TEA1610T/N5,118 [NXP]

Zero-voltage-switching resonant LLC controller SOP 16-Pin;
TEA1610T/N5,118
型号: TEA1610T/N5,118
厂家: NXP    NXP
描述:

Zero-voltage-switching resonant LLC controller SOP 16-Pin

开关 光电二极管
文件: 总21页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TEA1610P; TEA1610T  
Zero-voltage-switching resonant converter controller  
Rev. 03 — 26 March 2007  
Product data sheet  
1. General description  
The TEA1610 is a monolithic integrated circuit implemented in a high-voltage Diffusion  
Metal Oxide Semiconductor (DMOS) process. The circuit is a high voltage controller for a  
zero-voltage switching resonant converter. The IC provides the drive function for  
two discrete power MOSFETs in a half-bridge configuration. It also includes a level-shift  
circuit, an oscillator with accurately-programmable frequency range, a latched shut-down  
function and a transconductance error amplifier.  
To guarantee an accurate 50 % switching duty factor, the oscillator signal passes through  
a divide-by-two flip-flop before being fed to the output drivers.  
The circuit is very flexible and enables a broad range of applications for different mains  
voltages.  
V
HS  
V
DD  
bridge voltage  
supply  
(high side)  
MOSFET  
SWITCH  
HALF-  
BRIDGE  
CIRCUIT  
TEA1610  
RESONANT  
CONVERTER  
mgu336  
signal  
ground  
power ground  
Fig 1. Basic configuration  
2. Features  
I Integrated high voltage level-shift  
I Transconductance error amplifier for  
function  
ultra high-ohmic regulation feedback  
I Integrated high voltage bootstrap diode I Latched shut-down circuit for  
overcurrent and overvoltage protection  
I Adjustable minimum and maximum  
I Low start-up current (green function)  
I Adjustable dead time  
frequencies  
I Undervoltage lockout  
 
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
3. Applications  
I TV and monitor power supplies  
I High voltage power supplies  
4. Quick reference data  
Table 1.  
Symbol  
VHS  
Quick reference data  
Parameter  
Conditions  
Min  
0
Typ  
-
Max  
600  
Unit  
V
high side driver voltage  
IGH(source)  
high side output source  
current  
VDD(F) = 13 V;  
135  
180  
225  
mA  
VSH = 0 V;  
GH = 0 V  
V
IGL(source)  
IGH(sink)  
low side output source  
current  
VGL = 0 V  
135  
180  
225  
mA  
mA  
high side output sink  
current  
VDD(F) = 13 V;  
-
300  
-
VSH = 0 V;  
VGH = 13 V  
IGL(sink)  
low side output sink current VGL = 14 V  
-
300  
500  
-
mA  
[1]  
fbridge(max)  
maximum bridge frequency CF = 100 pF;  
450  
550  
kHz  
IIFS = 1 mA;  
IIRS = 200 µA;  
f OSC  
fbridge  
=
------------  
2
[2]  
VI(CM)  
common mode input  
voltage  
-
-
2.5  
V
[1] The frequency of the oscillator depends on the value of capacitor Cf, the peak-to-peak voltage swing VCF  
and the charge/discharge currents ICF(ch) and ICF(dis)  
,
.
[2] This parameter applies specifically to the error amplifier.  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
DIP16  
SO16  
Description  
Version  
TEA1610P  
TEA1610T  
plastic dual in-line package; 16 leads (300 mil); long body  
SOT38-1  
plastic small outline package; 16 leads; body width 3.9 mm;  
low stand-off height  
SOT109-2  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
2 of 21  
 
 
 
