TDA8547T-T [NXP]

IC 1.2 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO16, Audio/Video Amplifier;
TDA8547T-T
型号: TDA8547T-T
厂家: NXP    NXP
描述:

IC 1.2 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO16, Audio/Video Amplifier

放大器 光电二极管 商用集成电路
文件: 总24页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8547  
2 × 1 W BTL audio amplifier with  
output channel switching  
1997 Oct 07  
Preliminary specification  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
FEATURES  
APPLICATIONS  
Telecommunication equipment  
Selection between output channels  
Flexibility in use  
Portable consumer products  
Personal computers  
Few external components  
Low saturation voltage of output stage  
Gain can be fixed with external resistors  
Standby mode controlled by CMOS compatible levels  
Low standby current  
Motor-driver (servo).  
GENERAL DESCRIPTION  
The TDA8547(T) is a two channel audio power amplifier  
for an output power of 2 × 1 W with an 8 load at a 5 V  
supply. The circuit contains two BTL amplifiers with a  
complementary PNP-NPN output stage and standby/mute  
logic. The operating condition of all channels of the device  
(standby, mute or on) is externally controlled by the  
MODE pin. With the SELECT pin one of the output  
channels can be switched in the standby condition. This  
feature can be used for loudspeaker selection and also  
reduces the quiescent current consumption.  
No switch-on/switch-off plops  
High supply voltage ripple rejection  
Protected against electrostatic discharge  
Outputs short-circuit safe to ground, VCC and across the  
load  
Thermally protected.  
The TDA8547T comes in a SO16 package and the  
TDA8547 in a DIP16 package.  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
2.2  
TYP. MAX. UNIT  
5
18  
22  
12  
10  
V
Iq  
quiescent current  
VCC = 5 V; 2 channels  
15  
8
mA  
mA  
µA  
W
V
CC = 5 V; 1 channel  
Istb  
standby current  
Po  
output power  
THD = 10%; RL = 8 ; VCC = 5 V  
1
THD  
SVRR  
total harmonic distortion  
supply voltage ripple rejection  
Po = 0.5 W  
0.15  
%
50  
dB  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA8547T  
TDA8547  
SO16  
plastic small outline package; 16 leads; body width 7.5 mm  
SOT162-1  
SOT38-1  
DIP16 plastic dual in-line package; 16 leads (300 mil); long body  
1997 Oct 07  
2
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
BLOCK DIAGRAM  
V
V
CC1  
16  
CC2  
9
15  
14  
OUT1  
IN1−  
IN1+  
+
13  
R
V
CC1  
R
+
2
20 kΩ  
OUT1+  
20 kΩ  
STANDBY/MUTE LOGIC  
TDA8547  
10  
11  
12  
OUT2−  
IN2−  
IN2+  
+
R
V
CC2  
R
7
20 kΩ  
+
OUT2+  
4
SVRR  
20 kΩ  
3
5
MODE  
STANDBY/MUTE LOGIC  
SELECT  
1
8
MGK697  
GND1 GND2  
Fig.1 Block diagram.  
3
1997 Oct 07  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
PINNING  
SYMBOL  
GND1  
PIN  
DESCRIPTION  
ground, channel 1  
1
2
OUT1+  
MODE  
SVRR  
positive loudspeaker terminal,  
channel 1  
3
4
5
operating mode select (standby,  
mute, operating)  
handbook, halfpage  
GND1  
OUT1+  
MODE  
SVRR  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC1  
half supply voltage, decoupling  
ripple rejection  
OUT1−  
IN1−  
SELECT  
input for selection of operating  
channel  
IN1+  
n.c.  
6
7
not connected  
TDA8547  
SELECT  
n.c.  
IN2+  
OUT2+  
positive loudspeaker terminal,  
channel 2  
IN2−  
GND2  
VCC2  
8
9
ground, channel 2  
OUT2−  
OUT2+  
GND2  
supply voltage, channel 2  
V
CC2  
OUT2−  
10 negative loudspeaker terminal,  
channel 2  
MGK696  
IN2−  
11 negative input, channel 2  
12 positive input, channel 2  
13 positive input, channel 1  
14 negative input, channel 1  
IN2+  
IN1+  
IN1−  
OUT1−  
15 negative loudspeaker terminal,  
channel 1  
Fig.2 Pin configuration.  
VCC1  
16 supply voltage, channel 1  
FUNCTIONAL DESCRIPTION  
MODE pin  
The TDA8547(T) is a 2 × 1 W BTL audio power amplifier  
