MJD18002D2 [ONSEMI]

POWER TRANSISTOR 2 AMPERES 1000 VOLTS, 50 WATTS Bipolar NPN Transistor; 功率晶体管2安培1000伏, 50瓦双极NPN晶体管
MJD18002D2
型号: MJD18002D2
厂家: ONSEMI    ONSEMI
描述:

POWER TRANSISTOR 2 AMPERES 1000 VOLTS, 50 WATTS Bipolar NPN Transistor
功率晶体管2安培1000伏, 50瓦双极NPN晶体管

晶体 晶体管
文件: 总11页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MJD18002D2  
Bipolar NPN Transistor  
High Speed, High Gain Bipolar NPN  
Power Transistor with Integrated  
Collector−Emitter Diode and Built−In  
Efficient Antisaturation Network  
The MJD18002D2 is a state−of−the−art high speed, high gain  
bipolar transistor (H2BIP). Tight dynamic characteristics and lot to lot  
minimum spread ( 150 ns on storage time) make it ideally suitable for  
light ballast applications. Therefore, there is no longer a need to  
http://onsemi.com  
POWER TRANSISTOR  
2 AMPERES  
1000 VOLTS, 50 WATTS  
guarantee an h window.  
FE  
Features  
Low Base Drive Requirement  
High Peak DC Current Gain (55 Typical) @ I = 100 mA  
C
Extremely Low Storage Time Min/Max Guarantees Due to the  
H2BIP Structure which Minimizes the Spread  
Integrated Collector−Emitter Free Wheeling Diode  
Fully Characterized and Guaranteed Dynamic V  
CEsat  
Characteristics Make It Suitable for PFC Application  
Epoxy Meets UL 94 V−0 @ 0.125 in  
4
ESD Ratings: Human Body Model, 3B u 8000 V  
Machine Model, C u 400 V  
2
1
3
Six Sigma® Process Providing Tight and Reproductible Parameter  
Spreads  
DPAK  
CASE 369C  
STYLE 1  
Pb−Free Package is Available  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
450  
Unit  
Vdc  
Vdc  
Vdc  
Vdc  
Adc  
Collector−Emitter Sustaining Voltage  
Collector−Base Breakdown Voltage  
Collector−Emitter Breakdown Voltage  
Emitter−Base Voltage  
V
V
CEO  
CBO  
MARKING DIAGRAM  
1000  
1000  
11  
V
V
CES  
EBO  
YWW  
180  
Collector Current − Continuous  
Collector Current − Peak (Note 1)  
I
2.0  
5.0  
C
I
CM  
02D2G  
Base Current  
Base Current  
− Continuous  
I
1.0  
2.0  
Adc  
B
I
BM  
− Peak (Note 1)  
THERMAL CHARACTERISTICS  
Characteristic  
Y
WW  
= Year  
= Work Week  
Symbol  
Value  
Unit  
18002D2 = Device Code  
Total Device Dissipation @ T = 25°C  
P
50  
0.4  
W
W/°C  
C
D
G
= Pb−Free Package  
Derate above 25°C  
Operating and Storage Temperature Range T , T  
−65 to +150  
5.0  
°C  
°C/W  
°C/W  
°C  
J
stg  
ORDERING INFORMATION  
Thermal Resistance, Junction−to−Case  
Thermal Resistance, Junction−to−Ambient  
R
q
JC  
JA  
L
Device  
Package  
Shipping  
R
71.4  
q
MJD18002D2T4  
DPAK  
3000/Tape & Reel  
3000/Tape & Reel  
Maximum Lead Temperature for Soldering  
T
260  
Purposes: 1/8from Case for 5 seconds  
MJD18002D2T4G  
DPAK  
Maximum ratings are those values beyond which device damage can occur.  
Maximum ratings applied to the device are individual stress limit values (not  
normal operating conditions) and are not valid simultaneously. If these limits are  
exceeded, device functional operation is not implied, damage may occur and  
reliability may be affected.  
(Pb−Free)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle = 10%.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
January, 2006 − Rev. 2  
MJD18002D2/D  
 
