MJF18004G [ONSEMI]

NPN Bipolar Power Transistor For Switching Power Supply Applications; NPN双极型功率晶体管开关电源的应用
MJF18004G
型号: MJF18004G
厂家: ONSEMI    ONSEMI
描述:

NPN Bipolar Power Transistor For Switching Power Supply Applications
NPN双极型功率晶体管开关电源的应用

晶体 开关 晶体管
文件: 总11页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MJE18004G, MJF18004G  
SWITCHMODEt  
NPN Bipolar Power Transistor  
For Switching Power Supply Applications  
The MJE/MJF18004G have an applications specific stateoftheart  
die designed for use in 220 V lineoperated SWITCHMODE Power  
supplies and electronic light ballasts.  
http://onsemi.com  
Features  
POWER TRANSISTOR  
5.0 AMPERES  
Improved Efficiency Due to Low Base Drive Requirements:  
High and Flat DC Current Gain h  
Fast Switching  
FE  
1000 VOLTS  
35 and 75 WATTS  
No Coil Required in Base Circuit for TurnOff (No Current Tail)  
Full Characterization at 125_C  
MARKING  
DIAGRAMS  
ON Semiconductor Six Sigma Philosophy Provides Tight and  
Reproducible Parametric Distributions  
Two Package Choices: Standard TO220 or Isolated TO220  
MJF18004, Case 221D, is UL Recognized at 3500 V  
: File  
RMS  
#E69369  
These Devices are PbFree and are RoHS Compliant*  
MJE18004G  
AYWW  
MAXIMUM RATINGS  
TO220AB  
CASE 221A09  
STYLE 1  
Rating  
Symbol  
Value  
450  
Unit  
1
CollectorEmitter Sustaining Voltage  
CollectorBase Breakdown Voltage  
EmitterBase Voltage  
V
CEO  
Vdc  
Vdc  
Vdc  
Adc  
2
3
V
V
1000  
9.0  
CES  
EBO  
Collector Current Continuous  
Peak (Note 1)  
I
5.0  
10  
C
I
CM  
Base Current  
Continuous  
I
2.0  
4.0  
Adc  
V
B
Peak (Note 1)  
I
BM  
MJF18004G  
AYWW  
RMS Isolation Voltage (Note 2)  
V
MJF18004  
4500  
ISOL  
Test No. 1 Per Figure 22a  
Test No. 2 Per Figure 22b  
Test No. 3 Per Figure 22c  
3500  
1500  
TO220 FULLPACK  
CASE 221D  
1
(for 1 sec, R.H. < 30%, T = 25_C)  
A
2
3
STYLE 2  
Total Device Dissipation @ T = 25_C  
P
W
W/_C  
C
D
UL RECOGNIZED  
MJE18004  
MJF18004  
MJE18004  
MJF18004  
75  
35  
0.6  
0.28  
Derate above 25°C  
G
A
Y
WW  
= PbFree Package  
= Assembly Location  
= Year  
Operating and Storage Temperature  
T , T  
65 to 150  
_C  
J
stg  
THERMAL CHARACTERISTICS  
= Work Week  
Characteristics  
Symbol  
Max  
Unit  
Thermal Resistance, JunctiontoCase  
R
q
JC  
_C/W  
MJE18004  
1.65  
3.55  
ORDERING INFORMATION  
MJF18004  
See detailed ordering and shipping information in the package  
dimensions section on page 8 of this data sheet.  
Thermal Resistance, JunctiontoAmbient  
R
62.5  
260  
_C/W  
_C  
q
JA  
Maximum Lead Temperature for Soldering  
Purposes 1/8from Case for 5 Seconds  
T
L
Stresses exceeding Maximum Ratings may damage the device. Maximum  
Ratings are stress ratings only. Functional operation above the Recommended  
Operating Conditions is not implied. Extended exposure to stresses above the  
Recommended Operating Conditions may affect device reliability.  
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
*For additional information on our PbFree strategy  
and soldering details, please download the  
ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
2. Proper strike and creepage distance must be provided.  
©
Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
April, 2010 Rev. 9  
MJE18004/D  
 
