UAA2077BM [NXP]

2 GHz image rejecting front-end; 2 GHz的图像拒绝前端
UAA2077BM
型号: UAA2077BM
厂家: NXP    NXP
描述:

2 GHz image rejecting front-end
2 GHz的图像拒绝前端

电信集成电路 电信电路 光电二极管 信息通信管理
文件: 总16页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
UAA2077BM  
2 GHz image rejecting front-end  
1995 Dec 13  
Product specification  
Supersedes data of July 1995  
File under Integrated Circuits, IC03  
 
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
Image rejection is achieved in the internal architecture by  
two RF mixers in quadrature and two all-pass filters in  
I and Q IF channels that phase shift the IF by 45° and 135°  
respectively. The two phase shifted IFs are recombined  
and buffered to furnish the IF output signal.  
FEATURES  
Low-noise, wide dynamic range amplifier  
Very low noise figure  
Dual balanced mixer for over 25 dB on-chip image  
rejection  
For instance, signals presented at the RF input at the  
LO + IF frequency are rejected through this signal  
processing while signals at the LO IF frequency can form  
the IF signal. An internal switch enables the upper or lower  
image frequency to be rejected.  
IF I/Q combiner at 188 MHz  
On-chip quadrature network  
Down-conversion mixer for closed-loop transmitters  
Independent TX/RX fast ON/OFF power-down modes  
Very small outline packaging  
The receiver section consists of a low-noise amplifier that  
drives a quadrature mixer pair. The IF amplifier has  
on-chip 45° and 135° phase shifting and a combining  
network for image rejection. The IF driver has differential  
open-collector type outputs.  
Very small application (no image filter).  
APPLICATIONS  
The LO part consists of an internal all-pass type phase  
shifter to provide quadrature LO signals to the receive  
mixers. The centre frequency of the phase shifter is  
adjustable for maximum image rejection in a given band.  
The all-pass filters outputs are buffered before being fed to  
the receive mixers.  
1800 MHz front-end for DCS1800 hand-portable  
equipment  
Compact digital mobile communication equipment  
TDMA receivers e.g. PCS and RF-LANS.  
The transmit section consists of a low-noise amplifier and  
a down-conversion mixer. In the transmit mode an internal  
LO buffer is used to drive the transmit IF down-conversion  
mixer.  
GENERAL DESCRIPTION  
UAA2077BM contains both a receiver front-end and a high  
frequency transmit mixer intended to be used in mobile  
telephones. Designed in an advanced BiCMOS process it  
combines high performance with low power consumption  
and a high degree of integration, thus reducing external  
component costs and total front-end size.  
All RF and IF inputs or outputs are balanced.  
Pins RXON, TXON and SXON enable a selection to be  
made of whether to reject the upper or lower image  
frequency and control of the different power-down modes.  
Special care has been taken for fast power-up switching.  
The main advantage of the UAA2077BM is its ability to  
provide over 25 dB of image rejection. Consequently, the  
image filter between the LNA and the mixer is suppressed.  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
MIN.  
3.6  
TYP.  
MAX.  
5.3  
UNIT  
supply voltage  
4.0  
V
ICC(RX)  
ICC(TX)  
ICC(PD)  
Tamb  
receive supply current  
21.5  
10.5  
26.5  
13.5  
33.5  
18  
mA  
mA  
µA  
°C  
transmit supply current  
supply current in power-down  
operating ambient temperature  
50  
30  
+25  
+85  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
UAA2077BM  
1995 Dec 13  
SSOP20 plastic shrink small outline package; 20 leads; body width 4.4 mm  
SOT266-1  
2
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
BLOCK DIAGRAM  
n.c.  
n.c.  
TXON  
11  
RXON  
12  
SXON  
9
4
7
o
+45  
UAA2077BM  
MIXER  
3
V
CCLNA  
17  
IFA  
5
6
RFINA  
RFINB  
IF  
LNA  
o
+135  
COMBINER  
18  
IFB  
low-noise  