capable of delivering 2 × 1 W output power to an 8 load  
at THD = 10% using a 5 V power supply. Using the  
MODE pin the device can be switched to standby and  
mute condition. The device is protected by an internal  
thermal shutdown protection mechanism. The gain can be  
set within a range from 6 to 30 dB by external feedback  
resistors.  
The whole device (both channels) is in the standby mode  
(with a very low current consumption) if the voltage at the  
MODE pin is >(VCC 0.5 V), or if this pin is floating. At a  
MODE voltage level of less than 0.5 V the amplifier is fully  
operational. In the range between 1.5 V and VCC 1.5 V  
the amplifier is in mute condition. The mute condition is  
useful to suppress plop noise at the output caused by  
charging of the input capacitor.  
Power amplifier  
SELECT pin  
The power amplifier is a Bridge-Tied Load (BTL) amplifier  
with a complementary PNP-NPN output stage.  
The voltage loss on the positive supply line is the  
saturation voltage of a PNP power transistor, on the  
negative side the saturation voltage of a NPN power  
transistor. The total voltage loss is <1 V and with a 5 V  
supply voltage and an 8 loudspeaker an output power of  
1 W can be delivered.  
If the voltage at the SELECT pin is in the range between  
1.5 V and VCC 1.5 V, or if it is kept floating, then both  
channels can be operational. If the SELECT pin is set to a  
LOW voltage or grounded, then only channel 2 can  
operate and the power amplifier of channel 1 will be in the  
standby mode. In this case only the loudspeaker at  
channel 2 can operate and the loudspeaker at channel 1  
will be switched off. If the SELECT pin is set to a  
HIGH level or connected to VCC, then only channel 1 can  
1997 Oct 07  
4
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
operate and the power amplifier of channel 2 will be in the  
standby mode. In this case only the loudspeaker at  
channel 1 can operate and the loudspeaker at channel 2  
will be switched off. Setting the SELECT pin to a LOW or  
a HIGH voltage results in a reduction of quiescent current  
consumption by a factor of approximately 2.  
For plop-free channel selecting the device has first to be  
set in mute condition with the MODE pin (between 1.5 V  
and VCC 1.5 V), then set the SELECT pin to the new  
level, after a delay set the MODE pin to a LOW level.  
The delay needed depends on the values of the input  
capacitor and the feedback resistors. Time needed is  
approx. 10 × C1 × (R1 + R2), so approximately 0.6 s. for  
the values in Fig.4.  
Switching with the SELECT pin during operating is not  
plop-free, because the input capacitor of the channel  
which is coming out of standby needs to be charged first.  
Table 1 Control pins MODE and SELECT versus status of output channels  
Voltage levels at control pins at VP = 5 V; for other supply voltages see Figs. 14 and 15.  
CONTROL PIN  
STATUS OF OUTPUT CHANNEL  
TYP. Iq  
(mA)  
MODE  
SELECT  
CHANNEL 1  
CHANNEL 2  
HIGH(1)/NC(2)  
HVP(4)  
X(3)  
standby  
mute  
standby  
mute  
0
15  
15  
8
HVP(4)/NC(2)  
HVP(4)/NC(2)  
HIGH(1)  
HVP(4)/NC(2)  
LOW(5)  
LOW(5)  
on  
on  
HVP(4)/LOW(5)  
HVP(4)/LOW(5)  
HVP(4)/LOW(5)  
mute/on  
mute/on  
standby  
standby  
mute/on  
mute/on  
15  
8
Notes  
1. HIGH = Vpin > VCC 0.5 V.  
2. NC = not connected or floating.  
3. X = don’t care.  
4. HVP = 1.5 V < Vpin < VCC 1.5 V.  
5. LOW = Vpin < 0.5 V.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
MAX.  
UNIT  
VCC  
VI  
operating  
0.3  
0.3  
+18  
VCC + 0.3  
1
V
input voltage  
V
IORM  
Tstg  
Tamb  
VPsc  
Ptot  
repetitive peak output current  
storage temperature  
A
55  
40  
+150  
+85  
10  
°C  
°C  
V
operating ambient temperature  
AC and DC short-circuit safe voltage  
total power dissipation  
SO16  
DIP16  
1.2  
W
W