MJD18002D2  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector−Emitter Sustaining Voltage (I = 100 mA, L = 25 mH)  
V
450  
1000  
11  
570  
1100  
14  
Vdc  
Vdc  
C
CEO(sus)  
Collector−Base Breakdown Voltage (I  
= 1 mA)  
V
V
CBO  
CBO  
EBO  
CEO  
Emitter−Base Breakdown Voltage (I  
= 1 mA)  
Vdc  
EBO  
Collector Cutoff Current (V = Rated V  
, I = 0)  
I
100  
mAdc  
mAdc  
CE  
CEO  
B
Collector Cutoff Current (V = Rated V  
, V = 0)  
@ T = 25°C  
I
100  
500  
100  
CE  
CES  
EB  
C
CES  
@ T = 125°C  
C
(V = 500 V, V = 0)  
@ T = 125°C  
CE  
EB  
C
Emitter−Cutoff Current (V = 10 Vdc, I = 0)  
I
500  
mAdc  
EB  
C
EBO  
ON CHARACTERISTICS  
Base−Emitter Saturation Voltage  
V
V
Vdc  
BE(sat)  
(I = 0.4 Adc, I = 40 mAdc)  
@ T = 25°C  
0.78  
0.87  
1.0  
1.1  
C
B
C
(I = 1.0 Adc, I = 0.2 Adc)  
@ T = 25°C  
C
B
C
Collector−Emitter Saturation Voltage  
(I = 0.4 Adc, I = 40 mAdc)  
@ T = 25°C  
0.36  
0.50  
0.6  
1.0  
Vdc  
C
CE(sat)  
@ T = 125°C  
C
B
C
(I = 1.0 Adc, I = 0.2 Adc)  
@ T = 25°C  
0.40  
0.65  
0.75  
1.2  
C
B
C
@ T = 125°C  
C
DC Current Gain  
@ T = 25°C  
h
FE  
14  
8.0  
25  
15  
C
(I = 0.4 Adc, V = 1.0 Vdc)  
C
@ T = 125°C  
CE  
C
(I = 1.0 Adc, V = 1.0 Vdc)  
@ T = 25°C  
6.0  
4.0  
10  
6.0  
C
CE  
C
@ T = 125°C  
C
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth (I = 0.5 Adc, V = 10 Vdc, f = 1 MHz)  
f
t
13  
50  
MHz  
pF  
C
CE  
Output Capacitance (V = 10 Vdc, I = 0, f = 1 MHz)  
C
ob  
100  
500  
CB  
E
Input Capacitance (V = 8 Vdc)  
C
ib  
340  
pF  
EB  
DIODE CHARACTERISTICS  
Forward Diode Voltage  
V
Vdc  
ns  
EC  
(I = 1.0 Adc)  
EC  
@ T = 25°C  
1.2  
1.0  
0.6  
1.5  
1.3  
C
(I = 0.4 Adc)  
EC  
@ T = 25°C  
C
@ T = 125°C  
C
Forward Recovery Time  
t
fr  
(I = 0.4 Adc, di/dt = 10 A/ms)  
@ T = 25°C  
517  
480  
F
C
(I = 1.0 Adc, di/dt = 10 A/ms)  
F
@ T = 25°C  
C
DYNAMIC SATURATION VOLTAGE  
V
7.4  
2.5  
V
@ 1 ms @ T = 25°C  
I
= 0.4 Adc  
C
CE(dsat)  
C
I
= 40 mA  
B1  
Dynamic Saturation Voltage  
Determinated 1 ms and 3 ms  
@ 3 ms @ T = 25°C  
C
V
= 300 Vdc  
CC  
respectively after rising I reaches  
B1  
@ 1 ms @ T = 25°C  
11.7  
1.3  
I
I
= 1 Adc  
C
C
90% of final I  
B1  
= 0.2 A  
B1  
@ 3 ms @ T = 25°C  
C
V
= 300 Vdc  
CC  
http://onsemi.com  
2
MJD18002D2  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
SWITCHING CHARACTERISTICS: Resistive Load (D.C.S. 10%, Pulse Width = 40 ms)  
Turn−on Time  
Turn−off Time  
Turn−on Time  
Turn−off Time  
@ T = 25°C  
t
225  
375  
350  
ns  
ms  
ns  
ms  
C
on  
I
= 0.4 Adc, I = 40 mAdc  
B1  
@ T = 125°C  
C
C
I
V
= 200 mAdc  
B2  
@ T = 25°C  
t
0.8  
1.5  
1.1  
C
off  
= 300 Vdc  
CC  
@ T = 125°C  
C
@ T = 25°C  
t
100  
94  
150  
C
on  
I
= 1.0 Adc, I = 0.2 Adc  
B1  
@ T = 125°C  
C
C
I
= 0.5 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
t
0.95  
1.5  
1.25  
C
off  
V
CC  
@ T = 125°C  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 300 V, V = 15 V, L = 200 mH)  
CC  
clamp  
Fall Time  
@ T = 25°C  
t
130  
120  
175  
ns  
ms  
ns  
ns  
ms  
ns  
ns  
ms  
ns  
C
f
@ T = 125°C  
C
I
B1  
= 0.4 Adc  
= 40 mAdc  
= 0.2 Adc  
C
Storage Time  
Cross−over Time  
Fall Time  
@ T = 25°C  
t
t
0.4  
0.7  
0.7  
C
s
c
I
@ T = 125°C  
C
I
B2  
@ T = 25°C  
110  
100  
175  
C
@ T = 125°C  
C
@ T = 25°C  
t
130  
140  
175  
C
f
@ T = 125°C  
C
I
B1  
B2  
= 0.8 Adc  
= 160 mAdc  
= 160 mAdc  
C
Storage Time  
Cross−over Time  
Fall Time  
@ T = 25°C  
t
t
2.1  
3.0  
2.4  
C
s
c
I
I
@ T = 125°C  
C
@ T = 25°C  
275  
350  
350  
C
@ T = 125°C  
C
@ T = 25°C  
t
100  
100  
150  
C
f
@ T = 125°C  
C
I
= 1.0 Adc  
= 0.2 Adc  
= 0.5 Adc  
C
Storage Time  
Cross−over Time  
@ T = 25°C  
t
t
1.05  
1.45  
1.2  
C
s
c
I
I
B1  
B2  
@ T = 125°C  
C
@ T = 25°C  
100  
115  
150  
C
@ T = 125°C  
C
http://onsemi.com  
3
MJD18002D2  
