TEA1610P [NXP]

Zero-voltage-switching resonant converter controller; 零电压开关谐振变换器的控制器
TEA1610P
型号: TEA1610P
厂家: NXP    NXP
描述:

Zero-voltage-switching resonant converter controller
零电压开关谐振变换器的控制器

开关 控制器
文件: 总20页 (文件大小:112K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TEA1610P; TEA1610T  
Zero-voltage-switching  
resonant converter controller  
Product specification  
2001 Apr 25  
File under Integrated Circuits, IC11  
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
FEATURES  
Integrated high voltage level-shift function  
Integrated high voltage bootstrap diode  
Transconductance error amplifier for ultra high-ohmic  
regulation feedback  
V
handbook, halfpage  
HS  
Latched shut-down circuit for overcurrent and  
overvoltage protection  
V
DD  
bridge voltage  
supply  
(high side)  
Low start-up current (green function)  
Adjustable minimum and maximum frequencies  
Adjustable dead time  
MOSFET  
SWITCH  
Undervoltage lockout.  
HALF-  
TEA1610  
RESONANT  
BRIDGE  
CONVERTER  
CIRCUIT  
GENERAL DESCRIPTION  
The TEA1610 is a monolithic integrated circuit  
implemented in a high-voltage DMOS process. The circuit  
is a high voltage controller for a zero-voltage switching  
resonant converter. The IC provides the drive function for  
two discrete power MOSFETs in a half-bridge  
configuration. It also includes a level-shift circuit, an  
oscillator with accurately-programmable frequency range,  
a latched shut-down function and a transconductance  
error amplifier.  
MGU336  
signal  
ground  
power ground  
Fig.1 Basic configuration.  
To guarantee an accurate 50% switching duty factor, the  
oscillator signal passes through a divide-by-two flip-flop  
before being fed to the output drivers.  
APPLICATIONS  
TV and monitor power supplies  
High voltage power supplies.  
The circuit is very flexible and enables a broad range of  
applications for different mains voltages.  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MAX.  
UNIT  
VHS  
bridge voltage supply (high side)  
600  
225  
300  
550  
V
IGH(source); IGL(source) gate driver source current  
mA  
mA  
IGH(sink); IGL(sink)  
fbridge(max)  
gate driver sink current  
maximum bridge frequency  
Cf = 100 pF (see  
Fig.10)  
kHz  
VI(CM)  
error amplifier common mode input voltage  
2.5  
V
ORDERING INFORMATION  
TYPE NUMBER  
PACKAGE  
NAME  
DESCRIPTION  
VERSION  
TEA1610P  
TEA1610T  
DIP16  
SO16  
plastic dual in-line package; 16 leads (300 mil); long body  
SOT38-1  
plastic small outline package; 16 leads; body width 3.9 mm;  
low stand-off height  
SOT109-2  
2001 Apr 25  
2
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
BLOCK DIAGRAM  
V
DD  
11  
8
V
DD(F)  
BOOTSTRAP  
7
SUPPLY  
LEVEL  
HIGH SIDE  
GH  
SHIFTER  
DRIVER  
TEA1610  
6
SH  
reset  
10  
4
LOW SIDE  
DRIVER  
GL  
PGND  
start/stop oscillation  
LOGIC  
15  
SD  
shut-down  
start-up  
9
2.33 V  
SGND  
2
÷
2
1
×
+
2
I
charge  
I
I
gm  
OSCILLATOR  
ERROR  
AMPLIFIER  
0.6 V  
12  
2.5 V  
3 V  
I
discharge  
5
13  
16  
14  
3
MGU337  
V
n.c.  
VCO IRS  
IFS  
CF  
REF  
Fig.2 Block diagram.  
2001 Apr 25  
3
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
PINNING  
SYMBOL PIN  
DESCRIPTION  
I−  
1
2
3
4
5
6
7
8
error amplifier inverting input  
error amplifier non-inverting input  
error amplifier output  
I+  
VCO  
PGND  
n.c.  
SH  
handbook, halfpage  
+
I
I
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
REF  
power ground  
SD  
IRS  
CF  
IFS  
V
not connected (high voltage spacer)  
high side switch source  
VCO  
PGND  
n.c.  
GH  
gate of the high side switch  
TEA1610P  
VDD(F)  
floating supply voltage for the high side  
driver  
SH  
DD  
SGND  
GL  
9
signal ground  
GL  
GH  
10 gate of the low side switch  
11 supply voltage  
SGND  
V
VDD  
IFS  
DD(F)  
12 oscillator discharge current input  
13 oscillator capacitor  
MGU338  
CF  
IRS  
SD  
14 oscillator charge current input  
15 shut-down input  
Fig.3 Pin configuration: TEA1610P.  
VREF  
16 reference voltage  
handbook, halfpage  
+
I
I
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
