UAA3535HL [NXP]

Low power GSM/DCS/PCS multi-band transceiver; 低功耗GSM / DCS / PCS的多频段收发器
UAA3535HL
型号: UAA3535HL
厂家: NXP    NXP
描述:

Low power GSM/DCS/PCS multi-band transceiver
低功耗GSM / DCS / PCS的多频段收发器

过程控制系统 分布式控制系统 PCS GSM DCS
文件: 总24页 (文件大小:122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
UAA3535HL  
Low power GSM/DCS/PCS  
multi-band transceiver  
Objective specification  
2000 Feb 17  
File under Integrated Circuits, IC17  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
FEATURES  
The second section is the IF section, which further  
amplifies the chosen channel and performs gain control to  
adjust the output level to the desired value. The IF gain  
can be varied over more than 64 dB gain range.  
Multi-band application for GSM, DCS and PCS cellular  
phone systems  
Low noise and wide dynamic range low IF receiver  
The transmitter also consists of two sections. The first is a  
high precision I/Q modulator which converts the baseband  
modulation up to the transmit IF. The second is a  
modulation loop architecture which converts the signal  
to RF.  
More than 35 dB on-chip image rejection in receive  
mode  
More than 64 dB gain control range in receive mode  
Integrated channel filter  
Integrated TX low-pass filter  
The Local Oscillator (LO) signals are provided by an  
on-chip Voltage Controlled Oscillator (VCO) for operation  
of the IF section and are provided externally for operation  
of the RF section. The frequencies of the RF and IF VCOs  
are set by internal PLL circuits, which are programmable  
via a 3-wire serial bus. Comparison frequencies are  
200 kHz (100 kHz step programmability) and 13 MHz for  
the RF and IF PLL respectively, and are derived from a  
13 MHz reference signal which has to be supplied  
externally. The quadrature-phase RF LO signals required  
for I/Q mixers in reception are generated internally.  
The quadrature LO signals required for operation of the  
I/Q modulator are generated inside the IF VCO.  
High precision I/Q modulator  
Multi-band TX modulation loop architecture including  
offset mixer and phase-frequency detector  
Dual PLL with on-chip fully integrated IF VCO  
Fully differential design minimizing crosstalk and  
spurious signals  
Functional down to 2.4 V and up to 3.6 V  
3-wire serial bus interface  
LQFP48 package.  
The circuit can be powered-up into one of three different  
modes: RX, TX or SYN mode, depending on the logic  
state of pins RXON, TXON and SYNON, respectively. It is  
also possible to set the IC in one of these modes by  
software, using the 3-wire bus serial programming.  
In RX (TX) mode, all sections required for receive  
(transmit) are turned on. The SYN mode is used to  
power-up the synthesizers prior to the RX or TX mode.  
In the SYN mode, some internal LO buffers are also  
powered-up in such a way that VCO pulling is minimized  
when switching on the receiver or the transmitter.  
Additional band selection is done using the 3-wire bus  
serial programming, allowing the required enabling of the  
Low Noise Amplifiers (LNAs) and charge pumps current  
programming.  
APPLICATIONS  
GSM 900 MHz, DCS 1800 MHz and PCS 1900 MHz  
hand-held transceivers.  
GENERAL DESCRIPTION  
The UAA3535HL is intended for Global Systems for  
Mobile communication (GSM), Digital Cellular  
communication Systems (DCS) and Personal  
Communication Services (PCS). The circuit integrates the  
receiver and most of the transmitter section of hand-held  
transceivers for these applications.  
The receiver consists of two sections. The first section is  
the RF receiver front-end, which amplifies the GSM, DCS  
or PCS aerial signal, then converts the chosen channel  
down to a low Intermediate Frequency (IF) of 100 kHz,  
and also provides more than 35 dB image suppression.  
Some selectivity is provided at this stage by an on-chip  
low-pass filter and channel selectivity is provided by a high  
performance integrated band-pass filter.  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
UAA3535HL  
2000 Feb 17  
LQFP48  
plastic low profile quad flat package; 48 leads; body 7 × 7 × 1.4 mm  
SOT313-2  
2
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
BLOCK DIAGRAM  
38  
RFGND1  
7
39  
IA  
GSMIA  
GSMIB  
40  
8
×
IB  
36  
IFCIA  
35  
41  
RFGND2  
IFCIB  
34  
QUAD  
37  
IFCQA  
V
CC(RF)  
33  
IFCQB  
9
42  
QA  
10  
DCSPCSIA  
43  
×
DCSPCSIB  
29  
QB  
16  
RFLOGND  
1 : 1/2  
32  
DATA  
V
3-WIRE BUS  
17  
CC(RFLO)  
CLK  
30  
31  
CONTROL REGISTER  
18  
E
RFLOIA  
RFLOIB  
MAIN  
DIVIDER  
11  
RXON  
12  
POWER  
ENABLE  
PHASE-FREQUENCY  
DETECTOR AND  
CHARGE PUMP  
TXON  
25  
24  
RFCPO  
SYNON  
22  
REFERENCE  
DIVIDER  
23  
26  
44  
REFIN  
1 : 1/2  
RFCPGND  
3
5
V
TXIFA  
TSTO  
CC(RFCP)  
RFGND3  
PHASE-FREQUENCY  
14  
V
CC2(IF)  
DETECTOR AND  
CHARGE PUMP  
45  
2
15  
TXRFI  
IFGND2  
×
V
20  
CC(TXCP)  
TXCPO  
IFCPO  
PHASE-FREQUENCY  
DETECTOR AND  
CHARGE PUMP  
21  
1
IFCPGND  
19  
×
V
1 : 6/7  
CC(IFCP)  
4
IFGND1  
48  
46  
13  
TXCPGND  
RFGND4  
IFTUNE  
1 : 1/2  
6
UAA3535HL  
V
CC1(IF)  
91 MHz GSM/DCS  
78 MHz PCS  
28  
47  
