MMBTA13LT1 [ONSEMI]

Darlington Amplifier Transistors(NPN Silicon); 达林顿放大器晶体管( NPN硅)
MMBTA13LT1
型号: MMBTA13LT1
厂家: ONSEMI    ONSEMI
描述:

Darlington Amplifier Transistors(NPN Silicon)
达林顿放大器晶体管( NPN硅)

晶体 放大器 小信号双极晶体管 光电二极管
文件: 总8页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductort  
MMBTA13LT1  
MMBTA14LT1  
Darlington Amplifier  
Transistors  
MMBTA14LT1 is a Preferred Device  
NPN Silicon  
MAXIMUM RATINGS  
Rating  
Collector–Emitter Voltage  
Collector–Base Voltage  
Symbol  
Value  
30  
Unit  
Vdc  
3
V
CES  
CBO  
EBO  
1
V
V
30  
Vdc  
2
Emitter–Base Voltage  
10  
Vdc  
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
300  
mAdc  
CASE 318–08, STYLE 6  
SOT–23 (TO–236AB)  
C
Symbol  
Max  
Unit  
(1)  
Total Device Dissipation FR–5 Board  
P
225  
mW  
D
T
= 25°C  
A
COLLECTOR 3  
Derate above 25°C  
1.8  
556  
300  
mW/°C  
°C/W  
mW  
Thermal Resistance Junction to Ambient  
Total Device Dissipation  
R
BASE  
1
qJA  
P
D
(2)  
Alumina Substrate,  
T
A
= 25°C  
Derate above 25°C  
2.4  
417  
mW/°C  
°C/W  
°C  
EMITTER 2  
Thermal Resistance Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
qJA  
T , T  
J stg  
–55 to +150  
MMBTA13LT1 = 1M; MMBTA14LT1 = 1N  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
OFF CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
Collector–Emitter Breakdown Voltage  
V
30  
Vdc  
nAdc  
nAdc  
(BR)CES  
(I = 100 mAdc, V  
C BE  
= 0)  
Collector Cutoff Current  
(V = 30 Vdc, I = 0)  
I
100  
100  
CBO  
CB  
Emitter Cutoff Current  
(V = 10 Vdc, I = 0)  
E
I
EBO  
EB  
C
1. FR–5 = 1.0 0.75 0.062 in.  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
Preferred devices are ON Semiconductor recommended choices for future use and best overall value.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
March, 2001 – Rev. 1  
MMBTA13LT1/D  
MMBTA13LT1 MMBTA14LT1  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
(3)  
ON CHARACTERISTICS  
DC Current Gain  
(I = 10 mAdc, V  
C
h
FE  
= 5.0 Vdc)  
CE  
MMBTA13  
MMBTA14  
5000  
10,000  
(I = 100 mAdc, V  
C CE  
= 5.0 Vdc)  
MMBTA13  
MMBTA14  
10,000  
20,000  
Collector–Emitter Saturation Voltage  
(I = 100 mAdc, I = 0.1 mAdc)  
V
1.5  
Vdc  
Vdc  
CE(sat)  
C
B
Base–Emitter On Voltage  
(I = 100 mAdc, V = 5.0 Vdc)  
V
BE  
2.0  
C
CE  
SMALL–SIGNAL CHARACTERISTICS  
(4)  
Current–Gain — Bandwidth Product  
f
T
125  
MHz  
(I = 10 mAdc, V = 5.0 Vdc, f = 100 MHz)  
C
CE  
3. Pulse Test: Pulse Width v 300 ms, Duty Cycle v 2.0%.  
4. f = |h | f .  
test  
T
fe  
R
S
i
n
e
n
IDEAL  
TRANSISTOR  
Figure 1. Transistor Noise Model  
http://onsemi.com  
2
MMBTA13LT1 MMBTA14LT1  
NOISE CHARACTERISTICS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
500  
2.0  
BANDWIDTH = 1.0 Hz  
0  
BANDWIDTH = 1.0 Hz  
R
S
1.0  
0.7  
0.5  
200  
100  
50  
I
C
= 1.0 mA  
0.3  
0.2  
10 µA  
100 µA  
100 µA  
10 µA  
0.1  
0.07  
0.05  
20  
I
C
= 1.0 mA  
10  
0.03  
0.02  
5.0  
10 20  
50 100 200 500 1Ăk 2Ăk 5Ăk 10Ăk 20Ăk 50Ăk 100Ăk  
f, FREQUENCY (Hz)  
10 20  
50 100 200 500 1Ăk 2Ăk 5Ăk 10Ăk 20Ăk 50Ăk 100Ăk  