2.2  
QUALITY SPECIFICATION  
In accordance with “SNW-FQ-611-E”. The number of the quality specification can be found in the “Quality Reference  
Handbook”. The handbook can be ordered using the code 9397 750 00192.  
1997 Oct 07  
5
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
in free air  
VALUE  
UNIT  
Rth(j-a)  
thermal resistance from junction to ambient  
TDA8547T (SO16)  
100  
55  
K/W  
K/W  
TDA8547 (DIP16)  
MGK698  
2.5  
handbook, halfpage  
P
(W)  
2.0  
DIP16  
1.5  
SO16  
1.0  
0.5  
0
0
40  
80  
120  
T
160  
(°C)  
amb  
Fig.3 Power derating curve.  
Table 2 Maximum ambient temperature at different conditions  
CONTINUOUS SINE WAVE DRIVEN  
Tamb(max)  
VCC  
(V)  
RL  
()  
OPERATION  
MODE  
Po  
(W)(1)  
APPLICATION  
Pmax  
(W)  
(°C)  
SO16  
DIP16  
5
8
8
2 channels  
1 channel  
2 channels  
1 channel  
2 channels  
1 channel  
2 channels  
1 channel  
BTL  
BTL  
BTL  
BTL  
BTL  
BTL  
BTL  
BTL  
2 × 1.2  
1.2  
1.4  
0.7  
3.0  
1.5  
1.8  
0.9  
1.0  
0.5  
80  
73  
112  
5
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
8
2 × 2.4  
2.4  
8
68  
16  
16  
28  
28  
2 × 1.2  
1.2  
50  
60  
50  
100  
100  
95  
2 × 1  
1
122  
Note  
1. At THD = 10%.  
1997 Oct 07  
6
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
DC CHARACTERISTICS  
VCC = 5 V; Tamb = 25 °C; RL = 8 ; VMODE = 0 V; gain = 20 dB; measured in BTL application circuit Fig.4; unless  
otherwise specified.  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
operating  
MIN.  
2.2  
TYP.  
MAX.  
18  
UNIT  
VCC  
Iq  
5
V
quiescent current  
BTL 2 channels;  
note 1  
15  
22  
mA  
BTL 1 channel;  
note 1  
8
12  
mA  
Istb  
VO  
standby current  
VMODE = VCC  
note 2  
10  
µA  
V
DC output voltage  
2.2  
VOUT+ VOUTdifferential output voltage  
50  
mV  
offset  
I
IN+, IIN−  
input bias current  
input voltage MODE pin  
500  
0.5  
nA  
V
VMODE  
operating  
mute  
0
1.5  
VCC 1.5 V  
standby  
V
CC 0.5 −  
VCC  
20  
1
V
IMODE  
input current MODE pin  
input voltage SELECT pin  
0 V < VMODE < VCC  
µA  
V
VSELECT  
channel 1 = standby; 0  
channel 2 = on  
channel 1 = on;  
channel 2 = standby  
V
CC 1  
VCC  
100  
V
ISELECT  
input current SELECT pin  
VSELECT = 0 V  
µA  
Notes  
1. Measured with RL = . With a load connected at the outputs the quiescent current will increase, the maximum of this  
increase being equal to the DC output offset voltage divided by RL.  
2. The DC output voltage with respect to ground is approximately 0.5VCC  
.
1997 Oct 07  
7
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
AC CHARACTERISTICS  
VCC = 5 V; Tamb = 25 °C; RL = 8 ; f = 1 kHz; VMODE = 0 V; gain = 20 dB; measured in BTL application circuit Fig.4;  
unless otherwise specified.  
SYMBOL  
PARAMETER  
output power  
CONDITIONS  
THD = 10%  
MIN.  
TYP.  
1.2  
MAX.  
UNIT  
Po  
1
W
THD = 0.5%  
Po = 0.5 W  
note 1  
0.6  
0.9  
0.15  
W
THD  
Gv  
total harmonic distortion  
closed loop voltage gain  
differential input impedance  
noise output voltage  
0.3  
30  
%
6
dB  
kΩ  
µV  
dB  
dB  
µV  
dB  
Zi  
100  
Vno  
note 2  
note 3  
note 4  
note 5  
100  
SVRR  
supply voltage ripple rejection  
50  
40  
Vo  
output voltage  
200  
αcs  
channel separation  
VSELECT = 0.5VCC; note 6 40  
Notes  
R2  
R1  
1. Gain of the amplifier is 2 ×  
in BTL application circuit Fig.4.  
-------  
2. The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with a  
source impedance of RS = 0 at the input.  
3. Supply voltage ripple rejection is measured at the output, with a source impedance of RS = 0 at the input.  
The ripple voltage is a sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is applied to  
the positive supply rail.  
4. Supply voltage ripple rejection is measured at the output, with a source impedance of RS = 0 at the input.  
