FDP3632 [ONSEMI]

N 沟道,PowerTrench® MOSFET,100V,80A,9mΩ 推荐替代产品为 FDP090N10;
FDP3632
型号: FDP3632
厂家: ONSEMI    ONSEMI
描述:

N 沟道,PowerTrench® MOSFET,100V,80A,9mΩ 推荐替代产品为 FDP090N10

文件: 总17页 (文件大小:864K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOSFET – Power, N-Channel,  
POWERTRENCHꢀ  
100 V, 80 A, 9 mW  
FDH3632, FDP3632,  
FDB3632  
www.onsemi.com  
Features  
R  
= 7.5 mW (Typ.), V = 10 V, I = 80 A  
GS D  
DS(ON)  
Q (tot) = 84 nC (Typ.), V = 10 V  
g
GS  
V
DSS  
R
MAX  
I MAX  
D
DS(ON)  
Low Miller Charge  
Low Q Body Diode  
100 V  
9 mW  
80 A  
rr  
UIS Capability (Single Pulse and Repetitive Pulse)  
These Devices are PbFree and are RoHS Compliant  
D
S
Applications  
G
Synchronous Rectification  
Battery Protection Circuit  
Motor Drives and Uninterruptible Power Supplies  
Micro Solar Inverter  
TO2473  
CASE 340CK  
G
D
S
TO2203  
CASE 340AT  
G
D
S
D2PAK3  
CASE 418AJ  
MARKING DIAGRAM  
$Y&Z&3&K  
FDX3632  
$Y  
= ON Semiconductor Logo  
&Z  
&3  
&K  
= Assembly Plant Code  
= Data Code (Year & Week)  
= Lot  
FDX3632  
= Specific Device Code  
X = H/P/B  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
May, 2020 Rev. 5  
FDP3632/D  
FDH3632, FDP3632, FDB3632  
MOSFET MAXIMUM RATINGS (T = 25°C, Unless otherwise noted)  
C
Symbol  
Parameter  
Value  
100  
20  
Unit  
V
V
DSS  
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
V
GS  
V
I
D
Continuous (T < 111°C, V = 10 V)  
80  
A
C
GS  
Continuous (T  
= 25°C, V = 10 V,  
12  
amb  
GS  
R
= 43°C/W)  
q
JA  
I
Drain Current  
Pulsed  
Figure 4  
337  
A
mJ  
W
D
E
AS  
Single Pulse Avalanche Energy (Note 1)  
Power Dissipation  
(T = 25°C)  
P
310  
D
C
Derate Above 25°C  
Operating and Storage Temperature Range  
2.07  
W/°C  
°C  
T , T  
55 to +175  
J
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Starting T = 25°C, L = 0.12mH, I = 75 A, V = 80 V.  
J
AS  
DD  
THERMAL CHARACTERISTICS  
Symbol  
Parameter  
Value  
0.48  
62  
Unit  
2
R
q
JC  
R
q
JA  
R
q
JA  
R
q
JA  
Thermal Resistance, Junction to Case, Max. TO220, D PAK, TO247  
Thermal Resistance, Junction to Ambient, Max. TO220 (Note 2)  
_C/W  
_C/W  
_C/W  
_C/W  
2
2
Thermal Resistance, Junction to Ambient, D PAK, Max. 1 in copper pad area  
43  
Thermal Resistance, Junction to Ambient, Max. TO247 (Note 2)  
30  
2. Pulse Width = 100 s  
PACKAGE MARKING AND ORDERING INFORMATION  
Device Marking  
FDB3632  
Device  
Package  
Reel Size  
330 mm  
Tube  
Tape Width  
Quantity  
2
FDB3632  
FDP3632  
FDH3632  
D PAK  
24 mm  
N/A  
800 Units  
50 Units  
30 Units  
FDP3632  
TO220  
TO247  
FDH3632  
Tube  
N/A  
www.onsemi.com  
2
 
