MC100E136FNG [ONSEMI]

5V ECL 6-Bit Universal Up/Down Counter; 5V ECL 6位通用加/减计数器
MC100E136FNG
型号: MC100E136FNG
厂家: ONSEMI    ONSEMI
描述:

5V ECL 6-Bit Universal Up/Down Counter
5V ECL 6位通用加/减计数器

计数器 触发器 逻辑集成电路
文件: 总12页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC10E136, MC100E136  
5VꢀECL 6-Bit Universal  
Up/Down Counter  
Description  
The MC10E/100E136 is a 6-bit synchronous, presettable,  
cascadable universal counter. The device generates a look-ahead-carry  
output and accepts a look-ahead-carry input. These two features allow  
for the cascading of multiple E136’s for wider bit width counters that  
operate at very nearly the same frequency as the stand alone counter.  
The CLOUT output will pulse LOW for one clock cycle one count  
before the E136 reaches terminal count. The COUT output will pulse  
LOW for one clock cycle when the counter reaches terminal count.  
For more information on utilizing the look-ahead-carry features of the  
device please refer to the applications section of this data sheet. The  
differential COUT output facilitates the E136’s use in programmable  
divider and self-stopping counter applications.  
Unlike the H136 and other similar universal counter designs, the E136  
carryout and look-ahead-carryout signals are registered on chip.  
This design alleviates the glitch problem seen on many counters  
where the carry out signals are merely gated. Because of this  
architecture there are some minor functional differences between the  
E136 and H136 counters. The user, regardless of familiarity with the  
H136, should read this data sheet carefully. Note specifically (see  
logic diagram) the operation of the carry out outputs and the  
look-ahead-carry in input when utilizing the master reset.  
When left open all of the input pins will be pulled LOW via an input  
pulldown resistor. The master reset is an asynchronous signal which  
when asserted will force the Q outputs LOW.  
The Q outputs need not be terminated for the E136 to function  
properly, in fact if these outputs will not be used in a system it is  
recommended to save power and minimize noise that they be left  
open. This practice will minimize switching noise which can reduce  
the maximum count frequency of the device or significantly reduce  
margins against other noise in the system.  
http://onsemi.com  
PLCC28  
FN SUFFIX  
CASE 776  
MARKING DIAGRAM*  
1
MCxxxE136G  
AWLYYWW  
xxx  
A
WL  
YY  
WW  
G
= 10 or 100  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
*For additional marking information, refer to  
Application Note AND8002/D.  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
The 100 Series contains temperature compensation.  
Features  
550 MHz Count Frequency  
Meets or Exceeds JEDEC Standard EIA/JESD78  
IC Latchup Test  
Moisture Sensitivity Level: Pb = 1; PbFree = 3  
For Additional Information, see Application Note  
AND8003/D  
Flammability Rating: UL 94 V0 @ 0.125 in,  
Oxygen Index: 28 to 34  
Transistor Count = 506 devices  
Fully Synchronous Up and Down Counting  
Look-Ahead-Carry Input and Output  
Asynchronous Master Reset  
PECL Mode Operating Range: V = 4.2 V to 5.7 V  
CC  
with V = 0 V  
EE  
NECL Mode Operating Range: V = 0 V  
CC  
with V = 4.2 V to 5.7 V  
EE  
PbFree Packages are Available*  
Internal Input 50 kW Pulldown Resistors  
ESD Protection: Human Body Model: > 2 kV,  
Machine Model: > 200 V  
*For additional information on our PbFree strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
November, 2006 Rev. 9  
MC10E136/D  
MC10E136, MC100E136  
D3  
D4  
24  
D5  
23  
V
Q5  
21  
Q4  
20  
V
CCO  
CCO  
22  
19  
25  
26  
27  
18  
D2  
S2  
Q3  
17  
Q2  
S1  
16  
28  
1
V
V
CC  
V
15  
14  
EE  
CCO  
Pinout: 28-lead PLCC  
(Top View)  
CLK  
2
COUT  
COUT  
13  
12  
CIN  
3
4
CLIN  
CLOUT  
5
6
7
8
9
10  
11  
MR  
D1  
D0  
V
Q0  
Q1  
V
CCO  
CCO  
* All V and V  
pins are tied together on the die.  
CCO  
CC  
Warning: All V , V  
, and V pins must be externally con-  
CCO EE  
CC  
nected to Power Supply to guarantee proper operation.  
Figure 1. 28Lead Pinout  
Table 1. PIN DESCRIPTION  