 
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
6. Block diagram  
V
DD  
11  
8
V
DD(F)  
BOOTSTRAP  
7
6
SUPPLY  
LEVEL  
SHIFTER  
HIGH SIDE  
DRIVER  
GH  
SH  
TEA1610  
reset  
10  
4
LOW SIDE  
DRIVER  
GL  
PGND  
start/stop oscillation  
LOGIC  
15  
SD  
shut-down  
start-up  
9
2.33 V  
SGND  
÷2  
2
1
×
+
2
I
charge  
I
gm  
I
OSCILLATOR  
ERROR  
AMPLIFIER  
2.5 V  
3 V  
I
discharge  
0.6 V  
5
13  
CF  
16  
14  
VCO IRS  
12  
IFS  
3
mgu337  
V
n.c.  
REF  
Fig 2. Block diagram  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
3 of 21  
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
7. Pinning information  
7.1 Pinning  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
I  
V
REF  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
I−  
I+  
V
REF  
I+  
VCO  
PGND  
n.c.  
SD  
IRS  
CF  
IFS  
SD  
IRS  
CF  
VCO  
PGND  
n.c.  
TEA1610P  
TEA1610T  
IFS  
SH  
V
DD  
SH  
V
DD  
GH  
GL  
GH  
GL  
V
SGND  
DD(F)  
V
SGND  
DD(F)  
001aaf866  
001aaf867  
Fig 3. Pin configuration for TEA1610P  
Fig 4. Pin configuration for TEA1610T  
7.2 Pin description  
Table 3.  
Pin description  
Symbol  
I-  
Pin  
1
Description  
error amplifier inverting input  
error amplifier non-inverting input  
error amplifier output  
I+  
2
VCO  
PGND  
n.c.  
3
4
power ground  
5
not connected (high voltage spacer)  
high side switch source  
gate of the high side switch  
floating supply voltage for the high side driver  
signal ground  
SH  
6
GH  
7
VDD(F)  
SGND  
GL  
8
9
10  
11  
12  
13  
14  
15  
16  
gate of the low side switch  
supply voltage  
VDD  
IFS  
oscillator discharge current input  
oscillator capacitor  
CF  
IRS  
oscillator charge current input  
shut-down input  
SD  
VREF  
reference voltage  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
4 of 21  
 
 
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
8. Functional description  
8.1 Start-up  
When the applied voltage at VDD reaches VDD(initial) (see Figure 5), the low side power  
switch is turned-on while the high side power switch remains in the non-conducting state.  
This start-up output state guarantees the initial charging of the bootstrap capacitor (Cboot  
)
used for the floating supply of the high side driver.  
During start-up, the voltage on the frequency capacitor (Cf) is zero and defines the  
start-up state. The output voltage of the error amplifier is kept constant (typ. 2.5 V) and  
switching starts at about 80 % of the maximum frequency at the moment pin VDD reaches  
the start level.  
The start-up state is maintained until VDD reaches the start level (13.5 V), the oscillator is  
activated and the converter starts operating.  
V
V
DD(start)  
DD(initial)  
V
DD  
0
GH-SH  
0
GL  
0
t
mgt998  
Fig 5. Start-up  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
5 of 21  
 
 
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
8.2 Oscillator  
The internal oscillator is a current-controlled oscillator that generates a sawtooth output.  
The frequency of the sawtooth is determined by the external capacitor Cf and the currents  
flowing into the IFS and IRS pins.  
The minimum frequency and the dead time are set by the capacitor Cf and resistors Rf(min)  
and Rdt. The maximum frequency is set by resistor Rf (see Figure 10). The oscillator  
frequency is exactly twice the bridge frequency to achieve an accurate 50 % duty factor.  
An overview of the oscillator and driver signals is given in Figure 6.  
CF  
GH-SH  
0
GL  
0
dead time (high to low)  
dead time (low to high)  
t
mgt999  
Fig 6. Oscillator and driver signals  
8.3 Dead time resistor  
The dead time resistor Rdt is connected between the 3 V reference pin (VREF) and the IFS  
current input pin (see Figure 10). The voltage on the IFS pin is kept constant at a  
temperature independent value of 0.6 V. The current that flows into the IFS pin is  
determined by the value of resistor Rdt and the 2.4 V voltage drop across this resistor. The  
IFS input current equals the discharge current of capacitor Cf and determines the falling  
slope of the oscillator.  
The falling slope time is used to create a dead time (tdt) between two successive switching  
actions of the half-bridge switches:  
2.4V  
Rdt  
IIFS  
=
-----------  
C f × ∆VCf  
tdt  
=
--------------------------  
IIFS  
tIFS = tdt  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
6 of 21  
 