FDH3632, FDP3632, FDB3632  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
OFF CHARACTERISTICS  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
I
= 250 mA, V = 0 V  
100  
V
VDSS  
D
GS  
I
V
V
V
= 80 V, V = 0 V  
1
mA  
DSS  
DS  
DS  
GS  
GS  
= 80 V, V = 0 V, T = 150_C  
250  
100  
GS  
C
I
Gate to Source Leakage Current  
=
20 V  
nA  
GSS  
ON CHARACTERISTICS  
V
GS(TH)  
R
DS(ON)  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
V
= V , I = 250 mA  
2.0  
4.0  
V
GS  
DS  
D
I
D
I
D
I
D
= 80 A, V = 10 V  
0.0075  
0.009  
0.018  
0.009  
0.015  
0.022  
W
GS  
= 40 V, V = 6 V  
GS  
= 80 A, V = 10 V, T = 175 °C  
GS  
C
DYNAMIC CHARACTERISTICS  
C
Input Capacitance  
V
= 25 V, V = 0 V, f = 1 MHz  
6000  
820  
200  
84  
pF  
pF  
pF  
nC  
iss  
DS  
GS  
C
Output Capacitance  
oss  
C
Reverse Transfer Capacitance  
Total Gate Charge at 10 V  
rss  
Q
V
GS  
V
DD  
= 0 V to 10 V,  
110  
14  
g(tot)  
= 50 V, I = 80 A, I = 1 mA  
D
g
Q
Threshold Gate Charge  
V
GS  
V
DD  
= 0 V to 2 V,  
11  
nC  
g(th)  
= 50 V, I = 80 A, I = 1 mA  
D
g
Q
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
V
DD  
= 50 V, I = 80 A, I = 1 mA  
30  
20  
20  
nC  
nC  
nC  
gs  
D
g
Q
gs2  
Q
gd  
RESISTIVE SWITCHING CHARACTERISTICS (V = 10 V)  
GS  
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
V
DD  
V
GS  
= 50 V, I = 80 A,  
102  
213  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
D
= 10 V, R = 3.6 W  
GS  
t
30  
39  
96  
46  
d(ON)  
t
r
t
Turn-Off Delay Time  
Fall Time  
d(OFF)  
t
f
t
Turn-Off Time  
OFF  
DRAINSOURCE DIODE CHARACTERISTICS  
V
Source to Drain Diode Voltage  
I
I
I
= 80 A  
= 40 A  
1.25  
1
V
V
SD  
SD  
SD  
SD  
t
Reverse Recovery Time  
= 75 A, dl /dt = 100 A/ms  
64  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
120  
RR  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
3
FDH3632, FDP3632, FDB3632  
TYPICAL CHARACTERISTICS  
T
C
= 25°C unless otherwise noted  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
125  
100  
75  
CURRENT LIMITED  
BY PACKAGE  
V
= 10V  
GS  
50  
25  
0
0
25  
50  
75  
100  
150  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
T
, CASE TEMPERATURE ( C)  
C
C
Figure 1. Normalized Power  
Dissipation vs. Ambient Temperature  
Figure 2. Maximum Continuous  
Drain Current vs Case Temperature  
2
DUTY CYCLE DESCENDING ORDER  
0.5  
1
0.2  
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
x R  
PEAK T = P  
x Z  
+ T  
JC C  
Q
Q
J
DM  
JC  
0.01  
5  
4  
3  
2  
1  
0
1
10  
10  
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
2000  
o
T
= 25 C  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
C
FOR TEMPERATURES  
o
1000  
ABOVE 25  
C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 T  
C
V
= 10V  
I = I  
GS  
25  
150  
100  
50  
5  
4  
3  
2  
1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
www.onsemi.com  
4
FDH3632, FDP3632, FDB3632  
TYPICAL CHARACTERISTICS (Continued)  
T
C
= 25°C unless otherwise noted  
NOTE: Refer to ON Semiconductor Application Notes  
AN7514 and AN7515  
400  
100  
200  
If R = 0  
= (L)(I )/(1.3*RATED BV  
10 ms  
t
AV  
V )  
DD  
AS  
DSS  
If R 0  
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
V ) +1]  
DD  
AV  
AS  
DSS  
100  
100 ms  
o
OPERATION IN THIS  
AREA MAY BE  
STARTING T = 25  
J
C
10  
1
LIMITED BY r  
DS(ON)  
1ms  
o
STARTING T = 150 C  
J
10ms  
DC  
SINGLE PULSE  
T
T
= MAX RATED  
J
o
= 25 C  
C
0.1  
10  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
0.01  
0.1  
1
10  
V
DS  
t
, TIME IN AVALANCHE (ms)  
AV  
Figure 5. Forward Bias Safe Operating Area  
Figure 6. Unclamped Inductive Switching  
Capability  
150  
150  
120  
90  
60  
30  
0
PULSE DURATION = 80 ms  
V
= 6V  
GS  
DUTY CYCLE = 0.5% MAX  
V
= 10V  
GS  
V
= 15V  
V
= 5.5V  
DD  
GS  
120  
90  
60  
30  
0
o
T
= 175 C  
J
V
= 5V  
GS  
o
T
= 25 C  
J
o
o
T
= 25 C  
T
= 55 C  
C
J
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
0
1
2
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
