TDA8034AT [NXP]

Smart card interface; 智能卡接口
TDA8034AT
型号: TDA8034AT
厂家: NXP    NXP
描述:

Smart card interface
智能卡接口

文件: 总29页 (文件大小:734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8034T; TDA8034AT  
Smart card interface  
Rev. 2.0 — 12 November 2010  
Product data sheet  
1. General description  
The TDA8034T/TDA8034AT is a cost-effective analog interface for asynchronous and  
synchronous smart cards operating at 5 V or 3 V. Using few external components, the  
TDA8034T/TDA8034AT provides all supply, protection and control functions between a  
smart card and the microcontroller.  
2. Features and benefits  
„ Integrated circuit smart card interface in an SO16 package  
„ 5 V or 3 V smart card supply  
„ One protected half-duplex bidirectional buffered I/O line (C7)  
„ VCC regulation:  
‹ 5 V ± 5 % or 3 V ± 5 % using two low ESR multilayer ceramic capacitors: one of  
220 nF and one of 470 nF  
‹ current spikes of 40 nA/s (VCC = 5 V and 3 V) or 15 nA/s (VCC =1.8 V) up to  
20 MHz, with controlled rise and fall times and filtered overload detection of  
approximately 120 mA  
„ Thermal and short-circuit protection for all card contacts  
„ Automatic activation and deactivation sequences triggered by a short-circuit, card  
take-off, overheating, falling VDD, VDD(INTF) or VDDP  
„ Enhanced card-side ElectroStatic Discharge (ESD) protection of > 6 kV  
„ External clock input up to 26 MHz connected to pin XTAL1  
„ Card clock generation up to 20 MHz using pin CLKDIV1 with synchronous frequency  
changes of:  
‹ 12 fxtal or 14 fxtal on TDA8034T  
‹ fxtal or 12 fxtal on TDA8034AT  
„ Non-inverted control of pin RST using pin RSTIN  
„ Compatible with ISO 7816, NDS and EMV 4.2 payment systems  
„ Supply supervisor for killing spikes during power on and off:  
‹ using a fixed threshold  
‹ using an external resistor bridge with threshold adjustment  
„ Built-in debouncing on card presence contacts (typically 4.5 ms)  
„ Multiplexed status signal using pin OFFN  
3. Applications  
„ Pay TV  
„ Electronic payment  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
„ Identification  
„ Bank card readers  
4. Quick reference data  
Table 1.  
Quick reference data  
VDDP = 5 V; VDD = 3.3 V; VDD(INTF) = 3.3 V; fxtal = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply  
VDDP  
VDD  
power supply voltage  
supply voltage  
pin VDDP  
4.85  
2.7  
1.6  
-
5
5.5  
V
pin VDD  
3.3  
3.3  
-
3.6  
V
VDD(INTF)  
IDD  
interface supply voltage  
supply current  
pin VDD(INTF)  
Shutdown mode  
VDD + 0.3  
V
35  
5
μA  
μA  
IDDP  
power supply current  
Shutdown mode; fxtal  
stopped  
-
-
Active mode;  
f
-
-
-
-
1.5  
6
mA  
CLK = 12 fxtal; no load  
IDD(INTF)  
interface supply current  
Shutdown mode  
μA  
[1]  
Card supply voltage: pin VCC  
VCC  
supply voltage  
active mode  
5 V card  
ICC < 65 mA DC  
4.75  
4.65  
5.0  
5.0  
5.25  
5.25  
V
V
current pulses of  
40 nA/s at  
ICC < 200 mA;  
t < 400 ns  
Vripple(p-p)  
ICC  
peak-to-peak ripple voltage  
supply current  
from 20 kHz to 200 MHz  
VCC = 0 V to 5 V or 3 V  
-
-
-
-
350  
65  
mV  
mA  
General  
tdeact  
deactivation time  
see Figure 7 on page 10  
35  
-
90  
-
250  
0.25  
+85  
μs  
W
Ptot  
total power dissipation  
ambient temperature  
Tamb = 25 °C to +85 °C  
Tamb  
25  
-
°C  
[1] To meet these specifications, VCC should be decoupled to pin GND using two ceramic multilayer capacitors of low ESR with values of  
either 100 nF or one 220 nF and one 470 nF.  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA8034T  
SO16  
plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
TDA8034AT  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
2 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
6. Block diagram  
10 μF  
100 nF  
100 nF  
V
DD  
V
GND  
9
DDP  
14  
13  
SUPPLY  
INTERNAL  
REFERENCE  
INTERNAL  
OSCILLATOR  
CLKUP  
VOLTAGE  
SENSE  
ALARMN  
EN1  
12  
V
CC  
V
CC  
LDO  
7
PVCC  
PRESN  
470 nF  
220 nF  
4
RSTIN  
SEQUENCER  
11  
10  
5
EN4  
EN3  
RST  
CLK  
RESET  
GENERATOR  
CMDVCCN  
15  
6
LEVEL  
SHIFTER  
OFFN  
CLOCK  
GENERATOR  
CLKDIV1  
EN2  
CLK  
CLOCK  
CARD  
CONNECTOR  
CIRCUITRY  
CMDVCCN  
DETECTION  
C5  
C6  
C7  
C8  
C1  
C2  
C3  
C4  
THERMAL  
PROTECTION  
8
I/O  
I/O  
16  
TRANSCEIVER  
I/OUC  
CRYSTAL  
OSCILLATOR  
TDA8034T  
TDA8034AT  
3
1
2
V
DD(INTF)  
XTAL1  
XTAL2  
001aak989  
100 nF  
Fig 1. Block diagram  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
3 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
7. Pinning information  
7.1 Pinning  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
XTAL1  
XTAL2  
I/OUC  
OFFN  
V
V
V
V
DD(INTF)  
DD  
RSTIN  
DDP  
CC  
TDA8034T  
TDA8034AT  
CMDVCCN  
CLKDIV1  
PRESN  
I/O  
RST  
CLK  
GND  
001aak990  
Fig 2. Pin configuration (SO16)  
7.2 Pin description  
Table 3.  
Symbol  
XTAL1  
Pin description  
Pin Supply Type[1] Description  
1
2
3
4
VDD  
I
crystal connection input  
XTAL2  
VDD  
O
P
I
crystal connection output  
interface supply voltage  
VDD(INTF)  
RSTIN  
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
VCC  
microcontroller card reset input; active HIGH  
CMDVCCN 5  
I