f, FREQUENCY (Hz)  
Figure 2. Noise Voltage  
Figure 3. Noise Current  
200  
14  
12  
BANDWIDTH = 10 Hz TO 15.7 kHz  
BANDWIDTH = 10 Hz TO 15.7 kHz  
= 10 µA  
100  
70  
10  
8.0  
6.0  
4.0  
2.0  
I
C
10 µA  
50  
100 µA  
100 µA  
30  
20  
I
C
= 1.0 mA  
1.0 mA  
10  
0
1.0 2.0  
5.0  
10  
20  
50 100 200  
500 1000  
1.0 2.0  
5.0  
10  
20  
50 100 200  
500 1000  
R , SOURCE RESISTANCE (k)  
S
R , SOURCE RESISTANCE (k)  
S
Figure 4. Total Wideband Noise Voltage  
Figure 5. Wideband Noise Figure  
http://onsemi.com  
3
MMBTA13LT1 MMBTA14LT1  
SMALL–SIGNAL CHARACTERISTICS  
20  
10  
4.0  
V
= 5.0 V  
CE  
f = 100 MHz  
= 25°C  
T
= 25°C  
J
T
J
2.0  
7.0  
5.0  
C
ibo  
1.0  
0.8  
C
obo  
0.6  
0.4  
3.0  
2.0  
0.2  
0.04  
0.1 0.2  
0.4  
1.0 2.0 4.0  
10 20  
40  
0.5 1.0  
2.0  
0.5 10 20  
50  
100 200  
500  
V , REVERSE VOLTAGE (VOLTS)  
R
I , COLLECTOR CURRENT (mA)  
C
Figure 6. Capacitance  
Figure 7. High Frequency Current Gain  
200Ăk  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
T
= 125°C  
J
T
= 25°C  
J
100Ăk  
70Ăk  
50Ăk  
I
C
=
50 mA  
250 mA 500 mA  
10 mA  
25°C  
30Ăk  
20Ăk  
10Ăk  
7.0Ăk  
5.0Ăk  
-ā55°C  
V
= 5.0 V  
CE  
3.0Ăk  
2.0Ăk  
500  
0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1000  
5.0 7.0 10  
20 30  
50 70 100  
200 300  
I , COLLECTOR CURRENT (mA)  
C
I , BASE CURRENT (µA)  
B
Figure 8. DC Current Gain  
Figure 9. Collector Saturation Region  
1.6  
1.4  
-ā1.0  
-ā2.0  
-ā3.0  
-ā4.0  
-ā5.0  
-ā6.0  
*APPLIES FOR I /I h /3.0  
C B FE  
25°C TO 125°C  
T
= 25°C  
J
*R  
qVC  
FOR V  
CE(sat)  
V
@ I /I = 1000  
C B  
-ā55°C TO 25°C  
25°C TO 125°C  
BE(sat)  
1.2  
1.0  
0.8  
0.6  
V
@ V = 5.0 V  
BE(on)  
CE  
q
FOR V  
BE  
VB  
-ā55°C TO 25°C  
V
@ I /I = 1000  
C B  
CE(sat)  
5.0 7.0  
10  
20 30  
50 70 100 200 300  
500  
5.0 7.0 10  
20 30  
50 70 100  
200 300 500  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 10. “On” Voltages  
Figure 11. Temperature Coefficients  
http://onsemi.com  
4
MMBTA13LT1 MMBTA14LT1  
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
SINGLE PULSE  
0.05  
0.1  
0.1  
0.07  
SINGLE PULSE  
0.05  
0.03  
0.02  
Z
Z
= r(t) R  
= r(t) R ąT  
θJA  
ąT  
J(pk)  
- T = P  
C
Z
Z
θJC(t)  
θJA(t)  
θJC J(pk)  
(pk) θJC(t)  
- T = P  
A
(pk) θJA(t)  
0.01  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
200  
500  
1.0Ăk  
2.0Ăk  
5.0Ăk 10Ăk  
t, TIME (ms)  
Figure 12. Thermal Response  
1.0Ăk  
700  
FIGURE A  
1.0 ms  
500  
t
P
T
= 25°C  
300  
200  
C
100 µs  
T
A
= 25°C  
P
P
P
P
1.0 s  
100  
70  
50  
t
1
30  
20  
CURRENT LIMIT  
THERMAL LIMIT  
1/f  
SECOND BREAKDOWN LIMIT  
t
1
DUTYĂCYCLE + t Ăf +  
10  
0.4 0.6  
1
t
P
40  
1.0  
2.0  
4.0 6.0  
10  
20  
PEAK PULSE POWER = P  
P
V , COLLECTOR-EMITTER VOLTAGE (VOLTS)  
CE  
Figure 13. Active Region Safe Operating Area Design Note: Use of Transient Thermal Resistance Data  
http://onsemi.com  
5
MMBTA13LT1 MMBTA14LT1  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
SOLDERING PRECAUTIONS  
