NCID9210R2 [ONSEMI]

High Speed Dual-Channel, Bi-Directional Ceramic Digital Isolator;
NCID9210R2
型号: NCID9210R2
厂家: ONSEMI    ONSEMI
描述:

High Speed Dual-Channel, Bi-Directional Ceramic Digital Isolator

文件: 总12页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
High Speed Dual-Channel,  
Bi-Directional Ceramic  
Digital Isolator  
NCID9210 / NCID9216  
SOIC16 W  
CASE 751EN  
Description  
The NCID9210 and NCID9216 are galvanically isolated full  
duplex, bidirectional, highspeed dualchannel digital isolators.  
These devices support isolated communications thereby allowing  
digital signals to communicate between systems without conducting  
ground loops or hazardous voltages.  
MARKING DIAGRAM  
They utilize onsemi’s patented galvanic offchip capacitor isolation  
technology and optimized IC design to achieve high insulation and  
high noise immunity, characterized by high common mode rejection  
and power supply rejection specifications. The thick ceramic substrate  
yields capacitors with ~25 times the thickness of thin film onchip  
capacitors and coreless transformers. The result is a combination of  
the electrical performance benefits that digital isolators offer with the  
safety reliability of a >0.5 mm insulator barrier similar to what has  
historically been offered by optocouplers.  
AWLYWW  
9210  
A
= Assembly Location  
WL = Wafer Lot  
= Year  
WW = Work Week  
9210/9216 = Specific Device Code  
Y
The device is housed in a 16pin wide body small outline package.  
Features  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 10 of  
this data sheet.  
OffChip Capacitive Isolation to Achieve Reliable High Voltage  
Insulation  
DTI (Distance Through Insulation): 0.5 mm  
Maximum Working Insulation Voltage: 2000 V  
Full Duplex, Bidirectional Communication  
100 KV/ms Minimum Common Mode Rejection  
peak  
High Speed:  
50 Mbit/s Data Rate (NRZ)  
25 ns Maximum Propagation Delay  
10 ns Maximum Pulse Width Distortion  
8 mm Creepage and Clearance Distance to Achieve Reliable High  
Voltage Insulation.  
Specifications Guaranteed Over 2.5 V to 5.5 V Supply Voltage and  
40°C to 125°C Extended Temperature Range  
Over Temperature Detection  
NCIV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable (Pending)  
Safety and Regulatory Approvals  
UL1577, 5000 V  
for 1 Minute  
RMS  
DIN EN/IEC 6074717 (Pending)  
Typical Applications  
Isolated PWM Control  
Programmable Logic Control  
Isolated Data Acquisition System  
Voltage Level Translator  
Industrial Fieldbus Communications  
2
Microprocessor System Interface (SPI, I C, etc.)  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
NCID9210/D  
September, 2021 Rev. 1  
NCID9210 / NCID9216  
PIN CONFIGURATION  
NCID9210  
NCID9216  
1
2
3
4
5
6
7
8
16  
15  
1
2
3
4
5
6
7
8
16  
15  
GND 1  
NC  
GND 2  
NC  
GND 1  
NC  
GND 2  
NC  
VDD1  
VINA  
VOB  
14 VDD2  
13 VOA  
VDD1  
VOA  
14 VDD2  
13 VINA  
12  
VINB  
12  
VINB  
NC  
VOB  
11  
NC  
NC  
11  
NC  
GND 1  
NC  
10  
9
NC  
GND 1  
NC  
10  
9
NC  
GND 2  
GND 2  
Figure 1. Pin and Channel Configuration  
BLOCK DIAGRAM  
GND1  
NC  
GND2  
NC  
TX  
RX  
VDD1  
IOA  
VDD2  
IOA  
IO  
SWITCH  
IO  
SWITCH  
IOB  
IOB  
NC  
NC  
RX  
TX  
GND1  
NC  
NC  
GND2  
Figure 2. Functional Block Diagram  
PIN DEFINITIONS  
Name  
GND1  
NC  
Pin No. NCID9210 Pin No. NCID9216  
Description  
1
2
1
2