Typical Static Characteristics  
100  
80  
100  
V
= 1 V  
V
= 5 V  
CE  
CE  
80  
60  
40  
T = 125°C  
T = 125°C  
J
J
60  
25°C  
25°C  
40  
−20°C  
−20°C  
20  
0
20  
0
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 V  
Figure 2. DC Current Gain @ 5 V  
4
3
2
100  
10  
T = 25°C  
J
I /I = 20  
C
B
2 A  
1.5 A  
1 A  
1
400 mA  
25°C  
1
0
T = 125°C  
J
I
= 200 mA  
C
−20°C  
0.1  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
I , BASE CURRENT (AMPS)  
B
I , COLLECTOR CURRENT (AMPS)  
C
Figure 3. Collector Saturation Region  
Figure 4. Collector−Emitter Saturation Voltage  
100  
10  
10  
I /I = 10  
I /I = 5  
C
B
C
B
1
1
25°C  
25°C  
T = 125°C  
J
T = 125°C  
J
−20°C  
0.001  
−20°C  
0.001  
0.1  
0.1  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 5. Collector−Emitter Saturation Voltage  
Figure 6. Collector−Emitter Saturation Voltage  
http://onsemi.com  
4
MJD18002D2  
Typical Static Characteristics  
10  
10  
I /I = 5  
I /I = 10  
C B  
C
B
1
1
−20°C  
25°C  
−20°C  
25°C  
T = 125°C  
J
T = 125°C  
J
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 7. Base−Emitter Saturation Region  
IC/IB = 5  
Figure 8. Base−Emitter Saturation Region  
IC/IB = 10  
10  
10  
I /I = 20  
C
B
V
= −20°C  
EC(V)  
1
1
−20°C  
25°C  
125°C  
25°C  
T = 125°C  
J
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
REVERSE EMITTER−COLLECTOR CURRENT (AMPS)  
Figure 9. Base−Emitter Saturation Region  
IC/IB = 20  
Figure 10. Forward Diode Voltage  
Typical Switching Characteristics  
1000  
100  
3000  
T = 25°C  
J
T = 125°C  
T = 25°C  
J
J
C
ib  
(pF)  
f(test) = 1 MHz  
2500  
2000  
1500  
1000  
I /I = 10  
C
B
I
= I  
Boff  
VCC = 300 V  
PW = 40 ms  
Bon  
C
(pF)  
ob  
10  
1
500  
0
I /I = 5  
C
B
1
10  
100  
0.1  
0.4  
0.7  
1
1.3  
1.6  
V , REVERSE VOLTAGE (VOLTS)  
R
I , COLLECTOR CURRENT (AMPS)  
C
Figure 11. Capacitance  
Figure 12. Resistive Switch Time, ton  
http://onsemi.com  
5
MJD18002D2  
Typical Switching Characteristics  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
3
T = 125°C  
T = 25°C  
J
I
= I  
Boff  
J
Bon  
T = 125°C  
J
VCC = 300 V  
PW = 40 ms  
2.5  
2
T = 25°C  
J
I /I = 10  
C
B
I
V
V
= I  
,
Bon  
Boff  
= 15 V,  
= 300 V  
= 200 mH  
CC  
I /I = 5  
C
1.5  
1
B
Z
L
C
2.0  
1.5  
0.1  
0.4  
0.7  
1
1.3  
1.6  
0
0.5  
1
1.5  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 13. Resistive Switch Time, toff  
Figure 14. Inductive Storage Time, tsi @ IC/IB = 5  
700  
600  
500  
400  
300  
200  
4
3
2
T = 125°C  
T = 25°C  
J
I /I  
C
= 5  
T = 125°C  
T = 25°C  
J
J
Bon  
J
I
= I  
= 15 V,  
= 300 V  
= 200 mH  
,
Boff  
Bon  
V
V
L
CC  
I
V
V
L
= I  
,
Z
Bon  
Boff  
t
= 15 V,  
= 300 V  
= 200 mH  
c
C
CC  
I
= 1 A  
Z
C
C
t
fi  
I
= 300 mA  
1
0
C
100  
0
0
0.5  
1
1.5  
3
6
9
12  
15  
I , COLLECTOR CURRENT (AMPS)  
C
h , FORCED GAIN  
FE  
Figure 15. Inductive Switching, tc & tfi @ IC/IB = 5  
Figure 16. Inductive Storage Time  
1000  
1800  
1200  
T = 125°C  
T = 25°C  
J
T = 125°C  
J
J
T = 25°C  
J
800  
600  
400  
I
V
V
= I  
,
I
= I  
,
Boff  
Bon  
Boff  
Bon  
I
= 1 A  
C
= 15 V,  
= 300 V  
= 200 mH  
V
V
= 15 V,  
CC  
CC  
I
= 1 A  
C
= 300 V  
Z
Z
L
L
C
= 200 mH  
C
600  
0
I
= 0.3 A  
C
200  
0
I
= 0.3 A  
13  
C
3
5
7
9
11  
15  
3
6
9
12  
15  
h , FORCED GAIN  
FE  
h , FORCED GAIN  
FE  
Figure 17. Inductive Fall Time  
Figure 18. Inductive Cross−Over Time  
http://onsemi.com  
6
MJD18002D2  
Typical Switching Characteristics  
1600  
1.6  
I
= I  
,
Boff  
Bon  
V
V
= 15 V,  
= 300 V  
= 200 mH  
CC  
I /I = 5  
C
B
Z
T = 125°C  
T = 25°C  
J
1200  
800  
J
1.2  
0.8  
L
C
t
c
t
fi  
I
= I /2,  
= 15 V,  
= 300 V  
= 200 mH  
Boff  
C
I /I = 10  
400  
0
0.4  
0
C
B
V
V
L
CC  
T = 125°C  
T = 25°C  
J
J
Z
C
0.3  
0.7  
1.1  
1.5  
0
0.5  
1