The ripple voltage is a sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of 100 mV (RMS),  
which is applied to the positive supply rail.  
5. Output voltage in mute position is measured with a 1 V (RMS) input voltage in a bandwidth of 20 Hz to 20 kHz,  
so including noise.  
6. Channel separation is measured at the output with a source impedance of RS = 0 at the input and a frequency of  
1 kHz. The output power in the operating channel is set to 0.5 W.  
1997 Oct 07  
8
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
TEST AND APPLICATION INFORMATION  
Test conditions  
SE application  
Tamb = 25 °C if not specially mentioned, VCC = 7.5 V,  
f = 1 kHz, RL = 4 , Gv = 20 dB, audio band-pass  
22 Hz to 22 kHz.  
Because the application can be either Bridge-Tied Load  
(BTL) or Single-Ended (SE), the curves of each  
application are shown separately.  
The SE application circuit is illustrated in Fig.16.  
Increasing the value of electrolytic capacitor C3 will result  
in a better channel separation. Because the positive  
output is not designed for high output current (2 × Io) at  
low load impedance (16 ), the SE application with  
output capacitors connected to ground is advised.  
The capacitor value of C6/C7 in combination with the load  
impedance determines the low frequency behaviour.  
The THD as a function of frequency was measured using  
a low-pass filter of 80 kHz. The value of capacitor C3  
influences the behaviour of the SVRR at low frequencies:  
increasing the value of C3 increases the performance of  
the SVRR.  
The thermal resistance = 55 K/W for the DIP16; the  
maximum sine wave power dissipation for Tamb = 25 °C  
150 25  
is:  
= 2.3 W  
----------------------  
55  
For Tamb = 60 °C the maximum total power dissipation is:  
150 60  
= 1.7 W  
----------------------  
55  
BTL application  
Tamb = 25 °C if not specially mentioned, VCC = 5 V,  
f = 1 kHz, RL = 8 , Gv = 20 dB, audio band-pass  
22 Hz to 22 kHz.  
General remark  
The BTL application circuit is illustrated in Fig.4.  
The frequency characteristic can be adapted by  
connecting a small capacitor across the feedback  
resistor. To improve the immunity to HF radiation in radio  
circuit applications, a small capacitor can be connected in  
parallel with the feedback resistor (56 k); this creates a  
low-pass filter.  
The quiescent current has been measured without any  
load impedance and both channels driven. When one  
channel is active the quiescent current will be halved.  
The total harmonic distortion as a function of frequency  
was measured using a low-pass filter of 80 kHz.  
The value of capacitor C3 influences the behaviour of the  
SVRR at low frequencies: increasing the value of C3  
increases the performance of the SVRR.  
The figure of the MODE voltage (VMODE) as a function of  
the supply voltage shows three areas; operating, mute  
and standby. It shows, that the DC-switching levels of the  
mute and standby respectively depend on the supply  
voltage level. The figure of the SELECT voltage (VSELECT  
as a function of the supply voltage shows the voltage  
levels for switching the channels in the active, mute or  
standby mode.  
)
1997 Oct 07  
9
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
BTL APPLICATION  
C1  
V
CC  
C4  
100 nF  
C5  
R2  
R1  
50 kΩ  
1 µF  
16  
9
100 µF  
IN1−  
IN1+  
14  
13  
OUT1−  
OUT1+  
15  
2
10 kΩ  
V
i1  
C3  
47 µF  
R
L1  
OUT2−  
50 kΩ  
C2  
1 µF  
R4  
R3  
TDA8547  
IN2−  
IN2+  
11  
12  
10 kΩ  
OUT2−  
OUT2+  
10  
7
V
i2  
SVRR  
R
L2  
4
3
5
MODE  
SELECT  
1
8
R2  
Gain channel 1 = 2 × -------  
R1  
GND  
MGK701  
R4  
Gain channel 2 = 2 × -------  
R3  
Fig.4 BTL application.  
MGD890  
MGD891  
30  
10  
handbook, halfpage  
handbook, halfpage  
I
q
THD  
(%)  
(mA)  
(2)  
(1)  
1
20  
1  
10  
10  
2  
10  
0
2  
1  
10  
10  
1
10  
0