3
4
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
DS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
10  
9
2.5  
2.0  
1.5  
1.0  
0.5  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
V
= 6V  
GS  
8
V
= 10V  
GS  
7
V
= 10V, I =80A  
D
GS  
6
0
2 0  
40  
I , DRAIN CURRENT (A)  
62  
80  
80  
40  
0
40  
80  
120  
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
D
J
Figure 9. Drain to Source On Resistance  
vs Drain Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
www.onsemi.com  
5
FDH3632, FDP3632, FDB3632  
TYPICAL CHARACTERISTICS (Continued)  
T
C
= 25°C unless otherwise noted  
1.2  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
V
= V , I = 250 mA  
DS D  
I
= 250 mA  
GS  
D
1.1  
1.0  
0.9  
80  
40  
0
40  
80  
120  
o
160  
200  
80  
40  
0
40  
80  
120  
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage  
vs. Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
10  
8
10000  
V
= 50V  
DD  
C
C + C  
GS GD  
ISS  
C
^ C + C  
OSS  
DS  
GD  
6
1000  
C
C  
GD  
RSS  
4
WAVEFORMS IN  
DESCENDING ORDER:  
2
I
I
= 80A  
= 40A  
D
D
V
= 0V, f = 1MHz  
1
GS  
0
100  
0
20  
40  
60  
80  
100  
0.1  
10  
100  
Q , GATE CHARGE (nC)  
g
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
Figure 13. Capacitance vs. Drain  
to Source Voltage  
Figure 14. Gate Charge Waveforms  
for Constant Gate Currents  
www.onsemi.com  
6
FDH3632, FDP3632, FDB3632  
TEST CIRCUITS WAVEFORMS  
V
DS  
L
VARY tp TO OBTAIN  
REQUIRED PEAK I  
AS  
R
G
+
V
DD  
DUT  
V
GS  
tp  
0 V  
I
AS  
0.01 W  
Figure 15. Unclamped Energy  
Test Curcuit  
Figure 16. Unclamped Energy  
Waveforms  
V
DS  
L
V
GS  
+
V
DD  
DUT  
I
g(REF)  
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
R
L
+
V
GS  
V
DD  
DUT  
R
GS  
V
GS  
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
www.onsemi.com  
7
FDH3632, FDP3632, FDB3632  
Thermal Resistance vs. Mounting Pad Area  
ON Semiconductor provides thermal information to assist  
the designer’s preliminary application evaluation. Figure 21  
The maximum rated junction temperature, TJM, and the  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, PDM,  
in an application. Therefore the application’s ambient  
defines the R  
for the device as a function of the top copper  
qJA  
(component side) area. This is for a horizontally positioned  
FR4 board with 1 oz copper after 1000 seconds of steady  
state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the ON Semiconductor  
device Spice thermal model or manually utilizing  
the normalized maximum transient thermal impedance  
curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeter  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
temperature, TA (°C), and thermal resistance R  
(°C/W)  
qJA  
must be reviewed to ensure that T is never exceeded.  
JM  
Equation 1 mathematically represents the relationship  
and serves as the basis for establishing the rating of the part.  
(TJM * TA)  
(eq. 1)  
PDM  
+
RQJA  
In using surface mount devices such as the TO263  
package, the environment in which it is applied will have  
a significant influence on the parts current and maximum  
power dissipation ratings. Precise determination of PDM is  
complex and influenced by many factors:  
1. Mounting pad area onto which the device is  
attached and whether there is copper on one side  
or both sides of the board.  
19.84  
(0.262 ) Area)  
RQJA + 26.51 )  
(eq. 2)  
2. The number of copper layers and the thickness of  
the board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width,  
the duty cycle and the transient thermal response  
of the part, the board and the environment they  
are in.  
2
Area in in .  
128  
(1.69 ) Area)  
RQJA + 26.51 )  
(eq. 3)  
2
Area in cm .  
80  
R
= 26.51+ 19.84/(0.262+Area) EQ.2  
QJA  
R
= 26.51+ 128/(1.69+Area) EQ.3  
QJA  
60  
40  
20  
0.1  
(0.645)  
1
10  
(6.45)  
(64.5)  
2
2
AREA, TOP COPPER AREA in (cm  
)
Figure 21. Thermal Resistance vs. Mounting Pad Area  
www.onsemi.com  
8
 