PIN  
FUNCTION  
D
0
D  
ECL Preset Data Inputs  
5
Q
S1, S2  
MR  
Q  
ECL Data Outputs  
Mode Control Pins  
Master Reset  
0
5
CLK  
ECL Clock Input  
COUT,  
COUT  
ECL Differential Carry-Out Output (Active  
LOW)  
CLOUT  
CIN  
CLIN  
ECL Look-Ahead-Carry Out (Active LOW)  
ECL Carry-In Input (Active LOW)  
ECL Look-Ahead-Carry In Input (Active LOW)  
Positive Supply  
V
V
, V  
CC CCO  
EE  
Negative Supply  
Table 2. FUNCTION TABLE  
(Expanded Truth Table on page 3)  
S1  
S2  
CIN MR CLK  
FUNCTION  
L
L
L
H
H
L
X
L
H
L
H
X
X
L
L
L
L
L
L
H
Z
Z
Z
Z
Z
Z
X
Preset Parallel Data  
Increment (Count Up)  
Hold Count  
Decrement (Count Down)  
Hold Count  
Hold Count  
Reset (Qn = LOW)  
L
H
H
H
X
L
H
X
Figure 2. E136 Universal Up/Down Counter Logic  
Diagram  
http://onsemi.com  
2
MC10E136, MC100E136  
Table 3. EXPANDED TRUTH TABLE  
Function S1 S2 MR CIN CLIN CLK D5 D4 D3 D2 D1 D0 Q5 Q4 Q3 Q2 Q1 Q0 COUT CLOUT  
Preset  
Down  
L
L
L
X
X
Z
L
L
L
L
H
H
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
H
L
L
L
H
L
L
L
H
L
L
L
H
H
L
L
H
L
H
L
H
H
L
H
L
H
H
H
H
Preset  
Up  
L
L
L
X
X
Z
H
H
H
H
L
L
H
H
H
H
L
L
H
H
L
L
L
L
L
L
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
Z
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
L
L
L
L
H
H
L
L
H
H
L
H
L
H
L
H
H
L
H
H
H
H
L
H
H
H
H
Hold  
H
H
H
H
L
L
X
X
X
X
Z
Z
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
H
H
L
L
H
H
H
H
Down  
Hold  
Down  
Hold  
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
H
H
L
Z
Z
Z
Z
Z
Z
Z
Z
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
L
L
L
L
L
L
H
H
L
L
H
H
H
H
H
H
H
H
H
H
L
H
H
H
L
Hold  
L
L
Hold  
Preset  
Up  
H
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
L
L
L
L
L
H
L
Z
Z
Z
Z
Z
Z
Z
Z
Z
X
H
X
X
X
X
X
X
X
X
H
X
X
X
X
X
X
X
X
H
X
X
X
X
X
X
X
X
H
X
X
X
X
X
X
X
X
L
X
L
L
L
L
L
L
L
L
L
H
L
L
H
H
H
H
L
H
H
H
H
L
H
H
L
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
H
H
H
H
H
H
Hold  
Up  
Hold  
H
L
H
H
L
Hold  
Up  
L
L
L
L
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
L
H
L
H
H
H
H
H
H
H
H
H
Reset  
X
X
H
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
H
H
Z = Low to High Transition  
http://onsemi.com  
3
MC10E136, MC100E136  
Table 4. MAXIMUM RATINGS  
Symbol  
Parameter  
Condition 1  
= 0 V  
Condition 2  
Rating  
Unit  
V
V
V
V
PECL Mode Power Supply  
NECL Mode Power Supply  
V
V
8
CC  
EE  
I
EE  
CC  
= 0 V  
8  
V
PECL Mode Input Voltage  
NECL Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V v V  
6
6  
V
V
EE  
CC  
I
CC  
V w V  
I
EE  
I
Output Current  
Continuous  
Surge  
50  
100  
mA  
mA  
out  
T
Operating Temperature Range  
0 to +85  
°C  
°C  
A
T
Storage Temperature Range  
65 to +150  
stg  
JA  
q
Thermal Resistance (JunctiontoAmbient)  
0 lfpm  
500 lfpm  
PLCC28  
PLCC28  
63.5  
43.5  
°C/W  
°C/W  
q
Thermal Resistance (JunctiontoCase)  
Standard Board  
PLCC28  
22 to 26  
°C/W  
JC  
V
PECL Operating Range  
NECL Operating Range  
4.2 to 5.7  
5.7 to 4.2  
V
V
EE  
T
sol  
Wave Solder  
Pb  
PbFree  
265  
265  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
Table 5. 10E SERIES PECL DC CHARACTERISTICS V  
= 5.0 V; V = 0.0 V (Note 1)  
EE  
CCx  
0°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Min  
Max  
150  
Min  
Max  
150  
Min  
Max  
150  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
mV  
mV  
mA  
I
125  
125  
125  
EE  
V
Output HIGH Voltage (Note 2)  
Output LOW Voltage (Note 2)  
Input HIGH Voltage  
3980  
3050  
3830  
3050  
4070  
3210  
3995  
3285  
4160  
3370  
4160  
3520  
150  
4020  
3050  
3870  
3050  
4105  
3210  
4030  
3285  
4190  
3370  
4190  
3520  
150  
4090  
3050  
3940  
3050  
4185  
3227  
4110  
3302  
4280  
3405  
4280  
3555  
150  
OH  
OL  
IH  
V
V
V
Input LOW Voltage  
IL  
I
I
Input HIGH Current  
IH  
IL  
Input LOW Current  
0.5  
0.3  
0.5  
0.25  
0.3  
0.2  
mA  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
1. Input and output parameters vary 1:1 with V . V can vary 0.46 V / +0.06 V.  
CC  
EE  
2. Outputs are terminated through a 50 W resistor to V 2.0 V.  
CC  
http://onsemi.com  
4
 