SYNGND  
EXTRES  
×
27  
V
CC(SYN)  
FCA074  
Fig.1 Block diagram.  
3
2000 Feb 17  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
PINNING  
SYMBOL PIN  
DESCRIPTION  
SYMBOL PIN  
DESCRIPTION  
VCC(RFCP)  
VCC(SYN)  
SYNGND  
RFLOGND  
RFLOIA  
RFLOIB  
VCC(RFLO)  
IFCQB  
26 RF charge pump supply voltage  
27 synthesizers supply voltage  
28 synthesizers ground  
29 RF LO ground  
TXCPO  
1
transmit modulation loop GSM  
charge pump output  
VCC(TXCP)  
2
transmit modulation loop charge  
pump supply voltage  
30 RF LO input A  
TXIFA  
IFGND1  
TSTO  
VCC1(IF)  
IA  
3
4
5
6
7
8
9
transmit IF test pin  
31 RF LO input B  
IF ground 1  
32 RF LO supply voltage  
33 RX IF Q test pin B  
34 RX IF Q test pin A  
35 RX IF I test pin B  
test mode output  
IF supply voltage 1  
IFCQA  
I path A baseband input/output  
I path B baseband input/output  
Q path A baseband input/output  
IFCIB  
IB  
IFCIA  
36 RX IF I test pin A  
QA  
VCC(RF)  
37 RF front-end and transmit  
modulation loop supply voltage  
QB  
10 Q path B baseband input/output  
11 RX mode control input  
12 TX mode control input  
13 transmit IF VCO tune input  
14 IF supply voltage 2  
RXON  
TXON  
IFTUNE  
VCC2(IF)  
IFGND2  
DATA  
CLK  
RFGND1  
38 RF front-end and transmit  
modulation loop ground 1  
GSMIA  
GSMIB  
RFGND2  
39 receiver GSM RF input A  
40 receiver GSM RF input B  
15 IF ground 2  
41 RF front-end and transmit  
modulation loop ground 2  
16 3-wire bus data input  
17 3-wire bus clock input  
DCSPCSIA 42 receiver DCS/PCS RF input A  
DCSPCSIB 43 receiver DCS/PCS RF input B  
E
18 3-wire bus enable control input  
(active LOW)  
RFGND3  
44 RF front-end and transmit  
modulation loop ground 3  
VCC(IFCP)  
19 transmit IF charge pump supply  
voltage  
TXRFI  
45 input from RF transmit VCOs  
IFCPO  
20 transmit IF charge pump output  
21 transmit IF charge pump ground  
22 synthesizers reference input  
23 RF charge pump ground  
24 RF charge pump output  
RFGND4  
46 RF front-end and transmit  
modulation loop ground 4  
IFCPGND  
REFIN  
EXTRES  
47 reference resistor for transmit  
modulation loop  
RFCPGND  
RFCPO  
SYNON  
TXCPGND  
48 transmit modulation loop charge  
pump ground  
25 SYN mode control input  
2000 Feb 17  
4
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
1
2
36 IFCIA  
35  
TXCPO  
V
IFCIB  
34 IFCQA  
CC(TXCP)  
TXIFA  
3
4
33  
32  
31  
IFGND1  
TSTO  
IFCQB  
V
5
CC(RFLO)  
V
6
RFLOIB  
CC1(IF)  
UAA3535HL  
30 RFLOIA  
IA  
IB  
7
29 RFLOGND  
28 SYNGND  
8
QA  
9
V
V
QB  
27  
26  
10  
11  
12  
CC(SYN)  
RXON  
TXON  
CC(RFCP)  
25 SYNON  
FCA068  
Fig.2 Pin configuration.  
FUNCTIONAL DESCRIPTION  
RF receiver  
Channel filter and AGC  
The front-end IF I and Q outputs are first applied to an  
amplifier circuit with provision for three 8 dB gain step  
adjustment possibilities and then to an integrated  
band-pass channel filter. The filter is a fifth-order  
band-pass filter centred around 100 with 220 kHz  
bandwidth. After filtering the IF I and Q signals are further  
amplified with provision for eleven 4 dB gain steps and  
DC offset compensation.  
The receiver front-end converts the aerial RF signal from  
EGSM (Extended GSM; 925 to 960 MHz), DCS  
(1805 to 1880 MHz) or PCS (1930 to 1990 MHz) bands  
down to an IF signal of 100 kHz. The first stages are  
symmetrical LNAs that are matched to 50 using external  
baluns. The LNAs are followed by an I/Q down-mixer.  
The I/Q down-mixer consists of two mixers in parallel but  
driven by quadrature out of phase LO signals.  
The In-phase (I) and Quadrature- phase (Q) IF signals are  
then low-pass filtered to provide protection from high  
frequency offset interferers. The IF I and Q signals are  
then fed into the channel filter.  
I/Q modulator  
I and Q baseband signals are applied to the I/Q modulator  
where the modulation spectrum is shifted up to the  
transmit IF frequency. For low harmonic distortion, low  
carrier leakage and high image rejection, the phase error  
must be kept as small as possible. The IF output of the  
modulator is fed to an integrated low-pass filter where  
unwanted spurious signals are suppressed, prior to being  
fed to the phase detector.  
2000 Feb 17  
5
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
Transmit modulation loop  
The ‘main’ path consists of a programmable divider chain  
that divides the RF and IF LO signals down to frequencies  
of 200 kHz (100 kHz step programmability) and 13 MHz  
respectively. Their phase is then compared in a digital  
Phase-Frequency Detector (PFD) with that of a reference  
signal derived from an external 13 or 26 MHz clock signal.  
The phase error information is fed back to the VCO via the  
charge pump circuit that ‘sinks’ into or ‘sources’ current  
from the loop filter capacitor, thereby changing the VCO  
frequency so that the loop becomes ‘phase locked’.  
The analog transmit modulation loop consists of an  
on-chip offset mixer, a phase-frequency detector, an  
off-chip loop filter and a transmit VCO. The analog PLL  
copies the modulation to the off-chip transmit VCO and  