amplifier  
8
LNAGND  
RECEIVE SECTION  
TRANSMIT SECTION  
15  
10  
V
CCLO  
QUADRATURE  
PHASE  
SHIFTER  
V
QUADLO  
MIXER  
19  
TXOA  
16  
TXOB  
LOGND  
20  
LOCAL OSCILLATOR  
SECTION  
14  
13  
2
1
MGD154  
LOINA LOINB  
TXINB TXINA  
Fig.1 Block diagram.  
3
1995 Dec 13  
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
TXINA  
TXINB  
VCCLNA  
1
2
3
transmit mixer input A (balanced)  
transmit mixer input B (balanced)  
supply voltage for LNA, IF parts  
and TX mixer  
n.c.  
4
5
6
7
8
not connected  
RFINA  
RFINB  
n.c.  
RF input A (balanced)  
RF input B (balanced)  
not connected  
handbook, halfpage  
TXINA  
TXINB  
1
2
20 TXOB  
19 TXOA  
18 IFB  
V
3
LNAGND  
ground for LNA, IF parts and TX  
mixer  
CCLNA  
n.c.  
4
17 IFA  
SXON  
9
SX mode enable (see Table 1)  
RFINA  
RFINB  
n.c.  
5
16 LOGND  
UAA2077BM  
VQUADLO  
10 input voltage for LO quadrature  
trimming  
6
15 V  
CCLO  
7
14 LOINA  
13 LOINB  
12 RXON  
11 TXON  
TXON  
RXON  
LOINB  
LOINA  
VCCLO  
LOGND  
IFA  
11 TX mode enable (see Table 1)  
12 RX mode enable (see Table 1)  
13 LO input B (balanced)  
14 LO input A (balanced)  
15 supply voltage for LO parts  
16 ground for LO parts  
LNAGND  
SXON  
8
9
V
10  
QUADLO  
MGD155  
17 IF output A (balanced)  
18 IF output B (balanced)  
IFB  
TXOA  
19 transmit mixer IF output A  
(balanced)  
TXOB  
20 transmit mixer IF output B  
(balanced)  
Fig.2 Pin configuration.  
1995 Dec 13  
4
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
The IF output is differential and of the open-collector type.  
Typical application will load the output with a differential  
1 kload; for example, a 1 kresistor load at each IF  
output, plus a differential 2 kload consisting of the input  
impedance of the IF filter or the input impedance of the  
matching network for the IF filter. The power gain refers to  
the available power on this 2 kload. The path to VCC for  
the DC current should be achieved via tuning inductors.  
The output voltage is limited to VCC + 3Vbe or 3 diode  
forward voltage drops.  
FUNCTIONAL DESCRIPTION  
Receive section  
The circuit contains a low-noise amplifier followed by two  
high dynamic range mixers. These mixers are of the  
Gilbert-cell type, the whole internal architecture is fully  
differential.  
The local oscillator, shifted in phase to 45° and 135°,  
mixes the amplified RF to create I and Q channels.  
The two I and Q channels are buffered, phase shifted by  
45° and 135° respectively, amplified and recombined  
internally to realize the image rejection.  
Fast switching, ON/OFF, of the receive section is  
controlled by the hardware input RXON.  
Balanced signal interfaces are used for minimizing  
crosstalk due to package parasitics.  
IF  
o
+45  
amplifier  
MIXER  
MIXER  
V
CCLNA  
IFA  
RFINA  
RFINB  
IF  
COMBINER  
IFB  
LNA  
LNAGND  
IF  
o
amplifier  
+135  
MGD157  
RXON  
LOIN  
Fig.3 Block diagram, receive section.  
1995 Dec 13  
5
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
Local oscillator section  
Transmit mixer  
The local oscillator (LO) input directly drives the two  
internal all-pass networks to provide quadrature LO to the  
receive mixers.  
This mixer is used for down-conversion to the transmit IF.  
Its inputs are coupled to the transmit RF which is  
down-converted to a modulated transmit IF frequency,  
phase-locked with the baseband modulation.  
The centre frequency of the receive band is adjustable by  
the voltage on pin VQUADLO. This should be achieved by  
connecting a resistor between VQUADLO and VCC. Over  
25 dB of image rejection can be obtained by an optimum  
resistor value.  
The IF outputs are high-impedance (open-collector type).  
Typical application will load the output with a differential  
500 load; for example, a 500 resistor load, connected  