FDH3632, FDP3632, FDB3632  
PSPICE Electrical Model  
.SUBCKT FDB3632 2 1 3 ; rev May 2002  
CA 12 8 1.7e9  
Cb 15 14 2.5e9  
Cin 6 8 6.0e9  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
Ebreak 11 7 17 18 102.5  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
It 8 17 1  
Lgate 1 9 5.61e9  
Ldrain 2 5 1.0e9  
Lsource 3 7 2.7e9  
RLgate 1 9 56.1  
RLdrain 2 5 10  
RLsource 3 7 27  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 3.8e3  
Rgate 9 20 1.1  
RSLC1 5 51 RSLCMOD 1.0e6  
RSLC2 5 50 1.0e3  
Rsource 8 7 RsourceMOD 2.5e3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e6*350),3))}  
.MODEL DbodyMOD D (IS=5.9E11 N=1.07 RS=2.3e3 TRS1=3.0e3 TRS2=1.0e6  
+ CJO=4e9 M=0.58 TT=4.8e8 XTI=4.2)  
.MODEL DbreakMOD D (RS=0.17 TRS1=3.0e3 TRS2=8.9e6)  
.MODEL DplcapMOD D (CJO=15e10 IS=1.0e30 N=10 M=0.6)  
.MODEL MstroMOD NMOS (VTO=4.1 KP=200 IS=1e30 N=10 TOX=1 L=1u W=1u)  
.MODEL MmedMOD NMOS (VTO=3.4 KP=10.0 IS=1e30 N=10 TOX=1 L=1u W=1u RG=1.1)  
.MODEL MweakMOD NMOS (VTO=2.75 KP=0.05 IS=1e30 N=10 TOX=1 L=1u W=1u RG=1.1e+1 RS=0.1)  
.MODEL RbreakMOD RES (TC1=1.0e3 TC2=1.7e6)  
.MODEL RdrainMOD RES (TC1=8.5e3 TC2=2.8e5)  
.MODEL RSLCMOD RES (TC1=2.0e3 TC2=2.0e6)  
www.onsemi.com  
9
FDH3632, FDP3632, FDB3632  
.MODEL RsourceMOD RES (TC1=4e3 TC2=1e6)  
.MODEL RvthresMOD RES (TC1=4.0e3 TC2=1.8e5)  
.MODEL RvtempMOD RES (TC1=4.4e3 TC2=2.2e6)  
.MODEL S1AMOD VSWITCH (RON=1e5 ROFF=0.1 VON=4 VOFF=2)  
.MODEL S1BMOD VSWITCH (RON=1e5 ROFF=0.1 VON=2 VOFF=4)  
.MODEL S2AMOD VSWITCH (RON=1e5 ROFF=0.1 VON=0.8 VOFF=0.4)  
.MODEL S2BMOD VSWITCH (RON=1e5 ROFF=0.1 VON=0.4 VOFF=0.8)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE SubCircuit for the Power MOSFET  
Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by  
William J. Hepp and C. Frank Wheatley.  
Figure 22. PSPICE Electrical Model  
www.onsemi.com  
10  
FDH3632, FDP3632, FDB3632  
SABER Electrical Model  
REV May 2002  
template FDB3632 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=5.9e11,nl=1.07,rs=2.3e3,trs1=3.0e3,trs2=1.0e6,cjo=4e9,m=0.58,tt=4.8e8,xti=4.2)  
dp..model dbreakmod = (rs=0.17,trs1=3.0e3,trs2=8.9e6)  
dp..model dplcapmod = (cjo=15e10,isl=10.0e30,nl=10,m=0.6)  
m..model mstrongmod = (type=_n,vto=4.1,kp=200,is=1e30, tox=1)  
m..model mmedmod = (type=_n,vto=3.4,kp=10.0,is=1e30, tox=1)  
m..model mweakmod = (type=_n,vto=2.75,kp=0.05,is=1e30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e5,roff=0.1,von=4,voff=2)  
sw_vcsp..model s2amod = (ron=1e5,roff=0.1,von=0.8,voff=0.4)  
sw_vcsp..model s2bmod = (ron=1e5,roff=0.1,von=0.4,voff=0.8)  
c.ca n12 n8 = 1.7e9  
c.cb n15 n14 = 2.5e9  
c.cin n6 n8 = 6.0e9  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
spe.ebreak n11 n7 n17 n18 = 102.5  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
i.it n8 n17 = 1  
l.lgate n1 n9 = 5.61e9  
l.ldrain n2 n5 = 1.0e9  
l.lsource n3 n7 = 2.7e9  
res.rlgate n1 n9 = 56.1  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 27  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1=1.0e3,tc2=1.7e6  
res.rdrain n50 n16 = 3.8e3, tc1=8.5e3,tc2=2.8e5  
res.rgate n9 n20 = 1.1  
res.rslc1 n5 n51 = 1.0e6, tc1=2.0e3,tc2=2.0e6  
res.rslc2 n5 n50 = 1.0e3  
res.rsource n8 n7 = 2.5e3, tc1=4e3,tc2=1e6  
res.rvthres n22 n8 = 1, tc1=4.0e3,tc2=1.8e5  