acts as a tracking filter. A PLL of at least third-order is  
required to meet noise requirements at 20 MHz offset from  
the carrier. The PLL bandwidth must be greater than  
600 kHz in order to keep a low dynamic phase error and to  
minimize the acquisition time.  
Operating modes  
RF and IF LO sections  
BASIC OPERATING MODES  
The RF LO input covering the 1788 to 2002 MHz  
bandwidth is connected to an external RF VCO module.  
The RF LO section includes the LO buffering for the  
RF PLL, a divider-by-2 or 1 for GSM and DCS/PCS  
respectively which drives a quadrature generation network  
for use in the RX I/Q down-mixer or the transmit  
modulation loop offset mixer. The IF LO section consists of  
a fully integrated IF VCO which internally provides the  
I/Q modulator with the necessary quadrature signals.  
The circuit can be powered-up into different operating  
modes depending on the voltage level applied at pins  
RXON, TXON and SYNON (hardware control). This  
defines the three main modes; RX, TX and SYN. Table 1  
describes the different operating modes as defined by  
hardware control.  
The operation mode status depends on the control bits  
SYNON, RXON and TXON (see Table 1).  
Dual PLL  
When the receiver is on, it is possible to switch-off the low  
noise amplifier to perform DC offset compensation in the  
receiver (see Section “LNA power control”).  
A high performance dual PLL is included on-chip which  
enables the frequencies of the RF VCO to be synthesized  
off-chip and that of the IF VCO on-chip. Very low close-in  
phase noise is achieved which allows the PLL loop  
bandwidth to be widened to achieve a shorter settling time.  
The charge pump circuit has very low leakage current, in  
the nA range, so that the spurious signals are hardly  
detectable.  
When in TX mode, it is possible to enable the  
IF synthesizer and VCO independently from the rest of the  
TX section via bit TXIFON via the control bus.  
Table 1 Basic operating mode control  
CONTROL PIN LEVEL  
MODE  
POWER STATUS  
SYNON  
HIGH  
HIGH  
HIGH  
LOW  
RXON  
LOW  
HIGH  
LOW  
LOW  
TXON  
LOW  
LOW  
HIGH  
LOW  
SYNTHESIZER  
RECEIVER  
TRANSMITTER  
SYN  
RX  
on  
on  
on  
off  
off  
on  
off  
off  
off  
off  
on  
off  
TX  
Idle  
2000 Feb 17  
6
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
IF SYNTHESIZER AND VCO CONTROL  
SIDEBAND SELECTION CONTROL  
The IF synthesizer is only necessary in transmit mode.  
The TX IF VCO and synthesizer section can be  
powered-up with the control bit TXIFON; see Table 2.  
If TXIFON is not used, the IF VCO and synthesizer section  
will be enabled with the signal TXON.  
The receiver includes an image rejection front-end which  
allows the use of a RF LO 100 kHz below the RF input  
frequency (infradyne) or 100 kHz above the RF input  
frequency (supradyne). Between these two states the  
proper image should be selected for rejection.  
The selection of these 2 modes is accomplished by the  
control bit SBD; see Table 5.  
Table 2 IF synthesizer and VCO power control  
IF SYNTHESIZER AND  
Table 5 Sideband selection control  
BIT TXIFON  
VCO MODE  
BIT SBD  
SIDEBAND MODE  
0
1
off  
on  
0
1
supradyne  
infradyne  
LNA POWER CONTROL  
TX CHARGE PUMP CURRENT CONTROL  
When the receiver is on, it is possible to switch-off the low  
noise amplifier separately. Separate control of the low  
noise amplifier is accomplished by the control bit LNA; see  
Table 3.  
The transmit modulation loop includes a transmit charge  
pump where sink and source currents are determined by  
an external resistor. When determined, this nominal  
current can be divided-by-1 or 2 to cope with different  
transmit VCO gains. The selection of these 2 modes is  
accomplished by the control bit TXI; see Table 6.  
Table 3 LNA power control  
BIT LNA  
LNA MODE  
0
1
off  
on  
Table 6 TX charge pump current control  
BIT TXI  
TX CHARGE PUMP CURRENT MODE  
0
1
nominal current  
BAND SELECTION CONTROL  
nominal current divided-by-2  
The receiver includes two RF front-end and RF LO  
sections; one for GSM where the RF LO is divided-by-2  
and fed to the 925 to 960 MHz front-end, and the other  
one for DCS and/or PCS where the RF LO is not divided  
and fed to the 1805 to 1990 MHz front-end. The selection  
of these 2 modes is accomplished by the control bit BND;  
see Table 4.  
REFERENCE DIVIDER CONTROL  
The reference divider can be programmed to divide the  
external reference frequency by 65 or 130. The selection  
of these 2 modes is accomplished by the control bit  
REFDIV; see Table 7.  
Table 4 Band selection control  
Table 7 Reference divider control  
BIT BND  
BAND MODE  
BIT REFDIV  
REFERENCE DIVIDER MODE  
divide-by-65  
divide-by-130  
0
1
GSM  
DCS and/or PCS  
0
1
2000 Feb 17  
7
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
IF DIVIDER CONTROL  
Programming  
The IF divider can be programmed to divide the integrated  
IF VCO frequency by 1 or 2. The selection of these  
2 modes is accomplished by the control bit IFDIV;  
see Table 8.  
SERIAL PROGRAMMING BUS  
A simple 3-wire unidirectional serial bus is used to program  