MJE18004G, MJF18004G  
ELECTRICAL CHARACTERISTICS (T = 25_C unless otherwise specified)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
CollectorEmitter Sustaining Voltage (I = 100 mA, L = 25 mH)  
V
450  
Vdc  
mAdc  
mAdc  
C
CEO(sus)  
Collector Cutoff Current (V = Rated V  
, I = 0)  
I
CEO  
100  
CE  
CEO  
B
Collector Cutoff Current (V = Rated V  
, V = 0)  
(T = 25_C)  
I
100  
500  
100  
CE  
CES EB  
C
CES  
(T = 125_C)  
C
Collector Cutoff Current (V = 800 V, V = 0)  
(T = 125_C)  
C
CE  
EB  
Emitter Cutoff Current (V = 9.0 Vdc, I = 0)  
I
100  
mAdc  
EB  
C
EBO  
ON CHARACTERISTICS  
BaseEmitter Saturation Voltage (I = 1.0 Adc, I = 0.1 Adc)  
V
V
0.82  
0.92  
1.1  
1.25  
Vdc  
Vdc  
C
B
BE(sat)  
BaseEmitter Saturation Voltage (I = 2.0 Adc, I = 0.4 Adc)  
C
B
CollectorEmitter Saturation Voltage  
CE(sat)  
(I = 1.0 Adc, I = 0.1 Adc)  
0.5  
0.6  
0.45  
0.8  
C
B
0.25  
0.29  
0.3  
0.36  
0.5  
(T = 125_C)  
C
(I = 2.0 Adc, I = 0.4 Adc)  
C
B
(T = 125_C)  
C
(I = 2.5 Adc, I = 0.5 Adc)  
0.75  
C
B
DC Current Gain (I = 1.0 Adc, V = 2.5 Vdc)  
h
FE  
12  
14  
6.0  
10  
21  
20  
32  
11  
7.5  
22  
34  
C
CE  
(T = 125_C)  
C
DC Current Gain (I = 0.3 Adc, V = 5.0 Vdc)  
C
CE  
(T = 125_C)  
C
DC Current Gain (I = 2.0 Adc, V = 1.0 Vdc)  
C
CE  
(T = 125_C)  
C
DC Current Gain (I = 10 mAdc, V = 5.0 Vdc)  
C
CE  
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth (I = 0.5 Adc, V = 10 Vdc, f = 1.0 MHz)  
f
T
13  
50  
MHz  
pF  
C
CE  
Output Capacitance (V = 10 Vdc, I = 0, f = 1.0 MHz)  
C
ob  
65  
CB  
E
Input Capacitance (V = 8.0 V)  
C
800  
1000  
pF  
EB  
ib  
CE(dsat)  
Dynamic Saturation Voltage:  
V
6.8  
14  
Vdc  
1.0 ms  
3.0 ms  
1.0 ms  
3.0 ms  
(I = 1.0 Adc  
(T = 125°C)  
C
C
I
= 100 mAdc  
Determined 1.0 ms and  
3.0 ms respectively after  
B1  
2.4  
5.6  
V
CC  
= 300 V)  
(T = 125°C)  
C
rising I reaches 90% of  
B1  
final I  
B1  
11.3  
15.5  
(see Figure 18)  
(I = 2.0 Adc  
(T = 125°C)  
C
C
I
= 400 mAdc  
B1  
1.3  
6.1  
V
CC  
= 300 V)  
(T = 125°C)  
C
http://onsemi.com  
2
MJE18004G, MJF18004G  
ELECTRICAL CHARACTERISTICS — continued (T = 25_C unless otherwise specified)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
SWITCHING CHARACTERISTICS: Resistive Load (D.C. v 10%, Pulse Width = 20 ms)  
TurnOn Time  
TurnOff Time  
TurnOn Time  
TurnOff Time  
TurnOn Time  
Storage Time  
Fall Time  
(I = 1.0 Adc, I = 0.1 Adc,  
t
on  
210  
180  
300  
ns  
ms  
ns  
ms  
ns  
ms  
ns  
C
B1  
I
= 0.5 Adc, V = 300 V)  
(T = 125°C)  
B2  
CC  
C
t
1.0  
1.3  
1.7  
off  
on  
(T = 125°C)  
C
(I = 2.0 Adc, I = 0.4 Adc,  
t
75  
90  
110  
C
B1  
I
B1  
= 1.0 Adc, V = 300 V)  
(T = 125°C)  
C
CC  
t
off  
1.5  
1.8  
2.5  
(T = 125°C)  
C
(I = 2.5 Adc, I = 0.5 Adc,  
t
on  
450  
900  
800  
1400  
C
B1  
I
B2  
= 0.5 Adc, V = 250 V)  
(T = 125°C)  
C
CC  
t
2.0  
2.2  
3.0  
3.5  
s
(T = 125°C)  
C
t
f
275  
500  
400  
800  
(T = 125°C)  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 300 V, V = 15 V, L = 200 mH)  
CC  
clamp  
Fall Time  