1.5  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 19. Inductive Switching Time,  
tfi & TC @ G = 10  
Figure 20. Inductive Switching Time, tsi  
200  
150  
300  
250  
200  
150  
T = 125°C  
T = 25°C  
J
T = 125°C  
T = 25°C  
J
I
V
V
= I /2,  
= 15 V,  
CC  
= 300 V  
= 200 mH  
J
J
Boff  
C
I
V
V
= I /2,  
= 15 V,  
= 300 V  
= 200 mH  
Boff  
C
CC  
Z
Z
L
C
L
C
I /I = 10  
C
B
I /I = 5  
100  
50  
C
B
100  
50  
I /I = 10  
C
B
I /I = 5  
C
B
0
0.5  
1
1.5  
0
0.5  
1
1.5  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 21. Inductive Storage Time, tfi  
Figure 22. Inductive Storage Time, tc  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
I
= I  
= 15 V,  
= 300 V  
= 200 mH  
,
I = 200 mA  
B
Bon  
Boff  
V
V
L
CC  
Z
C
I
= 50 mA  
B
I
= 500 mA  
B
I
= 100 mA  
B
1.2  
1
0
0.4  
0.8  
, FORCED GAIN  
1.2  
1.6  
h
FE  
Figure 23. Inductive Storage Time, tsi  
Figure 24. Dynamic Saturation Voltage  
Measurements  
http://onsemi.com  
7
MJD18002D2  
Typical Switching Characteristics  
10  
9
90% I  
I
C
C
C
t
fi  
8
t
si  
7
6
10% V  
clamp  
10% I  
V
5
clamp  
t
c
4
90% I  
B1  
I
B
3
2
1
0
0
1
2
3
4
5
6
7
8
TIME  
Figure 25. Inductive Switching Measurements  
Table 1. Inductive Load Switching Drive Circuit  
+15 V  
I PEAK  
C
100 mF  
1 mF  
100 W  
3 W  
MTP8P10  
150 W  
3 W  
V
PEAK  
CE  
V
CE  
MTP8P10  
R
MPF930  
B1  
I
B1  
MUR105  
MJE210  
MPF930  
I
+10 V  
I
B
out  
A
I
B2  
50  
R
B2  
W
V
L = 10 mH  
Inductive Switching  
RBSOA  
L = 500 mH  
COMMON  
(BR)CEO(sus)  
MTP12N10  
150 W  
3 W  
L = 200 mH  
R
500 mF  
R
= ∞  
= 20 Volts  
= 100 mA  
= 0  
= 15 Volts  
selected for  
R
= 0  
= 15 Volts  
selected for  
B2  
B2  
B2  
V
I
V
V
CC  
CC  
CC  
R
ꢀdesired I  
R
B1  
1 mF  
C(pk)  
B1  
ꢀdesired I  
B1  
B1  
−V  
off  
http://onsemi.com  
8
MJD18002D2  
12  
10  
8
10  
V
FRM  
V
(1.1 V ) Unless  
F
FR  
10 ms  
50 ms  
1 ms  
Otherwise Specified  
5 ms  
1 ms  
DC  
1
V
F
0.1 V  
F
t
fr  
6
0.1  
4
10% I  
2
0
F
0.01  
0
2
4
6
8
10  
10  
100  
1000  
V
, COLLECTOR−EMITTER VOLTAGE (VOLTS)  
CE  
Figure 26. tfr Measurement  
Figure 27. Forward Bias Safe Operating Area  
1
0.8  
0.6  
0.4  
2.5  
T
= 125°C  
C
Second Breakdown Derating  
Gain = 4  
= 500 mH  
2
1.5  
1
L
C
V
= −1.5 V  
BE(off)  
Thermal Derating  
V
= −5 V  
BE(off)  
0.5  
0
0.2  
0
V
= 0 V  
BE  
0
200  
400  
600  
800  
1000  
1200  
20  
40  
60  
80  
100  
120  
140  
160  
V
, COLLECTOR−EMITTER VOLTAGE (VOLTS)  
CE  
T , CASE TEMPERATURE (°C)  
C
Figure 28. Reverse Bias Safe Operating Area  
Figure 29. Forward Bias Power Derating  
There are two limitations on the power handling ability of  
a transistor: average junction temperature and second  
Figure 27 may be found at any case temperature by using the  
appropriate curve on Figure 29.  
breakdown. Safe operating area curves indicate I −V  
T
may be calculated from the data in Figure 30. At any  
C
CE  
J(pk)  
limits of the transistor that must be observed for reliable  
operation; i.e., the transistor must not be subjected to greater  
dissipation than the curves indicate. The data of Figure 27 is  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations  
imposed by second breakdown. For inductive loads, high  
voltage and current must be sustained simultaneously during  
turn−off with the base to emitter junction reverse biased. The  
safe level is specified as a reverse biased safe operating area  
(Figure 28). This rating is verified under clamped conditions  
so that the device is never subjected to an avalanche mode.  
based on T = 25°C; T  
is variable depending on power  
level. Second breakdown pulse limits are valid for duty  
C
J(pk)  
cycles to 10% but must be derated when T > 25°C. Second  
C
Breakdown limitations do not derate the same as thermal  
limitations. Allowable current at the voltages shown on  
http://onsemi.com  
9
 