the circuit. The 3 lines are DATA, CLK and E (enable).  
The data sent to the device is loaded in bursts framed  
by E. Programming clock edges are ignored until E goes  
active LOW. The programmed information is loaded into  
the addressed latch when E returns inactive HIGH. This is  
allowed when CLK is in either state without causing any  
consequences to the register data. Only the last 17 bits  
serially clocked into the device are retained within the  
programming register. Additional leading bits are ignored,  
and no check is made on the number of clock pulses.  
The fully static CMOS design uses virtually no current  
when the bus is inactive. It can always capture new  
programming data even during power-down of both  
synthesizers.  
Table 8 IF divider control  
BIT IFDIV  
IF DIVIDER MODE  
IF = fVCO  
IF = fVCO divided by 2  
0
1
TXIF FILTER CONTROL  
The transmit section integrates two switchable low-pass  
filters, one for a 45.5 MHz IF and the other one for  
91 MHz IF. The selection of these 2 modes is  
accomplished by the control bit FILT; see Table 9.  
DATA FORMAT  
Table 9 TXIF filter control  
Data is entered with the most significant bit first.  
BIT FILT  
TXIF FILTER MODE  
IF 45.5 MHz  
IF 91 MHz  
The leading bits make up the data field, while the trailing  
4 bits are an address field. The address bits are decoded  
on the rising edge of E. This produces an internal load  
pulse to store the data in the addressed latch. To ensure  
that data is correctly loaded on first power-up, E should be  
held LOW and only taken High after having programmed  
an appropriate register. To avoid erroneous divider ratios,  
the pulse is inhibited during the period when data is read  
by the frequency dividers. This condition is guaranteed by  
respecting a minimum E pulse width after data transfer.  
0
1
IF SYNTHESIZER DIVIDER CONTROL  
The IF synthesizer divider can be programmed to divide  
the semi-integrated IF VCO frequency by 6 or 7.  
The selection of these 2 modes is accomplished by the  
control bit IFO; see Table 10.  
The allocation of the register bits is given in Table 11.  
Table 10 IF synthesizer divider control  
IF SYNTHESIZER  
DIVIDER MODE  
REGISTER PRESET CONDITIONS  
BIT IFO  
The UAA3535HL programming registers have a preset  
state. The preset values can be found in Table 12.  
Conditions for guaranteed preset values at power-on are  
as follows:  
0
1
divide-by-6  
divide-by-7  
DATA, CLOCK, E, SYNON, RXON and TXON must be  
at 0 V  
Preset value is guaranteed 2 ms after VCC(SYN) rises  
to 90% of 2.6 V  
E should stay at 0 V up to the end of the first  
programming word.  
2000 Feb 17  
8
Table 11 Register bit allocation; notes 1 and 2 and 3  
REGISTER ALLOCATION  
DATA FIELD  
ADDRESS  
FIELD  
BIT  
16  
BIT  
15  
BIT  
14  
BIT  
13  
BIT  
12  
BIT  
11  
BIT  
10  
BIT  
9
BIT  
8
BIT  
7
BIT  
6
BIT  
5
BIT  
4
BIT  
3
BIT  
2
BIT  
1
BIT  
0
LAST 4 BITS  
X
X
RF  
14  
RF  
13  
RF  
12  
RF  
11  
RF  
10  
RF  
9
RF  
8
RF  
7
RF  
6
RF  
5
RF  
4
RF  
3
RF  
2
RF  
1
RF  
0
0
0
1
1
X
X
X
X
X
X
X
0
X
0
0
0
0
0
LNA  
G5  
1
G4  
1
G3  
G2  
G1  
G0  
0
0
0
0
1
0
0
1
FILT REF  
DIV  
IFO  
IF  
DIV  
TXI  
SBD BND  
TXIF SYN  
ON  
RX  
ON  
TX  
ON  
ON  
for test purpose only; bit usage to be defined; this is a forbidden address  
0
0
0
0
Notes  
1. The 15-bit RF divider is programmable through the 15 bits RF0 to RF14, in steps of 100 kHz.  
2. X = don’t care.  
3. The 6-bit AGC attenuator is programmable through the 6 bits G0 to G5 in 17 steps of 4 dB (see Table 13).  
Table 12 Preset values; note 1  
REGISTER ALLOCATION  
ADDRESS  
FIELD  
DATA FIELD  
BIT  
16  
BIT  
15  
BIT  
14  
BIT  
13  
BIT  
12  
BIT  
11  
BIT  
10  
BIT  
9
BIT  
8
BIT  
7
BIT  
6
BIT  
5
BIT  
4
BIT  
3
BIT  
2
BIT  
1
BIT  
0
LAST 4 BITS  
X
X
X
X
X
X
1
X
X
0
X
0
0
X
0
1
0
0
0
0
1
1
0
1
0
0
0
0
0
1
0
1
0
0
1
1
0
1
1
0
1
0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
for test purpose only; bit usage to be defined; this is a forbidden address  
Note  
1. X = don’t care.  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
Table 13 AGC gain look-up table; note 1  
G5(2)  
G4(2)  
G3  
G2  
G1  
G0  
ATTENUATION (dB)(3)  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
52  
56  
60  
64  
68  
Notes  
1. Codes not included in the table are forbidden.  
2. Steps at the input of the band-pass filter.  
3. The figure represents the total attenuation in the receive path, with respect to the maximum gain.  
2000 Feb 17  
10  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
LIMITING VALUES  
SYMBOL  
VCC  
VCC(TXCP)  
VCC(RFCP)  
Pmax  
DESCRIPTION  
MIN.  
0.3  
MAX.  
UNIT  
supply voltage  
+3.6  
V
;
supply voltage for RX and TX charge pumps  
0.3  
+4.25  
V
maximum power dissipation  
ambient temperature  
1
W
Tamb  
30  
40  
+70  
+150  
°C  
°C  
Tstg  
storage temperature  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
65  
UNIT  
Rth(j-c)  
thermal resistance from junction to case  
K/W  
DC CHARACTERISTICS  
VCC = VCC(TXCP) = VCC(RFCP) = 2.6 V; Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
ICC  
PARAMETER  