(I = 1.0 Adc, I = 0.1 Adc,  
t
fi  
100  
100  
150  
ns  
ms  
ns  
ns  
ms  
ns  
ns  
ms  
ns  
C
B1  
I
B2  
= 0.5 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.1  
1.4  
1.7  
(T = 125°C)  
C
t
c
180  
160  
250  
(T = 125°C)  
C
(I = 2.0 Adc, I = 0.4 Adc,  
t
fi  
90  
150  
175  
C
B1  
I
B2  
= 1.0 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.7  
2.2  
2.5  
(T = 125°C)  
C
t
180  
250  
300  
c
fi  
(T = 125°C)  
C
(I = 2.5 Adc, I = 0.5 Adc,  
t
70  
100  
130  
175  
C
B1  
I
B2  
= 0.5 Adc,  
(T = 125°C)  
C
V
BE(off)  
= 5.0 Vdc)  
Storage Time  
Crossover Time  
t
si  
0.75  
1.0  
1.0  
1.3  
(T = 125°C)  
C
t
c
250  
250  
350  
500  
(T = 125°C)  
C
http://onsemi.com  
3
MJE18004G, MJF18004G  
TYPICAL STATIC CHARACTERISTICS  
100  
100  
V
CE  
= 1 V  
V
CE  
= 5 V  
T = 125°C  
J
T = 125°C  
J
T = -ꢀ20°C  
J
T = -ꢀ20°C  
J
T = 25°C  
J
T = 25°C  
J
10  
10  
1
0.01  
1
0.01  
0.10  
1.00  
10.00  
0.10  
1.00  
10.00  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 5 Volts  
2.0  
1.5  
1.0  
10.00  
1.00  
T = 25°C  
J
1.5 A  
2 A 3 A  
4 A  
1 A  
I /I = 10  
C B  
0.10  
0.01  
0.5  
0
I /I = 5  
C B  
T = 25°C  
T = 125°C  
J
J
I = 0.5 A  
C
0.01  
0.10  
1.00  
10.00  
0.01  
0.10  
COLLECTOR CURRENT (AMPS)  
C,  
1.00  
10.00  
I , BASE CURRENT (AMPS)  
B
I
Figure 3. Collector Saturation Region  
Figure 4. CollectorEmitter Saturation Voltage  
1.1  
1.0  
10000  
1000  
100  
T = 25°C  
J
f = 1 MHz  
C
C
ib  
0.9  
0.8  
0.7  
ob  
T = 25°C  
J
0.6  
0.5  
0.4  
10  
1
T = 125°C  
J
I /I = 10  
C B  
I /I = 5  
C B  
0.01  
0.10  
1.00  
10.00  
1
10  
100  
I , COLLECTOR CURRENT (AMPS)  
C
V
CE  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
Figure 5. BaseEmitter Saturation Region  
Figure 6. Capacitance  
http://onsemi.com  
4
MJE18004G, MJF18004G  
TYPICAL SWITCHING CHARACTERISTICS  
(I = I /2 for all switching)  
B2  
C
1800  
3000  
2500  
2000  
1500  
1000  
I /I = 5  
C B  
I
= I /2  
B(off) C  
= 300 V  
I
= I /2  
B(off) C  
= 300 V  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
T = 25°C  
T = 125°C  
J
J
T = 25°C  
T = 125°C  
J
V
J
CC  
V
CC  
PW = 20 ms  
PW = 20 ms  
I /I = 5  
C B  
I /I = 10  
C B  
I /I = 10  
C B  
500  
0
0
1
2
3
4
5
0
1
2
3
4
5
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 7. Resistive Switching, ton  
Figure 8. Resistive Switching, toff  
3500  
3000  
2500  
2000  
1500  
1000  
3500  
3000  
2500  
2000  
1500  
V = 300 V  
Z
V = 300 V  
Z
T = 25°C  
T = 125°C  
J
J
V
I
= 15 V  
= I /2  
CC  
V
= 15 V  
= I /2  
CC  
I /I = 5  
C B  
B(off)  
C
I
B(off) C  
L = 200 mH  
C
L = 200 mH  
C
I = 2 A  
C
1000  
500  
T = 25°C  
T = 125°C  
J
I = 1 A  
C
J
500  
0
I /I = 10  
C B  
0
1
2
3
4
5
3
4
5
6
7
8
9
10 11 12 13 14 15  
h , FORCED GAIN  
FE  
I COLLECTOR CURRENT (AMPS)  
C
Figure 9. Inductive Storage Time, tsi  
Figure 10. Inductive Storage Time, tsi(hFE)  
300  
250  
200  
150  
100  
250  
200  
150  
100  
T = 25°C  
T = 125°C  
J
J
t
fi  
t
c
t
c
V = 300 V  
Z
V = 300 V  
Z
V