microcontroller start activation sequence input; active LOW  
sets the clock frequency on pin CLK; see Table 4 on page 7  
card presence contact input; active LOW[2]  
card input/output data line (C7)[3]  
ground  
CLKDIV1  
PRESN  
I/O  
6
7
8
9
I
I
I/O  
G
O
O
P
GND  
CLK  
-
10 VCC  
11 VCC  
12 VCC  
card clock (C3)  
RST  
card reset (C2)  
VCC  
card supply (C1); decouple to pin GND using one 470 nF capacitor close to pin VCC  
and one 220 nF capacitor close to card socket contact C1 with an ESR < 100 mΩ[4]  
VDDP  
VDD  
13 VDDP  
14 VDD  
P
P
O
low-dropout regulator input supply voltage  
digital supply voltage  
OFFN  
I/OUC  
15 VDD(INTF)  
NMOS interrupt to microcontroller[5]; active LOW; see Section 8.9 on page 10  
microcontroller input/output data line[6]  
16 VDD(INTF) I/O  
[1] I = input, O = output, I/O = input/output, G = ground and P = power supply.  
[2] If pin PRESN is HIGH, the card is considered to be present. During card insertion, debouncing can occur on these signals. To counter  
this, the TDA8034T/TDA8034AT has a built-in debouncing timer (typically 4.5 ms).  
[3] Uses an internal 11 kΩ pull-up resistor connected to pin VCC  
.
[4] Using a 220 nF capacitor increases the noise margin on pin VCC  
.
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
4 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
[5] Uses an internal 20 kΩ pull-up resistor connected to pin VDD(INTF)  
.
.
[6] Uses an internal 10 kΩ pull-up resistor connected to pin VDD(INTF)  
8. Functional description  
Remark: Throughout this document the ISO 7816 terminology conventions have been  
adhered to and it is assumed that the reader is familiar with these.  
8.1 Power supplies  
The power supply voltage ranges are as follows:  
VDDP: 4.85 V to 5.5 V  
VDD: 2.7 V to 3.6 V  
All interface signals to the system controller are referenced to VDD(INTF). All card contacts  
remain inactive during power up or power down. After powering up the device, pin OFFN  
remains LOW until pin CMDVCCN is set HIGH and pin PRESN is LOW. During power  
down, pin OFFN goes LOW when VDDP falls below the falling threshold voltage (Vth).  
The internal oscillator frequency (fosc(int)) is only used during the activation sequences.  
When the card is not activated (pin CMDVCCN is HIGH), the internal oscillator is in low  
frequency mode to reduce power consumption.  
This device has a Low Drop-Off (LDO) voltage regulator connected to pin VCC, and is  
used instead of a DC-to-DC converter. It ensures a minimum VCC of 4.75 V and that the  
power supply voltage on pin VDDP does not fall below 4.85 V for a maximum load current  
of 65 mA.  
8.2 Voltage supervisor  
V
DD(INTF)  
V
DD  
V
DD  
REFERENCE  
VOLTAGE  
V
DDP  
5 V or 3 V  
001aak991  
Fig 3. Voltage supervisor circuit  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
5 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
The voltage supervisor monitors the voltage of the VDDP and VDD supplies providing both  
Power-On Reset (POR) and supply drop-out detection during a card session. The  
supervisor threshold voltages for VDDP and VDD are set internally. As long as VDD is less  
than Vth + Vhys, the IC remains inactive irrespective of the command line levels. After VDD  
has reached a level higher than Vth + Vhys, the IC remains inactive for the duration of tw.  
The output of the supervisor is sent to a digital controller in order to reset the  
TDA8034T/TDA8034AT. This defined reset pulse of approximately 8 ms, i.e. (tw = 1024 ×  
1
fosc(int)low), is used internally to maintain the IC in the Shutdown mode during the supply  
voltage power on; see Figure 4. A deactivation sequence is performed when either VDD or  
DDP falls below Vth.  
V
Remark: fosc(int)low is the low frequency (or inactive) mode of the defined fosc(int)  
parameter.  
V
+ V  
hys  
th  
V
th  
V
DD  
ALARMN  
(internal signal)  
t
w
t
w
power on  
supply dropout  
power off  
001aak993  
Fig 4. Voltage supervisor waveforms  
8.3 Clock circuits  
The clock signal from pin CLK to the card is either supplied by an external clock signal  
connected to pin XTAL1 or generated using a crystal connected between pins XTAL1 and  
XTAL2. The TDA8034T/TDA8034AT automatically detects if an external clock is  
connected to XTAL1, eliminating the need for a separate pin to select the clock source.  
Automatic clock source detection is performed on each activation command (falling edge  
of the signal on pin CMDVCCN). The presence of an external clock on pin XTAL1 is  
checked during a time window defined by the internal oscillator. If a clock is detected, the  
internal crystal oscillator is stopped. If a clock is not detected, the internal crystal oscillator  
is started. When an external clock is used, it is mandatory that the clock is applied to pin  
XTAL1 before the falling edge of the signal on pin CMDVCCN.  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
6 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
DIGITAL  
enclkin  
clkxtal  
MULTIPLEXER  
CRYSTAL  
XTAL1  
XTAL2  
001aak992  
enclkin and clkxtal are internal signal names.  
Fig 5. Basic layout for using an external clock  
The clock frequency is selected using pin CLKDIV1 to be either 12 fxtal or 14 fxtal on  