to VCC for DC path, at each TX output, plus a differential  
1 kconsisting of the input impedance of the matching  
network for the following TX part. The mixer can also be  
used for frequency up-conversion.  
A synthesizer-ON mode (SX mode) is used to power-up all  
LO input buffers, thus minimizing the pulling effect on the  
external VCO when entering the receive or transmit mode.  
This mode is active when SXON = 1.  
Fast switching ON/OFF, of the transmit section is  
controlled by the hardware input TXON.  
to RX  
handbook, halfpage  
V
handbook, halfpage  
TX MIXER  
CCLO  
TXOA  
TXOB  
LOIN  
QUAD  
V
QUADLO  
LOGND  
MGD153  
to TX  
TXON  
TXINB TXINA  
MGD156  
LOINA LOINB  
Fig.4 Block diagram, LO section.  
Fig.5 Block diagram, transmit mixer.  
Table 1 Control of power status  
EXTERNAL PIN LEVEL  
CIRCUIT MODE OF OPERATION  
TXON  
RXON  
SXON  
LOW  
LOW  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
LOW  
HIGH  
power-down mode  
RX mode, fLO < fRF: receive section and LO buffers to RX on  
TX mode: transmit section and LO buffers to TX on  
SX mode: complete LO section on  
SRX mode, fLO < fRF: receive section on and SX mode active  
STX mode: transmit section on and SX mode active  
RX mode, fLO > fRF: receive section and LO buffers to RX on  
SRX mode, fLO > fRF: receive section on and SX mode active  
1995 Dec 13  
6
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VCC  
PARAMETER  
MIN.  
MAX.  
9.0  
UNIT  
supply voltage  
V
V
GND  
Pi(max)  
Tj(max)  
Pdis(max)  
Tstg  
difference in ground supply voltage applied between LOGND and LNAGND −  
0.6  
maximum power input  
+20  
+150  
250  
dBm  
°C  
maximum operating junction temperature  
maximum power dissipation in quiet air  
storage temperature  
mW  
°C  
65  
+150  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
120  
UNIT  
Rth j-a  
thermal resistance from junction to ambient in free air  
K/W  
HANDLING  
All pins withstand the ESD test in accordance with MIL-STD-883C class 2 (method 3015.5), except pins LOINA and  
LOINB which withstand 1500 V (class 1).  
1995 Dec 13  
7
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
DC CHARACTERISTICS  
V
CC = 4 V; Tamb = 25 °C; unless otherwise specified.  
SYMBOL PARAMETER  
Pins: VCCLNA and VCCLO  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
VCC  
supply voltage  
over full temperature range  
3.6  
4.0  
26.5  
13.5  
5.3  
33.5  
18  
50  
10  
V
ICC(RX)  
ICC(TX)  
ICC(PD)  
ICC(SX)  
ICC(SRX)  
ICC(STX)  
supply current in RX mode  
supply current in TX mode  
supply current in power-down mode  
supply current in SX mode  
supply current in SRX mode  
supply current in STX mode  
21.5  
10.5  
mA  
mA  
µA  
mA  
mA  
mA  
5.5  
7.5  
29  
18  
Pins: RXON, TXON and SXON  
Vth  
VIH  
VIL  
IIH  
CMOS threshold voltage  
HIGH level input voltage  
LOW level input voltage  
note 1  
1.25  
V
0.7VCC  
0.3  
1  
VCC  
0.8  
+1  
+1  
V
V
HIGH level static input current  
LOW level static input current  
pins at VCC 0.4 V  
µA  
µA  
IIL  
pins at 0.4 V  
1  
Pins: RFINA and RFINB  
VI  
DC input voltage level  
receive section on  
2.0  
2.5  
2.0  
0.9  
3.3  
V
Pins: IFA and IFB  
IO  
DC output current  
receive section on  
mA  
V
Pins: TXINA and TXINB  
VI  
DC input voltage level  
transmit section on  
Pins: TXOA and TXOB  
IO  
DC output current  
transmit section on  
mA  
V
Pins: LOINA and LOINB  
VLOIN  
DC input voltage level  
RXON, TXON or SXON HIGH  
Note  
1. The referenced inputs should be connected to a valid CMOS input level.  
1995 Dec 13  
8
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
AC CHARACTERISTICS  
V
CC = 4 V; Tamb = 30 to +85 °C; unless otherwise specified.  
SYMBOL PARAMETER CONDITIONS  
Receive section (receive section enabled)  
MIN. TYP. MAX.  
UNIT  
RiRX  
RF input resistance (real part of balanced; at 1850 MHz  