MC10E136, MC100E136  
Table 6. 10E SERIES NECL DC CHARACTERISTICS V  
0°C  
= 0.0 V; V = 5.0 V (Note 3)  
EE  
CCx  
25°C  
Typ  
85°C  
Typ  
Min  
Typ  
125  
Max  
Min  
Max  
150  
Min  
Max  
150  
Symbol  
Characteristic  
Power Supply Current  
Output HIGH Voltage (Note 4)  
Output LOW Voltage (Note 4)  
Input HIGH Voltage  
Unit  
mA  
mV  
mV  
mV  
mV  
mA  
I
150  
125  
125  
EE  
V
1020  
930  
840  
980  
895  
810  
910  
815  
720  
OH  
OL  
IH  
V
V
V
1950 1790 1630 1950 1790 1630 1950 1773 1595  
1170 1005 840 1130 970 810 1060 890 720  
1950 1715 1480 1950 1715 1480 1950 1698 1445  
150 150 150  
Input LOW Voltage  
IL  
I
I
Input HIGH Current  
IH  
IL  
Input LOW Current  
0.5  
0.3  
0.5  
0.065  
0.3  
0.2  
mA  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
3. Input and output parameters vary 1:1 with V . V can vary 0.46 V / +0.06 V.  
CC  
EE  
4. Outputs are terminated through a 50 W resistor to V 2.0 V.  
CC  
Table 7. 100E SERIES PECL DC CHARACTERISTICS V  
= 5.0 V; V = 0.0 V (Note 5)  
CCx  
EE  
0°C  
Typ  
25°C  
85°C  
Typ  
Min  
Max  
150  
Min  
Typ  
125  
Max  
150  
Min  
Max  
170  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
mV  
mV  
mA  
I
125  
140  
EE  
V
Output HIGH Voltage (Note 6)  
Output LOW Voltage (Note 6)  
Input HIGH Voltage  
3975  
3190  
3835  
3190  
4050  
3295  
3975  
3355  
4120  
3380  
4120  
3525  
150  
3975  
3190  
3835  
3190  
4050  
3255  
3975  
3355  
4120  
3380  
4120  
3525  
150  
3975  
3190  
3835  
3190  
4050  
3260  
3975  
3355  
4120  
3380  
4120  
3525  
150  
OH  
OL  
IH  
V
V
V
Input LOW Voltage  
IL  
I
I
Input HIGH Current  
IH  
IL  
Input LOW Current  
0.5  
0.3  
0.5  
0.25  
0.5  
0.2  
mA  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
5. Input and output parameters vary 1:1 with V . V can vary 0.46 V / +0.8 V.  
CC  
EE  
6. Outputs are terminated through a 50 W resistor to V 2.0 V.  
CC  
Table 8. 100E SERIES NECL DC CHARACTERISTICS V  
= 0.0 V; V = 5.0 V (Note 7)  
CCx  
EE  
0°C  
Typ  
125  
25°C  
85°C  
Typ  
140  
Symbol  
Characteristic  
Power Supply Current  
Min  
Max  
Min  
Typ  
Max  
Min  
Max  
170  
Unit  
mA  
mV  
mV  
mV  
mV  
mA  
I
150  
125  
150  
EEf  
V
Output HIGH Voltage (Note 8)  
Output LOW Voltage (Note 8)  
Input HIGH Voltage  
1025 950  
880 1025 950  
880 1025 950  
880  
OH  
OL  
IH  
V
V
V
1810 1705 1620 1810 1745 1620 1810 1740 1620  
1165 1025 880 1165 1025 880 1165 1025 880  
1810 1645 1475 1810 1645 1475 1810 1645 1475  
Input LOW Voltage  
IL  
I
I
Input HIGH Current  
150  
150  
150  
IH  
IL  
Input LOW Current  
0.5  
0.3  
0.5  
0.25  
0.5  
0.2  
mA  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
7. Input and output parameters vary 1:1 with V . V can vary 0.46 V / +0.8 V.  
CC  
EE  
8. Outputs are terminated through a 50 W resistor to V 2.0 V.  
CC  
http://onsemi.com  
5
 