TDA8034T or fxtal or 12 fxtal on TDA8034AT as shown in Table 4.  
The frequency change is synchronous and as such during transition, no pulse is shorter  
than 45 % of the smallest period. In addition, only the first and last clock pulse around the  
change has the correct width. When dynamically changing the frequency, the modification  
is only effective after 10 clock periods on pin XTAL1.  
The duty cycle of fxtal on pin CLK should be between 45 % and 55 %. If an external clock  
is connected to pin XTAL1, its duty cycle must be between 48 % and 52 %.  
When the frequency of the clock signal on pin CLK is either 12 fxtal or 14 fxtal on  
TDA8034T or fxtal or 12 fxtal on TDA8034AT, the frequency dividers guarantee a duty  
cycle between 45 % and 55 %.  
Table 4.  
Clock configuration  
Pin CLKDIV1 level  
Pin CLK level  
TDA8034T  
12 fxtal  
TDA8034AT  
12 fxtal  
fxtal  
HIGH  
LOW  
14 fxtal  
8.4 Input and output circuits  
When pins I/O and I/OUC are pulled HIGH using an 11 kΩ resistor between pins I/O and  
CC and/or between pins I/OUC and VDD(INTF), both lines enter the idle state. Pin I/O is  
V
referenced to VCC and pin I/OUC to VDD(INTF), thus allowing operation at VCC VDD(INTF)  
.
The first side on which a falling edge occurs becomes the master. An anti-latch circuit  
disables falling edge detection on the other line, making it the slave. After a time delay td,  
the logic 0 present on the master-side is sent to the slave-side. When the master-side  
returns logic 1, the slave-side sends logic 1 during time delay (tw(pu)). After this sequence,  
both master and slave sides return to their idle states.  
The active pull-up feature ensures fast LOW-to-HIGH transitions making the  
TDA8034T/TDA8034AT capable of delivering more than 1 mA, up to an output voltage of  
0.9VCC, at a load of 80 pF. At the end of the active pull-up pulse, the output voltage is  
dependent on the internal pull-up resistor value and load current. The current sent to and  
received from the card’s I/O lines is limited to 15 mA at a maximum frequency of 1 MHz.  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
7 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
8.5 Shutdown mode  
After a power-on reset, if pin CMDVCCN is HIGH, the circuit enters the Shutdown mode,  
ensuring only the minimum number of circuits are active while the TDA8034T/TDA8034AT  
waits for the microcontroller to start a session.  
all card contacts are inactive. The impedance between the contacts and GND is  
approximately 200 Ω.  
pin I/OUC is high-impedance using the 11 kΩ pull-up resistor connected to VDD(INTF)  
the voltage generators are stopped  
the voltage supervisor is active  
the internal oscillator runs at its lowest frequency (fosc(int)low  
)
8.6 Activation sequence  
The following device activation sequence is applied when using an external clock; see  
Figure 6:  
1. Pin CMDVCCN is pulled LOW (t0).  
2. The internal oscillator is triggered (t0).  
3. The internal oscillator changes to high frequency (t1).  
4. VCC rises from either 0 V to 3 V or 0 V to 5 V on a controlled slope (t2).  
5. Pin I/O is driven HIGH (t3).  
6. The clock on pin CLK is applied to the C3 contact (t4).  
7. Pin RST is enabled (t5).  
Calculation of the time delays is as follows:  
t1 = t0 + 384 × 1fosc(int)low  
t2 = t1  
t3 = t1 + 17T / 2  
t4 = driven by host controller; > t3 and < t5  
t5 = t1 + 23T / 2  
Remark: The value of period T is 64 times the period interval of the internal oscillator at  
high frequency (1fosc(int)high); t3 is called td(start) and t5 is called td(end)  
.
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
8 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
CMDVCCN  
XTAL  
V
CC  
I/O  
ATR  
CLK  
> 200 ns  
RSTIN  
RST  
I/OUC  
OSCINT  
low frequency  
t0 t1 = t2  
high frequency  
t4  
t
= t  
d(end) act  
t
d(start)  
001aai966  
OSCINT = internal oscillator.  
Fig 6. Activation sequence at t3  
8.7 Deactivation sequence  
When a session ends, the microcontroller sets pin CMDVCCN HIGH. The  
TDA8034T/TDA8034AT then executes an automatic deactivation sequence by counting  
the sequencer back to the inactive state (see Figure 7) as follows:  
1. Pin RST is pulled LOW (t11).  
2. The clock is stopped, pin CLK is LOW (t12).  
3. Pin I/O is pulled LOW (t13).  
4. VCC falls to 0 V (t14). The deactivation sequence is completed when VCC reaches its  
inactive state.  
5. VCC < 0.4 V (tdeac  
)
6. All card contacts become low-impedance to GND. However, pin I/OUC remains pulled  
up to VDD using the 11 kΩ resistor.  
7. The internal oscillator returns to its low frequency mode.  
Calculation of the time delays is as follows:  
t11 = t10 + 3T / 64  
t12 = t11 + T / 2  
t13 = t11 + T  
t14 = t11 + 3T / 2  
tdeac = t11 + 3T / 2 + VCC fall time  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
9 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
Remark: The value of period T is 64 times the period interval of the internal oscillator (i.e.  
± 25 μs).  
CMDVCC  
RST  
CLK  
I/O  
V
CC  
XTAL1  
OSCINT  
high frequency  
t10 t11 t12  
low frequency  
t13  
t14  
t
001aak995  
deact  
OSCINT = internal oscillator.  