the parallel input impedance)  
60  
1
CiRX  
RF input capacitance  
(imaginary part of the parallel  
input impedance)  
balanced; at 1850 MHz  
pF  
fiRX  
RF input frequency  
1800  
11  
2000 MHz  
RLiRX  
GCPRX  
return loss on matched RF input balanced; note 1  
15  
20  
dB  
dB  
conversion power gain  
differential RF inputs to differential 17  
23  
IF outputs loaded to 1 kΩ  
differential  
Grip  
gain ripple as a function of RF  
frequency  
between 1805 and 1880 MHz;  
note 2  
0.2  
dB  
G/T  
gain variation with temperature Tamb = 30 to +25 °C; note 2  
Tamb = +25 to +85 °C; note 2  
20  
40  
0
+10  
20  
mdBC  
mdBC  
dBm  
30  
23  
CP1RX  
DES3  
1 dB compression point  
differential RF inputs to differential 26  
IF outputs; note 1  
3 dB desensitisation point  
interferer frequency offset: 3 MHz;  
differential RF inputs to differential  
IF outputs; note 1  
30  
27  
dBm  
dBm  
interferer frequency offset: 20 MHz;  
differential RF inputs to differential  
IF outputs; note 1  
IP2DRX  
IP3RX  
NFRX  
ZLRX  
2nd-order intercept point  
3rd-order intercept point  
overall noise figure  
differential RF inputs to differential +15  
IF outputs; note 2  
+22  
17  
4.3  
1
dBm  
dBm  
dB  
differential RF inputs to differential 23  
IF outputs; note 2  
differential RF inputs to differential  
IF outputs; notes 2 and 3  
5.0  
typical application IF output load balanced  
impedance  
kΩ  
RLiRX  
foRX  
return loss on matched IF input balanced; note 1  
IF frequency range  
11  
15  
188  
dB  
170  
20  
210  
MHz  
dB  
IRRX  
rejection of image frequency  
VQUADLO tuned  
fLO < fRF; fIF = 188 MHz; note 4  
25  
32  
dB  
Local oscillator section (receive section enabled)  
fiLO  
LO input frequency  
1600  
2200 MHz  
RiLO  
LO input resistance (real part of balanced  
the parallel input impedance)  
45  
CiLO  
LO input capacitance  
(imaginary part of the parallel  
input impedance)  
balanced  
2
pF  
1995 Dec 13  
9
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX.  
UNIT  
dB  
RLiLO  
return loss on matched input  
(including standby mode)  
note 1  
9
12  
RLiLO  
return loss variation between  
SX, SRX and STX modes  
linear S11 variation; note 1  
5
mU  
PiLO  
RILO  
LO input power level  
reverse isolation  
6  
3  
+3  
dBm  
dB  
LOIN to RFIN at LO frequency;  
note 1  
40  
Rtune  
image rejection tuning resistor  
connected between VQUADLO and  
VCC  
0
4.7  
kΩ  
Transmit section (transmit section enabled)  
ZLTX  
TX IF typical load impedance  
balanced  
note 1  
500  
15  
RLoTX  
return loss on matched TX IF  
output  
11  
dB  
RiTX  
TX RF input resistance  
(real part of the parallel input  
impedance)  
balanced; at 1750 MHz  
balanced; at 1750 MHz  
65  
1
CiTX  
TX RF input capacitance  
(imaginary part of the parallel  
input impedance)  
pF  
fiTX  
TX input frequency  
1600  
10  
2000  
MHz  
dB  
RLiTX  
GCPTX  
return loss on matched TX input note 1  
15  
9
conversion power gain  
differential transmitter inputs to  
6
12  
dB  
differential transmitter IF outputs  
loaded with 500 differential  
foTX  
TX output frequency  
1 dB input compression point  
2nd-order intercept point  
3rd-order intercept point  
noise figure  
50  
25  
400  
MHz  
dBm  
dBm  
dBm  
dB  
CP1TX  
IP2TX  
IP3TX  
NFTX  
ITX  
note 2  
22  
+22  
16  
5
note 2  
note 2  
20  
double sideband; notes 2 and 3  
LOIN to TXIN; note 1  
TXIN to LOIN; note 1  
9
isolation  
40  
40  
dB  
RITX  
reverse isolation  
dB  
Timing  
tstu  
start-up time of each block  
1
5
20  
µs  
Notes  
1. Measured and guaranteed only on UAA2077BM demonstration board at Tamb = +25 °C.  
2. Measured and guaranteed only on UAA2077BM demonstration board.  
3. This value includes printed-circuit board and balun losses.  
4. Measured and guaranteed only on UAA2077BM demonstration board at Tamb = +25 °C, with a 4.7 kresistor  