REF  
SD  
IRS  
CF  
IFS  
V
VCO  
PGND  
n.c.  
TEA1610T  
SH  
DD  
GL  
GH  
SGND  
V
DD(F)  
MGU347  
Fig.4 Pin configuration: TEA1610T.  
2001 Apr 25  
4
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
FUNCTIONAL DESCRIPTION  
Start-up  
During start-up, the voltage on the frequency capacitor (Cf)  
is zero and defines the start-up state. The output voltage  
of the error amplifier is kept constant (typ. 2.5 V) and  
switching starts at about 80% of the maximum frequency  
at the moment pin VDD reaches the start level.  
When the applied voltage at VDD reaches VDD(initial) (see  
Fig.5), the low side power switch is turned-on while the  
high side power switch remains in the non-conducting  
state. This start-up output state guarantees the initial  
charging of the bootstrap capacitor (Cboot) used for the  
floating supply of the high side driver.  
The start-up state is maintained until VDD reaches the start  
level (13.5 V), the oscillator is activated and the converter  
starts operating.  
V
DD(start)  
V
DD  
V
DD(initial)  
0
GH-SH  
0
GL  
0
t
MGT998  
Fig.5 Start-up.  
2001 Apr 25  
5
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
Oscillator  
The minimum frequency and the dead time are set by the  
capacitor Cf and resistors Rf(min) and Rdt. The maximum  
frequency is set by resistor Rf (see Fig.10). The oscillator  
frequency is exactly twice the bridge frequency to achieve  
an accurate 50% duty factor. An overview of the oscillator  
and driver signals is given in Fig.6.  
The internal oscillator is a current-controlled oscillator that  
generates a sawtooth output. The frequency of the  
sawtooth is determined by the external capacitor Cf and  
the currents flowing into the IFS and IRS pins.  
CF  
GH-SH  
0
GL  
0
dead time (high to low)  
dead time (low to high)  
t
MGT999  
Fig.6 Oscillator and driver signals.  
2001 Apr 25  
6
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
Dead time resistor Rdt (see Fig.10)  
Rf(min) resistor. As a result, the charge current ICF  
increases and the oscillation frequency increases. As the  
falling slope of the oscillator is constant, the relationship  
between the output frequency and the charge current is  
not a linear function (see Figs 7 and 9):  
The dead time resistor Rdt is connected between the 3 V  
reference pin (VREF) and the IFS current input pin. The  
voltage on the IFS pin is kept constant at a temperature  
independant value of 0.6 V. The current that flows into the  
IFS pin is determined by the value of resistor Rdt and the  
2.4 V voltage drop across this resistor. The IFS input  
current equals the discharge current of capacitor Cf and  
determines the falling slope of the oscillator.  
V
VCO 0.6  
I IRS2  
=
=
----------------------------  
Rf  
Cf × ∆VCf  
t IRS2  
× 2  
-------------------------------  
I
IRS1 + IIRS2  
The falling slope time is used to create a dead time (tdt)  
between two successive switching actions of the  
half-bridge switches:  
The maximum output voltage of the error amplifier and the  
value of Rf determine the maximum frequency:  
2.4 V  
Rdt  
IIFS  
=
-------------  
VVCO(max) 0.6  
I IRS2(max)  
=
-----------------------------------------  
Rf  
Cf × ∆VCf  
t dt  
=
------------------------  
IIFS  
Cf × ∆VCf  
t IRS(min)  
=
× 2  
-------------------------------------------  
I
IRS1 + IIRS2(max)  
t IFS = tdt  
1
f max  
=
----------  
Tosc  
Minimum frequency resistor (see Fig.10)  
T osc = tIRS(min) + tIFS  
The Rf(min) resistor is connected between the VREF pin (3 V  
reference voltage) and the IRS current input (held at a  
temperature independant voltage level of 0.6 V). The  
charge current of the capacitor Cf is twice the current  
flowing into the IRS pin.  
Bridge frequency accuracy is optimum in the low  
frequency region. At higher frequencies both the dead time  
and the oscillator frequency show a decay.  
The frequency of the oscillator depends on the value of  
capacitor Cf, the peak-to-peak voltage swing VCf and the  
charge and discharge currents. However, at higher  