4
8
12  
16  
V
20  
(V)  
P
(W)  
o
CC  
f = 1 kHz; Gv = 20 dB.  
(1) VCC = 5 V; RL = 8 .  
(2) VCC = 9 V; RL = 16 .  
RL = .  
Fig.5 Iq as a function of VCC  
.
Fig.6 THD as a function of Po.  
1997 Oct 07  
10  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
MGD892  
MGK699  
10  
60  
handbook, halfpage  
handbook, halfpage  
α
(dB)  
cs  
THD  
(%)  
(1)  
(2)  
70  
1
(1)  
80  
90  
(3)  
(2)  
1  
10  
2  
10  
100  
2
3
5
4
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
VCC = 5 V; Vo = 2 V; RL = 8 .  
(1) Gv = 30 dB.  
(2) Gv = 20 dB.  
Po = 0.5 W; Gv = 20 dB.  
(1) CC = 5 V; RL = 8 .  
(2) VCC = 9 V; RL = 16 .  
(3) Gv = 6 dB.  
V
Fig.8 Channel separation as a function of  
frequency.  
Fig.7 THD as a function of frequency.  
MGD895  
MGD894  
20  
2.5  
handbook, halfpage  
handbook, halfpage  
P
o
SVRR  
(dB)  
(W)  
2
40  
60  
(1)  
(2)  
1.5  
1
(1)  
(2)  
(3)  
0.5  
80  
0
0
2
3
4
5
10  
10  
10  
10  
10  
4
8
12  
f (Hz)  
V
(V)  
CC  
VCC = 5 V; RS = 0 ; Vr = 100 mV.  
(1) Gv = 30 dB.  
THD = 10%.  
(2) Gv = 20 dB.  
(1) RL = 8 .  
(2) RL = 16 .  
(3) Gv = 6 dB.  
Fig.9 SVRR as a function of frequency.  
Fig.10 Po as a function of VCC.  
1997 Oct 07  
11  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
MGD896  
MGD897  
3
3
handbook, halfpage  
handbook, halfpage  
(1)  
(2)  
P
(W)  
P
(W)  
2
2
1
(1)  
(2)  
1
0
0
0
0
4
8
12  
0.5  
1
1.5  
2
2.5  
V
(V)  
CC  
P (W)  
o
Sine wave of 1 kHz.  
(1) RL = 8 .  
(2) RL = 16 .  
(1) VCC = 9 V; RL = 16 .  
(2) VCC = 5 V; RL = 8 .  
Fig.11 Worst case power dissipation as a function  
of VCC (both channels on).  
Fig.12 Power dissipation as a function of Po (both  
channels on).  
MGL210  
MGL211  
10  
o
(V)  
1
16  
handbook, halfpage  
handbook, halfpage  
V
V
MODE  
(V)  
12  
1  
10  
standby  
2  
10  
8
(1)  
(2) (3)  
3  
10  
10  
mute  
4  
4
5  
10  
10  
operating  
12 16  
6  
0
1  
2
10  
1
10  
10  
0
4
8
V
(V)  
V
(V)  
MODE  
P
Band-pass = 22 Hz to 22 kHz.  
(1) VCC = 3 V.  
(2) VCC = 5 V.  
(3) VCC = 12 V.  
Fig.13 Vo as a function of VMODE  
.
Fig.14 VMODE as a function of VP.  
1997 Oct 07  
12  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
MGK700  
20  
V
SELECT  
(V)  
16  
channel 2  
standby  
12  
8
channel 1 + 2  
on  
V
P
channel 1  
on  
channel 2  
on  
4
0
channel 1  
standby  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
V
(V)  
P
Fig.15 VSELECT as a function of VP.  
SE APPLICATION  
V
CC  
C1  
1 µF  
R2  
R1  
100 kΩ  
C4  
100 nF  
C5  
16  
9
100 µF  
IN1−  
IN1+  
14  
13  
C6  
10 kΩ  
OUT1−  
15  
V
i1  
C3  
47 µF  
470 µF  
R
L1  
OUT1+  
OUT2−  
OUT2−  
100 kΩ  
2
10  
7
C2  
1 µF  
R4  
R3  
TDA8547  
IN2−  
IN2+  
11  
12  
4
C7  
10 kΩ  
V
i2  
470 µF  
SVRR  
R
L2  
MODE  
SELECT  
OUT2+  
3
5
1
8
R2  
Gain channel 1 =  
Gain channel 2 =  
-------  
R1  
GND  
MGK702  
R4  
-------  
R3  
Fig.16 SE application.  
13  
1997 Oct 07  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
MGD899  
MGD900  
10  
10  
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
1
1
(1)  
(2)  
1  
1  
(3)  
10  
10  
(1)  
(2)  
(3)  
2  
2  
10  
10  
2  
1  
2
3
4
5
10  
10  
1
10  
10  
10  
10  
10  
10  
f (Hz)  
P
(W)  
o
f = 1 kHz; Gv = 20 dB.  
(1) CC = 7.5 V; RL = 4 .  
(2) VCC = 9 V; RL = 8 .  
(3) VCC = 12 V; RL = 16 .  
Po = 0.5 W; Gv = 20 dB.  
(1) CC = 7.5 V; RL = 4 .  
V
V
(2) VCC = 9 V; RL = 8 .  
(3) VCC = 12 V; RL = 16 .  
Fig.17 THD as a function of Po.  
Fig.18 THD as a function of frequency.  
MGL244  
MGD902  
20  
20  
handbook, halfpage  
handbook, halfpage  
α
(dB)  
cs  
SVRR  
(dB)  
40  
40  
60  
(1)  
(2)  
60  
80  
(1)  
(2)  
(3)  
(4)  
(3)  
80  
100  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
Vo = 1 V; Gv = 20 dB.  
(1) CC = 7.5 V; RL = 4 .  
V
(2) VCC = 9 V; RL = 8 .  
(3) VCC = 12 V; RL = 16 Ω.  