MC10E136, MC100E136  
Table 9. AC CHARACTERISTICS V  
= 5.0 V; V = 0.0 V or V  
= 0.0 V; V = 5.0 V (Note 9)  
CCx EE  
CCx  
EE  
0°C  
25°C  
Typ  
650  
85°C  
Typ  
650  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Unit  
MHz  
ps  
f
Maximum Count Frequency  
550  
650  
550  
550  
COUNT  
t
t
Propagation Delay to Output  
PLH  
PHL  
CLK to Q  
MR to Q  
850  
850  
800  
825  
1150  
1150  
1150  
1150  
1450  
1450  
1300  
1400  
850  
850  
800  
825  
1150  
1150  
1150  
1150  
1450  
1450  
1300  
1400  
850  
850  
800  
825  
1150  
1150  
1150  
1150  
1450  
1450  
1300  
1400  
CLK to COUT  
CLK to CLOUT  
t
t
Setup Time  
Hold Time  
ps  
ps  
s
S1, S2 1000  
650  
400  
0
1000  
800  
150  
800  
650  
400  
0
1000  
800  
150  
800  
650  
400  
0
D
CLIN  
CIN  
800  
150  
800  
400  
400  
400  
h
S1, S2  
D
CLIN  
CIN  
150  
150  
300  
150  
200  
250  
0
150  
150  
300  
150  
200  
250  
0
150  
150  
300  
150  
200  
250  
0
250  
250  
250  
t
t
t
Reset Recovery Time  
Random Clock Jitter  
Minimum Pulse Width  
1000  
700  
< 1  
1000  
700  
< 1  
1000  
700  
< 1  
ps  
ps  
ps  
RR  
JITTER  
PW  
CLK, MR  
700  
250  
400  
425  
700  
250  
400  
425  
700  
250  
400  
425  
t
t
Rise/Fall Times 20% - 80%  
600  
600  
600  
ps  
r
f
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
9. 10 Series: V can vary 0.46 V / +0.06 V.  
EE  
100 Series: V can vary 0.46 V / +0.8 V.  
EE  
http://onsemi.com  
6
 