frequencies the accuracy decreases due to delays in the  
circuit.  
The Rf(min) resistor has a voltage drop of 2.4 V and its  
resistance defines the minimum charge current (rising  
slope) of the Cf capacitor if the control current is zero. The  
minimum frequency is defined by this minimum charge  
current (IIRS1) and the discharge current:  
2.4 V  
IIRS1  
=
=
-----------------  
Rf(min)  
MGW001  
handbook, halfpage  
f
Cf × ∆VCf  
osc  
t IRS1  
------------------------  
2 × IIRS1  
f
osc(max)  
f
osc(start)  
1
f min  
=
-----------------------  
t
dt + tIRS1  
f
osc(min)  
Maximum frequency resistor  
The output voltage is regulated by changing the frequency  
of the half-bridge converter. The maximum frequency is  
determined by the Rf resistor which is connected between  
the error amplifier output VCO and the oscillator current  
input pin IRS. The current that flows through the Rf  
resistor (IIRS2) is added to the current flowing through the  
0
I
IRS  
Fig.7 Frequency range.  
2001 Apr 25  
7
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
Error amplifier  
Shut-down  
The error amplifier is a transconductance amplifier. Thus  
the output current at pin VCO is determined by the  
amplifier transconductance and the differential voltage on  
input pins I+ and I. The output current IVCO is fed to the  
IRS input of the current-controlled oscillator.  
The shut-down input (SD) has an accurate threshold level  
of 2.33 V. When the voltage on input SD reaches 2.33 V,  
both power switches immediately switch off and the  
TEA1610 enters shut-down mode.  
During shut-down mode, pin VDD is clamped by an internal  
Zener diode at 12.0 V with 1 mA input current. This clamp  
prevents VDD rising above the rating of 14 V due to low  
supply current to the TEA1610 in shut-down mode.  
The source capability of the error amplifier increases  
current in the IRS pin when the differential input voltage is  
positive. Therefore the minimum current is determined by  
resistor Rf(min) and the minimum frequency setting is  
independent of the characteristics of the error amplifier.  
When the TEA1610 is in the shut-down mode, it can be  
activated again only by lowering VDD below the VDD reset  
level (5.3 V typical). The shut-down latch is then reset and  
a new start-up cycle can commence (see Fig.8).  
The error amplifier has a maximum output current of  
0.5 mA for an output voltage up to 2.5 V. If the source  
current decreases, the oscillator frequency also decreases  
resulting in a higher regulated output voltage.  
During start-up, the output voltage of the amplifier is held  
at a constant value of 2.5 V. This voltage level defines,  
together with resistor Rf, the initial switching frequency of  
the TEA1610 after start-up.  
oscillation  
shut-  
down  
supply  
off  
start-up  
oscillation  
V
V
DD(start)  
DD(sdc)  
V
DD  
V
V
DD(reset)  
SD(th)  
SD  
GH-SH  
0
GL  
0
t
MGW002  
Fig.8 Shut-down.  
8
2001 Apr 25  
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); all voltages are referred to the ground pins  
which must be interconnected externally; positive currents flow into the IC.  
SYMBOL  
Voltages  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
UNIT  
VSH  
VDD  
VI+  
high side driver voltage  
0
0
0
0
0
600  
V
V
V
V
V
supply voltage  
14  
5
amplifier non-inverting input voltage  
amplifier inverting input voltage  
shut-down input voltage  
VI−  
5
VSD  
5
Currents  
IIFS  
IIRS  
IREF  
oscillator falling slope input current  
oscillator rising slope input current  
VREF source current  
1
mA  
mA  
mA  
1
2  
Power and temperature  
Ptot  
total power dissipation  
Tamb < 70 °C  
0.8  
W
Tamb  
Tstg  
ambient temperature  
storage temperature  
operating  
25  
25  
+70  
+150  
°C  
°C  
Handling  
VES  
electrostatic handling voltage  
note 1  
note 2  
2000  
200  
V
V
Notes  
1. Human body model class 2: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
2. Machine model class 2: equivalent to discharging a 200 pF capacitor through a 0.75 µH coil and 10 resistor.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