 
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
8.4 Minimum frequency resistor  
The Rf(min) resistor is connected between the VREF pin (3 V reference voltage) and the IRS  
current input (held at a temperature independent voltage level of 0.6 V). The charge  
current of the capacitor Cf is twice the current flowing into the IRS pin.  
The Rf(min) resistor has a voltage drop of 2.4 V and its resistance defines the minimum  
charge current (rising slope) of the Cf capacitor if the control current is zero. The minimum  
frequency is defined by this minimum charge current (IIRS1) and the discharge current:  
2.4V  
Rf (min)  
IIRS1  
=
-----------------  
C f × ∆VCf  
tIRS1  
=
--------------------------  
2 × IIRS1  
1
f osc(min)  
=
-----------------------  
tdt + tIRS1  
f osc(min)  
f bridge(min)  
=
---------------------  
2
8.5 Maximum frequency resistor  
The output voltage is regulated by changing the frequency of the half-bridge converter.  
The maximum frequency is determined by the Rf resistor which is connected between  
the error amplifier output VCO and the oscillator current input pin IRS. The current that  
flows through the Rf resistor (IIRS2) is added to the current flowing through the Rf(min)  
resistor. As a result, the charge current ICF increases and the oscillation frequency  
increases. As the falling slope of the oscillator is constant, the relationship between the  
output frequency and the charge current is not a linear function (see Figure 7 and  
Figure 9):  
VVCO 0.6  
IIRS2  
=
=
--------------------------  
Rf  
C f × ∆VCf  
--------------------------------------------  
2 × (IIRS1 + IIRS2  
tIRS2  
)
The maximum output voltage of the error amplifier and the value of Rf determine the  
maximum frequency:  
VVCO(max) 0.6  
IIRS2(max)  
=
---------------------------------------  
Rf  
C f × ∆VCf  
tIRS(min)  
=
---------------------------------------------------------  
2 × (IIRS2 + IIRS2(max)  
)
1
f osc(max)  
=
------------  
TOSC  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
7 of 21  
 
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
f osc(max)  
f bridge(max)  
=
----------------------  
2
TOSC = tIRS(min) + tIFS  
Bridge frequency accuracy is optimum in the low frequency region. At higher frequencies  
both the dead time and the oscillator frequency show a decay.  
The frequency of the oscillator depends on the value of capacitor Cf, the peak-to-peak  
voltage swing VCf and the charge and discharge currents. However, at higher frequencies  
the accuracy decreases due to delays in the circuit.  
f
osc  
f
osc(max)  
f
osc(start)  
f
osc(min)  
0
I
IRS  
mgw001  
Fig 7. Frequency range  
8.6 Error amplifier  
The error amplifier is a transconductance amplifier. Thus the output current at pin VCO is  
determined by the amplifier transconductance and the differential voltage on input  
pins I+ and I-. The output current IVCO is fed to the IRS input of the current-controlled  
oscillator.  
The source capability of the error amplifier increases current in the IRS pin when the  
differential input voltage is positive. Therefore the minimum current is determined by  
resistor Rf(min) and the minimum frequency setting is independent of the characteristics of  
the error amplifier.  
The error amplifier has a maximum output current of 0.5 mA for an output voltage up to  
2.5 V. If the source current decreases, the oscillator frequency also decreases resulting in  
a higher regulated output voltage.  
During start-up, the output voltage of the amplifier is held at a constant value of 2.5 V. This  
voltage level defines, together with resistor Rf, the initial switching frequency of the  
TEA1610 after start-up.  
8.7 Shut-down  
The shut-down input (SD) has an accurate threshold level of 2.33 V. When the voltage on  
input SD reaches 2.33 V, both power switches immediately switch off and the TEA1610  
enters shut-down mode.  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
8 of 21  
 