Fig 7. Deactivation sequence  
8.8 VCC regulator  
The VCC buffer is able to continuously deliver up to 65 mA at VCC = 5 V or 3 V.  
The VCC buffer has an internal overload protection with a threshold value of approximately  
120 mA. This detection is internally filtered, enabling spurious current pulses up to  
200 mA with a duration of a few milliseconds to be drawn by the card without causing  
deactivation. However, the average current value must stay below maximum; see Table 8.  
8.9 Fault detection  
The following conditions are monitored by the fault detection circuit:  
Short-circuit or high current on pin VCC  
Card removal during transaction  
VDDP falling  
VDD falling  
VDD(INTF) falling  
Overheating  
Fault detection monitors two different situations:  
Outside card sessions, pin CMDVCCN is HIGH: pin OFFN is LOW if the card is not in  
the reader and HIGH if the card is in the reader. Any voltage drop on VDD is detected  
by the voltage supervisor. This generates an internal power-on reset pulse but does  
not act upon the pin OFFN signal. The card is not powered-up and short-circuits or  
overheating are not detected.  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
10 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
In card sessions, pin CMDVCCN is LOW: when pin OFFN goes LOW, the fault  
detection circuit triggers the automatic emergency deactivation sequence (see  
Figure 8). When the microcontroller resets pin CMDVCCN to HIGH, after the  
deactivation sequence, pin OFFN is rechecked. If the card is still present, pin OFFN  
returns to HIGH. This check identifies the fault as either a hardware problem or a card  
removal incident.  
On card insertion or removal, bouncing can occur in the PRESN signal. This depends on  
the type of card presence switch in the connector (normally open or normally closed) and  
the mechanical characteristics of the switch. To correct for this, a debouncing feature is  
integrated in to the TDA8034T/TDA8034AT. This feature operates at a typical duration of  
4.5 ms (tdeb = 640 × (1fosc(int)low). Figure 9 on page 12 shows the operation of the  
debouncing feature.  
On card insertion, pin OFFN goes HIGH after the debounce time has elapsed. When the  
card is extracted, the automatic card deactivation sequence is performed on the first  
HIGH/LOW transition on pin PRESN. After this, pin OFFN goes LOW.  
OFFN  
PRESN  
RST  
CLK  
I/O  
V
CC  
XTAL  
OSCINT  
high frequency  
low frequency  
t10  
t12  
t
t13  
t14  
001aai971  
deact  
Fig 8. Emergency deactivation sequence after card removal  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
11 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
PRESN  
OFFN  
CMDVCCN  
t
t
deb  
deb  
(1)  
(2)  
001aal411  
V
CC  
(1) Deactivation caused by card withdrawal.  
(2) Deactivation caused by short-circuit.  
Fig 9. Operation of debounce feature with pins OFFN, CMDVCCN, PRESN and VCC  
8.10 Automatic determining of card supply voltage  
The supply voltage (VCC) that the card requires is determined automatically by monitoring  
the duration of the HIGH state (logic 1) on pin CMDVCCN before the activation command  
(CMDVCCN falling edge) occurs. If pin CMDVCCN stays HIGH for more than 30 ms,  
activation occurs with VCC set to 5 V. If pin CMDVCCN stays HIGH for less than 15 ms,  
activation occurs with VCC set to 3 V.  
To activate the card at VCC = 5 V, pin CMDVCCN must stay HIGH for t0 > 30 ms before  
going LOW (logic 0).  
CMDVCCN  
t0  
3 V or 5 V  
5 V  
V
CC  
001aak998  
Fig 10. Card activation, VCC = 5 V, t0 > 30 ms  
To activate the card at VCC = 3 V, pin CMDVCCN must stay HIGH for t0 < 15 ms before  
going LOW (logic 0).  
CMDVCCN  
t0  
3 V or 5 V  
3 V  
V
CC  
001aak999  
Fig 11. Card activation, VCC = 3 V, t0 < 15 ms  
If pin CMDVCCN is HIGH for more than 15 ms (t0 > 15 ms) but less than 30 ms, pin  
CMDVCCN must be set LOW for t1 (200 μs < t1 < 700 μs), and then HIGH for t2  
(200 μs < t2 < 15 ms) before going LOW.  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
12 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
CMDVCCN  
t0  
t1  
t2  
3 V or 5 V  
3 V  
V
CC  
001aal000  
Fig 12. Card activation, VCC = 3 V, t0 > 15 ms  
If pin CMDVCCN is HIGH for more than 30 ms (card inactive), and if the card needs to be  
activated at 3 V, the sequence shown in Figure 12 applies: pin CMDVCCN must be set  
LOW for t1 (200 μs < t1 < 700 μs), and then HIGH for t2 (200 μs < t2 < 15 ms) before  
going LOW.  
9. Limiting values  
Remark: All card contacts are protected against any short-circuit to any other card  
contact. Stress beyond the levels indicated in Table 5 can cause permanent damage to  
the device. This is a short-term stress rating only and under no circumstances implies  
functional operation under long-term stress conditions.  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDDP  
Parameter  
Conditions  
pin VDDP  
Min  
Max  
+6  
Unit  
V
power supply voltage  
supply voltage  
0.3  
0.3  
0.3  
0.3  
VDD  
pin VDD  
+4.6  
+4.6  
+4.6  
V
VDD(INTF)  
VI  
interface supply voltage  
input voltage  
pin VDD(INTF)  
V
pins CMDVCCN, CLKDIV1, RSTIN, OFFN,  
XTAL1, XTAL2, I/OUC  
V