The power dissipation of the SOT–23 is a function of the  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipa-  
tion. Power dissipation for a surface mount device is deter-  
The melting temperature of solder is higher than the  
rated temperature of the device. When the entire device is  
heated to a high temperature, failure to complete soldering  
within a short time could result in device failure. There-  
fore, the following items should always be observed in  
order to minimize the thermal stress to which the devices  
are subjected.  
mined byT  
of the die, R  
, the maximum rated junction temperature  
, the thermal resistance from the device  
J(max)  
θJA  
junction to ambient, and the operating temperature, T .  
A
Using the values provided on the data sheet for the SOT–23  
package, P can be calculated as follows:  
Always preheat the device.  
D
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
into the equation for an ambient temperature T of 25°C,  
A
one can calculate the power dissipation of the device which  
in this case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed  
circuit board to achieve a power dissipation of 225 milli-  
watts. There are other alternatives to achieving higher  
power dissipation from the SOT–23 package. Another  
alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Clad . Using a  
board material such as Thermal Clad, an aluminum core  
board, the power dissipation can be doubled using the same  
footprint.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
* Soldering a device without preheating can cause exces-  
sive thermal shock and stress which can result in damage  
to the device.  
http://onsemi.com  
6
MMBTA13LT1 MMBTA14LT1  
PACKAGE DIMENSIONS  
SOT–23 (TO–236)  
CASE 318–08  
ISSUE AF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
A
L
3
INCHES  
DIM MIN MAX  
MILLIMETERS  
S
C
B
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.69  
1.02  
2.64  
0.60  
1
2
A
B
C
D
G
H
J
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
V
G
0.0005 0.0040 0.013  
0.0034 0.0070 0.085  
K
L
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
0.35  
0.89  
2.10  
0.45  
S
V
H
J
D
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
http://onsemi.com  
7
MMBTA13LT1 MMBTA14LT1  
Thermal Clad is a trademark of the Bergquist Company.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
MMBTA13LT1/D  

相关型号:

MMBTA13LT1G

Darlington Amplifier Transistors
ONSEMI

MMBTA13LT1G_09

Darlington Amplifier Transistors
ONSEMI

MMBTA13LT1_06

Darlington Amplifier Transistors
ONSEMI

MMBTA13LT1_16

Darlington Amplifier Transistors
ONSEMI

MMBTA13LT3

300mA, 30V, NPN, Si, SMALL SIGNAL TRANSISTOR, TO-236AB
MOTOROLA

MMBTA13LT3G

NPN 双极达林顿晶体管
ONSEMI

MMBTA13_08

NPN Darlington Amplifier Transistor
MCC

MMBTA13_1

NPN SURFACE MOUNT DARLINGTON TRANSISTOR
DIODES

MMBTA13_11

DARLINGTON TRANSISTOR
UTC

MMBTA13_11

NPN Darlington Amplifier Transistor
MCC

MMBTA13_15

DARLINGTON TRANSISTOR
UTC

MMBTA13_15

Darlington Amplifier Transistor NPN Silicon
SECOS