MC10E136, MC100E136  
APPLICATIONS INFORMATION  
Overview  
result of the terminal count signal of the lower order counters  
having to ripple through the entire counter chain. As a result  
past counters of this type were not widely used in large bit  
counter applications.  
The MC10E/100E136 is a 6-bit synchronous, presettable,  
cascadable universal counter. Using the S1 and S2 control  
pins the user can select between preset, count up, count  
down and hold count. The master reset pin will reset the  
internal counter, and set the COUT, CLOUT, and CLIN  
flip-flops. Unlike previous 136 type counters the carry out  
outputs will go to a high state during the preset operation. In  
addition since the carry out outputs are registered they will  
not go low if terminal count is loaded into the register. The  
look-ahead-carry out output functions similarly.  
Note from the schematic the use of the master information  
from the least significant bits for control of the two carry out  
functions. This architecture not only reduces the carry out  
delay, but is essential to incorporate the registered carry out  
functions. In addition to being faster, because these  
functions are registered the resulting carry out signals are  
stable and glitch free.  
An alternative counter architecture similar to the E016  
binary counter was implemented to alleviate the need to  
ripple propagate the terminal count signal. Unfortunately  
these types of counters require external gating for cascading  
designs of more than two devices. In addition to requiring  
additional components, these external gates limit the  
cascaded count frequency to a value less than the free  
running count frequency of a single counter. Although there  
is a performance impact with this type of architecture it is  
minor compared to the impact of the ripple propagate  
designs. As a result the E016 type counters have been used  
extensively in applications requiring very high speed, wide  
bit width synchronous counters.  
ON Semiconductor has incorporated several improvements  
to past universal counter designs in the E136 universal counter.  
These enhancements make the E136 the unparalleled leader in  
its class. With the addition of look-ahead-carry features on the  
terminal count signal, very large counter chains can be  
designed which function at very nearly the same clock  
frequency as a single free running device. More importantly  
these counter chains require no external gating. Figure 1 below  
illustrates the interconnect scheme for using the  
look-ahead-carry features of the E136 counter.  
Cascading Multiple E136 Devices  
Many applications require counters significantly larger  
than the 6 bits available with the E136. For these  
applications several E136 devices can be cascaded to  
increase the bit width of the counter to meet the needs of the  
application.  
In the past cascading several 136 type universal counters  
necessarily impacted the maximum count frequency of the  
resulting counter chain. This performance impact was the  
Q0 > Q5  
Q0 > Q5  
Q0 > Q5  
Q0 > Q5  
CLOCK  
CLK  
CLK  
CLK  
CLK  
LSB  
MSB  
“LO”  
“LO”  
COUT “LO”  
CLOUT  
COUT  
CLOUT  
COUT  
CLOUT  
COUT  
CLOUT  
CIN  
CIN  
CLIN  
CIN  
CLIN  
CIN  
CLIN  
CLIN  
D0 > D5  
D0 > D5  
D0 > D5  
D0 > D5  
111101  
111110  
111111  
000000  
000001  
CLK  
CLOUT  
COUT  
Figure 3. 24-bit Cascaded E136 Counter  