I
= 15 V  
= I /2  
50  
0
V
I
= 15 V  
= I /2  
CC  
CC  
T = 25°C  
T = 125°C  
J
50  
0
J
B(off)  
C
B(off)  
C
t
fi  
L = 200 mH  
C
L = 200 mH  
C
0
1
2
3
4
5
0
1
2
3
4
5
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 11. Inductive Switching, tc and tfi, IC/IB = 5  
Figure 12. Inductive Switching, tc and tfi, IC/IB = 10  
http://onsemi.com  
5
MJE18004G, MJF18004G  
TYPICAL SWITCHING CHARACTERISTICS  
(I = I /2 for all switching)  
B2  
C
160  
150  
140  
130  
120  
110  
100  
90  
300  
250  
200  
150  
V = 300 V  
Z
V = 300 V  
Z
T = 25°C  
T = 125°C  
J
J
V
I
= 15 V  
= I /2  
V
I
= 15 V  
= I /2  
CC  
CC  
I = 1 A  
C
B(off)  
C
B(off)  
C
L = 200 mH  
C
L = 200 mH  
C
I = 2 A  
C
I = 2 A  
C
100  
50  
T = 25°C  
J
80  
70  
T = 125°C  
J
I = 1 A  
C
3
4
5
6
7
8
9
10 11 12 13 14 15  
3
4
5
6
7
8
9
10 11 12 13 14 15  
h , FORCED GAIN  
FE  
h
FE  
, FORCED GAIN  
Figure 13. Inductive Fall Time  
Figure 14. Inductive Crossover Time  
GUARANTEED SAFE OPERATING AREA INFORMATION  
100  
6.0  
T
125°C  
C
DC (MJE18004)  
5ꢁms  
I /I 4  
C B  
5.0  
1ꢁms  
50ꢁms 10ꢁms 1ꢁms  
L = 500 mH  
C
10  
1.0  
4.0  
Extended  
SOA  
3.0  
2.0  
DC (MJF18004)  
0.1  
-ꢀ5 V  
1.0  
0
V
=
-1.5 V  
BE(off)  
0 V  
0.01  
10  
100  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
1000  
400  
500  
600  
V , COLLECTOR-EMITTER VOLTAGE (VOLTS)  
CE  
700  
800  
900  
1000  
1100  
V
CE  
Figure 15. Forward Bias Safe Operating Area  
Figure 16. Reverse Bias Safe Operating Area  
There are two limitations on the power handling ability of a tran-  
sistor: average junction temperature and second breakdown. Safe  
operating area curves indicate ICVCE limits of the transistor that  
must be observed for reliable operation; i.e., the transistor must not  
be subjected to greater dissipation than the curves indicate. The data  
of Figure 15 is based on TC = 25°C; TJ(pk) is variable depending on  
power level. Second breakdown pulse limits are valid for duty  
cycles to 10% but must be derated when TC 25°C. Second break-  
down limitations do not derate the same as thermal limitations. Al-  
lowable current at the voltages shown on Figure 15 may be found at  
any case temperature by using the appropriate curve on Figure 17.  
TJ(pk) may be calculated from the data in Figures 20 and 21. At any  
case temperatures, thermal limitations will reduce the power that  
can be handled to values less the limitations imposed by second  
breakdown. For inductive loads, high voltage and current must be  
sustained simultaneously during turnoff with the basetoemitter  
junction reverse biased. The safe level is specified as a reverse−  
biased safe operating area (Figure 16). This rating is verified under  
clamped conditions so that the device is never subjected to an ava-  
lanche mode.  
1.0  
SECOND  
BREAKDOWN  
DERATING  
0.8  
0.6  
0.4  
0.2  
0
THERMAL  
DERATING  
20  
40  
60  
80  
100  
120  
140  
160  
T , CASE TEMPERATURE (°C)  
C
Figure 17. Forward Bias Power Derating  
http://onsemi.com  
6
 