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
During shut-down mode, pin VDD is clamped by an internal Zener diode at 12.0 V with  
1 mA input current. This clamp prevents VDD rising above the rating of 14 V due to low  
supply current to the TEA1610 in shut-down mode.  
When the TEA1610 is in the shut-down mode, it can be activated again only by lowering  
VDD below the VDD(reset) level (typically 5.3 V). The shut-down latch is then reset and a  
new start-up cycle can commence (see Figure 8).  
oscillation  
shut-  
down  
supply  
off  
start-up  
oscillation  
V
V
DD(start)  
DD(sdc)  
V
DD  
V
V
DD(reset)  
SD(th)  
SD  
GH-SH  
0
GL  
0
t
mgw002  
Fig 8. Shut-down  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
9 of 21  
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
9. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Voltages  
VHS  
Parameter  
Conditions  
Min  
Max  
Unit  
high side driver voltage  
supply voltage  
0
0
0
600  
15  
5
V
V
V
[1]  
VDD  
VI+  
amplifier non-inverting input  
voltage  
VI-  
amplifier inverting input voltage  
shut-down input voltage  
0
0
5
5
V
V
VSD  
Currents  
IIFS  
oscillator falling slope input  
current  
-
-
-
1
mA  
mA  
mA  
IIRS  
oscillator rising slope input  
current  
1
IREF  
VREF source current  
2  
Power and temperature  
Ptot  
total power dissipation  
Tamb < 70 °C  
-
0.8  
W
Tamb  
ambient temperature  
storage temperature  
operating  
25  
25  
+70  
+150  
°C  
°C  
Tstg  
Handling  
VESD  
[2]  
[3]  
electrostatic discharge voltage  
-
-
2000  
200  
V
V
[1] It is recommended that a 100 nF capacitor be placed as close as possible to the VDD pin (as indicated in  
Figure 10, and in the application note).  
[2] Human body model class 2: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
[3] Machine model class 2: equivalent to discharging a 200 pF capacitor through a 0.75 µH coil and 10 Ω  
resistor.  
10. Thermal characteristics  
Table 5.  
Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Rth(j-a)  
thermal resistance from junction  
to ambient  
in free air  
100  
K/W  
Rth(j-pin)  
thermal resistance from junction  
to pin  
50  
K/W  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
10 of 21  
 
 
 
 
 