(4) VCC = 5 V; RL = 32 .  
VCC = 7.5 V; RL = 4 ; RS = 0 ; Vr = 100 mV.  
(1) Gv = 24 dB.  
(2) Gv = 20 dB.  
(3) Gv = 0 dB.  
Fig.19 Channel separation as a function of  
frequency.  
Fig.20 SVRR as a function of frequency.  
1997 Oct 07  
14  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
MGD904  
MGD903  
3
2
handbook, halfpage  
handbook, halfpage  
P
o
P
(W)  
(W)  
1.6  
(1)  
(2)  
(3)  
2
1
(1)  
(2)  
(3)  
1.2  
0.8  
0.4  
0
0
0
4
8
12  
16  
0
4
8
12  
16  
V
(V)  
CC  
V
(V)  
CC  
(1) RL = 4 .  
(2) RL = 8 .  
(3) RL = 16 .  
THD = 10%.  
(1) L = 4 .  
R
(2) RL = 8 .  
(3) RL = 16 .  
Fig.22 Worst case power dissipation as a function  
of VCC (both channels on).  
Fig.21 Po as a function of VCC  
.
MGD905  
2.4  
handbook, halfpage  
P
(W)  
(1)  
1.6  
0.8  
(2)  
(3)  
0
0
0.4  
0.8  
1.2  
1.6  
P
(W)  
o
Sine wave of 1 kHz.  
(1) VCC = 12 V; RL = 16 .  
(2) VCC = 7.5 V; RL = 4 .  
(3) VCC = 9 V; RL = 8 .  
Fig.23 Power dissipation as a function of Po (both  
channels on).  
1997 Oct 07  
15  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
a. Top view without components.  
+
V
GND  
CC  
TDA  
8547  
CIC NIJMEGEN  
D&A AUDIO POWER  
100 µF  
+
OUT1  
OUT1  
12 kΩ  
100 nF  
12  
kΩ  
IN1  
56 kΩ  
16  
1
1 µF  
1 µF  
MODE  
P3  
11 kΩ  
11 kΩ  
SELECT  
47 µF  
8
9
56 kΩ  
IN2  
TDA8547  
12 kΩ  
12 kΩ  
OUT2  
+
OUT2  
MGK703  
b. Top view with components.  
Fig.24 Printed-circuit board layout (BTL and SE).  
16  
1997 Oct 07  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
PACKAGE OUTLINES  
SO16: plastic small outline package; 16 leads; body width 7.5 mm  
SOT162-1  
D
E
A
X
c
H
v
M
A
E
y
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
e
w
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
10.5  
10.1  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
1.27  
0.050  
1.4  
0.25  
0.01  
0.25  
0.1  
0.25  
0.01  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.41  
0.014 0.009 0.40  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT162-1  
075E03  
MS-013AA  
1997 Oct 07  
17  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
DIP16: plastic dual in-line package; 16 leads (300 mil); long body  
SOT38-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
max.  
max.  
min.  
max.  
1.40  
1.14  
0.53  
0.38  
0.32  
0.23  
21.8  
21.4  
6.48  
6.20  
3.9  
3.4  
8.25  
7.80  
9.5  
8.3  
4.7  
0.51  
3.7  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.2  
0.021  
0.015  
0.013  
0.009  
0.86  
0.84  
0.32  
0.31  
0.055  
0.045  
0.26  
0.24  
0.15  
0.13  
0.37  
0.33  
inches  
0.19  
0.020  
0.15  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-10-02  
95-01-19  
SOT38-1  
050G09  
MO-001AE  
1997 Oct 07  
18  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
Several techniques exist for reflowing; for example,  
SOLDERING  
Introduction  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
DIP  
SOLDERING BY DIPPING OR BY WAVE  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
SO  
REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
1997 Oct 07  
19  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1997 Oct 07  
20  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
NOTES  
1997 Oct 07  
21  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
NOTES  
1997 Oct 07  
22  
Philips Semiconductors  
Preliminary specification  
2 × 1 W BTL audio amplifier with output  
channel switching  
TDA8547  
NOTES  
1997 Oct 07  
23  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
Fax. +43 160 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Uruguay: see South America  
Vietnam: see Singapore  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1997  
SCA55  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
547027/25/01/pp24  
Date of release: 1997 Oct 07  
Document order number: 9397 750 02338  