MJE18004G, MJF18004G  
10  
5
4
V
CE  
90% I  
I
C
C
9
8
7
6
5
t
fi  
3
dyn 1 ms  
t
si  
2
dyn 3 ms  
1
t
c
10% I  
C
V
10% V  
CLAMP  
0
CLAMP  
-1  
-2  
-3  
-4  
-5  
4
3
2
1
0
90% I  
B
I
B
90% I 1  
B
1 ms  
3 ms  
I
B
0
1
2
3
4
5
6
7
8
TIME  
TIME  
Figure 18. Dynamic Saturation Voltage Measurements  
Figure 19. Inductive Switching Measurements  
+15 V  
I PEAK  
C
100 mF  
1 mF  
MTP8P10  
MUR105  
MJE210  
100 W  
3 W  
150 W  
3 W  
V
CE  
PEAK  
V
CE  
MTP8P10  
MPF930  
R
R
B1  
I 1  
B
I
MPF930  
+10 V  
out  
I
B
A
I 2  
B
50 W  
B2  
V(BR)CEO(sus)  
L = 10 mH  
INDUCTIVE SWITCHING  
L = 200 mH  
RB2 = 0  
RBSOA  
COMMON  
MTP12N10  
150 W  
3 W  
L = 500 mH  
RB2 = 0  
RB2 = ∞  
500 mF  
V
= 20 VOLTS  
I (pk) = 100 mA  
V
CC  
= 15 VOLTS  
V
CC  
= 15 VOLTS  
CC  
RB1 SELECTED FOR  
DESIRED I 1  
RB1 SELECTED  
FOR DESIRED I 1  
C
1 mF  
B
B
-V  
off  
Table 1. Inductive Load Switching Drive Circuit  
http://onsemi.com  
7
MJE18004G, MJF18004G  
TYPICAL THERMAL RESPONSE  
1.00  
D = 0.5  
0.2  
P
(pk)  
R
R
(t) = r(t) R  
q
JC  
q
JC  
0.10  
= 1.25°C/W MAX  
q
JC  
0.1  
D CURVES APPLY FOR  
POWER PULSE TRAIN  
SHOWN READ TIME AT t  
t
1
0.05  
0.02  
1
t
2
T
- T = P  
C
R (t)  
q
JC  
J(pk)  
(pk)  
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.10  
0.01  
0.01  
1.00  
10.00  
100.00  
1000  
10000  
100000  
t, TIME (ms)  
Figure 20. Typical Thermal Response (ZqJC(t)) for MJE18004  
1.00  
D = 0.5  
0.2  
P
(pk)  
R
R
(t) = r(t) R  
q
JC  
q
JC  
0.10  
0.1  
= 3.12°C/W MAX  
q
JC  
D CURVES APPLY FOR  
POWER PULSE TRAIN  
SHOWN READ TIME AT t  
0.05  
0.02  
t
1
1
t
2
T
- T = P  
C
R (t)  
q
JC  
J(pk)  
(pk)  
DUTY CYCLE, D = t /t  
SINGLE PULSE  
1 2  
0.01  
0.01  
0.10  
1.00  
10.00  
100.00  
1000  
t, TIME (ms)  
Figure 21. Typical Thermal Response for MJF18004  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MJE18004  
TO220AB  
50 Units / Rail  
50 Units / Rail  
MJE18004G  
TO220AB  
(PbFree)  
MJF18004  
TO220 (Fullpack)  
50 Units / Rail  
50 Units / Rail  
MJF18004G  
TO220 (Fullpack)  
(PbFree)  
http://onsemi.com  
8
MJE18004G, MJF18004G  
TEST CONDITIONS FOR ISOLATION TESTS*  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
CLIP  
CLIP  
0.099MIN  
0.099MIN  
LEADS  
LEADS  
LEADS  
HEATSINK  
HEATSINK  
HEATSINK  
0.110MIN  
Figure 22a. Screw or Clip Mounting  
Position for Isolation Test Number 1  
Figure 22b. Clip Mounting Position  
for Isolation Test Number 2  
Figure 22c. Screw Mounting Position  
for Isolation Test Number 3  
*Measurement made between leads and heatsink with all leads shorted together  
MOUNTING INFORMATION**  
4-40 SCREW  
CLIP  
PLAIN WASHER  
HEATSINK  
COMPRESSION WASHER  
HEATSINK  
NUT  
Figure 23a. ScrewMounted  
Figure 23b. ClipMounted  
Figure 23. Typical Mounting Techniques  
for Isolated Package  
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a  
.
screw torque of 6 to 8 in lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain  
a constant pressure on the package over time and during large temperature excursions.  