Rth(j-pin)  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
thermal resistance from junction to ambient  
thermal resistance from junction to pin  
in free air  
100  
50  
K/W  
K/W  
QUALITY SPECIFICATION  
In accordance with “SNW-FQ-611-E”.  
2001 Apr 25  
9
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
CHARACTERISTICS  
All voltages are referred to the ground pins which must be connected externally; positive currents flow into the IC;  
VDD = 13 V and Tamb = 25 °C; tested in the circuit of Fig.10; unless otherwise specified.  
SYMBOL  
High voltage pins VDD(F), GH and SH  
IL leakage current  
Supply pin VDD  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX. UNIT  
VDD(F), VGH and VSH = 600 V  
low side on; high side off  
30  
µA  
VDD(initial)  
supply voltage for defined driver  
4
5
V
output  
VDD(start)  
VDD(stop)  
VDD(hys)  
VDD(sdc)  
start oscillator voltage  
stop oscillator voltage  
start-stop hysteresis voltage  
shut-down clamp voltage  
12.9  
9.0  
13.4  
9.4  
13.9  
9.8  
V
V
V
V
3.8  
4.0  
4.2  
low side off; high side off;  
IDD = 1 mA  
11.0  
12.0  
13.0  
VDD(reset)  
IDD  
reset voltage  
supply current:  
start-up  
4.5  
5.3  
6.0  
V
low side on; high side off  
Cf = 100 pF; IIFS = 0.5 mA;  
130  
180  
2.4  
220  
µA  
operating  
mA  
IIRS = 50 µA; Co = 200 pF;  
note 1  
shut-down  
low side off; high side off;  
130  
180  
µA  
VDD = 9 V  
Reference voltage pin VREF  
VREF  
reference voltage  
current capability  
IREF = 0 mA  
source only  
IREF = 1 mA  
2.9  
1.0  
3.0  
3.1  
V
IREF  
mA  
Zo(VREF)  
output impedance  
temperature coefficient  
5.0  
0.3  
IREF = 0; Tj = 25 to 150 °C  
mV/K  
VREF  
-----------------  
T  
Current controlled oscillator pins IRS, IFS, CF  
ICF(ch)(min) minimum CF charge current  
ICF(ch)(max) maximum CF charge current  
IIRS = 15 µA; VCF = 2 V  
IIRS = 200 µA; VCF = 2 V  
IIRS = 200 µA  
28  
30  
32  
µA  
340  
570  
47  
380  
600  
50  
420  
630  
53  
µA  
VIRS  
pin IRS voltage  
mV  
µA  
ICF(dis)(min) minimum CF discharge current  
ICF(dis)(max) maximum CF discharge current  
IIRS = 50 µA; VCF = 2 V  
IIFS = 1 mA; VCF = 2 V  
IIFS = 1 mA  
0.93  
570  
188  
0.98  
600  
200  
1.03  
630  
212  
mA  
mV  
kHz  
VIFS  
pin IFS voltage  
fbridge(min)  
minimum bridge frequency (for  
stable operation)  
CF = 100 pF; IIFS = 0.5 mA;  
fosc  
IIRS = 50 µA; f bridge =  
--------  
2
fbridge(max) maximum bridge frequency  
Cf = 100 pF; IIFS = 1 mA;  
450  
500  
550  
kHz  
fosc  
IIRS = 200 µA; f bridge  
=
;
--------  
2
note 2  
2001 Apr 25  
10  
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
SYMBOL  
VCF(L)  
VCF(H)  
VCf(p-p)  
tdt  
PARAMETER  
CF trip level LOW  
CONDITIONS  
MIN.  
TYP.  
1.27  
3.0  
MAX. UNIT  
DC level  
DC level  
V
CF trip level HIGH  
Cf voltage (peak-to-peak value)  
dead time  
V
1.63  
0.37  
1.73  
0.40  
1.83  
0.43  
V
Cf = 100 pF; IIFS = 0.5 mA;  
µs  
IIRS = 50 µA  
Output drivers  
IGH(source) high side output source current  
VDD(F) = 13 V; VSH = 0; VGH = 0 135  
180  
225  
mA  
mA  
IGH(sink)  
high side output sink current  
VDD(F) = 13 V; VSH = 0;  
VGH = 13 V  
300  
IGL(source)  
IGL(sink)  
VGH(H)  
low side output source current  
low side output sink current  
high side output voltage HIGH  
VGL = 0  
135  
180  
300  
12  
225  
mA  
mA  
V
VGL = 14 V  
VDD(F) = 13 V; VSH = 0;  
IGH = 10 mA  
10.8  
VGH(L)  
high side output voltage LOW  
VDD(F) = 13 V; VSH = 0;  
0.2  
0.5  
V
I
GH = 10 mA  
VGL(H)  
VGL(L)  
Vd(boot)  
low side output voltage HIGH  
low side output voltage LOW  
bootstrap diode voltage drop  
IGL = 10 mA  
IGL = 10 mA  
I = 5 mA  
10.8  
12  
V
V
V
0.2  
1.8  
0.5  
2.1  
1.5  
Shut-down input pin SD  
ISD  
input current  
VSD = 2.33 V  
VI(CM) = 1 V  
0
0.2  
0.5  
µA  
VSD(th)  
threshold level  
2.26  
2.33  
2.40  
V
Error amplifier pins I+, I, VCO  
II(CM)  
VI(CM)  
VI(offset)  
gm  
common mode input current  
0.1  
0.5  
2.5  
+2  
µA  
common mode input voltage  
input offset voltage  
transconductance  
V
VI(CM) = 1 V; IVCO = 10 mA  
2  
0
mV  
µA/mV  
dB  