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
11. Characteristics  
Table 6.  
Characteristics  
All voltages are referred to the ground pins which must be connected externally; positive currents flow into the IC; VDD = 13 V  
and Tamb = 25 °C; tested using the circuit shown in Figure 10, unless otherwise specified.  
Symbol  
High voltage pins VDD(F), GH and SH  
IL leakage current  
Supply pin VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
30  
5
Unit  
µA  
V
VDD(F), VGH and VSH = 600 V  
low side on; high side off  
-
-
-
VDD(initial)  
supply voltage for  
4
defined driver output  
start oscillator voltage  
stop oscillator voltage  
VDD(start)  
VDD(stop)  
VDD(hys)  
12.9  
9.0  
13.4  
9.4  
13.9  
9.8  
V
V
V
start-stop hysteresis  
voltage  
3.8  
4.0  
4.2  
VDD(sdc)  
shut-down clamp  
voltage  
low side off; high side off;  
11.0  
4.5  
12.0  
5.3  
13.0  
6.0  
V
V
IDD = 1 mA  
VDD(reset)  
IDD  
reset voltage  
[1]  
supply current:  
low side on; high side off  
Cf = 100 pF; IIFS = 0.5 mA;  
I
IRS = 50 µA; Co = 200 pF  
low side off; high side off;  
DD = 9 V  
V
start-up  
130  
180  
2.4  
220  
-
µA  
mA  
µA  
operating  
shut-down  
-
-
130  
180  
Reference voltage on pin VREF  
VREF  
reference voltage  
current capability  
output impedance  
IREF = 0 mA  
2.9  
3.0  
-
3.1  
V
IREF  
source only  
1.0  
-
-
-
mA  
Zo(VREF)  
IREF = 1 mA  
-
-
5.0  
0.3  
temperature  
coefficient  
IREF = 0 mA; Tj = 25 to 150 °C  
mV/K  
VREF  
-----------------  
T  
Current controlled oscillator pins IRS, IFS, CF  
ICF(ch)(min)  
minimum CF charge IIRS = 15 µA; VCF = 2 V  
current  
28  
30  
32  
µA  
µA  
ICF(ch)(max) maximum CF charge IIRS = 200 µA; VCF = 2 V  
340  
380  
420  
current  
VIRS  
ICF(dis)(min) minimum CF  
discharge current  
voltage on pin IRS  
IIRS = 200 µA  
570  
47  
600  
50  
630  
53  
mV  
IIRS = 50 µA; VCF = 2 V  
µA  
ICF(dis)(max) maximum CF  
discharge current  
IIFS = 1 mA; VCF = 2 V  
0.93  
0.98  
1.03  
mA  
VIFS  
voltage on pin IFS  
IIFS = 1 mA  
570  
188  
600  
200  
630  
212  
mV  
fbridge(min)  
minimum bridge  
frequency (for stable  
operation)  
CF = 100 pF; IIFS = 0.5 mA;  
kHz  
f OSC  
IIRS = 50 µA; fbridge =  
------------  
2
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
11 of 21  
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
Table 6.  
Characteristics …continued  
All voltages are referred to the ground pins which must be connected externally; positive currents flow into the IC; VDD = 13 V  
and Tamb = 25 °C; tested using the circuit shown in Figure 10, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[2]  
fbridge(max)  
maximum bridge  
frequency  
CF = 100 pF; IIFS = 1 mA;  
450  
500  
550  
kHz  
f OSC  
IIRS = 200 µA; fbridge  
=
------------  
2
VCF(L)  
VCF(H)  
VCf(p-p)  
CF trip level LOW  
CF trip level HIGH  
DC level  
DC level  
-
1.27  
3.0  
-
V
V
V
-
-
Cf voltage  
1.63  
1.73  
1.83  
(peak-to-peak value)  
tdt  
dead time  
Cf = 100 pF; IIFS = 0.5 mA;  
IRS = 50 µA  
0.37  
0.40  
0.43  
µs  
I
Output drivers  
IGH(source)  
IGH(sink)  
IGL(source)  
IGL(sink)  
VGH(H)  
high side output  
source current  
VDD(F) = 13 V; VSH = 0 V;  
GH = 0 V  
135  
180  
300  
180  
300  
12  
225  
mA  
mA  
mA  
mA  
V
V
high side output sink VDD(F) = 13 V; VSH = 0 V;  
current  
-
-
VGH = 13 V  
low side output  
source current  
VGL = 0 V  
135  
225  
-
low side output sink  
current  
VGL = 14 V  
-
high side output  
voltage HIGH  
VDD(F) = 13 V; VSH = 0 V;  
10.8  
-
-
I
GH = 10 mA  
VDD(F) = 13 V; VSH = 0 V;  
GH = 10 mA  
VGH(L)  
high side output  
voltage LOW  
0.2  
0.5  
-
V
I
VGL(H)  
low side output  
voltage HIGH  
IGL = 10 mA  
IGL = 10 mA  
I = 5 mA  
10.8  
-
12  
V
VGL(L)  
low side output  
voltage LOW  
0.2  
0.5  
2.1  
V
Vd(boot)  
bootstrap diode  
voltage drop  
1.5  
1.8  
V
Shut-down input pin SD  
ISD  
input current  
VSD = 2.33 V  
0
0.2  
0.5  
µA  
VSD(th)  
threshold level  
2.26  
2.33  