supply current  
CONDITIONS  
MIN.  
TYP.  
10  
MAX.  
50  
UNIT  
normal mode; total power-down;  
note 1  
µA  
preset mode; total power-down;  
note 2  
100  
200  
µA  
RX and SYN mode  
TX, TXIF and SYN mode  
SYN mode  
51.5  
54  
17  
29  
60  
66  
20  
37  
3.3  
mA  
mA  
mA  
mA  
V
TXIF and SYN mode  
VCC(RF)  
RF front-end and transmit  
modulation loop supply  
voltage  
2.4  
ICC(RF)  
RF front-end and transmit  
modulation loop supply  
current  
RX mode; one LNA and  
quadrature mixer active  
17  
mA  
RX mode; one LNA active  
6
6
mA  
mA  
TX mode; transmit modulation  
loop active without charge pump  
VCC1(IF)  
ICC1(IF)  
IF supply voltage 1  
IF supply current 1  
2.4  
3.3  
V
RX mode; I/Q low IF band-pass  
filter active  
7
mA  
TX mode; I/Q modulator active  
9
4
9
mA  
V
VCC2(IF)  
ICC2(IF)  
IF supply voltage 2  
IF supply current 2  
2.4  
3.3  
RX mode; I/Q AGC active  
mA  
mA  
TXIF mode; TX IF VCO active  
2000 Feb 17  
11  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
2.4  
TYP.  
MAX.  
3.3  
UNIT  
VCC(RFLO)  
ICC(RFLO)  
RF LO supply voltage  
RF LO supply current  
V
RX and SYN mode; RF LO buffer  
and divider section active  
10  
mA  
TX and SYN mode; RF LO buffer  
and divider section active  
10  
mA  
SYN mode; RF LO buffer active  
6
mA  
V
VCC(SYN)  
ICC(SYN)  
synthesizers supply voltage  
synthesizers supply current  
2.4  
3.3  
SYN mode; RF synthesizer  
active  
9.5  
mA  
TXIF mode; IF synthesizer active  
0.5  
mA  
V
VCC(IFCP)  
ICC(IFCP)  
VCC(TXCP)  
ICC(TXCP)  
transmit IF charge pump  
supply voltage  
2.4  
3.3  
transmit IF charge pump  
supply current  
TXIF mode; IF LO charge pump  
active; in lock  
1.5  
mA  
V
transmit modulation loop  
charge pump supply voltage  
2.4  
4.25  
transmit modulation loop  
charge pump supply current  
TX mode; TX RF charge pump  
active; in lock; external  
resistance is 1800 Ω  
1.0  
mA  
VCC(RFCP)  
ICC(RFCP)  
RF charge pump supply  
voltage  
2.4  
4.25  
V
RF charge pump supply  
current  
SYN mode; RF LO charge pump  
active; in lock  
4.5  
mA  
Baseband section: pins IA, IB, QA and QB  
VI(CM)  
common mode input-output  
voltage I  
1.15  
1.15  
1.25  
1.25  
1.35  
1.35  
V
V
V
IA + VIB  
VI =  
-----------------------  
2
VQ(CM)  
common mode input-output  
voltage Q  
V
QA + VQB  
V Q  
=
---------------------------  
2
Logic input levels: pins DATA, CLK, E, TXON, RXON and SYNON  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
0.9  
V
V
0.3  
Notes  
1. VCC(TXCP) = VCC(RFCP) = 4.2 V; pins TXON, RXON and SYNON are HIGH impedance; pins DATA, CLK and E are  
HIGH impedance.  
2. VCC(TXCP) = VCC(RFCP) = 4.2 V; pins TXON, RXON and SYNON are LOW; pins DATA, CLK and E are HIGH.  
2000 Feb 17  
12  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
AC CHARACTERISTICS  
VCC = VCC(CP) = 2.6 V; Tamb = 30 to +70 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
RF receiver section; measured in a 50 impedance system, including external input baluns and matching  
networks to 50 Ω  
PINS: GSMIA AND GSMIB  
fi(RF)  
Ri(dif)  
Ci(dif)  
F
RF input frequency  
925  
960  
MHz  
differential input resistance  
parallel RC input model  
75  
1.5  
3.5  
differential input capacitance parallel RC input model  
pF  
noise figure  
for Ri; maximum AGC;  
notes 1 and 2  
4
dB  
αoff  
LNA off-state attenuation  
bit LNA = 0; note 1  
45  
dB  
Poff  
LNA off-state power handling bit LNA = 0; notes 1 and 3 3  
dBm  
dBm  
DES3i  
input referred 3 dB  
desensitization  
f = 3 MHz; Tamb = 25 °C; 25  
note 1  
PINS: DCSPCSIA AND DCSPCSIB  
fi(RF)  
Ri(dif)  
Ci(dif)  
F
RF input frequency  
1805  
1990  
MHz  
differential input resistance  
parallel RC input model  
120  
1.0  
4
differential input capacitance parallel RC input model  
pF  
noise figure  
for Ri; maximum AGC;  
notes 1 and 2  
4.5  
dB  
αoff  
LNA off-state attenuation  
bit LNA = 0; note 1  
45  
dB  
Poff  
LNA off-state power handling bit LNA = 0; notes 1 and 3 6  
dBm  
dBm  
DES3i  
input referred 3 dB  
desensitization  
f = 3 MHz; Tamb = 25 °C; 28  
note 1  
PINS: GSMIA, GSMIB, DCSPCSIA AND DCSPCSIB  
s11  
input reflection coefficient  
note 2  
15  
10  
57  
47  
45  
dB  
SPURP(RFin) power level of spurious  
signals at RF input  
900 to 1000 MHz band  
1800 to 2000 MHz band  
out of preceding bands  
dBm  
dBm  
dBm  
dBm  
CP1  
IP3i  
1 dB input compression point minimum AGC;  
25  
Tamb = 25 °C; note 1  
input referred third-order  
intercept  
maximum AGC;  
Tamb = 25 °C; note 1  
18  
2
dBm  
dBm  
dBm  
dB  
IP2i  
input referred second-order  
intercept  
maximum AGC; note 4  
30  
DES3i  
IR  
input referred 3 dB  
desensitization  
f = 3 MHz; Tamb = 25 °C; 23  
note 1  
image rejection  
fIF = 200 kHz;  
35  
38  
Tamb = 25 °C; note 1  
Gv(RF)  
gain mismatch GSM and  
DCS paths  
note 5  
dB  
2000 Feb 17  
13  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
SYMBOL  
PINS IA, IB, QA AND QB (RX MODE)  
Gv(min) minimum voltage conversion gain set to minimum;  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
19  
25  
31  
97  
dB  
gain notes 1 and 5  