connected between VQUADLO and VCC  
.
1995 Dec 13  
10  
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
APPLICATION INFORMATION  
BM0G14  
a n d b l l p a g e w i d t h  
1995 Dec 13  
11  
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
PACKAGE OUTLINE  
SSOP20: plastic shrink small outline package; 20 leads; body width 4.4 mm  
SOT266-1  
D
E
A
X
c
y
H
v
M
A
E
Z
11  
20  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
10o  
0o  
0.15  
0
1.4  
1.2  
0.32  
0.20  
0.20  
0.13  
6.6  
6.4  
4.5  
4.3  
6.6  
6.2  
0.75  
0.45  
0.65  
0.45  
0.48  
0.18  
mm  
1.5  
0.65  
1.0  
0.2  
0.25  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
90-04-05  
95-02-25  
SOT266-1  
1995 Dec 13  
12  
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
If wave soldering cannot be avoided, the following  
conditions must be observed:  
SOLDERING  
Introduction  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
The longitudinal axis of the package footprint must  
be parallel to the solder flow and must incorporate  
solder thieves at the downstream end.  
Even with these conditions, only consider wave  
soldering SSOP packages that have a body width of  
4.4 mm, that is SSOP16 (SOT369-1) or  
SSOP20 (SOT266-1).  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering  
Reflow soldering techniques are suitable for all SSOP  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
Wave soldering  
Wave soldering is not recommended for SSOP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
1995 Dec 13  
13  
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1995 Dec 13  
14  
Philips Semiconductors  
Product specification  
2 GHz image rejecting front-end  
UAA2077BM  
NOTES  
1995 Dec 13  
15  
Philips Semiconductors – a worldwide company  
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)  
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. (63) 2 816 6380, Fax. (63) 2 817 3474  
Tel. (02)805 4455, Fax. (02)805 4466  
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,  
Tel. (01)60 101-1236, Fax. (01)60 101-1211  
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,  
Portugal: PHILIPS PORTUGUESA, S.A.,  
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,  
Apartado 300, 2795 LINDA-A-VELHA,  
Tel. (01)4163160/4163333, Fax. (01)4163174/4163366  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. (65)350 2000, Fax. (65)251 6500  
South Africa: S.A. PHILIPS Pty Ltd.,  
Tel. (31)40-2783749, Fax. (31)40-2788399  
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,  
CEP: 04552-903-SÃO PAULO-SP, Brazil,  
P.O. Box 7383 (01064-970),  
195-215 Main Road Martindale, 2092 JOHANNESBURG,  
P.O. Box 7430, Johannesburg 2000,  
Tel. (011)470-5911, Fax. (011)470-5494  
Tel. (011)821-2333, Fax. (011)829-1849  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:  
Tel. (800) 234-7381, Fax. (708) 296-8556  
Chile: Av. Santa Maria 0760, SANTIAGO,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. (03)301 6312, Fax. (03)301 42 43  
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,  
Tel. (0)8-632 2000, Fax. (0)8-632 2745  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. (02)773 816, Fax. (02)777 6730  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. (852)2319 7888, Fax. (852)2319 7700  
Tel. (01)488 2211, Fax. (01)481 77 30  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West  
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,  
TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444  
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,  
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,  
Fax. (571)217 4549  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong,  
Bangkok 10260, THAILAND,  
Tel. (66) 2 745-4090, Fax. (66) 2 398-0793  
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. (0212)279 27 70, Fax. (0212)282 67 07  
Ukraine: Philips UKRAINE, 2A Akademika Koroleva str., Office 165,  
Denmark: Prags Boulevard 80, PB 1919, DK-2300  
COPENHAGEN S, Tel. (45)32 88 26 36, Fax. (45)31 57 19 49  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. (358)0-615 800, Fax. (358)0-61580 920  
France: 4 Rue du Port-aux-Vins, BP317,  
92156 SURESNES Cedex,  
Tel. (01)4099 6161, Fax. (01)4099 6427  
Germany: P.O. Box 10 51 40, 20035 HAMBURG,  
252148 KIEV, Tel. 380-44-4760297, Fax. 380-44-4766991  
United Kingdom: Philips Semiconductors LTD.,  
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,  
Tel. (0181)730-5000, Fax. (0181)754-8421  
United States:811 East Arques Avenue, SUNNYVALE,  
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556  
Uruguay: Coronel Mora 433, MONTEVIDEO,  
Tel. (040)23 53 60, Fax. (040)23 53 63 00  
Greece: No. 15, 25th March Street, GR 17778 TAVROS,  
Tel. (01)4894 339/4894 911, Fax. (01)4814 240  
India: Philips INDIA Ltd, Shivsagar Estate, A Block,  
Dr. Annie Besant Rd. Worli, Bombay 400 018  
Tel. (022)4938 541, Fax. (022)4938 722  
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,  
P.O. Box 4252, JAKARTA 12950,  
Tel. (02)70-4044, Fax. (02)92 0601  
Tel. (021)5201 122, Fax. (021)5205 189  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. (01)7640 000, Fax. (01)7640 200  
Italy: PHILIPS SEMICONDUCTORS S.r.l.,  
Piazza IV Novembre 3, 20124 MILANO,  
Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557  
Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108,  
Tel. (03)3740 5130, Fax. (03)3740 5077  
Korea: Philips House, 260-199 Itaewon-dong,  
Internet: http://www.semiconductors.philips.com/ps/  
For all other countries apply to: Philips Semiconductors,  
International Marketing and Sales, Building BE-p,  
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,  
Telex 35000 phtcnl, Fax. +31-40-2724825  
Yongsan-ku, SEOUL, Tel. (02)709-1412, Fax. (02)709-1415  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,  
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,  
Tel. 9-5(800)234-7381, Fax. (708)296-8556  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. (040)2783749, Fax. (040)2788399  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
SCDS47  
© Philips Electronics N.V. 1995  
All rights are reserved. Reproduction in whole or in part is prohibited without the  
prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation  
or contract, is believed to be accurate and reliable and may be changed without  
notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent- or  
other industrial or intellectual property rights.  
Tel. (09)849-4160, Fax. (09)849-7811  
Norway: Box 1, Manglerud 0612, OSLO,  
Printed in The Netherlands  
Tel. (022)74 8000, Fax. (022)74 8341  
Pakistan: Philips Electrical Industries of Pakistan Ltd.,  
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,  
KARACHI 75600, Tel. (021)587 4641-49,  
Fax. (021)577035/5874546  
413061/1100/03/pp16  
Date of release: 1995 Dec 13  
9397 750 00526  
Document order number:  

相关型号:

UAA2077BM-T

IC SPECIALTY TELECOM CIRCUIT, PDSO20, Telecom IC:Other
NXP

UAA2077CM

2 GHz image rejecting front-end
NXP

UAA2077CM-T

暂无描述
NXP

UAA2077TS

2 GHz image rejecting front-end
NXP

UAA2077TS/D

2 GHz image rejecting front-end
NXP

UAA2078M

IC TELECOM, CORDLESS, SUPPORT CIRCUIT, PDSO16, Cordless Telephone IC
NXP

UAA2078M-T

IC TELECOM, CORDLESS, SUPPORT CIRCUIT, PDSO16, Cordless Telephone IC
NXP

UAA2080

Advanced pager receiver
NXP

UAA2080H

Advanced pager receiver
NXP

UAA2080H/V1

IC TELECOM, PAGING RECEIVER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, SOT-358-1, LQFP-32, Paging Circuit
NXP

UAA2080HB-T

IC TELECOM, PAGING RECEIVER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, SOT-358-1, LQFP-32, Paging Circuit
NXP

UAA2080T

Advanced pager receiver
NXP