2.40  
V
Error amplifier pins I+, I-, VCO  
II(CM)  
common mode input VI(CM) = 1 V  
current  
-
-
0.1  
0.5  
µA  
VI(CM)  
common mode input  
voltage  
-
2.5  
V
VI(offset)  
gm  
input offset voltage  
transconductance  
open loop gain  
VI(CM) = 1 V; IVCO = 10 mA  
2  
-
0
+2  
mV  
VI(CM) = 1 V; source only  
VI(CM) = 1 V  
330  
70  
5
-
-
-
µA/mV  
dB  
[3]  
[3]  
Ao  
-
GB  
gain bandwidth  
product  
VI(CM) = 1 V  
-
MHz  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
12 of 21  
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
Table 6.  
Characteristics …continued  
All voltages are referred to the ground pins which must be connected externally; positive currents flow into the IC; VDD = 13 V  
and Tamb = 25 °C; tested using the circuit shown in Figure 10, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[3]  
VVCO(max)  
maximum VCO  
voltage  
operating  
3.2  
3.6  
4.0  
V
IVCO(max)  
maximum output  
current  
operating; VVCO = 1 V  
IVCO = 0.3 mA  
0.4  
0.5  
0.6  
mA  
V
VVCO(start)  
start VCO voltage  
2.3  
2.5  
2.7  
[1] The supply current IDD increases with increasing bridge frequency to drive the capacitive load of two MOSFETs. Typical MOSFETs for  
the TEA1610 application are 8N50 (NXP type PHX80N50E, Qg(tot) = 55 nC typ.) and these will increase the supply current at 150 kHz  
according to the following formula:  
IDD = 2 × Qg(tot) × f bridge = 2 × 55nC × 150kHz = 16.5mA  
[2] The frequency of the oscillator depends on the value of capacitor Cf, the peak-to-peak voltage swing VCF, and the charge/discharge  
currents ICF(ch) and ICF(dis)  
.
[3] This parameter is tested with a resistor of 10 kconnected from pin VCO to GND.  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
13 of 21  
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
12. Application information  
An application example of a zero-voltage switching resonant converter application using  
TEA1610 is shown in Figure 10. In the off-mode the VDD voltage is pulled below the stop  
level of 9.4 V by the 7.5 V Zener diode and the half-bridge is not driven. In the on-mode  
the TEA1610 starts-up with a high-ohmic bleeder resistor. After passing the level for start  
of oscillation, the TEA1610 is in normal operating mode and consumes the normal supply  
current delivered by the 12 V supply. The dead time is set by Rdt and Cf. The minimum  
frequency is adjusted by Rf(min) and the frequency range is set by Rf. The output voltage  
is adjusted with a potentiometer connected to the inverting input of the error amplifier and  
is regulated via a feedback circuit. The shut-down input is used for overvoltage protection.  
To prevent interference, filter capacitors can be added on pins IFS, IRS and VREF. The  
maximum value of each filter capacitor is 100 pF.  
Practical values of the application example are given in Figure 9, in which the measured  
oscillator frequency with capacitor Cf = 220 pF is shown as a function of the charge  
current IIRS. Note that the slope of the measured frequency differs from the theoretical  
frequency (frequency set) calculated as described in Section 8.5 “Maximum frequency  
resistor”.  
The measured dead time is directly related to the charge current (total current flowing into  
pin IRS) and therefore to the oscillator frequency.  
The measured frequency graph can be used to determine the required Rf resistor for a  
certain maximum frequency in an application with the same value of capacitor Cf.  
More application information can be found in application note AN99011.  
mgw003  
1200  
800  
dead time (low to high)  
f
t
dt  
osc  
(kHz)  
(ns)  
dead time (high to low)  
600  
900  
400  
200  
0
600  
300  
0
frequency set  
frequency measured  
0
40  
80  
120  
160  
200  
I
(µA)  
IRS  
(1) fOSC at IIFS = 500 mA.  
(2) fOSC = 2 x fbridge  
.
Fig 9. Oscillator frequency and measured dead time as functions of charge current IIRS  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
14 of 21  
 