maximum voltage conversion gain set to maximum;  
gain notes 1 and 5  
Gv(max)  
89  
93  
dB  
Gv(step)  
Gv(I/Q)  
∆Φ  
voltage conversion gain step note 5  
gain mismatch I and Q paths note 5  
4
dB  
0.5  
5
dB  
quadrature-phase error  
I and Q paths  
peak error  
deg  
LEAGC  
gain control linearity  
over full gain range; note 2 2  
over any 20 dB gain range 0.5  
+2  
dB  
dB  
V
+0.5  
Vo(peak)  
Io(peak)  
maximum output voltage per 3% T.H.D.; RL = 100 kΩ  
pin  
0.75  
per pin  
maximum output current per  
pin  
25  
50  
µA  
Voffset  
output offset voltage  
under static conditions  
300  
+300  
8
mV  
HP3dB  
3 dB high-pass corner  
4
6
kHz  
frequency  
BIF(3dB)  
td(g)  
3 dB IF filter bandwidth  
100 kHz centre frequency 220  
250  
2
kHz  
µs  
group delay variation  
30 kHz < fo < 170 kHz  
fo = 100 kHz ± 200 kHz  
fo = 100 kHz ± 400 kHz  
fo = 100 kHz ± 600 kHz  
1.5  
31  
64  
82  
α5(IF)  
IF filter attenuation  
(fifth-order)  
17  
54  
73  
dB  
dB  
dB  
Transmit IF section (initial conditions: Vmod(peak) = 0.5 V; fmod = 67.7 kHz; unless otherwise specified)  
PINS IA, IB, QA AND QB (TX MODE)  
fmod  
modulation frequency  
3 dB low-pass cut-off  
frequency  
1
MHz  
Vmod(peak)  
Ri(D)  
modulation level  
single-ended; peak value  
single-ended  
0.5  
25  
0.55  
V
dynamic input resistance  
kΩ  
IF LO oscillator (measured and guaranteed on demonstration board at Tamb = 25 °C)  
fIFLO  
range of possible operation  
VCO gain  
with programming  
Vtune from 0.6 V to  
78  
91  
MHz  
KVCO  
30  
MHz/V  
VCC 0.6 V  
Vtune  
tuning voltage  
referenced to VCC(IFCP)  
pushing  
0.4  
V
CC 0.4  
V
fVCC  
frequency variation with  
1
MHz/V  
respect to the supply voltage  
fTRON  
frequency variation  
pulling  
5  
+5  
kHz  
Transmit modulation loop section  
OFFSET MIXER; PIN TXRFI  
fRF  
RF input frequency  
880  
1910  
MHz  
2000 Feb 17  
14  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
SYMBOL  
PARAMETER  
input resistance  
CONDITIONS  
single-ended  
single-ended  
MIN.  
TYP.  
50  
MAX.  
UNIT  
Ri  
Ci  
Pi  
input capacitance  
input power  
pF  
23  
20  
10  
10  
17  
dBm  
dB  
s11  
F
input reflection coefficient  
noise figure  
Tamb = 25 °C  
dB  
CP1  
1 dB input compression point Tamb = 25 °C  
20  
50  
dBm  
dBm  
dBm  
SPURP(RFin) power level of spurious  
signals at RF input  
LO leakage  
other  
45  
45  
PHASE DETECTOR; PIN TXCPO  
ICP(max)  
charge pump maximum sink GSM mode; external  
1
2
1
4
2
mA  
mA  
or source current  
resistance of 1800 1%  
for minimum output  
current; TXI = 0; note 6  
DCS and PCS mode;  
external resistance of  
1800 1% for minimum  
output current; TXI = 1;  
note 6  
0.5  
KΦ  
phase-frequency detector  
gain  
for ICP = 1 mA  
0.16  
mA/rad  
%
KΦ  
phase-frequency detector  
gain variation  
over output voltage range  
10  
Vo  
Ro  
output voltage  
0.4  
V
CC(CP) 0.4  
V
output resistance  
10  
kΩ  
VCC(PHD)  
Vo  
=
----------------------  
2
Ro(pd)  
output resistance power  
down  
TX mode disabled  
1
kΩ  
LOo  
local oscillator feedthrough  
third-order products level  
note 7  
40  
55  
32  
50  
dBc  
dBc  
IM3o  
offset +3 × 67.7 kHz or  
3 × 67.7 kHz; note 7  
IMo  
image level  
f
IFLO 67.7 kHz; note 7  
45  
37  
dBc  
ΦNOISE  
phase noise output power  
density  
f = 400 kHz;  
Tamb = 25 °C; note 7  
117  
dBc/Hz  
f = 1.8 MHz;  
117  
dBc/Hz  
Tamb = 25 °C; note 7  
f = 20 MHz; Tamb = 25 °C −  
136  
50  
dBc/Hz  
dBc  
SPURL(4fm)  
SPURL(8fm)  
level of spurious signals at  
4 × fmod  
fmod = 67.7 kHz;  
notes 7 and 8  
level of spurious signals at  
fmod = 67.7 kHz; note 7  
55  
dBc  
8 × fmod  
RF LO buffer  
RF SOURCE CONNECTED AT PIN RFLOIA AND RFLOIB  
fi(RF)  
RF input frequency  
1788  
2002  
MHz  
2000 Feb 17  
15  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
SYMBOL  
Ri(dif)  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
50  
MAX.  
UNIT  
differential input resistance  
parallel RC input model  
Ci(dif)  
s11  
differential input capacitance parallel RC input model  
input reflection coefficient  
0.2  
15  
5  
pF  
10  
2  
dB  
PLO  
power available from the  
LO source  
8  
dBm  
RF and IF synthesizers  
REFERENCE INPUT; PIN REFIN  
fref  
reference frequency  
REFDIV = 0  
REFDIV = 1  
13  
26  
MHz  
MHz  
mV  
Vi(rms)  
Ri  
input voltage level  
(RMS value)  
60  
220  
input resistance  
fref = 13 MHz  
10  
kΩ  
RF SYNTHESIZER; PIN RFCPO  
fRFLO  
synthesizer frequency  
1700  
2100  
MHz  
kHz  
dBc  
fcomp(RF)  
fcomp(leak)  
comparison frequency  
200  
50  
200 kHz comparison  
frequency leakage  
with recommended loop  
filter  
fstep(RF)  
frequency step  
programmability  
fcomp(RF) = 200 kHz  
100  
kHz  
Φnoise  
close-in phase noise  
f = 2 kHz  
80  
76  
70  
dBc/Hz  
dBc  
SPURP(RF)  
power level of spurious  
signals  
f > 400 kHz  
ICP(nom)  
KΦ  
nominal charge pump output sink or source  
current  
1.7  
2.0  
0.32  
2.3  
mA  
phase-frequency detector  
gain  
ICP = 2 mA  
mA/rad  
%
KΦ  
phase-frequency detector  
gain variation  
over VCP range  
10  
+5  
IL(CP)  
VCP  
Ro  