MJD18002D2  
1
0.5  
0.2  
0.1  
0.05  
0.1  
R
R
= r(t) R  
q
JC  
= 55°/W MAX  
q
q
JC(t)  
P
(pk)  
0.02  
0.01  
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
t
1
t
2
1
DUTY CYCLE, D = t /t  
SINGLE PULSE  
1 2  
T
− T = P  
C
R
(t)  
q
(pk) JC  
J(pk)  
0.01  
0.01  
0.1  
1
10  
100  
1000  
t, TIME (ms)  
Figure 30. Typical Thermal Response (ZqJC(t)) for MJD18002D2  
1100  
440  
di/dt = 10 A/ms  
T = 25°C  
C
B
(Volts) @ 10 mA  
VCER  
1000  
900  
800  
700  
600  
420  
400  
380  
360  
340  
T = 25°C  
J
B
@ 200 mA  
100  
VCER(sus)  
500  
400  
320  
300  
10  
1000  
()  
10,000  
100,000  
0
0.5  
1
1.5  
2
R
I , FORWARD CURRENT (AMPS)  
F
BE  
Figure 31. BVCER  
Figure 32. Forward Recovery Time, tfr  
http://onsemi.com  
10  
MJD18002D2  
PACKAGE DIMENSIONS  
DPAK  
CASE 369C  
ISSUE O  
NOTES:  
SEATING  
PLANE  
−T−  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
C
2. CONTROLLING DIMENSION: INCH.  
B
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
E
V
MIN  
5.97  
6.35  
2.19  
0.69  
0.46  
0.94  
MAX  
6.22  
6.73  
2.38  
0.88  
0.58  
1.14  
A
B
C
D
E
F
G
H
J
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.027 0.035  
0.018 0.023  
0.037 0.045  
0.180 BSC  
0.034 0.040  
0.018 0.023  
0.102 0.114  
0.090 BSC  
4
2
Z
A
K
S
1
3
4.58 BSC  
U
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
K
L
2.29 BSC  
F
J
R
S
U
V
Z
0.180 0.215  
0.025 0.040  
4.57  
0.63  
0.51  
0.89  
3.93  
5.45  
1.01  
−−−  
1.27  
−−−  
L
H
0.020  
0.035 0.050  
0.155 −−−  
−−−  
D 2 PL  
M
G
0.13 (0.005)  
T
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
SOLDERING FOOTPRINT*  
6.20  
3.0  
0.244  
0.118  
2.58  
0.101  
5.80  
0.228  
1.6  
0.063  
6.172  
0.243  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Six Sigma is a registered trademark and servicemark of Motorola, Inc.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MJD18002D2/D  