card contact pins PRESN, I/O, RST and  
CLK  
0.3  
+6  
V
Tstg  
Ptot  
Tj  
storage temperature  
55  
-
+150  
0.25  
+125  
+85  
+6  
°C  
W
total power dissipation  
junction temperature  
Tamb = 25 °C to +85 °C  
-
°C  
°C  
kV  
Tamb  
VESD  
ambient temperature  
electrostatic discharge voltage  
25  
6  
Human Body Model (HBM) on card pins I/O,  
RST, VCC, CLK, PRESN; within typical  
application  
Human Body Model (HBM); all other pins  
Machine Model (MM); all pins  
2  
+2  
kV  
V
200  
500  
+200  
+500  
Field Charged Device Model (FCDM);  
all pins  
V
10. Thermal characteristics  
Table 6.  
Symbol Package name  
Rth(j-a) SO16  
Thermal characteristics  
Parameter  
Conditions  
in free air  
Typ  
94  
Unit  
K/W  
thermal resistance from junction to ambient  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
13 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
11. Characteristics  
Table 7.  
Characteristics of IC supply voltage  
VDDP = 5 V; VDD = 3.3 V; VDD(INTF) = 3.3 V; fxtal = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply  
VDDP  
VDD  
power supply voltage  
supply voltage  
pin VDDP  
pin VDD  
4.85  
2.7  
1.6  
-
5
5.5  
V
3.3  
3.3  
-
3.6  
V
VDD(INTF) interface supply voltage pin VDD(INTF)  
VDD + 0.3  
35  
V
IDD  
supply current  
Shutdown mode  
Shutdown mode  
fxtal stopped  
μA  
IDDP  
power supply current  
-
-
5
μA  
Active mode  
fCLK = 12 fxtal; no load  
-
-
-
-
1.5  
70  
mA  
mA  
fCLK = 12 fxtal  
;
ICC = 65 mA  
IDD(INTF) interface supply current Shutdown mode  
-
-
6
μA  
V
Vth  
Vhys  
tw  
threshold voltage  
hysteresis voltage  
pulse width  
pin VDD  
pin VDDP  
pin VDD  
pin VDDP  
2.30  
3.00  
50  
2.40  
4.10  
100  
200  
8
2.50  
4.40  
150  
350  
10.2  
V
mV  
mV  
ms  
100  
5.1  
[1]  
Card supply voltage: pin VCC  
[2]  
Cdec  
Vo  
decoupling capacitance connected to VCC  
550  
-
830  
nF  
output voltage  
Shutdown mode  
no load  
0.1  
0.1  
-
-
-
-
+0.1  
+0.3  
1  
V
Io = 1 mA  
V
Io  
output current  
supply voltage  
Shutdown mode; pin VCC  
connected to ground  
mA  
VCC  
active mode  
5 V card  
ICC < 65 mA DC  
4.75  
4.65  
5.0  
5.0  
5.25  
5.25  
V
V
current pulses of 40 nA/s  
at ICC < 200 mA;  
t < 400 ns  
3 V card  
I
CC < 65 mA DC  
2.85  
2.76  
3.05  
-
3.15  
3.20  
V
V
current pulses of 40 nA/s  
at ICC < 200 mA;  
t < 400 ns  
Vripple(p-p) peak-to-peak ripple  
voltage  
20 kHz to 200 MHz  
-
-
350  
mV  
ICC  
supply current  
VCC = 0 V to 5 V or 3 V  
VCC shorted to ground  
-
-
65  
mA  
mA  
90  
120  
150  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
14 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
Table 7.  
Characteristics of IC supply voltage …continued  
VDDP = 5 V; VDD = 3.3 V; VDD(INTF) = 3.3 V; fxtal = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
SR slew rate  
Conditions  
5 V card  
Min  
Typ  
Max  
Unit  
V/μs  
V/μs  
0.055  
0.040  
0.180  
0.180  
0.300  
0.300  
3 V card  
Crystal oscillator: pins XTAL1 and XTAL2  
Cext  
external capacitance  
pins XTAL1 and XTAL2  
(depending on the crystal or  
resonator specification)  
-
-
-
15  
26  
pF  
fxtal  
crystal frequency  
external frequency  
card clock reference; crystal  
oscillator  
2
MHz  
fext  
VIL  
external clock on pin XTAL1  
crystal oscillator  
external clock  
0
-
-
-
-
-
26  
MHz  
V
LOW-level input  
voltage  
0.3  
+0.3VDD  
0.3  
+0.3VDD(INTF)  
VDD + 0.3  
VDD(INTF) + 0.3  
V
VIH  
HIGH-level input  
voltage  
crystal oscillator  
external clock  
0.7VDD  
0.7VDD(INTF)  
V
V
Data lines: pins I/O and I/OUC  
td  
delay time  
falling edge on pins I/O and  
I/OUC or vise versa  
-
-
200  
ns  
tw(pu)  
fio  
pull-up pulse width  
200  
-
-
-
400  
1
ns  
input/output frequency on data lines  
-
-
MHz  
pF  
Ci  
input capacitance  
on data lines  
10  
Data lines to the card: pin I/O[3]  
Vo  
output voltage  
Shutdown mode  
no load  
0
0
-
-
-
-
0.1  
0.3  
1  
V
Io = 1 mA  
V
Io  
output current  
Shutdown mode; pin I/O  
grounded  
mA  
VOL  
LOW-level output  
voltage  
IOL = 1 mA  
0
-
-
-
-
-
-
0.3  
V
V
V
V
V
V
IOL 15 mA  
no DC load  
IOH < 40 μA  
IOH ≥ −15 mA  
VCC 0.4  
0.9VCC  
0.75VCC  
0
VCC  
VOH  
HIGH-level output  
voltage  
VCC + 0.1  
VCC + 0.1  
0.4  
VIL  
VIH  
LOW-level input  
voltage  
0.3  
+0.8  
HIGH-level input  
voltage  
VCC = +5 V  
VCC = +3 V  
pin I/O  
0.6VCC  
-
VCC + 0.3  
V
0.7VCC  
-
VCC + 0.3  
V
Vhys  
IIL  
hysteresis voltage  
-
-
-
50  
-
-
mV  
μA  
μA  
LOW-level input current pin I/O; VIL = 0 V  
600  
10  
IIH  
HIGH-level input  
current  
pin I/O; VIH = VCC  
-
tr(i)  
input rise time  
VIL maximum to  
VIH minimum  
-
-
-
-
1.2  
0.1  
μs  
μs  
tr(o)  
output rise time  
CL 80 pF; 10 % to 90 %;  
0 V to VCC  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
15 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
Table 7.  
Characteristics of IC supply voltage …continued  
VDDP = 5 V; VDD = 3.3 V; VDD(INTF) = 3.3 V; fxtal = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tf(i)  
input fall time  
VIL maximum to  
VIH minimum  
-
-
1.2  
μs  
tf(o)  
output fall time  
CL 80 pF; 10 % to 90 %;  
-
-
0.1  
μs  
0 V to VCC  
Rpu  
Ipu  
pull-up resistance  
