
kHz  
bus free time between a STOP  
and START condition  
1.3  
µs  
tHD;STA  
hold time (repeated) START  
condition  
hold time after which first  
clock pulse is generated  
0.6  
-
-
µs  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1.3  
0.6  
0.6  
-
-
-
-
-
-
µs  
µs  
µs  
tHIGH  
tSU;STA  
set-up time for a repeated  
START condition  
[2]  
tHD;DAT  
tSU;DAT  
tr  
data hold time  
0
-
-
-
-
ns  
ns  
ns  
data set-up time  
100  
-
-
rise time of both SDA and SCL  
signals  
300  
tf  
fall time of both SDA and SCL  
signals  
-
-
-
300  
-
ns  
tSU;STO  
set-up time for STOP condition  
0.6  
µs  
[1] Pin I/OUC has an internal 11 kpull-up resistor to VDD(INTF)  
.
[2] The hold time required (not greater than 300 ns) to bridge the undefined region of the falling edge of SCL must be internally provided by  
a transmitter.  
Table 21. Protection and limitations  
VDD = 3.3 V; VDD(INTF) = 1.5 V; fCLKIN = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
40  
-
Typ  
Max Unit  
Tamb  
Tsd  
ambient temperature  
-
+85  
-
°C  
shutdown temperature  
input current limit  
at die  
150  
°C  
[1]  
[1]  
IIlim  
on pin I/O  
15  
15  
70  
20  
-
-
+15  
+15  
+70  
+20  
-
mA  
mA  
mA  
mA  
mA  
IOlim  
output current limit  
on pin I/O  
-
on pin CLK  
-
shutdown current; on pin RST  
shutdown current; on pin VCC  
-
90  
[1] Pin I/O has an internal 15 kpull-up resistor to VCC  
.
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
22 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
SDA  
t
t
t
t
HD;STA  
BUF  
LOW  
f
SCL  
P
S
S
P
t
t
HIGH  
HD;STA  
t
t
t
t
t
SU;STO  
r
HD;DAT  
SU;DAT  
SU;STA  
mba705  
P = STOP condition; S = START condition.  
Fig 7. Timing requirements for the I2C-bus  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
23 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
12. Application information  
V
DD  
R3  
10 k  
(1)  
C16  
IC1  
100 nF  
V
VUP  
SAP  
SBP  
V
DD  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
INT  
IC2  
C20  
100 nF  
V
DD  
SDWN  
DDP  
HOST  
CONTROLLER  
(1)  
C19  
V
SBM  
DDI  
4.7 kΩ  
V
INT  
SDA  
DD  
C15  
100 nF  
100 nF  
SDA  
SCL  
GNDP  
SAM  
GND  
(1)  
C17  
SCL  
CLKout  
I/OAUX  
100 nF  
V
SAD0  
SPRES  
CLKIN  
GND  
I/OUC  
C8  
DD  
4.7 kΩ  
CDEL  
22 nF  
TDA8023TT  
CDEL  
V
DD  
V
DD  
PORADJ  
PRES  
RST  
P1  
C29  
10  
11  
12  
13  
14  
10 kΩ  
100 nF  
V
CC  
C4  
CLK  
I/O  
GNDC  
(1)  
C18  
(2)  
C13  
100 nF  
68 nF  
CARD READER  
normally closed  
C5I  
C6I  
C7I  
C8I  
C1I  
C2I  
C3I  
C4I  
K1  
K2  
R
p
10 kΩ  
V
DD  
001aag341  
(1) Low-ESR capacitor, placed near the IC.  
(2) Low-ESR capacitor, placed near the C1 contact.  
Fig 8. Application diagram: typical TDA8023TT application with capacitive DC-to-DC converter  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
24 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
V
DD  
R3  
10 kΩ  
(1)  
C16  
IC1  
100 nF  
C8  
D1  
V
VUP  
SAP  
SBP  
V
DD  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
4.7 µF  
BAT54  
INT  
IC2  
16 V  
C20  
V
DD  
100 nF  
SDWN  
DDP  
HOST  
CONTROLLER  
L1  
V
SBM  
DDI  
4.7 kΩ  
V
INT  
SDA  
6.8 µH  
C15  
100 nF  
DD  
SDA  
SCL  
GNDP  
SAM  
GND  
SCL  
CLKout  
I/OAUX  
V
SAD0  
SPRES  
CLKIN  
GND  
I/OUC  
C8  
DD  
4.7 kΩ  
CDEL  
22 nF  
TDA8023TT  
CDEL  
PORADJ  
PRES  
RST  
V
DD  
V
DD  
P1  
10 kΩ  
C29  
100 nF  
10  
11  
12  
13  
14  
V
CC  
C4  
CLK  
I/O  
GNDC  
(1)  
(2)  
C18  
C13  
100 nF  
68 nF  
CARD READER  
normally open  
C5I  
C6I  
C7I  
C8I  
C1I  
C2I  
C3I  
C4I  
K1  
K2  
V
DD  
001aag342  
(1) Low-ESR capacitor, placed near the IC.  
(2) Low-ESR capacitor, placed near the C1 contact.  
Fig 9. Application diagram: typical TDA8023TT application with inductive DC-to-DC converter  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
25 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
13. Package outline  
TSSOP28: plastic thin shrink small outline package; 28 leads; body width 4.4 mm  
SOT361-1  
D
E
A
X
c
H
v
M
A
y
E
Z
15  
28  
Q
A
2
(A )  
3
A
A
pin 1 index  
1
θ
L
p
L
1
14  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
9.8  
9.6  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.8  
0.5  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT361-1  
MO-153  
Fig 10. Package outline SOT361-1 (TSSOP28)  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
26 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
14. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
14.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
14.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
14.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