相关型号:

MJD18002D2T4

POWER TRANSISTOR 2 AMPERES 1000 VOLTS, 50 WATTS Bipolar NPN Transistor
ONSEMI

MJD18002D2T4G

POWER TRANSISTOR 2 AMPERES 1000 VOLTS, 50 WATTS Bipolar NPN Transistor
ONSEMI

MJD200

Complementary Plastic Power Transistors
ONSEMI

MJD200

D-PAK for Surface Mount Applications
FAIRCHILD

MJD200

SILICON POWER TRANSISTORS 5 AMPERES 25 VOLTS 12.5 WATTS
MOTOROLA

MJD200-1

SILICON POWER TRANSISTORS 5 AMPERES 25 VOLTS 12.5 WATTS
MOTOROLA

MJD200-I

暂无描述
FAIRCHILD

MJD200G

Complementary Plastic Power Transistors
ONSEMI

MJD200I

Power Bipolar Transistor, 5A I(C), 25V V(BR)CEO, 1-Element, NPN, Silicon, Plastic/Epoxy, 3 Pin, IPAK-3
FAIRCHILD

MJD200RL

Complementary Plastic Power Transistors
ONSEMI

MJD200RLG

Complementary Plastic Power Transistors
ONSEMI

MJD200T4

SILICON POWER TRANSISTORS 5 AMPERES 25 VOLTS 12.5 WATTS
MOTOROLA