Destructive laboratory tests show that using a hex head 440 screw, without washers, and applying a torque in excess of 20 in lbs will  
.
cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.  
.
Additional tests on slotted 440 screws indicate that the screw slot fails between 15 to 20 in lbs without adversely affecting the  
package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recom-  
.
mend exceeding 10 in lbs of mounting torque under any mounting conditions.  
**For more information about mounting power semiconductors see Application Note AN1040.  
http://onsemi.com  
9
MJE18004G, MJF18004G  
PACKAGE DIMENSIONS  
TO220AB  
CASE 221A09  
ISSUE AF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
SEATING  
PLANE  
T−  
C
B
F
T
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
4
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.36  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
---  
MAX  
15.75  
10.28  
4.82  
0.88  
4.09  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
---  
A
B
C
D
F
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.014  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
---  
0.620  
0.405  
0.190  
0.035  
0.161  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
---  
A
K
Q
Z
1
2
3
U
H
G
H
J
K
L
N
Q
R
S
T
L
R
V
J
G
U
V
Z
D
0.080  
2.04  
N
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
http://onsemi.com  
10  
MJE18004G, MJF18004G  
PACKAGE DIMENSIONS  
TO220 FULLPAK  
CASE 221D03  
ISSUE G  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH  
3. 221D-01 THRU 221D-02 OBSOLETE, NEW  
STANDARD 221D-03.  
SEATING  
T−  
PLANE  
B−  
C
F
S
Q
H
INCHES  
DIM MIN MAX  
MILLIMETERS  
U
MIN  
MAX  
16.12  
10.63  
4.83  
0.78  
3.02  
A
A
B
C
D
F
0.625  
0.408  
0.180  
0.026  
0.116  
0.635 15.88  
0.418 10.37  
0.190  
0.031  
0.119  
4.57  
0.65  
2.95  
1
2 3  
Y−  
G
H
J
0.100 BSC  
2.54 BSC  
K
0.125  
0.018  
0.530  
0.048  
0.135  
0.025  
3.18  
0.45  
3.43  
0.63  
K
L
0.540 13.47  
1.23  
13.73  
1.36  
5.08 BSC  
0.053  
G
N
L
J
N
Q
R
S
U
0.200 BSC  
R
0.124  
0.099  
0.101  
0.238  
0.128  
0.103  
0.113  
0.258  
3.15  
2.51  
2.57  
6.06  
3.25  
2.62  
2.87  
6.56  
D 3 PL  
M
M
STYLE 2:  
PIN 1. BASE  
0.25 (0.010)  
B
Y
2. COLLECTOR  
3. EMITTER  
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MJE18004/D  

相关型号:

MJF18006

POWER TRANSISTOR 6.0 AMPERES 1000 VOLTS 40 and 100 WATTS
MOTOROLA

MJF18006

POWER TRANSISTOR
ONSEMI

MJF18006

Silicon NPN Power Transistors
ISC

MJF18006

Silicon NPN Power Transistors
SAVANTIC

MJF18006

Silicon NPN Power Transistors
JMNIC

MJF18008

POWER TRANSISTOR 8.0 AMPERES 1000 VOLTS 45 and 125 WATTS
MOTOROLA

MJF18008

POWER TRANSISTOR
ONSEMI

MJF18008

Silicon NPN Power Transistors
ISC

MJF18008

Silicon NPN Power Transistors
SAVANTIC

MJF18008

Silicon NPN Power Transistors
JMNIC

MJF18008G

NPN Bipolar Power Transistor For Switching Power Supply Applications
ONSEMI

MJF18009

POWER TRANSISTORS 10 AMPERES 1000 VOLTS 50 and 150 WATTS
MOTOROLA