http://onsemi.com  
7
MC10E136, MC100E136  
presented by the CLOUT of the LSC. The CIN’s in the  
CIN  
ACTIVE  
LOW  
higher order counter will ripple propagate through the chain  
to update the count status for the next occurrence of terminal  
count on the LSC. This ripple propagation will not affect the  
CLIN  
CLK  
D
Q
6
count frequency as it has 2 1 or 63 clock pulses to ripple  
through without affecting the count operation of the chain.  
The only limiting factor which could reduce the count  
frequency of the chain as compared to a free running single  
device will be the setup time of the CLIN input. This limit  
will consist of the CLK to CLOUT delay of the E136 plus  
the CLIN setup time plus any path length differences  
between the CLOUT output and the clock.  
Figure 4. Look-Ahead-Carry Input Structure  
Note from the waveforms that the look-ahead-carry  
output (CLOUT) pulses low one clock pulse before the  
counter reaches terminal count. Also note that both CLOUT  
and the carry out pin (COUT) of the device pulse low for  
only one clock period. The input structure for  
look-ahead-carry in (CLIN) and carry in (CIN) is pictured  
in Figure 2.  
The CLIN input is registered and then ORed with the CIN  
input. From the truth table one can see that both the CIN and  
the CLIN inputs must be in a LOW state for the E136 to be  
enabled to count (either count up or count down). The CLIN  
inputs are driven by the CLOUT output of the lowest order  
E136 and therefore are only asserted for a single clock  
period. Since the CLIN input is registered it must be asserted  
one clock period prior to the CIN input.  
If the counter previous to a given counter is at terminal  
count its COUT output and thus the CIN input of the given  
counter will be in the “LOW” state. This signals the given  
counter that it will need to count one upon the next terminal  
count of the least significant counter (LSC). The CLOUT  
output of the LSC will pulse low one clock period before it  
reaches terminal count. This CLOUT signal will be clocked  
into the CLIN input of the higher order counters on the  
following positive clock transition. Since both CIN and  
CLIN are in the LOW state the next clock pulse will cause  
the least significant counter to roll over and all higher order  
counters, if signaled by their CIN inputs, to count by one.  
Programmable Divider  
Using external feedback of the COUT pin, the E136 can  
be configured as a programmable divider. Figure 3  
illustrates the configuration for a 6-bit count down  
programmable divider. If for some reason a count up divider  
is preferred the COUT signal is simply fed back to S2 rather  
than S1. Examination of the truth table for the E136 shows  
that when both S1 and S2 are LOW the counter will parallel  
load on the next positive transition of the clock. If the S2  
input is low and the S1 input is high the counter will be in the  
count down mode and will count towards an all zero state  
upon successive clock pulses. Knowing this and the  
operation of the COUT output it becomes a trivial matter to  
build programmable dividers.  
For a programmable divider one wants to load a  
predesignated number into the counter and count to terminal  
count. Upon terminal count the counter should  
automatically reload the divide number. With the  
architecture shown in Figure 3 when the counter reaches  