res.rvtemp n18 n19 = 1, tc1=4.4e3,tc2=2.2e6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51>n50) +=iscl  
www.onsemi.com  
11  
FDH3632, FDP3632, FDB3632  
iscl: v(n51,n50) = ((v(n5,n51)/(1e9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/350))** 3))  
}}  
Figure 23. SABER Electrical Model  
www.onsemi.com  
12  
FDH3632, FDP3632, FDB3632  
SPICE Thermal Model  
th  
JUNCTION  
REV May 2002  
FDB3632  
CTHERM1 TH 6 7.5e3  
CTHERM2 6 5 8.0e3  
CTHERM3 5 4 9.0e3  
CTHERM4 4 3 2.4e2  
CTHERM5 3 2 3.4e2  
CTHERM6 2 TL 6.5e2  
CTHERM1  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
6
5
RTHERM1 TH 6 3.1e4  
RTHERM2 6 5 2.5e3  
RTHERM3 5 4 2.2e2  
RTHERM4 4 3 8.1e2  
RTHERM5 3 2 1.35e1  
RTHERM6 2 TL 1.5e1  
CTHERM2  
CTHERM3  
CTHERM4  
SABER Thermal Model  
SABER thermal model FDB3632  
template thermal_model th tl  
thermal_c th, tl  
{
4
3
2
ctherm.ctherm1 th 6 =7.5e3  
ctherm.ctherm2 6 5 =8.0e3  
ctherm.ctherm3 5 4 =9.0e3  
ctherm.ctherm4 4 3 =2.4e2  
ctherm.ctherm5 3 2 =3.4e2  
ctherm.ctherm6 2 tl =6.5e2  
rtherm.rtherm1 th 6 =3.1e4  
rtherm.rtherm2 6 5 =2.5e3  
rtherm.rtherm3 5 4 =2.2e2  
rtherm.rtherm4 4 3 =8.1e2  
rtherm.rtherm5 3 2 =1.35e1  
rtherm.rtherm6 2 tl =1.5e1  
}
CTHERM5  
CTHERM6  
RTHERM5  
RTHERM6  
tl  
CASE  
Figure 24. Thermal Model  
POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other  
countries.  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2203LD  
CASE 340AT  
ISSUE A  
DATE 03 OCT 2017  
Scale 1:1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13818G  
TO2203LD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2473LD SHORT LEAD  
CASE 340CK  
ISSUE A  
DATE 31 JAN 2019  
P1  
D2  
A
E
P
A
A2  
Q
E2  
S
D1  
D
E1  
B
2
2
1
3
L1  
A1  
b4  
L
c
(3X) b  
(2X) b2  
M
M
B A  
0.25  
MILLIMETERS  
MIN NOM MAX  
4.58 4.70 4.82  
2.20 2.40 2.60  
1.40 1.50 1.60  
1.17 1.26 1.35  
1.53 1.65 1.77  
2.42 2.54 2.66  
0.51 0.61 0.71  
20.32 20.57 20.82  
(2X) e  
DIM  
A
A1  
A2  
b
b2  
b4  
c
GENERIC  
D
MARKING DIAGRAM*  
D1 13.08  
~
~
D2  
E
0.51 0.93 1.35  
15.37 15.62 15.87  
AYWWZZ  
XXXXXXX  
XXXXXXX  
E1 12.81  
~
~
E2  
e
L
4.96 5.08 5.20  
5.56  
15.75 16.00 16.25  
3.69 3.81 3.93  
3.51 3.58 3.65  
XXXX = Specific Device Code  
~
~
A
Y
= Assembly Location  
= Year  
WW = Work Week  
ZZ = Assembly Lot Code  
L1  
P
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
P1 6.60 6.80 7.00  
Q
S
5.34 5.46 5.58  
5.34 5.46 5.58  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13851G  
TO2473LD SHORT LEAD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
D2PAK3 (TO263, 3LEAD)  
CASE 418AJ  
ISSUE F  
DATE 11 MAR 2021  
SCALE 1:1  
XXXXXX = Specific Device Code  
A
= Assembly Location  
WL  
Y
= Wafer Lot  
= Year  
GENERIC MARKING DIAGRAMS*  
WW  
W
M
G
AKA  
= Work Week  
= Week Code (SSG)  
= Month Code (SSG)  
= PbFree Package  
= Polarity Indicator  
XX  
AYWW  
XXXXXXXXG  
AKA  
XXXXXXXXG  
AYWW  
XXXXXX  
XXYMW  
XXXXXXXXX  
AWLYWWG  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present. Some products  
may not follow the Generic Marking.  
IC  
Standard  
Rectifier  
SSG  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
98AON56370E  
D2PAK3 (TO263, 3LEAD)  
PAGE 1 OF 1  
DESCRIPTION:  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FDP3632_NL