VI(CM) = 1 V; source only  
330  
70  
Ao  
open loop gain  
RL = 10 kto GND; VI(CM) = 1 V −  
RL = 10 kto GND; VI(CM) = 1 V −  
GB  
gain bandwidth product  
5
MHz  
V
VVCO(max) maximum output voltage  
IVCO(max) maximum output current  
operating; RL = 10 kto GND  
operating; VVCO = 1 V  
IVCO = 0.3 mA  
3.2  
3.6  
0.5  
2.50  
4.0  
0.6  
2.70  
0.4  
mA  
V
VVCO(start) output voltage during start-up  
2.30  
Notes  
1. Supply current IDD will increase with increasing bridge frequency to drive the capacitive load of two MOSFETs.  
Typical MOSFETs for the TEA1610 application are 8N50 (Philips type PHX80N50E, Qg(tot) = 55 nC typ.) and these  
will increase the supply current at 150 kHz according to the following formula:  
IDD = 2 × Qg(tot) × fbridge = 2 × 55 nC × 150 kHz = 16.5 mA.  
2. The frequency of the oscillator depends on the value of capacitor Cf, the peak-to-peak voltage swing VCF and the  
charge/discharge currents ICF(ch) and ICF(dis)  
.
2001 Apr 25  
11  
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
APPLICATION INFORMATION  
Practical values of the application example are given in  
Fig.9 in which the measured oscillator frequency with  
capacitor Cf = 220 pF is shown as a function of the charge  
current IIRS. Note that the slope of the measured frequency  
differs from the theoretical frequency (frequency set)  
calculated as described in Section “Maximum frequency  
resistor”.  
An application example of a zero-voltage-switching  
resonant converter application using TEA1610 is shown in  
Fig.10. In the off-mode the VDD voltage is pulled below the  
stop level of 9.4 V by the 7.5 V Zener diode and the  
half-bridge is not driven. In the on-mode the TEA1610  
starts-up with a high-ohmic bleeder resistor. After passing  
the level for start of oscillation, the TEA1610 is in normal  
operating mode and consumes the normal supply current  
delivered by the 12 V supply. The dead time is set by Rdt  
and Cf. The minimum frequency is adjusted by Rf(min) and  
the frequency range is set by Rf. The output voltage is  
adjusted with a potentiometer connected to the inverting  
input of the error amplifier and is regulated via a feedback  
circuit. The shut-down input is used for overvoltage  
protection. To prevent interference, filter capacitors can be  
added on pins IFS, IRS and VREF. The maximum value of  
each filter capacitor is 100 pF.  
The measured dead time is directly related to charge  
current (total current flowing into pin IRS) and therefore to  
oscillator frequency.  
The measured frequency graph can be used to determine  
the required Rf resistor for a certain maximum frequency  
in an application with the same value of capacitor Cf.  
More application information can be found in application  
note “AN99011”.  
MGW003  
800  
1200  
dead time (low to high)  
f
t
osc  
dt  
(kHz)  
(ns)  
dead time (high to low)  
600  
900  
400  
600  
frequency set  
frequency measured  
200  
300  
0
0
200  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
(µA)  
I
IRS  
fosc at IIFS = 500 µA.  
fosc = 2 × fbridge  
.
Fig.9 Oscillator frequency and measured dead time as functions of charge current IIRS  
.
2001 Apr 25  
12  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
ahdnbok,uflapegwidt  
bridge voltage supply (high side)  
12 V  
R
VDD  
output voltage  
C
VDD  
7.5 V  
V
DD  
11  
V
8
7
DD(F)  
on/off  
bootstrap diode  
GH  
SH  
LEVEL  
SHIFTER  
HIGH SIDE  
DRIVER  
L
p
TEA1610  
L
r(ext)  
C
6
boot  
10  
GL  
LOW SIDE  
DRIVER  
C
C
r
p
4
PGND  
SD  
LOGIC  
SUPPLY  
15  
power ground  
overvoltage protection  
signal  
ground  
SGND  
9
2.33 V  
2
÷
regulator  
feedback  
MGU339  
+
I
I
SGND  
2
1
gm  
OSCILLATOR  
3 V  
14  
ERROR  
AMPLIFIER  
0.6 V  
12  
13  
16  
V
3
VCO  
IRS  
IFS  
CF  
REF  
C
f
R
R
R
dt  
f  
f(min)  
C
SS  
Fig.10 Application diagram.  
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
PACKAGE OUTLINES  
DIP16: plastic dual in-line package; 16 leads (300 mil); long body  
SOT38-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
max.  
max.  
min.  
max.  
1.40  
1.14  