27 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
14.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 11) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 22 and 23  
Table 22. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 23. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 11.  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
28 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 11. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
29 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
15. Revision history  
Table 24. Revision history  
Document ID  
Release date  
20070716  
Data sheet status  
Change notice  
Supersedes  
TDA8023_1  
Product data sheet  
-
-
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
30 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
16. Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
result in personal injury, death or severe property or environmental damage.  
16.2 Definitions  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
16.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
16.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of a NXP Semiconductors product can reasonably be expected to  
I2C-bus — logo is a trademark of NXP B.V.  
17. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
TDA8023_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 16 July 2007  
31 of 32  
TDA8023  
NXP Semiconductors  
Low power IC card interface  
18. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
16.4  
17  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Contact information . . . . . . . . . . . . . . . . . . . . 31  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
18  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
8.1  
8.2  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . 6  
Without external divider on pin PORADJ . . . . . 6  
With external divider on pin PORADJ. . . . . . . . 7  
External capacitor on pin CDEL . . . . . . . . . . . . 7  
Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . 8  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . . 8  
Bus conditions . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Data transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Device addressing . . . . . . . . . . . . . . . . . . . . . . 9  
Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DC-to-DC converter . . . . . . . . . . . . . . . . . . . . 12  
Capacitive configuration . . . . . . . . . . . . . . . . . 12  
Inductive configuration . . . . . . . . . . . . . . . . . . 13  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.4  
8.4.1  
8.4.2  
8.5  
VCC buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
8.6  
Sequencer and clock counter . . . . . . . . . . . . . 13  
Activation sequence . . . . . . . . . . . . . . . . . . . . 13  
Deactivation sequence . . . . . . . . . . . . . . . . . . 15  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.6.1  
8.6.2  
8.7  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 16  
Thermal characteristics. . . . . . . . . . . . . . . . . . 16  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 17  
Application information. . . . . . . . . . . . . . . . . . 24  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 26  
10  
11  
12  
13  
14  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Introduction to soldering . . . . . . . . . . . . . . . . . 27  
Wave and reflow soldering . . . . . . . . . . . . . . . 27  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 27  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 28  
14.1  
14.2  
14.3  
14.4  
15  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 30  
16  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 31  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 31  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
16.1  
16.2  
16.3  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 16 July 2007  
Document identifier: TDA8023_1  

相关型号:

TDA8023TT/C1,118

TDA8023 - Low power IC card interface TSSOP2 28-Pin
NXP

TDA8024

IC card interface
NXP

TDA8024AT

IC card interface
NXP

TDA8024T

IC card interface
NXP

TDA8024TT

IC card interface
NXP

TDA8025

IC card interface
NXP

TDA8025HN

IC card interface
NXP

TDA8025HN/C1,118

TDA8025 - Low voltage supply smart card interface QFN 32-Pin
NXP

TDA8025HN/C1,151

TDA8025 - Low voltage supply smart card interface QFN 32-Pin
NXP

TDA8025HN/C1,518

TDA8025 - Low voltage supply smart card interface QFN 32-Pin
NXP

TDA8025HN/C1,551

TDA8025 - Low voltage supply smart card interface QFN 32-Pin
NXP

TDA8025HN/C1,557

TDA8025 - Low voltage supply smart card interface QFN 32-Pin
NXP