pull-up current  
connected to VCC  
7
9
11  
kΩ  
VOH = 0.9VCC; C = 80 pF  
8  
6  
4  
mA  
Data lines to the system: pin I/OUC[4]  
VOL  
LOW-level output  
voltage  
IOL = 1 mA  
0
-
0.3  
V
VOH  
HIGH-level output  
voltage  
no DC load  
0.9VDD(INTF)  
0.75VDD(INTF)  
0.75VDD(INTF)  
0.3  
-
-
-
-
VDD(INTF) + 0.1  
VDD(INTF) + 0.1  
VDD(INTF) + 0.1  
+0.3VDD(INTF)  
V
V
V
V
IOH 40 μA; VDD(INTF) > 2 V  
IOH 20 μA; VDD(INTF) < 2 V  
VIL  
VIH  
LOW-level input  
voltage  
HIGH-level input  
voltage  
0.7VDD(INTF)  
-
VDD(INTF) + 0.3  
V
Vhys  
IIH  
hysteresis voltage  
pin I/OUC  
-
-
0.14VDD(INTF)  
-
-
V
HIGH-level input  
current  
VIH = VDD(INTF)  
10  
μA  
IIL  
LOW-level input current VIL = 0 V  
-
-
600  
12  
μA  
kΩ  
μs  
Rpu  
tr(i)  
pull-up resistance  
input rise time  
connected to VDD(INTF)  
8
-
10  
-
VIL maximum to  
VIH minimum  
1.2  
tr(o)  
tf(i)  
tf(o)  
Ipu  
output rise time  
input fall time  
output fall time  
pull-up current  
CL 30 pF; 10 % to 90 %;  
0 V to VDD(INTF)  
-
-
-
-
-
0.1  
1.2  
0.1  
-
μs  
μs  
μs  
mA  
VIL maximum to  
VIH minimum  
-
CL 30 pF; 10 % to 90 %;  
0 V to VDD(INTF)  
-
VOH = 0.9VDD; C = 30 pF  
1  
Internal oscillator  
fosc(int) internal oscillator  
frequency  
Reset output to the card: pin RST  
Shutdown mode  
active state  
100  
2
150  
2.7  
200  
3.2  
kHz  
MHz  
Vo  
output voltage  
Shutdown mode  
no load  
0
0
-
-
-
-
0.1  
0.3  
1  
V
Io = 1 mA  
V
Io  
td  
output current  
delay time  
Shutdown mode; pin RST  
grounded  
mA  
between pins RSTIN and  
RST; RST enabled  
-
-
2
μs  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
16 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
Table 7.  
Characteristics of IC supply voltage …continued  
VDDP = 5 V; VDD = 3.3 V; VDD(INTF) = 3.3 V; fxtal = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
VOL LOW-level output  
Conditions  
Min  
Typ  
Max  
0.3  
Unit  
V
IOL = 200 μA; VCC = +5 V  
IOL = 200 μA; VCC = +3 V  
current limit IOL = 20 mA  
IOH = 200 μA  
0
-
-
-
-
-
-
-
voltage  
0
0.2  
V
VCC 0.4  
VCC  
VCC  
0.4  
V
VOH  
HIGH-level output  
voltage  
0.9VCC  
V
current limit IOH = 20 mA  
CL = 100 pF  
0
-
V
tr  
tf  
rise time  
fall time  
0.1  
μs  
μs  
CL = 100 pF  
-
0.1  
Clock output to the card: pin CLK  
Vo  
output voltage  
Shutdown mode  
no load  
0
0
-
-
-
-
0.1  
0.3  
1  
V
Io = 1 mA  
V
Io  
output current  
Shutdown mode; pin CLK  
grounded  
mA  
VOL  
LOW-level output  
voltage  
IOL = 200 μA  
0
-
-
-
-
-
-
-
-
0.3  
VCC  
VCC  
0.4  
16  
V
current limit IOL = 70 mA  
IOH = 200 μA  
VCC 0.4  
V
VOH  
HIGH-level output  
voltage  
0.9VCC  
V
current limit IOH = 70 mA  
CL = 30 pF  
0
-
V
[5]  
[5]  
tr  
rise time  
fall time  
ns  
ns  
MHz  
%
tf  
CL = 30 pF  
-
16  
fCLK  
δ
frequency on pin CLK operational  
0
45  
20  
[5]  
duty cycle  
slew rate  
CL = 30 pF  
55  
SR  
rise and fall; CL = 30 pF  
VCC = +5 V  
0.2  
-
-
-
-
V/ns  
V/ns  
VCC = +3 V  
0.12  
Control inputs: pins CLKDIV1 and RSTIN[6]  
VIL  
LOW-level input  
voltage  
0.3  
-
-
0.3VDD(INTF)  
V
V
VIH  
HIGH-level input  
voltage  
0.7 VDD(INTF)  
VDD(INTF) + 0.3  
Vhys  
IIL  
hysteresis voltage  
control input  
-
-
-
0.14 VDD(INTF)  
-
V
LOW-level input current VIL = 0 V  
-
-
1
1
μA  
μA  
IIH  
HIGH-level input  
current  
VIH = VDD(INTF)  
Control input: pin CMDVCCN[6]  
VIL  
LOW-level input  
voltage  
0.3  
-
-
0.3VDD(INTF)  
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD(INTF)  
VDD(INTF) + 0.3  
Vhys  
IIL  
hysteresis voltage  
control input  
-
-
-
0.14VDD(INTF)  
-
V
LOW-level input current VIL = 0 V  
-
-
1
1
μA  
μA  
IIH  
HIGH-level input  
current  
VIH = VDD(INTF)  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
17 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
Table 7.  
Characteristics of IC supply voltage …continued  
VDDP = 5 V; VDD = 3.3 V; VDD(INTF) = 3.3 V; fxtal = 10 MHz; GND = 0 V; Tamb = 25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fCMDVCCN frequency on pin  
CMDVCCN  
-
-
100  
Hz  
tw  
pulse width  
5 V card; Figure 10  
30  
-
-
-
-
ms  
ms  
3 V card; Figure 11,  
Figure 12  
15  
Card detection input[6][7]  
VIL  
LOW-level input  
voltage  
0.3  
-
-
0.3VDD(INTF)  
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD(INTF)  
VDD(INTF) + 0.3  
Vhys  
IIL  
hysteresis voltage  
pin PRESN  
-
-
-
0.14VDD(INTF)  
-
V
LOW-level input current 0 V < VIL < VDD(INTF)  
-
-
5
5
μA  
μA  
IIH  
HIGH-level input  
current  
0 V < VIH < VDD(INTF)  
OFFN output[8]  
VOL  
VOH  
Rpu  
LOW-level output  
voltage  
IOL = 2 mA  
0
-
0.3  
-
V
HIGH-level output  
voltage  
IOH = 15 μA  
0.75VDD(INTF)  
16  
-
V
pull-up resistance  
connected to VDD(INTF)  
20  
24  
kΩ  
[1] To meet these specifications, VCC should be decoupled to pin GND using two ceramic multilayer capacitors of low ESR with values of  
either 100 nF or one 220 nF and one 470 nF.  
[2] Using decoupling capacitors of one 220 nF ± 20 % and one 470 nF ± 20 %.  
[3] Using the integrated 9 kΩ pull-up resistor connected to VCC  
.
[4] Using the integrated 10 kΩ pull-up resistor connected to VDD(INTF)  
.
[5] The transition time and the duty factor definitions are shown in Figure 13 on page 19; δ = t1 / (t1 + t2).  