0.53  
0.38  
0.32  
0.23  
21.8  
21.4  
6.48  
6.20  
3.9  
3.4  
8.25  
7.80  
9.5  
8.3  
4.7  
0.51  
3.7  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.2  
0.021  
0.015  
0.013  
0.009  
0.86  
0.84  
0.32  
0.31  
0.055  
0.045  
0.26  
0.24  
0.15  
0.13  
0.37  
0.33  
inches  
0.19  
0.020  
0.15  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-19  
99-12-27  
SOT38-1  
050G09  
MO-001  
SC-503-16  
2001 Apr 25  
14  
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
SO16: plastic small outline package; 16 leads; body width 3.9 mm; low stand-off height  
SOT109-2  
D
E
A
X
v
c
y
H
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
0.20  
0.05  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
1.65  
1.27  
0.050  
1.05  
0.041  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.008 0.057  
0.002 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches  
0.01 0.004  
0.065  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-05-22  
99-12-27  
SOT109-2  
076E07  
MS-012  
2001 Apr 25  
15  
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
SOLDERING  
Introduction  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 220 °C for  
thick/large packages, and below 235 °C for small/thin  
packages.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
WAVE SOLDERING  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mount components are mixed on  
one printed-circuit board. Wave soldering can still be used  
for certain surface mount ICs, but it is not suitable for fine  
pitch SMDs. In these situations reflow soldering is  
recommended.  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Through-hole mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
SOLDERING BY DIPPING OR BY SOLDER WAVE  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
MANUAL SOLDERING  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
300 and 400 °C, contact may be up to 5 seconds.  
Surface mount packages  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
REFLOW SOLDERING  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
MANUAL SOLDERING  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C. When using a dedicated tool, all other leads can  
be soldered in one operation within 2 to 5 seconds  
between 270 and 320 °C.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
2001 Apr 25  
16  
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
Suitability of IC packages for wave, reflow and dipping soldering methods  
SOLDERING METHOD  
MOUNTING  
PACKAGE  
WAVE  
REFLOW(1) DIPPING  
Through-hole mount DBS, DIP, HDIP, SDIP, SIL  
suitable(2)  
suitable  
Surface mount  
BGA, HBGA, LFBGA, SQFP, TFBGA  
not suitable  
not suitable(3)  
suitable  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, HVQFN, SMS  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2001 Apr 25  
17  
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS(1)  
STATUS(2)  
DEFINITIONS  
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Changes will be  
communicated according to the Customer Product/Process Change  
Notification (CPCN) procedure SNW-SQ-650A.  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2001 Apr 25  
18  
Philips Semiconductors  
Product specification  
Zero-voltage-switching  
resonant converter controller  
TEA1610P; TEA1610T  
NOTES  
2001 Apr 25  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 7 - 9 Rue du Mont Valérien, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4728 6600, Fax. +33 1 4728 6638  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A,  
Tel: +36 1 382 1700, Fax: +36 1 382 1800  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,  
Tel. +66 2 361 7910, Fax. +66 2 398 3447  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors,  
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,  
The Netherlands, Fax. +31 40 27 24825  
Internet: http://www.semiconductors.philips.com  
72  
SCA  
© Philips Electronics N.V. 2001  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
613502/01/pp20  
Date of release: 2001 Apr 25  
Document order number: 9397 750 07993  