terminal count the COUT output and thus the S1 input will  
go LOW, this combined with the low on S2 will cause the  
counter to load the inputs present on D0-D5. Upon loading  
the divide value into the counter COUT will go HIGH as the  
counter is no longer at terminal count thereby placing the  
counter back into the count mode.  
Q0 > Q5  
Table 10. Preset Inputs Versus Divide Ratio  
Divide  
Ratio  
Preset Data Inputs  
“LO”  
S2  
S1  
D5  
D4  
D3  
D2  
D1  
D0  
CLK  
CLOCK  
2
3
4
5
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
H
L
H
L
H
L
COUT  
COUT  
H
H
H
L
L
L
L
L
L
L
H
H
H
L
L
H
L
H
36  
37  
38  
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
L
H
D0 > D5  
62  
63  
64  
Figure 5. 6-bit Programmable Divider  
During the clock pulse in which the higher order counter  
is counting by one the CLIN is clocking in the high signal  
http://onsemi.com  
8
MC10E136, MC100E136  
LOAD  
100100  
100011  
100010  
000011  
000010  
000001  
000000  
LOAD  
• • •  
• • •  
CLOCK  
S1  
• • •  
COUT  
DIVIDE BY 37  
Figure 6. Programmable Divider Waveforms  
The exercise of building a programmable divider then  
becomes simply determining what value to load into the  
counter to accomplish the desired division. Since the load  
operation requires a clock pulse, to divide by N, N1 must  
be loaded into the counter. A single E136 device is capable  
of divide ratios of 2 to 64 inclusive, Table 1 outlines the load  
values for the various divide ratios. Figure 4 presents the  
waveforms resulting from a divide by 37 operation. Note  
that the availability of the COUT complementary output  
COUT allows the user to choose the polarity of the divide by  
output.  
For single device programmable counters the E016  
counter is probably a better choice than the E136. The E016  
has an internal feedback to control the reloading of the  
counter, this not only simplifies board design but also will  
result in a faster maximum count frequency.  
For programmable dividers of larger than 8 bits the  
superiority of the E016 diminishes, and in fact for very wide  
dividers the E136 will provide the capability of a faster count  
frequency. This potential is a result of the cascading features  
mentioned previously in this document. Figure 5 shows the  
architecture of a 24-bit programmable divider implemented  
using E136 counters. Note the need for one external gate to  
control the loading of the entire counter chain. An ideal  
device for the external gating of this architecture would be  
the 4-input OR function in the 8-lead SOIC ECLinPS Lite  
family. However the final decision as to what device to use  
for the external gating requires a balancing of performance  
needs, cost and available board space. Note that because of  
the need for external gating the maximum count frequency  
of a given sized programmable divider will be less than that  
of a single cascaded counter.  
Q0 > Q5  
Q0 > Q5  
Q0 > Q5  
Q0 > Q5  
CLK  
CLK  
CLK  
CLK  
S1  
S1  
S1  
S1  
CLOCK  
LSB  
MSB  
“LO”  
“LO”  
“LO”  
CIN  
COUT  
CIN  
CLIN  
COUT  
CIN  
CLIN  
COUT  
CIN  
COUT  
CLIN  
CLOUT  
CLOUT  
CLOUT  
CLIN  
CLOUT  
D0 > D5  
D0 > D5  
D0 > D5  
D0 > D5  
OUT  
Figure 7. 24-bit Programmable Divider Architecture  
http://onsemi.com  
9
MC10E136, MC100E136  
Z = 50 W  
Q
Q
D
D
o
Receiver  
Device  
Driver  
Device  
Z = 50 W  
o
50 W  
50 W  
V
TT  
V
= V 2.0 V  
TT  
CC  