[6] Pins PRESN and CMDVCCN are active LOW; pin RSTIN is active HIGH; see Table 4 for states of pin CLKDIV1.  
[7] Pin PRESN has an integrated current source of 1.25 μA to VDD(INTF)  
.
[8] Pin OFFN is an NMOS drain, using an internal 20 kΩ pull-up resistor connected to VDD(INTF)  
.
Table 8.  
Symbol  
IOlim  
Protection characteristics  
Parameter  
Conditions  
pin I/O  
Min  
-15  
135  
70  
20  
90  
Typ  
-
Max  
+15  
225  
+70  
+20  
150  
-
Unit  
mA  
mA  
mA  
mA  
mA  
°C  
output current limit  
pin VCC  
pin CLK  
pin RST  
pin VCC  
at die  
175  
-
-
Isd  
shutdown current  
120  
150  
Tsd  
shutdown temperature  
-
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
18 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
Table 9.  
Symbol  
tact  
Timing characteristics  
Parameter  
Conditions  
Min  
2090  
35  
Typ  
-
Max  
4160  
250  
Unit  
μs  
activation time  
deactivation time  
delay time  
see Figure 9 on page 12  
see Figure 7 on page 10  
CLK sent to card using an external clock  
td(start) = t3; see Figure 6 on page 9  
td(end) = t5; see Figure 6 on page 9  
pin PRESN  
tdeact  
td  
90  
μs  
2090  
2120  
3.2  
-
4112  
4160  
6.4  
μs  
μs  
ms  
-
tdeb  
debounce time  
4.5  
t
t
f
r
V
OH  
90 %  
90 %  
(V  
OH  
+ V ) / 2  
OL  
10 %  
10 %  
V
OL  
t1  
t2  
001aai973  
Fig 13. Definition of output and input transition times  
12. Application information  
MICROCONTROLLER  
V
DD(INTF)  
TDA8034T  
TDA8034AT  
XTAL1  
XTAL2  
I/OUC  
OFFN  
1
2
3
4
5
6
7
8
16  
V
DD(INTF)  
V
DD  
V
DDP  
15  
14  
13  
12  
11  
10  
9
C1  
C2  
V
V
V
V
DD(INTF)  
RSTIN  
DD  
100 nF  
100 nF  
DDP  
CC  
C3  
100 nF  
C4  
10 μF  
CMDVCCN  
CLKDIV1  
PRESN  
I/O  
RST  
CLK  
GND  
C6  
220 nF  
CARD  
CONNECTOR  
C5  
470 nF  
C5 C1  
C6 C2  
C7 C3  
C8 C4  
R4  
0 Ω  
001aal003  
Fig 14. Application diagram  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
19 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
13. Package outline  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
D
E
A
X
v
c
y
H
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.05  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.020  
0.028  
0.012  
inches  
0.069  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT109-1  
076E07  
MS-012  
Fig 15. Package outline SOT109-1 (SO16)  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
20 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
14. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
14.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
14.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
14.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
21 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
14.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 16) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 10 and 11  
Table 10. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 11. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 16.  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
22 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 16. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
15. Abbreviations  
Table 12. Abbreviations  
Acronym  
EMV  
Description  
Europay MasterCard VISA  
ElectroStatic Discharge  
Equivalent Series Resistor  
Field Charged Device Model  
Human Body Model  
ESD  
ESR  
FCDM  
HBM  
LDO  
Low Drop-Out  
MM  
Machine Model  
NMOS  
POR  
Negative-channel Metal-Oxide Semiconductor  
Power-On Reset  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
23 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
16. Revision history  
Table 13. Revision history  
Document ID  
Release date Data sheet status Change notice  
20101112 Product data sheet  
Supersedes  
TDA8034T_TDA8034AT v.2.0  
Modifications:  
-
TDA8034T_TDA8034AT_1  
Table 3 “Pin description”:  
Table note [5] VDD changed into VDD(INTF)  
Table note [6] added  
IOUC, AUX1UC, AUX2UC referenced to new note [6]  
TDA8034T_TDA8034AT_1  
20100205  
Product data sheet  
-
-
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
24 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
17.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
25 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
non-automotive qualified products in automotive equipment or applications.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
26 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
19. Tables  
Table 1. Quick reference data . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering information . . . . . . . . . . . . . . . . . . . . .2  
Table 3. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Table 4. Clock configuration . . . . . . . . . . . . . . . . . . . . . .7  
Table 5. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .13  
Table 6. Thermal characteristics . . . . . . . . . . . . . . . . . .13  
Table 7. Characteristics of IC supply voltage . . . . . . . .14  
Table 8. Protection characteristics . . . . . . . . . . . . . . . .18  
Table 9. Timing characteristics . . . . . . . . . . . . . . . . . . .19  
Table 10. SnPb eutectic process (from J-STD-020C) . . .22  