charge pump leakage current in off state  
5  
1
nA  
V
charge pump output voltage ICP within specified range 0.4  
VCC 0.4  
output resistance  
SYN mode disabled;  
power-down  
kΩ  
2000 Feb 17  
16  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
IF SYNTHESIZER; PINS IFTUNE AND IFCPO  
fIFLO  
synthesizer frequency  
comparison frequency  
close-in phase noise  
70  
100  
MHz  
fcomp(IF)  
Φnoise  
13  
MHz  
f = 400 kHz  
117  
70  
dBc/Hz  
dBc  
SPURP(IF)  
power level of spurious  
signals  
ICP  
charge pump output current sink or source  
0.85  
1.0  
1.15  
mA  
KΦ  
phase-frequency detector  
gain  
for ICP = 1 mA  
0.16  
mA/rad  
KΦ  
phase-frequency detector  
gain variation  
over VCP range  
10  
+5  
%
IL  
charge pump leakage current off state  
charge pump output voltage  
5  
0.4  
1
nA  
V
VCP  
Ro  
VCC 0.4  
output resistance  
TXIFON and TXON mode  
kΩ  
disabled; power-down  
DIVIDERS RATIOS  
D/DRF(main)  
RF main divider ratio  
ratio between RFLOI  
frequency and fcomp(RF)  
8940  
6
10010  
7
D/DIF(main)  
IF main divider ratio  
ratio between IF VCO  
frequency and fcomp(IF)  
D/DRF(REFDIV) RF reference divider ratio  
D/DIF(REFDIV) IF reference divider ratio  
REFDIV = 0  
REFDIV = 1  
REFDIV = 0  
REFDIV = 1  
65  
130  
1
2
General  
tON  
turn-on time  
90% of the final current  
200  
µs  
Notes  
1. Measured and guaranteed only on OM 5178 demonstration board.  
2. This value includes printed-circuit board and balun losses.  
3. The power level of the spurious signals in this measurement is less than specified under SPURP(RFin)  
4. IP2i related to an IM2 measurement in low gain mode.  
.
5. Voltage gain defined as the differential baseband RMS output voltage (either at pins IA and IB or pins QA and QB  
measured in standard load) divided by the RMS input voltage at the RF baluns.  
6. This range is obtained through variation of the external reference resistor.  
7. Measured at external transmit VCO output.  
8. This is based on an adjustment in such a way, that a difference of 36 dBc is obtained in the level of the wanted signal  
at the frequency fIF + fmod and the level of the signal at the frequency 3fIF fmod, measured at the input of the  
phase-frequency comparator for IF frequencies of 45.5 and 91 MHz.  
2000 Feb 17  
17  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
SERIAL TIMING CHARACTERISTICS  
Initial parameter values: VCC = 2.6 V ±5%; Tamb = 30 to +70 °C; unless otherwise specified; see Fig.3.  
SYMBOL  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
Serial programming clock: pin CLK  
tr  
rise time  
10  
20  
ns  
tf  
fall time  
10  
20  
ns  
ns  
Tcy  
clock cycle time  
200  
Enable programming: pin E  
tsu(E) delay to rising clock edge  
th(E) delay from last falling clock edge  
tW(E)  
tsu(E)  
200  
100  
4000  
200  
ns  
ns  
ns  
ns  
minimum inactive pulse width  
enable set-up time to next clock edge  
Register serial input data: pin DATA  
tsu(D)  
th(D)  
input data to clock set-up time  
input data to clock hold time  
50  
50  
ns  
ns  
t
t
t t  
END SU;E  
t
t
f
r
SU;DAT  
HD;DAT  
T
cy  
CLK  
DATA  
MSB  
LSB  
ADDRESS  
E
t
MGD565  
t
START  
W(min)  
Fig.3 Timing diagram 3-wire serial bus.  
2000 Feb 17  
18  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
ahdnbok,uflapegwidt  
38  
39  
40  
RFGND1  
BALUN  
7
8
IA  
IB  
DCSRX  
PCSRX  
GSMRX  
×
36  
35  
34  
33  
IFCIA  
IFCIB  
IFCQA  
41  
37  
RFGND2  
QUAD  
V
CC(RF)  
IFCQB  
9
42  
43  
QA  
QB  
BALUN  
10  
×
29  
RFLOGND  
16  
17  
18  
1 : 1/2  
DATA  
CLK  
E
32  
30  
31  
V
CC(RFLO)  
3-WIRE BUS  
CONTROL REGISTER  
MAIN  
DIVIDER  
BALUN  
11  
12  
25  
GSM/DCS/PCS  
RXON  
TXON  
POWER  
ENABLE  
PHASE-FREQUENCY  
DETECTOR AND  
CHARGE PUMP  
24  
SYNON  
13 MHz  
VTCXO  
22  
REFIN  
REFERENCE  
DIVIDER  
23  
26  
44  
1 : 1/2  
RFCPGND  
3
5
V
TXIFA  
TSTO  
CC(RFCP)  
RFGND3  
PHASE-FREQUENCY  
14  
15  
V
CC2(IF)  
DETECTOR AND  
CHARGE PUMP  
45  
2
IFGND2  
×
V
20  
21  
CC(TXCP)  
IFCPO  
PHASE-FREQUENCY  
DETECTOR AND  
CHARGE PUMP  
1
IFCPGND  
GSMTX  
DCSTX  
PCSTX  
19  
4
×
V
1 : 6/7  
CC(IFCP)  
IFGND1  
IFTUNE  
48  
46  
13  
TXCPGND  
1 : 1/2  
6
28  
27  
UAA3535HL  
RFGND4  
EXTRES  
V
CC1(IF)  
91 MHz GSM/DCS  
78 MHz PCS  
47  
SYNGND  
×
V
CC(SYN)  
FCA075  
Fig.4 Application diagram.  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
PACKAGE OUTLINE  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.60  
mm  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
99-12-27  
00-01-19  
SOT313-2  
136E05  
MS-026  
2000 Feb 17  
20  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
SOLDERING  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Manual soldering  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
2000 Feb 17  
21  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
2000 Feb 17  
22  
Philips Semiconductors  
Objective specification  
Low power GSM/DCS/PCS multi-band transceiver  
UAA3535HL  
NOTES  
2000 Feb 17  
23  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403506/01/pp24  
Date of release: 2000 Feb 17  
Document order number: 9397 750 06172  