Figure 8. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D Termination of ECL Logic Devices.)  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC10E136FN  
PLCC28  
37 Units / Rail  
37 Units / Rail  
MC10E136FNG  
PLCC28  
(PbFree)  
MC10E136FNR2  
PLCC28  
500 / Tape & Reel  
500 / Tape & Reel  
MC10E136FNR2G  
PLCC28  
(PbFree)  
MC100E136FN  
PLCC28  
37 Units / Rail  
37 Units / Rail  
MC100E136FNG  
PLCC28  
(PbFree)  
MC100E136FNR2  
MC100E136FNR2G  
PLCC28  
500 / Tape & Reel  
500 / Tape & Reel  
PLCC28  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1672/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
10  
MC10E136, MC100E136  
PACKAGE DIMENSIONS  
PLCC28  
FN SUFFIX  
PLASTIC PLCC PACKAGE  
CASE 77602  
ISSUE E  
M
S
S
0.007 (0.180)  
T
L−M  
N
B
Y BRK  
D
N−  
M
S
S
N
0.007 (0.180)  
T
L−M  
U
Z
M−  
L−  
W
D
S
S
S
N
0.010 (0.250)  
T
L−M  
X
G1  
V
28  
1
VIEW DD  
M
S
S
S
A
0.007 (0.180)  
0.007 (0.180)  
T
L−M  
L−M  
N
M
S
S
N
0.007 (0.180)  
T
L−M  
H
Z
M
S
T
N
R
K1  
C
E
0.004 (0.100)  
G
K
SEATING  
PLANE  
T−  
J
M
S
S
N
0.007 (0.180)  
T
L−M  
F
VIEW S  
G1  
S
S
S
N
0.010 (0.250)  
T
L−M  
VIEW S  
NOTES:  
INCHES  
MILLIMETERS  
1. DATUMS −L−, −M−, AND −N− DETERMINED  
WHERE TOP OF LEAD SHOULDER EXITS  
PLASTIC BODY AT MOLD PARTING LINE.  
2. DIMENSION G1, TRUE POSITION TO BE  
MEASURED AT DATUM −T−, SEATING PLANE.  
3. DIMENSIONS R AND U DO NOT INCLUDE  
MOLD FLASH. ALLOWABLE MOLD FLASH IS  
0.010 (0.250) PER SIDE.  
4. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
5. CONTROLLING DIMENSION: INCH.  
6. THE PACKAGE TOP MAY BE SMALLER THAN  
THE PACKAGE BOTTOM BY UP TO 0.012  
(0.300). DIMENSIONS R AND U ARE  
DETERMINED AT THE OUTERMOST  
EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, TIE BAR  
BURRS, GATE BURRS AND INTERLEAD  
FLASH, BUT INCLUDING ANY MISMATCH  
BETWEEN THE TOP AND BOTTOM OF THE  
PLASTIC BODY.  
DIM MIN  
MAX  
0.495  
0.495  
0.180  
0.110  
0.019  
MIN  
12.32  
12.32  
4.20  
MAX  
12.57  
12.57  
4.57  
A
B
C
E
F
0.485  
0.485  
0.165  
0.090  
0.013  
2.29  
0.33  
2.79  
0.48  
G
H
J
0.050 BSC  
1.27 BSC  
0.026  
0.020  
0.025  
0.450  
0.450  
0.042  
0.042  
0.042  
0.032  
−−−  
−−−  
0.66  
0.51  
0.64  
11.43  
11.43  
1.07  
1.07  
1.07  
−−−  
0.81  
−−−  
K
R
U
V
W
X
Y
Z
−−−  
0.456  
0.456  
0.048  
0.048  
0.056  
11.58  
11.58  
1.21  
1.21  
1.42  
0.50  
10  
−−− 0.020  
10  
2
2
_
_
_
_
G1 0.410  
K1 0.040  
0.430  
−−−  
10.42  
1.02  
10.92  
−−−  
7. DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE GREATER THAN 0.037  
(0.940). THE DAMBAR INTRUSION(S) SHALL  
NOT CAUSE THE H DIMENSION TO BE  
SMALLER THAN 0.025 (0.635).  
http://onsemi.com  
11  
MC10E136, MC100E136  
ECLinPS and ECLinPS Lite are trademarks of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC10E136/D  

相关型号:

MC100E136FNR2

5V ECL 6-Bit Universal Up/Down Counter
ONSEMI

MC100E136FNR2G

5V ECL 6-Bit Universal Up/Down Counter
ONSEMI

MC100E137

8-BIT RIPPLE COUNTER
ONSEMI

MC100E137FN

8-BIT RIPPLE COUNTER
MOTOROLA

MC100E137FN

5 V ECL 8-Bit Ripple Counter
ONSEMI

MC100E137FNG

5 V ECL 8-Bit Ripple Counter
ONSEMI

MC100E137FNR2

5 V ECL 8-Bit Ripple Counter
ONSEMI

MC100E137FNR2G

5 V ECL 8-Bit Ripple Counter
ONSEMI

MC100E141

8-BIT SHIFT REGISTER
ONSEMI

MC100E141FN

8-BIT SHIFT REGISTER
MOTOROLA

MC100E141FN

5V ECL 8-Bit Shift Register
ONSEMI

MC100E141FNG

5V ECL 8-Bit Shift Register
ONSEMI