相关型号:

TDA8547TS

2 x 0.7 W BTL audio amplifier with output channel switching
NXP

TDA8547TS-T

IC 1.2 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO20, 4.40 MM, PLASTIC, MO-152, SOT266-1, SSOP-20, Audio/Video Amplifier
NXP

TDA8547TS/N1,112

TDA8547TS - 2 × 0.7 W BTL audio amplifier with output channel switching SSOP2 20-Pin
NXP

TDA8547TS/N1,118

TDA8547TS - 2 × 0.7 W BTL audio amplifier with output channel switching SSOP2 20-Pin
NXP

TDA8547TS/N1/02,11

TDA8547TS - 2 × 0.7 W BTL audio amplifier with output channel switching SSOP2 20-Pin
NXP

TDA8551

1 W BTL audio amplifier with digital volume control
NXP

TDA8551N

IC 1 CHANNEL(S), VOLUME CONTROL CIRCUIT, PDIP8, Audio Control IC
NXP

TDA8551T

1 W BTL audio amplifier with digital volume control
NXP

TDA8551T-T

IC 1 CHANNEL(S), VOLUME CONTROL CIRCUIT, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT96-1, SOP-8, Audio Control IC
NXP

TDA8551T/N1,112

TDA8551_T - 1 W BTL audio amplifier with digital volume control SOIC 8-Pin
NXP

TDA8551T/N1/N,112

TDA8551_T - 1 W BTL audio amplifier with digital volume control SOIC 8-Pin
NXP

TDA8551TD-T

IC 1 CHANNEL(S), VOLUME CONTROL CIRCUIT, PDSO8, Audio Control IC
NXP