相关型号:

TEA1610P/N5

IC,ZERO-CROSSING DETECTOR,MOS,DIP,16PIN,PLASTIC
NXP

TEA1610P/N5,112

TEA1610P - Zero-voltage-switching resonant LLC controller DIP 16-Pin
NXP

TEA1610P/N6,112

TEA1610P - Zero-voltage-switching resonant LLC controller DIP 16-Pin
NXP

TEA1610T

Zero-voltage-switching resonant converter controller
NXP

TEA1610T/N5

IC,ZERO-CROSSING DETECTOR,MOS,SOP,16PIN,PLASTIC
NXP

TEA1610T/N5,118

Zero-voltage-switching resonant LLC controller SOP 16-Pin
NXP

TEA1610T/N5,518

Zero-voltage-switching resonant LLC controller SOP 16-Pin
NXP

TEA1610T/N6,518

Zero-voltage-switching resonant LLC controller SOP 16-Pin
NXP

TEA1610T/N6/DG,518

Zero-voltage-switching resonant LLC controller SOP 16-Pin
NXP

TEA1610T/N6O,518

Zero-voltage-switching resonant LLC controller SOP 16-Pin
NXP

TEA1611T

IC SWITCHING CONTROLLER, 485 kHz SWITCHING FREQ-MAX, PDSO20, 7.50 MM, PLASTIC, MS-013, SOT163-1, SOP-20, Switching Regulator or Controller
NXP

TEA1611T/N1,518

Zero-voltage-switching resonant LLC controller, extended feature set SOP 20-Pin
NXP