Power Field-Effect Transistor, 12A I(D), 100V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, TO-220AB, 3 PIN
FAIRCHILD

FDP3651U

N-Channel PowerTrench MOSFET 100V, 80A, 15mOHM
FAIRCHILD

FDP3651U

N 沟道 PowerTrench® MOSFET 100V,80A,18mΩ
ONSEMI

FDP3652

N-Channel PowerTrench MOSFET 100V, 61A, 16mз
FAIRCHILD

FDP3652

N-Channel PowerTrench® MOSFET, 100V, 61A, 16mΩ
ONSEMI

FDP3652_NL

Power Field-Effect Transistor, 9A I(D), 100V, 0.016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD

FDP3672

N-Channel PowerTrench MOSFET 105V, 41A, 33mз
FAIRCHILD

FDP3672

N 沟道,PowerTrench® MOSFET,105V,41A,33mΩ
ONSEMI

FDP3672_NL

Power Field-Effect Transistor, 5.9A I(D), 105V, 0.033ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD

FDP3682

N-Channel PowerTrench MOSFET 100V, 32A, 36mз
FAIRCHILD

FDP3682

STEREO 200W CLASS-T DIGITAL AUDIO AMPLIFIER DRIVER USING DIGITAL POWER PROCESSING TECHNOLOGY
TRIPATH

FDP3682

N 沟道,PowerTrench® MOSFET,100V,32A,36mΩ
ONSEMI