相关型号:

UAA3540

DECT receiver
NXP

UAA3540TS

DECT receiver
NXP

UAA3545

Fully integrated DECT transceiver
NXP

UAA3545HL

Fully integrated DECT transceiver
NXP

UAA3545HL/C1,118

IC TELECOM, CORDLESS, RF AND BASEBAND CIRCUIT, PQFP32, 5 X 5 X 1.40 MM, PLASTIC, LQFP-32, Cordless Telephone IC
NXP

UAA3546

Single Chip DECT Transceiver
NXP

UAA3558HL

Telecom IC, BICMOS, PQFP32,
PHILIPS

UAA3558HN

Telecom IC, BICMOS, PQCC32,
PHILIPS

UAA3558HN

IC SPECIALTY TELECOM CIRCUIT, PQCC32, PLASTIC, HVQFN-32, Telecom IC:Other
NXP

UAA3559HN

IC SPECIALTY TELECOM CIRCUIT, PQCC32, 5 X 5 MM, 0.85 MM HEIGHT, PLASTIC, SOT-617-1, MO-220, HVQFN-32, Telecom IC:Other
NXP

UAA3580

Wideband code division multiple access frequency division duplex zero IF receiver
NXP

UAA3580HN

Wideband code division multiple access frequency division duplex zero IF receiver
NXP