 
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
bridge voltage supply (high side)  
12 V  
R
VDD  
output voltage  
C
VDD  
7.5 V  
V
DD  
11  
V
DD(F)  
8
7
on/off  
bootstrap diode  
GH  
SH  
LEVEL  
SHIFTER  
HIGH SIDE  
DRIVER  
L
p
TEA1610  
L
r(ext)  
C
boot  
6
10  
GL  
LOW SIDE  
DRIVER  
C
p
C
r
4
PGND  
SD  
LOGIC  
SUPPLY  
15  
power ground  
overvoltage protection  
signal  
ground  
SGND  
9
2.33 V  
÷2  
regulator  
feedback  
mgu339  
I+  
SGND  
2
1
gm  
I−  
OSCILLATOR  
3 V  
ERROR  
0.6 V  
12  
AMPLIFIER  
13  
16  
14  
IRS  
3
VCO  
V
IFS  
CF  
REF  
C
f
R
f  
R
f(min)  
R
dt  
C
SS  
Fig 10. Application diagram  
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
13. Test information  
13.1 Quality information  
The General Quality Specification for Integrated Circuits, SNW-FQ-611 is applicable.  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
16 of 21  
 
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
14. Package outline  
DIP16: plastic dual in-line package; 16 leads (300 mil); long body  
SOT38-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
max.  
max.  
min.  
max.  
1.40  
1.14  
0.53  
0.38  
0.32  
0.23  
21.8  
21.4  
6.48  
6.20  
3.9  
3.4  
8.25  
7.80  
9.5  
8.3  
4.7  
0.51  
3.7  
2.54  
0.1  
7.62  
0.3  
0.254  
0.01  
2.2  
0.021  
0.015  
0.013  
0.009  
0.86  
0.84  
0.32  
0.31  
0.055  
0.045  
0.26  
0.24  
0.15  
0.13  
0.37  
0.33  
inches  
0.19  
0.02  
0.15  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-13  
SOT38-1  
050G09  
MO-001  
SC-503-16  
Fig 11. Package outline SOT38-1 (DIP16)  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
17 of 21  
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
SO16: plastic small outline package; 16 leads; body width 3.9 mm; low stand-off height  
SOT109-2  
D
E
A
X
v
c
y
H
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
0.20  
0.05  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
1.65  
1.27  
0.05  
1.05  
0.041  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.008 0.057  
0.002 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches  
0.01 0.004  
0.065  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT109-2  
076E07  
MS-012  
Fig 12. Package outline SOT109-2 (SO16)  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
18 of 21  
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
15. Revision history  
Table 7.  
Revision history  
Document ID  
TEA1610T_P_3  
Modifications:  
TEA1610T_P_2  
Modifications:  
Release date  
Data sheet status  
Change notice  
Supersedes  
20070326  
Product data sheet  
-
TEA1610T_P_2  
In Table 4 “Limiting values”, maximum value for VDD changed from 14 V to 15 V.  
20070206 Product data sheet TEA1610T_P_1  
-
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Equations modified in Section 8.4 “Minimum frequency resistor” and Section 8.5 “Maximum  
frequency resistor”.  
TEA1610T_P_1  
20010425  
Product specification  
-
-
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
19 of 21  
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
16. Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
16.2 Definitions  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
16.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
16.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
17. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
TEA1610T_P_3  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 03 — 26 March 2007  
20 of 21  
 
 
 
 
 
 
TEA1610P; TEA1610T  
NXP Semiconductors  
Zero-voltage-switching resonant converter controller  
18. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
Functional description . . . . . . . . . . . . . . . . . . . 5  
Start-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Dead time resistor. . . . . . . . . . . . . . . . . . . . . . . 6  
Minimum frequency resistor . . . . . . . . . . . . . . . 7  
Maximum frequency resistor. . . . . . . . . . . . . . . 7  
Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Shut-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal characteristics. . . . . . . . . . . . . . . . . . 10  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 11  
Application information. . . . . . . . . . . . . . . . . . 14  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 16  
Quality information . . . . . . . . . . . . . . . . . . . . . 16  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 19  
10  
11  
12  
13  
13.1  
14  
15  
16  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 20  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 20  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
16.1  
16.2  
16.3  
16.4  
17  
18  
Contact information. . . . . . . . . . . . . . . . . . . . . 20  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 26 March 2007  
Document identifier: TEA1610T_P_3  
 

相关型号:

TEA1610T/N5,518

Zero-voltage-switching resonant LLC controller SOP 16-Pin
NXP

TEA1610T/N6,518

Zero-voltage-switching resonant LLC controller SOP 16-Pin
NXP

TEA1610T/N6/DG,518

Zero-voltage-switching resonant LLC controller SOP 16-Pin
NXP

TEA1610T/N6O,518

Zero-voltage-switching resonant LLC controller SOP 16-Pin
NXP

TEA1611T

IC SWITCHING CONTROLLER, 485 kHz SWITCHING FREQ-MAX, PDSO20, 7.50 MM, PLASTIC, MS-013, SOT163-1, SOP-20, Switching Regulator or Controller
NXP

TEA1611T/N1,518

Zero-voltage-switching resonant LLC controller, extended feature set SOP 20-Pin
NXP

TEA1611T/N2,518

Zero-voltage-switching resonant LLC controller, extended feature set SOP 20-Pin
NXP

TEA1612T/N1,518

Zero voltage switching resonant converter controller
NXP

TEA1620P

STARplug
NXP

TEA1620P/N1,112

IC 0.25 A SWITCHING REGULATOR, 200 kHz SWITCHING FREQ-MAX, PDIP8, 0.300 INCH, PLASTIC, MO-001, DIP-8, Switching Regulator or Controller
NXP

TEA1622P

STARplugTM
NXP

TEA1622P/N1,112

IC 1 A SWITCHING REGULATOR, 200 kHz SWITCHING FREQ-MAX, PDIP8, 0.300 INCH, PLASTIC, MO-001, DIP-8, Switching Regulator or Controller
NXP