Table 11. Lead-free process (from J-STD-020C) . . . . . .22  
Table 12. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Table 13. Revision history . . . . . . . . . . . . . . . . . . . . . . . .24  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
27 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
20. Figures  
Fig 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Fig 2. Pin configuration (SO16) . . . . . . . . . . . . . . . . . . . .4  
Fig 3. Voltage supervisor circuit. . . . . . . . . . . . . . . . . . . .5  
Fig 4. Voltage supervisor waveforms. . . . . . . . . . . . . . . .6  
Fig 5. Basic layout for using an external clock. . . . . . . . .7  
Fig 6. Activation sequence at t3. . . . . . . . . . . . . . . . . . . .9  
Fig 7. Deactivation sequence . . . . . . . . . . . . . . . . . . . .10  
Fig 8. Emergency deactivation sequence after card  
removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Fig 9. Operation of debounce feature with pins OFFN,  
CMDVCCN, PRESN and VCC . . . . . . . . . . . . . . .12  
Fig 10. Card activation, VCC = 5 V, t0 > 30 ms. . . . . . . . .12  
Fig 11. Card activation, VCC = 3 V, t0 < 15 ms. . . . . . . . .12  
Fig 12. Card activation, VCC = 3 V, t0 > 15 ms. . . . . . . . .13  
Fig 13. Definition of output and input transition times . . .19  
Fig 14. Application diagram . . . . . . . . . . . . . . . . . . . . . . .19  
Fig 15. Package outline SOT109-1 (SO16). . . . . . . . . . .20  
Fig 16. Temperature profiles for large and small  
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
TDA8034T_TDA8034AT  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 2.0. — 12 November 2010  
28 of 29  
TDA8034T; TDA8034AT  
NXP Semiconductors  
Smart card interface  
21. Contents  
1
2
3
4
5
6
General description. . . . . . . . . . . . . . . . . . . . . . 1  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
Functional description . . . . . . . . . . . . . . . . . . . 5  
Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . 5  
Clock circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Input and output circuits . . . . . . . . . . . . . . . . . . 7  
Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . 8  
Activation sequence . . . . . . . . . . . . . . . . . . . . . 8  
Deactivation sequence . . . . . . . . . . . . . . . . . . . 9  
VCC regulator . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Fault detection . . . . . . . . . . . . . . . . . . . . . . . . 10  
Automatic determining of card supply voltage 12  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
8.10  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal characteristics . . . . . . . . . . . . . . . . . 13  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 14  
Application information. . . . . . . . . . . . . . . . . . 19  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 20  
10  
11  
12  
13  
14  
Soldering of SMD packages . . . . . . . . . . . . . . 21  
Introduction to soldering . . . . . . . . . . . . . . . . . 21  
Wave and reflow soldering . . . . . . . . . . . . . . . 21  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 21  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 22  
14.1  
14.2  
14.3  
14.4  
15  
16  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 24  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 25  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 25  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
17.1  
17.2  
17.3  
17.4  
18  
19  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 26  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 12 November 2010  
Document identifier: TDA8034T_TDA8034AT  

相关型号:

TDA8034AT/C1,112

TDA8034T; TDA8034AT - Low power smart card interface SOP 16-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8034AT/C1,118

TDA8034T; TDA8034AT - Low power smart card interface SOP 16-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8034HN

IC SPECIALTY CONSUMER CIRCUIT, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, PLASTIC, SOT616-1, MO-220, SOT616-1 HVQFN-24, Consumer IC:Other

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8034HN/C1

SPECIALTY CONSUMER CIRCUIT, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT616-1, HVQFN-24

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8034HN/C1,118

TDA8034HN - Low power smart card interface QFN 24-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8034HN/C1,151

TDA8034HN - Low power smart card interface QFN 24-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8034HN/C2QL

TDA8034HN - Low power smart card interface QFN 24-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8034T

Smart card interface

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8034T/C1,112

TDA8034T; TDA8034AT - Low power smart card interface SOP 16-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8034T/C1,118

TDA8034T; TDA8034AT - Low power smart card interface SOP 16-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8035C1

Smart card interface externally by a resistor bridge

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TDA8035HN

Smart card interface externally by a resistor bridge

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP