UAA3522HL [NXP]

Low power dual-band GSM transceiver with an image rejecting front-end; 用图像拒绝前端低功耗双频GSM收发器
UAA3522HL
型号: UAA3522HL
厂家: NXP    NXP
描述:

Low power dual-band GSM transceiver with an image rejecting front-end
用图像拒绝前端低功耗双频GSM收发器

电信集成电路 蜂窝电话电路 电信电路 GSM
文件: 总28页 (文件大小:152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
UAA3522HL  
Low power dual-band GSM  
transceiver with an image rejecting  
front-end  
Objective specification  
2000 Feb 18  
File under Integrated Circuits, IC17  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
FEATURES  
The input Low Noise Amplifier (LNA) can be switched off  
via the bus to allow accurate calibration in the offset  
cancellation mode.  
Dual-band application for Global System for Mobile  
communication (GSM) and Digital Cellular  
communication Systems (DCS)  
The transmitter comprises a high precision I/Q modulator  
and modulation loop architecture. The I/Q modulator  
converts the baseband modulation frequency to the  
transmit IF. The modulation loop architecture, which  
includes an on-chip offset mixer and phase detector,  
controls an external transmit RF VCO which converts the  
transmit modulated IF signal to RF.  
Low noise and wide dynamic range single Intermediate  
Frequency (IF) transceiver  
More than 30 dB on-chip image rejection in the receiver  
More than 60 dB gain control range  
I/Q demodulator with high performance integrated  
baseband channel filter  
A receive RF VCO provides the Local Oscillator (LO)  
signal to the image rejection mixers in the RF receiver. An  
IF VCO provides the LO signal to the I/Q demodulator and  
I/Q modulator in the receiver and transmitter sections  
respectively.  
High precision I/Q modulator  
Transmit modulation loop architecture including offset  
mixer and phase detector  
Dual Phase-Locked Loop (PLL) with on-chip IF Voltage  
The frequencies of the RF VCO and the IF VCO are set by  
internal PLL circuits, which are programmable via the  
3-wire serial bus. The RF and IF PLL comparison  
frequencies are 200 kHz and 1 MHz respectively, derived  
from a 13 MHz reference signal which has to be supplied  
externally. The quadrature RF LO signals required by the  
image rejection mixers are obtained using on-chip  
Resistor Capacitor (RC) networks. The quadrature IF LO  
signals required by the I/Q modulator and I/Q demodulator  
are obtained by dividing the frequency of the IF VCO  
signal.  
Controlled Oscillator (VCO)  
Fully differential design minimizing cross-talk and spurii  
3-wire serial bus interface  
Functional down to 2.7 V and up to 3.3 V  
LQFP48 package.  
APPLICATIONS  
GSM 900 MHz hand-held transceiver  
GSM/DCS dual-band solution with the UAA2077CM  
The IC can be powered on in either receiver (RX),  
transmitter (TX) or synthesizer (SYN) operating mode  
depending on the logic level at pins RXON, TXON and  
SYNON, respectively. Alternatively, an operating mode  
can be selected by software using the 3-wire serial  
programming bus. In RX or TX mode, only those sections  
of the IC which are required are switched on.  
(down to 3.2 V) or UAA2077TS/D (down to 2.7 V).  
GENERAL DESCRIPTION  
The UAA3522HL integrates the receiver and most of the  
transmitter section of a GSM hand-held transceiver. It also  
integrates the receiver IF and the transmitter section of a  
DCS transceiver.  
The GSM or DCS band is selected by the 3-wire serial  
programming bus. When activating RX mode for DCS  
applications, the receiver RF section can be disabled by  
software so that only the receiver IF section is  
powered-on.  
The receiver comprises an RF and an IF section. The RF  
(GSM) front-end amplifies the aerial signal, converts the  
chosen channel frequency to an IF of 200 MHz, and also  
provides more than 30 dB of image suppression. Some  
selectivity is provided at this stage by an off-chip bandpass  
pre-filter. The IF section further amplifies the chosen  
channel, maintains the gain at the required level,  
demodulates the signal into I and Q components, and  
provides channel selectivity at a baseband stage using a  
high performance integrated low-pass filter. The IF gain  
can be varied over a range of more than 60 dB. The offset  
at the I and Q outputs can be cancelled out by software  
using the 3-wire serial programming bus.  
The SYN mode is used to power-on the synthesizer prior  
to activating the RX or TX mode. In SYN mode, some  
internal LO buffers are also powered-on to minimize the  
‘pulling’ effect of the VCO when either the receiver or the  
transmitter are switched on.  
2000 Feb 18  
2
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
GSM band RF input frequency in RX mode  
GSM band RF output frequency in TX mode  
DCS band RF output frequency in TX mode  
IF frequency in all modes  
MIN.  
TYP.  
MAX.  
960  
UNIT  
MHz  
MHz  
fi(RF)(RX)  
925  
fo(RF)(TX)(GSM)  
fo(RF)(TX)(DCS)  
fIF  
880  
1710  
915  
1785 MHz  
200  
MHz  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
UAA3522HL  
LQFP48  
plastic low profile quad flat package; 48 leads; body  
SOT313-2  
7 × 7 × 1.4 mm  
2000 Feb 18  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  g
90°  
PHASE  
SHIFTER  
×
1805 to1880 MHz  
90°  
PHASE  
SHIFTER  
+
BALUN  
ADDER  
0°  
SAW  
×
UAA2077XM  
46, 47  
8, 9  
90°  
PHASE  
SHIFTER  
4, 5  
2, 3  
I
×
×
925 to 960 MHz  
90°  
41,  
42  
0°  
IF VCO  
400 MHz  
PHASE  
SHIFTER  
BALUN  
+
Q
ADDER  
B
A
S
E
B
A
N
D
×
0°  
90°  
×
13,  
14  
DIVIDER &  
PHASE  
SHIFTER  
÷2  
IF VCO  
XTAL  
UAA3522HL  
&
PROGRAMMABLE  
DIVIDER  
30, 31  
A
U
D
I
DCS RF  
RX VCO  
1510 to 1680  
MHz  
GSM RF  
RX VCO  
1080 to 1160  
MHz  
IF PHASE/  
FREQUENCY  
DETECTOR  
16  
23  
CHARGE  
PUMP  
PROGRAMMABLE  
DIVIDER  
O
I
N
T
E
R
F
A
C
E
RF PHASE/  
FREQUENCY  
DETECTOR  
26  
CHARGE  
PUMP  
DIVIDER  
÷5  
DIVIDER  
÷13  
REF OSC.  
13 MHz  
RX/TX  
SWITCH  
880 to 915 MHz  
GSM BAND  
38, 39  
×
0°  
ADDER  
I
4, 5  
2, 3  
GSM TX RF VCO  
880 to 915 MHz  
×
90°  
PHASE  
DETECTOR  
+
Q
35  
CHARGE  
PUMP  
×
44, 45  
1710 to 1785 MHz  
DCS BAND  
POWER  
AMPLIFIER  
DCS TX RF VCO  
1710 to 1785 MHz  
FCA004  
Fig.1 Block diagram.  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
SYMBOL  
PIN  
DESCRIPTION  
VCCCPRF  
25  
RF charge pump and phase  
detector supply voltage  
RF charge pump output  
RF charge pump ground  
SYN mode control pin  
VCCIF1  
1
IF section of RF receiver supply  
voltage 1  
CPORF  
GNDCP  
SYNON  
VCCRFLO  
RFLOC  
RFLOE  
26  
27  
28  
29  
30  
31  
32  
33  
34  
QA  
2
3
4
5
6
7
Q path A baseband input/output  
Q path B baseband input/output  
I path A baseband input/output  
I path B baseband input/output  
AGC reference resistor  
QB  
IA  
RF LO section supply voltage  
LO signal input from RF VCO  
LO signal input from RF VCO  
RF LO section ground  
IB  
REFAGC  
GNDIF2  
I/Q modulator and I/Q demodulator  
ground 2  
GNDRFLO  
RXON  
RX mode control pin  
RXIIFA  
RXIIFB  
VCCIF2  
8
9
RX IF input A to AGC amplifier  
RX IF input B to AGC amplifier  
GNDPHD  
transmit modulation loop charge  
pump ground  
10  
I/Q modulator and I/Q demodulator  
supply voltage 2  
PHDOUT  
VCCPHD  
35  
36  
charge pump output  
transmit modulation loop charge  
pump supply voltage  
TXON  
VCCIFLO  
IFLOC  
11  
12  
13  
TX mode control pin  
IF LO supply voltage  
RESEXT  
37  
reference resistor for transmit  
modulation loop  
IF LO signal input from  
IF VCO resonator  
TXIRFA  
TXIRFB  
VCCRF  
38  
39  
40  
TX RF VCO signal input  
TX RF VCO signal input  
IFLOE  
14  
IF LO signal input from  
IF VCO resonator  
RF receiver and transmit  
GNDIFLO  
CPOIF  
15  
16  
17  
IF LO ground  
modulation loop supply voltage  
IF charge pump output  
RXIRFA  
RXIRFB  
GNDRF  
41  
42  
43  
RF receiver input A  
RF receiver input B  
GNDCPIF  
IF charge pump and phase  
detector ground  
RF receiver and transmit  
modulation loop ground  
VCCCPIF  
EN  
18  
19  
IF charge pump and phase  
detector supply voltage  
TXIFA  
44  
45  
46  
47  
48  
transmit IF external filter A  
transmit IF external filter B  
receiver IF output A  
serial programming bus enable  
control pin  
TXIFB  
RXOIFA  
RXOIFB  
GNDIF1  
DATA  
20  
21  
22  
23  
24  
serial programming bus data input  
serial programming bus clock input  
synthesizer ground  
receiver IF output B  
CLK  
IF section of RF receiver ground 1  
GNDSYN  
REFIN  
VCCSYN  
13 MHz reference input  
synthesizer supply voltage  
2000 Feb 18  
5
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
V
V
36  
1
2
CCIF1  
QA  
CCPHD  
35 PHDOUT  
34 GNDPHD  
33 RXON  
QB  
IA  
3
4
IB  
5
32 GNDRFLO  
31 RFLOE  
30 RFLOC  
REFAGC  
GNDIF2  
RXIIFA  
RXIIFB  
6
UAA3522HL  
7
V
29  
8
CCRFLO  
9
28 SYNON  
27 GNDCP  
26 CPORF  
V
10  
CCIF2  
TXON 11  
V
V
CCPRF  
12  
25  
CCIFLO  
FCA043  
Fig.2 Pin configuration.  
6
2000 Feb 18  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
FUNCTIONAL DESCRIPTION  
RF receiver  
The phase detector output transfers the modulation of the  
I/Q IF signal to the off-chip transmit RF VCO making the  
analog PLL act as a tracking filter. A PLL of at least  
third-order is needed to meet noise requirements at  
20 MHz offset from the carrier.  
The receiver front-end converts the aerial RF signal, in the  
GSM band (925 to 960 MHz), to an IF signal of  
approximately 200 MHz. The first stage of the receiver is a  
symmetrical LNA that is matched to 50 by an external  
balun. The LNA is followed by an image rejection mixer  
which suppresses the image by more than 30 dB.  
It comprises two mixers in parallel driven by 0° and 90°  
quadrature LO signals respectively. The IF signal from  
one mixer is shifted by 90° with respect to the IF signal  
from the other mixer, then both signals are added together  
to cancel out the image signal. The resultant IF signal is  
fed to the output via a high output impedance  
RF and IF LO sections  
The active components required for the design of a low  
noise IF VCO are provided on-chip. Pins IFLOC and  
IFLOE connect the on-chip IF VCO components to an  
external resonator and feedback circuit.  
A divider and phase shifter divides the frequency of the  
IF VCO signal by 2 and splits it into two signals having  
phases of respectively 0° and 90° which are both fed to the  
I/Q modulator and to the I/Q demodulator. The IF VCO  
frequency is twice the IF to suppress the effects of  
self-mixing and parasitic VCO modulation.  
open-collector stage which drives an external Surface  
Acoustical Wave (SAW) filter which selects the required  
channel.  
I/Q demodulator  
Pins TXIRFA and TXIRFAB connect an external receive  
RF VCO module to the on-chip RF LO section. This  
section includes a RC phase shifter which splits the  
RF VCO signal into two signals having phases of  
respectively 0° and 90° which are both fed to the RX  
image rejection mixer.  
The signal from the SAW filter enters the I/Q demodulator  
section. In addition to I/Q demodulation, this section  
performs Automatic Gain Control (AGC) over a range of  
60 dB to maintain a constant output level irrespective of  
the antenna input level, and also applies additional  
channel selectivity at the baseband stage using an  
integrated high-order low-pass filter.  
Dual PLL  
An on-chip high performance dual PLL synthesizes the  
frequencies of the receive RF VCO and IF VCO signals.  
Very low close-in phase noise is achieved which provides  
a wide PLL bandwidth with a short settling time.  
The AGC amplifier output can be adjusted for a static  
offset of less than 50 mV. Its design prevents the offset  
from varying by more than ±5 mV. To allow a more  
accurate offset calibration, the RF LNA can be switched off  
to ensure that no IF signal is present at the AGC amplifier  
input during the offset measurement.  
A dual programmable divider chain reduces the frequency  
of the receive RF and IF LO signals to 200 kHz and 1 MHz  
respectively. A digital phase/frequency detector compares  
their phases to a reference signal derived from an external  
13 MHz clock signal. Phase error information is fed back  
to both VCOs via the dual charge pump circuit which  
adjusts the phase of each VCO signal by either ‘sinking’  
current into, or ‘sourcing’ current from, its loop filter  
capacitor, phase locking both RF and IF loops. The very  
low leakage current of the dual charge pump circuit  
ensures that any spurii are negligible.  
I/Q modulator  
Baseband I and Q signals are applied to the I/Q modulator  
which shifts the modulation spectrum up to the transmit IF.  
The I/Q modulator is designed for low harmonic distortion,  
low carrier leakage and high image rejection to keep the  
phase error as small as possible. Its IF output is loaded by  
an integrated low-pass filter and by an external  
LC tuned-circuit to prevent unwanted spurii from entering  
the phase detector in the transmit modulation loop.  
Operating modes  
BASIC OPERATING MODES  
Transmit modulation loop  
The circuit can be powered on in one of four operating  
modes in which different parts of the device are enabled or  
disabled. The four operating modes are called Idle, RX,  
TX and SYN, and are selected by the hardware control  
voltage level applied to pins RXON, TXON and SYNON.  
The analog transmit modulation loop comprises an on-chip  
offset mixer and simple phase detector in switching mode  
(triangular transfer function) forming an analog PLL with  
an off-chip loop filter and transmit RF VCO.  
2000 Feb 18  
7
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
The synthesizer, receiver and transmitter cannot all be on  
at the same time. Table 1 shows which parts of the device  
are enabled (on) or disabled (off) in each mode.  
Table 2 Bit LNA status  
POWER STATUS OF BIT  
LNA  
BIT LNA STATUS  
0
1
off  
on  
Table 1 Operating modes  
POWER STATUS  
MODE  
SYNTHESIZER RECEIVER TRANSMITTER  
Table 3 Bit RF status  
Idle  
SYN  
RX  
off  
on  
on  
on  
off  
off  
on  
off  
off  
off  
off  
on  
POWER STATUS OF  
RECEIVER RF SECTION  
IN RX MODE  
BIT RF STATUS  
TX  
1
0
on (GSM)  
off (DCS)  
The synthesizer includes the oscillators and LO buffers  
common to the receive and transmit sections. The receiver  
includes the RF section and the I/Q demodulator. When  
the receiver is on, the LNA can be switched off to allow  
DC offset compensation to be performed. The RF section  
can also be switched off for DCS applications. See Section  
“Receiver power status control”.  
Programming  
SERIAL PROGRAMMING BUS  
A simple 3-wire unidirectional serial bus is used for  
programming the IC. The lines are called DATA, CLK  
and EN (enable). Programming data is sent to the IC in  
bursts which are separated from each other by EN.  
Programming clock edges are ignored until EN goes  
active LOW. The data is loaded into the addressed register  
when EN returns inactive HIGH, and when the CLK is in  
either state, without affecting the data in the register.  
The register only holds the last 18 bits that are serially  
clocked into the IC.  
RECEIVER POWER STATUS CONTROL  
DC offset compensation: This feature allows the DC  
offset of the receiver output to be set accurately. When  
the receiver is on, the LNA can be switched off to isolate  
the antenna input from the I/Q demodulator input.  
The offset at the I and Q outputs can be independently  
reduced to less than 50 mV by adequately programming  
two 5-bit data registers, see Table 4 “Register bit  
allocation”. The LNA is switched on or off by the status  
of bit LNA (see Table 2).  
Additional leading bits are ignored, and no check is made  
on the number of clock pulses received. The fully static  
CMOS design uses virtually no current when the bus is  
inactive. It can always accept new programming data even  
when both synthesizers are powered-off.  
Disabling RF section: For DCS applications, the RF  
section can be disabled in RX mode. The same  
IF circuits are used for both GSM and DCS applications  
to avoid duplication. For DCS applications using the  
UAA2077XM, for example, the RF section of the  
UAA3522HL does not have to be powered on.  
DATA FORMAT  
Data is loaded into the register with the most significant bit  
(MSB) first. The first 14 bits are data, while the last 4 bits  
are the register address. The address bits are decoded on  
the rising edge of EN. This internally generates a load  
pulse to store the data in the addressed register.  
To ensure that data loads correctly after the device has  
powered-up, EN should be held LOW and only taken HIGH  
after the appropriate register has been loaded.  
The RF section is enabled or disabled by the status of  
bit RF when the RX mode is activated (see Table 3).  
The EN pulse is inhibited during the period when data is  
read by the frequency dividers to prevent divider ratio data  
from being read incorrectly. This state is guaranteed by  
always allowing for a minimum EN pulse width after data  
transfer.  
2000 Feb 18  
8
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
Table 4 Register bit allocation  
X = don’t care; MSB = Most Significant Bit; LSB = Least Significant Bit.  
DATA BITS  
ADDRESS BITS  
LAST  
FIRST  
BIT  
BIT  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
3
2
1
0
X
MSB  
X
X
X
X
X
X
MSB  
IF LO frequency divider ratio  
LSB  
LSB  
LSB  
0
0
0
1
1
0
1
0
1
0
0
1
RF LO frequency divider ratio  
X
X
X
X
X
X
X
LNA(1)  
X
MSB  
AGC amplifier gain (RX mode)  
see Table 5  
X
X
MSB Q output offset adjust  
LSB  
Q sign MSB  
I output offset adjust  
LSB  
I sign(2)  
0
0
0
0
0
0
1
0
0
0
1
0
(2)  
X
X
X
IF RD IF VCO  
(3)  
0
0
RF(5)  
X
SYN ON RX ON TX ON  
(4)  
For test purposes only(6)  
Notes  
1. Bit LNA: 1 = LNA ON in RX mode; 0 = LNA OFF in RX mode.  
2. Bits Q sign and I sign = polarity of offset at Q/I channel outputs: 0 = negative offset step (output A with respect to output B); 1 = positive offset step  
(output A with respect to output B).  
3. Bit IF RD: 0 = frequency dividers programmed for GSM applications; 1 = frequency dividers programmed for DCS applications.  
4. Bit IF VCO: 0 = IF LO buffer ON (external IF LO source connected); 1 = IF VCO ON (external IF LO source not connected).  
5. Bit RF: 1 = RF section ON when RX mode is activated; 0 = RF section OFF when RX mode is activated.  
6. This address must not be used. Data bits to be defined.  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
Table 5 AGC amplifier gain register look-up table  
All codes not included in the table are forbidden.  
AGC AMPLIFIER  
GAIN (dB)(1)  
BIT 5 (MSB)  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0 (LSB)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1  
+1  
+3  
+5  
+7  
+9  
+11  
+13  
+15  
+17  
+19  
+21  
+23  
+25  
+27  
+29  
+31  
+33  
+35  
+37  
+39  
+41  
+43  
+45  
+47  
+49  
+51  
+53  
+55  
+57  
+59  
+61  
Note  
1. Voltage gain is defined as the differential baseband output voltage (either at pins IA/IB or pins QA/QB) divided by the  
differential input voltage at pins RXIIFA and RXIIFB.  
2000 Feb 18  
10  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
VCCn  
PARAMETER  
MIN.  
TYP. MAX. UNIT  
supply voltage  
0.3  
+6  
1
V
Ptot  
total power dissipation  
storage temperature  
ambient temperature  
W
Tstg  
Tamb  
40  
30  
+150 °C  
+70 °C  
HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However it is good practice to take  
normal precautions appropriate to handling MOS devices (see “Handling MOS devices”).  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
in free air  
VALUE  
UNIT  
Rth(j-a)  
thermal resistance from junction to ambient  
65  
K/W  
DC CHARACTERISTICS  
All parameters are guaranteed at VCC = 2.8 V; Tamb = 25 °C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Supply pins VCCIF1, VCCIF2, VCCIFLO, VCCRFLO, VCCSYN, and VCCRF  
VCC  
Supply pins VCCCPIF and VCCCPRF  
VCCCPIF supply voltage  
VCCCPRF  
Supply pin VCCPHD  
VCCPHD supply voltage for charge pump of  
supply voltage  
note 1  
note 1  
2.7  
3.3  
4
V
V
;
2.7  
2.7  
note 1  
5.5  
V
phase detector in transmit  
modulation loop  
Supply pins VCCIF1, VCCIF2, VCCIFLO, VCCRFLO, VCCSYN, VCCCPIF, VCCCPRF, VCCPHD and VCCRF  
ICC(pd)(tot)  
total power-down supply current  
pins TXON,  
40  
100  
µA  
RXON, SYNON = LOW-level;  
pins EN, DATA, CLK = HIGH-l  
evel; note 2  
RF receiver IF section (pins VCCIF1, RXOIFA and RXOIFB)  
ICC(RFIF)(RX) RF receiver and IF section total  
supply current  
RX mode active  
16.9  
21.9  
mA  
IF section supply (pin VCCIF2  
)
ICCIF(RX)  
ICCIF(TX)  
I/Q demodulator supply current  
I/Q modulator supply current  
RX mode active  
TX mode active  
10.1  
7.4  
14.1  
9.6  
mA  
mA  
2000 Feb 18  
11  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
SYMBOL  
IF LO section supply (pin VCCIFLO  
ICCIFLO(SYN) IF LO section supply current  
IF charge pump supply (pin VCCCPIF  
ICCCPIF(SYN) IF LO charge pump supply current  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
)
SYN mode active  
5.5  
1.2  
6.6  
1.5  
mA  
mA  
)
SYN mode active; phase  
locked  
Synthesizer supply (pin VCCSYN  
)
ICCSYN(SYN) synthesizer supply current  
SYN mode active  
5
6.7  
1.7  
mA  
mA  
RF LO charge pump and phase detector supply (pin VCCCPRF  
)
ICCCPRF(SYN) RF LO charge pump supply current SYN mode active; phase  
locked  
1.4  
RF LO supply (pin VCCRFLO  
ICCRFLO(RX) RF LO buffer receive section supply SYN mode active; RX mode  
current active  
)
8.6  
9.8  
10.9  
12.6  
mA  
mA  
ICCRFLO(TX) RF LO buffer transmit section supply TX mode active  
current  
Closed-loop charge pump supply (pin VCCPHD  
)
ICCPHD(TX)  
closed-loop charge pump supply  
current  
TX mode active; phase locked  
5.6  
7.5  
mA  
mA  
RF receiver and transmit modulation loop supply (pin VCCRF  
)
ICCRF(RX)on  
ICCRF(RX)off  
ICCRF(TX)  
supply current of RF receiver  
(receive IF section disconnected)  
with RX image rejection mixer and  
LNA ON  
RX mode active; LNA ON  
RX mode active; LNA OFF  
TX mode active  
17.9  
23.6  
supply current of RF receiver  
(receive IF section disconnected)  
with RX image rejection mixer and  
LNA OFF  
11.2  
6.1  
14.6  
7.6  
mA  
mA  
supply current of transmit  
modulation loop (charge pump  
disconnected)  
Pins VCCIF1, VCCIF2, VCCIFLO, VCCCPIF, VCCSYN, VCCCPRF, VCCPHD, VCCRF and RXOIFA, RXOIFB  
ICC(RX)  
ICC(TX)  
ICC(SYN)  
supply current in RX mode  
supply current in TX mode  
supply current in SYN mode  
RX mode active; note 3  
TX mode active; note 3  
SYN mode active; note 3  
44.9  
20.3  
21.7  
59.6  
26.4  
27.4  
mA  
mA  
mA  
Pins IA IB, QA and QB  
VO(IQ)  
VI(IQ)  
DC voltage at I/Q baseband outputs TX mode active  
1.125 1.25  
1.175 1.25  
1.325  
1.35  
V
V
DC voltage at I/Q baseband inputs  
RX mode active  
Logic levels (pins EN, DATA, CLK, TXON, RXON and SYNON)  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
1.9  
V
V
0.7  
2000 Feb 18  
12  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
Notes:  
1. VCCCPRF, VCCCPIF and VCCPHD must be equal to, or greater than, the other supply voltages. The other supply  
voltages must be equal.  
2. ‘HIGH-level’ means the control pin voltage must be equal to the supply voltage VCC. ‘LOW-level’ means the control  
pin voltage must be equal to the supply ground.  
3. ICC(RX) = ICC(RFIF)(RX) + ICCIF(RX) + ICCRF(RX); CC(TX) = ICCIF(TX) + [ICCRFLO(TX) ICCRFLO(RX)] + ICCPHD(TX) + ICCRF(TX);  
I
ICC(SYN) = ICCIFLO(SYN) + ICCCPIF(SYN) + ICCPLL(SYN) + ICCCPRF(SYN) + ICCRFLO(SYN)  
.
AC CHARACTERISTICS  
All parameters are guaranteed at VCC = 2.8 V; Tamb = 25 °C; unless specified otherwise.  
SYMBOL PARAMETER CONDITIONS MIN. TYP.  
MAX.  
UNIT  
RF receiver section; measured in a 50 impedance system, including external input/output baluns and  
matching networks to 50 (see Fig.3)  
RF RECEIVER INPUTS (PINS RXIRFA AND RXIRFB)  
fi(RF)(GSM)  
GSM band RF input  
frequency  
925  
960  
MHz  
Ri(dif)  
differential input  
resistance  
146  
0.85  
Ci(dif)  
differential input  
capacitance  
pF  
S11  
input power matching  
note 1  
15 10  
50 40  
dB  
Pi(spur)  
level of spurious input  
power due to  
dBm  
LO leakage  
RECEIVER IF OUTPUT (PINS RXOIFA AND RXOIFB)  
fo(IF)  
IF output frequency  
LO > RF  
200  
1
MHz  
RL(m)  
matched load  
resistance  
differential; note 2  
kΩ  
Gconv(p)  
Gripple  
power conversion gain into specified matched load  
resistance; note 1  
23  
24.5 27  
dB  
dB  
gain ripple  
over specified frequency range;  
note 3  
0.5  
+0.5  
G/T  
gain variation  
with temperature  
noise figure  
note 6  
60  
30  
dBm/K  
dB  
F
for Ri(dif); notes 1, 3 and 4  
note 1  
3.45 3.85  
CP1  
1 dB input  
compression point  
referenced to input  
at Tamb = 25 °C  
over temperature range  
note 1  
23.5  
24.2  
18  
dBm  
dBm  
dBm  
IP3  
third-order intercept  
point referenced to  
input  
DES3dB  
3 dB desensitization  
point referenced to  
input  
fi(RF) = 3 MHz RF input power =  
101 dBm; note 1  
25  
dBm  
2000 Feb 18  
13  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
SYMBOL  
PARAMETER  
image rejection  
CONDITIONS  
fo(IF) = 200 MHz; note 1  
bit LNA = 0; notes 1 and 5  
MIN. TYP.  
MAX.  
UNIT  
dB  
dB  
IR  
Goff  
30  
60  
35  
70  
output isolation in  
off-state  
Receiver IF section (AGC and baseband filter); the impedance of the source, input balun, matching network  
and specified input is 50 Ω  
IF INPUT TO AGC AMPLIFIER (PINS RXIIFA AND RXIIFB)  
fi(IF)  
IF input frequency  
200  
1
MHz  
Ri(dif)  
differential input  
resistance  
kΩ  
Pi(m)  
input power matching  
note 1  
15 10  
dB  
dB  
BASEBAND INPUT/OUTPUT; RX MODE (PINS IA, IB, QA AND QB)  
Gconv(dif)(min)  
differential voltage  
conversion gain per  
channel; gain set to  
minimum  
notes 1 and 7  
2.5 0.5 +1.5  
Gconv(dif)(max)  
differential voltage  
conversion gain per  
channel; gain set to  
maximum  
59.5 61.5 63.5  
dB  
Gconv(step)  
GI-Q  
∆ϕ  
voltage conversion step note 1  
gain  
2
dB  
gain difference  
note 1  
0.8  
+5  
dB  
between I and Q paths  
quadrature-phase error  
between I and Q paths  
5  
deg  
GL  
gain control linearity  
noise figure  
note 1  
2  
3  
1  
+2  
+3  
+1  
9
dB  
notes 1 and 11  
within any 20 dB gain range  
dB  
dB  
F
G
conv(dif)(max); notes 1 and 9  
conv(dif)(min); notes 1 and 9  
dB  
G
61  
dB  
IP3  
third-order intercept  
point referenced to  
input  
Gconv(dif)(max) = 61 dB; note 8  
42  
38  
dBm  
CP1  
1 dB compression  
point referenced to  
input  
G
conv(dif)(min); note 8  
4  
0
dBm  
dBm  
CP1adjacent  
1 dB compression  
point for adjacent  
channels referenced to  
input  
Gconv = 49 dB; notes 7 and 6  
fmod = n × 200 kHz; n = 1, 2, 3  
45  
40  
Bbf(-1dB)  
1 dB baseband filter  
bandwidth  
note 10  
67.7  
kHz  
td(g)  
group delay variation  
DC < fmod < 67.7 kHz  
1.5  
µS  
2000 Feb 18  
14  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
SYMBOL  
αbf5  
PARAMETER  
baseband filter  
attenuation  
(fifth-order Butterworth)  
CONDITIONS  
MIN. TYP.  
MAX.  
UNIT  
note 10;  
fmod = 140 kHz  
8
11  
25  
55  
dB  
fmod = 200 kHz  
fmod = 400 kHz  
fmod = 600 kHz  
19  
dB  
dB  
dB  
V
36  
44  
Vo(pin)(peak)(max) maximum peak output differential resistance between  
0.75  
voltage per pin giving a QA/QB or IA/IB > = 180 k; note 1  
total harmonic  
distortion of less  
than 3% at Gconv >7  
VOO  
output offset voltage  
adjustment  
Gconv = 31 dB  
60  
+60  
mV  
LSBoffset  
LSB offset adjustment  
offset variation  
50  
100  
+10  
mV  
mV  
Voffset  
gain from Gconv(dif)(min)  
to Gconv(dif)(max)  
10  
Transmit IF section; general conditions: Vmod(peak) = 0.25 V; VI(IQ) = VO(IQ) = 1.25 V; fmod = 67.7 kHz  
BASEBAND INPUT/OUT; TX MODE (PINS IA, IB, QA AND QB)  
fmod  
modulation frequency  
gain = 3 dB gain  
0
2
MHz  
V
Vmod(peak)  
modulation level (peak single-ended  
value)  
0.225 0.25 0.275  
DRi  
dynamic input  
resistance  
single-ended per pin  
12.5  
kΩ  
TRANSMITTER IF LC TUNED CIRCUIT (PINS TXIFA AND TXIFB)  
fo(IF)  
IF output frequency  
200  
MHz  
dBc  
LOout  
local oscillator  
fo(IF) = 200 MHz  
40 30  
feedthrough level  
Po  
transmit power without fo(IF) = 200 MHz  
16  
dBm  
LC tuned circuit  
± 67.7 kHz; measured through a  
balun; note 12  
IM2o  
IM3o  
IMo  
level of second-order  
image products  
fo(IF) = 200 MHz  
± 2 × 67.7 kHz; note 12  
48 45  
55 50  
dBc  
dBc  
dBc  
level of third-order  
image products  
fo(IF) = 200 MHz  
± 3 × 67.7 kHz; note 12  
image level  
fo(IF) = 200 MHz  
34  
67.7 kHz; note 12  
ϕN  
phase noise output  
power density  
foffset = 400 kHz  
125  
dBc/Hz  
dBc/Hz  
foffset = 10 MHz  
140 133  
Transmit modulation loop section; General conditions: Vmod(peak) = 0.25 V; VI(IQ) = VO(IQ) = 1.25 V;  
fmod = 67.7 kHz  
OFFSET MIXER; GSM BAND (PINS TXIRFA AND TXIRFB)  
fi(RF)(TX)  
TX RF VCO input  
frequency  
880  
915  
MHz  
2000 Feb 18  
15  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
SYMBOL  
Ri(pin)  
Ci(pin)  
PARAMETER  
CONDITIONS  
MIN. TYP.  
MAX.  
UNIT  
input resistance per pin note 13  
100  
1
input capacitance per  
pin  
pF  
Pi  
input power  
symmetrical  
single-ended  
note 1  
14.5 10 5.5  
11.5 7 2.5  
15 10  
dBm  
dBm  
dB  
S11  
input power matching  
LOL  
reverse isolation local  
oscillator leakage  
40  
dBm  
OFFSET MIXER; DCS BAND (PINS TXIRFA AND TXIRFB)  
fi(RF)(TX)  
TX RF VCO input  
frequency  
1710  
1785  
MHz  
Ri(pin)  
Ci(pin)  
input resistance per pin note 13  
100  
1
input capacitance per  
pin  
pF  
Pi  
input power  
symmetrical  
14.5 10 5.5  
11.5 7 2.5  
15 10  
dBm  
dBm  
dB  
single-ended  
note 1  
S11  
input power matching  
LOL  
reverse isolation local  
oscillator leakage  
40  
dBm  
PHASE DETECTOR; DCS AND GSM BAND (PIN PHDOUT)  
Icp(max)  
charge pump maximum R = 270 , 1%; VO = 12VCCPHD  
2.2  
2.4  
2.6  
mA  
sink or source current  
GPHD  
phase detector gain  
2
mA/rad  
%
GPHD  
phase detector gain  
variation  
VO = 12VCCPHD; note 11  
20  
+20  
VO  
Ro  
No  
output voltage  
0.5  
V
CCPHD 0.5 V  
output resistance  
VO = 12VCCPHD  
10  
kΩ  
output noise current  
density  
20 kHz < foffset < 20 MHz in lock;  
note 1  
200  
pA/Hz  
Isweep  
Ro(off)  
VCO sweeping source VO = 12VCCPHD  
current  
0.4  
0.55 0.7  
mA  
output resistance to  
ground when powered  
down  
TX mode disabled  
1
kΩ  
SPUR4fm  
SPUR8fm  
level of spurious signal fmod = 67.7 kHz;  
48  
55  
dBc  
dBc  
at four times the  
fo(RF)(GSM) = 880 MHz  
wanted fmod signal  
to 915 MHz; fo(RF)(DCS) = 1710 MHz  
to 1785 MHz  
level of spurious signal  
at eight times the  
wanted fmod signal  
LOout  
IMo  
local oscillator  
feedthrough level  
at fRF  
40 32  
38 35  
dBc  
dBc  
image level  
at fRF; note 1  
2000 Feb 18  
16  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP.  
MAX.  
UNIT  
RF LO buffer; measured and guaranteed on evaluation board  
RF LO SOURCE CONNECTED TO PIN RFLOE (see Fig.7)  
Ri  
input resistance  
50  
1
Ci  
input capacitance  
input power matching  
pF  
S11  
Pi(LO)  
15 10  
dB  
input power acceptable  
from the RF LO source  
7  
3  
2
dBm  
IF LO; measured and guaranteed on evaluation board  
EXTERNAL RESONATOR CIRCUIT CONNECTED TO PINS IFLOC AND IFLOE  
fosc  
oscillation frequency  
note 1  
400  
MHz  
V
Vosc(peak)  
peak voltage excursion VCCIFLO = 2.8 V; see Fig.5  
1
1.5  
limit at IFLOC  
(collector)  
ϕN  
phase noise  
foffset = 400 kHz; fLO(IF) = 400 MHz  
125  
dBc/Hz  
MHz/V  
fTROFF  
frequency variation with note 14  
supply voltage  
1
(pushing)  
fTRON  
frequency variation  
between RX on and  
RX off (pulling)  
10  
kHz  
IF LO buffer; measured and guaranteed on evaluation board  
IF SOURCE CONNECTED TO PIN IFLOE  
Ri  
input resistance  
50  
1
Ci  
input capacitance  
input power matching  
pF  
Pi(m)  
PIF  
15 10  
dB  
dBm  
power available from  
the IF source  
see Fig.5  
8  
5  
2  
RF and IF synthesizer VCOs  
REFERENCE FREQUENCY INPUT (PIN REFIN)  
fref  
reference frequency  
13  
MHz  
mV  
Vi(fref)(rms)  
input voltage level  
(RMS value)  
80  
250  
Ri  
Ci  
input resistance  
fref = 13 MHz  
10  
1
kΩ  
input capacitance  
pF  
RF SYNTHESIZER; GSM AND DCS MODES (PINS RXIRFA, RXIRFB AND CPORF)  
fLO(RF)  
RF LO frequency  
1040  
1720  
MHz  
kHz  
fph(comp)  
phase comparator  
frequency  
200  
ϕN(GSM)  
GSM close-in phase  
noise  
within the closed-loop bandwidth  
Pxtal = 0 dBm; fLO(RF) = 1.1 GHz  
82 75  
dBc/Hz  
2000 Feb 18  
17  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
SYMBOL  
ϕN(DCS)  
PARAMETER  
CONDITIONS  
MIN. TYP.  
MAX.  
UNIT  
DCS close-in phase  
noise  
within the closed-loop bandwidth  
Pxtal = 0 dBm; fLO(RF) = 1.6 GHz  
79 74  
dBc/Hz  
Vfph(comp)(spur) phase comparator  
frequency spurii  
foffset = 200 kHz; second-order loop  
filter closed-loop  
75 60  
dBc  
breakthrough level  
bandwidth = 11 kHz  
Io(cp)  
charge pump output  
current  
sink or source current; at Vo(cp)  
1.8  
5  
2.2  
2.6  
+5  
mA  
nA  
V
IL(cp)(off)  
Vo(cp)  
charge pump leakage  
current in off-state  
charge pump output  
voltage  
Io(cp) within specified values  
0.4  
VCC 0.4  
IF SYNTHESIZER (PINS IFLOC, IFLOE AND CPOIF)  
fLO(IF)  
IF LO frequency  
380  
400 440  
MHz  
MHz  
fph(comp)  
phase comparator  
frequency  
1
ϕN  
close-in phase noise  
within the closed-loop bandwidth  
Pxtal = 0 dBm; fLO(IF) = 400 MHz  
95 85  
75 60  
dBc/Hz  
dBc  
Vfph(comp)(spur) phase comparator  
frequency spurii  
foffset = 1 MHz; second order loop  
filter closed-loop  
breakthrough level  
bandwidth = 25 kHz  
Io(cp)  
charge pump output  
current  
sink or source current; at Vo(cp)  
0.75 1.1  
1.35  
+5  
mA  
nA  
V
IL(cp)(off)  
Vo(cp)  
charge pump leakage  
current in off-state  
5  
charge pump output  
voltage  
0.4  
VCC 0.4  
Frequency dividers  
D/DfLO(RF) RF frequency  
5200  
8600  
programmable divider  
ratio  
D/DfLO(IF)  
IF frequency  
programmable divider  
ratio  
200  
D/Dfref(RF)  
D/Dfref(IF)  
RF reference frequency fixed ratio  
divider ratio  
65  
13  
IF reference frequency  
divider ratio  
General IC specification  
tON  
switch-on time  
90% of the final current  
10  
µs  
2000 Feb 18  
18  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
Notes  
1. Measured and guaranteed only on UAA3522 evaluation board.  
2. The IF output has open collectors which are supplied via external inductors. External resistors are also needed to  
set the output impedance and to match the IF output to the specified load resistance RL (see Fig.3).  
3. Value includes losses due to the printed circuit board and balun.  
4. Value is guaranteed only for the Pi(LO) typ.  
5. For a given RF input power, the value is the difference in the power measured at the IF output when the LNA is  
switched on and when it is switched off.  
6. This value is guaranteed within the temperature range 10 to +70 °C.  
7. Voltage gain is defined as the differential baseband output voltage (either at pins IA/IB or pins QA/QB) divided by the  
differential input voltage at pins RXIIFA and RXIIFB.  
8. Value refers to differential voltage at pins RXIIFA and RXIIFB (1 kinput impedance).  
9. Value includes printed circuit board and balun losses.  
10. RREFAGC = 18 k, 1%.  
11. Guaranteed at Tamb = 30 to +70 °C.  
12. With specified LC tuned circuit (33 nH, 15 pF) connected as shown in Fig.4.  
13. Defined for the typical input power.  
14. Oscillator configured as shown in the evaluation board diagram Fig.7.  
V
CC  
50  
RXIRFA  
RXIRFB  
LOW  
LOSS  
BALUN  
RXOIFA  
BALUN  
1 k/50 Ω  
RF  
RECEIVER  
R
L
Z = 1 kΩ  
50 Ω  
RXOIFB  
input port  
output port  
FCA047  
Fig.3 RF receiver test principle.  
2000 Feb 18  
19  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
V
CC  
EXTERNAL  
IF FILTER  
15 pF  
33 nH  
330 Ω  
330 Ω  
TXIFA  
TXIFB  
2 kΩ  
FCA045  
Fig.4 I/Q modulator output.  
V
CCIFLO  
V
CC  
1 kΩ  
UAA3522HL  
IFLOC  
IFLOE  
IF VCO  
XTAL  
IF SOURCE  
GNDIFLO  
FCA048  
Fig.5 Evaluating IF LO buffer.  
20  
2000 Feb 18  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
SERIAL TIMING CHARACTERISTICS  
General conditions: VCC = 2.8 V; Tamb = 25 °C; see Fig.6; unless otherwise specified.  
SYMBOL  
PARAMETER  
MIN.  
TYP. MAX. UNIT  
Serial programming clock (pin CLK)  
tr  
rise time  
10  
10  
40  
40  
ns  
ns  
ns  
tf  
fall time  
Tcy(clk)  
clock cycle time  
100  
Enable programming (pin EN)  
td(ENL-CLKH)  
td(CLKL-ENH)  
tW(reg)(min)  
delay from enable active to rising clock edge  
40  
ns  
ns  
ns  
delay from enable inactive to last falling clock edge  
20  
minimum inactive pulse width when consecutively programming  
two different registers  
150  
tW(IFLO)(min)  
tW(RFLO)(min)  
tsu(ENH-CLKH)  
minimum inactive pulse width when consecutively programming  
two IF divider ratios  
150  
500  
20  
ns  
ns  
ns  
minimum inactive pulse width when consecutively programming  
two RF divider ratios  
enable set-up time to next rising clock edge  
Register serial input data (pin DATA)  
tsu(DATA-CLK)  
th(DATA-CLK)  
set-up time DATA to CLK  
hold time DATA to CLK  
20  
20  
ns  
ns  
t
t
d(CLKL-ENH)  
t
t
su(DATA-CLK)  
h(DATA-CLK)  
t
t
r
f
T
su(ENH-CLKH  
)
cy(CLK)  
CLK  
DATA  
EN  
MSB  
LSB  
ADDRESS  
INACTIVE  
ACTIVE  
t
FCA042  
W
t
d(ENL-CLKH)  
Fig.6 Serial bus timing diagram.  
21  
2000 Feb 18  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  g
RX RF  
V
CC  
100  
2.2 pF  
12 nH  
RX IF  
27 pF  
18 pF  
nH  
27 pF  
22 nH  
27 pF  
150 nH  
3.9 pF  
3.9 pF  
ATTENUATOR  
150 nH  
10 pF  
V
CC  
18 pF  
10 pF  
47 nH  
100 nH  
12 nH  
1.5 k  
V
270 Ω  
TX RF  
VCO  
CC  
12 pF  
46 45 44 43 42 41 40  
39 38 37  
36  
48 47  
1
V
V
CC  
CC  
220 Ω  
QA  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1.8 nF  
100 pF  
QB  
IA  
3
18 Ω  
RXON  
4
27 nF  
IB  
5
22 pF  
18 kΩ  
6
UAA3522HL  
3.9 pF  
7
120 pF  
470 nH  
22 pF  
CC  
RXIIFA  
RXIIFB  
8
150 nH  
3.9 pF  
V
RX RF  
VCO  
RX IF  
SYNON  
9
10  
11  
12  
V
CC  
120 pF  
150 nH  
TXON  
1 nF  
3.3  
kΩ  
V
V
CC  
CC  
15 16 17 18 19 20 21  
22 23 24  
13 14  
12 nF  
V
(chip)  
V
(board)  
CC  
CC  
V
V
CC  
CC  
13 MHz  
SERIAL  
8.2 pF  
BB149  
27  
pF  
100  
pF  
1
nF  
1 nF  
200 mV  
33 pF  
22 nH  
330 Ω  
10 kΩ  
10 kΩ  
39 pF  
3.3  
kΩ  
SERIAL  
PROGRAMMING  
BUS LINES  
(chip)  
PROGRAMMING  
BUS LINES  
(board)  
470  
pF  
SERIAL  
PROGRAMMING  
BUS LINES  
6.8  
nF  
100 pF  
100 pF  
FCA044  
This schematic represents the UAA3522HL characterisation board for GSM application and does not guarantee full specification for any particular application.  
Fig.7 Evaluation board.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
ahdnbok,uflapegwidt  
90°  
PHASE  
SHIFTER  
×
1805 to1880 MHz  
90°  
PHASE  
SHIFTER  
+
BALUN  
ADDER  
0°  
SAW  
×
UAA2077XM  
46, 47  
8, 9  
90°  
PHASE  
SHIFTER  
4, 5  
2, 3  
I
×
×
925 to 960 MHz  
90°  
41,  
42  
0°  
IF VCO  
400 MHz  
PHASE  
SHIFTER  
BALUN  
+
Q
ADDER  
B
A
S
E
B
A
N
D
×
0°  
90°  
×
13,  
14  
DIVIDER &  
PHASE  
SHIFTER  
÷
2
IF VCO  
XTAL  
UAA3522HL  
&
PROGRAMMABLE  
DIVIDER  
30, 31  
A
U
D
I
DCS RF  
RX VCO  
1510 to 1680  
MHz  
GSM RF  
RX VCO  
1080 to 1160  
MHz  
IF PHASE/  
FREQUENCY  
DETECTOR  
16  
23  
CHARGE  
PUMP  
PROGRAMMABLE  
DIVIDER  
O
I
N
T
E
R
F
A
C
E
RF PHASE/  
FREQUENCY  
DETECTOR  
26  
CHARGE  
PUMP  
DIVIDER  
DIVIDER  
÷13  
÷
5
REF OSC.  
13 MHz  
RX/TX  
SWITCH  
880 to 915 MHz  
GSM BAND  
38, 39  
×
0°  
ADDER  
I
4, 5  
2, 3  
GSM TX RF VCO  
880 to 915 MHz  
×
90°  
PHASE  
DETECTOR  
+
Q
35  
CHARGE  
PUMP  
×
44, 45  
1710 to 1785 MHz  
DCS BAND  
POWER  
AMPLIFIER  
DCS TX RF VCO  
1710 to 1785 MHz  
FCA004  
Fig.8 Typical application block diagram of a GSM dual-band solution using the UAA2077XM DCS front-end and the UAA3522HL transceiver.  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
PACKAGE OUTLINE  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.60  
mm  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
99-12-27  
00-01-19  
SOT313-2  
136E05  
MS-026  
2000 Feb 18  
24  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
SOLDERING  
The footprint must incorporate solder thieves at the  
downstream end.  
Introduction to soldering surface mount packages  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
2000 Feb 18  
25  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
BGA, LFBGA, SQFP, TFBGA  
WAVE  
not suitable  
REFLOW(1)  
suitable  
suitable  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS  
PLCC(3), SO, SOJ  
not suitable(2)  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
2000 Feb 18  
26  
Philips Semiconductors  
Objective specification  
Low power dual-band GSM transceiver  
with an image rejecting front-end  
UAA3522HL  
NOTES  
2000 Feb 18  
27  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403506/01/pp28  
Date of release: 2000 Feb 18  
Document order number: 9397 750 06451  

相关型号:

UAA3535

Low power GSM/DCS/PCS multi-band transceiver
NXP

UAA3535HL

Low power GSM/DCS/PCS multi-band transceiver
NXP

UAA3535HL

Telecom IC, PQFP48
PHILIPS

UAA3540

DECT receiver
NXP

UAA3540TS

DECT receiver
NXP

UAA3545

Fully integrated DECT transceiver
NXP

UAA3545HL

Fully integrated DECT transceiver
NXP

UAA3545HL/C1,118

IC TELECOM, CORDLESS, RF AND BASEBAND CIRCUIT, PQFP32, 5 X 5 X 1.40 MM, PLASTIC, LQFP-32, Cordless Telephone IC
NXP

UAA3546

Single Chip DECT Transceiver
NXP

UAA3558HL

Telecom IC, BICMOS, PQFP32,
PHILIPS

UAA3558HN

Telecom IC, BICMOS, PQCC32,
PHILIPS

UAA3558HN

IC SPECIALTY TELECOM CIRCUIT, PQCC32, PLASTIC, HVQFN-32, Telecom IC:Other
NXP