Ground, Primary Side  
No Connect  
V
3
3
Power Supply, Primary Side  
Output, Channel A  
Input, Channel B  
No Connect  
DD1  
V
4
13  
12  
6
OA  
V
5
INB  
NC  
GND1  
NC  
6
7
7
Ground, Primary Side  
No Connect  
8
8
GND2  
NC  
9
9
Ground, Secondary Side  
No Connect  
10  
11  
12  
13  
14  
15  
16  
10  
11  
5
NC  
No Connect  
V
Output, Channel B  
Input, Channel A  
Power Supply, Secondary Side  
No Connect  
OB  
INA  
DD2  
V
4
V
14  
15  
16  
NC  
GND2  
Ground, Secondary Side  
www.onsemi.com  
2
NCID9210 / NCID9216  
TRUTH TABLE (Note 1)  
V
INX  
V
DDI  
V
DDO  
V
OX  
Comment  
H
Power Up  
Power Up  
Power Up  
Power Up  
H
Normal Operation  
Normal Operation  
L
X
X
L
L
Power Down  
Power Up  
Power Up  
Default low; V return to normal operation when V  
change to Power Up  
OX  
DDI  
Power Down  
Undetermined  
(Note 2)  
V
OX  
return to normal operation when V  
change to Power Up  
DDO  
1. V  
V
= Input signal of a given channel (A or B). V = Output signal of a given channel (A or B). V  
= Inputside V . V  
= Outputside  
INX  
DD  
OX  
DDI  
DD DDO  
. X = Irrelevant. H = High level. L = Low level.  
2. The outputs are in undetermined state when V  
< V  
.
DDO  
UVLO  
SAFETY AND INSULATION RATINGS  
As per DIN EN/IEC 6074717, this digital isolator is suitable for “safe electrical insulation” only within the safety limit data. Compliance with  
the safety ratings must be ensured by means of protective circuits.  
Symbol  
Parameter  
Min  
Typ  
I–IV  
Max  
Units  
Installation Classifications per DIN VDE 0110/1.89 Table 1  
Rated Mains Voltage  
< 150 V  
< 300 V  
< 450 V  
< 600 V  
RMS  
RMS  
RMS  
RMS  
I–IV  
I–IV  
I–IV  
< 1000 V  
I–III  
RMS  
Climatic Classification  
40/125/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
CTI  
600  
V
PR  
InputtoOutput Test Voltage, Method b, V  
x 1.875 = V , 100% Production  
3750  
V
V
IORM  
PR  
peak  
Test with t = 1 s, Partial Discharge < 5 pC  
m
InputtoOutput Test Voltage, Method a, V  
x 1.6 = V , Type and Sample  
3200  
IORM  
PR  
peak  
Test with t = 10 s, Partial Discharge < 5 pC  
m
V
Maximum Working Insulation Voltage  
Highest Allowable Over Voltage  
External Creepage  
2000  
8000  
8.0  
V
V
IORM  
peak  
V
IOTM  
peak  
E
mm  
mm  
mm  
°C  
CR  
E
External Clearance  
8.0  
CL  
DTI  
Insulation Thickness  
0.50  
150  
100  
600  
T
Safety Limit Values – Maximum Values in Failure; Case Temperature  
Safety Limit Values – Maximum Values in Failure; Input Power  
Safety Limit Values – Maximum Values in Failure; Output Power  
Case  
P
mW  
mW  
Ω
S,INPUT  
P
S,OUTPUT  
9
R
Insulation Resistance at TS, V = 500 V  
IO  
IO  
10  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
A
Symbol  
Parameter  
Value  
Units  
T
Storage Temperature  
Operating Temperature  
Junction Temperature  
55 to +150  
40 to +125  
40 to +150  
260 for 10sec  
0.5 to 6  
0.5 to 6  
15  
°C  
°C  
°C  
°C  
V
STG  
OPR  
T
T
J
T
Lead Solder Temperature (Refer to Reflow Temperature Profile)  
Supply Voltage (V  
SOL  
V
)
DDx  
DD  
V
Voltage (V , V  
)
V
INx  
Ox  
I
O
Average Output Current  
Power Dissipation  
mA  
mW  
PD  
210  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
www.onsemi.com  
3
 
NCID9210 / NCID9216  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Ambient Operating Temperature  
Min  
40  
2.5  
0.7 x V  
0
Max  
+125  
5.5  
Unit  
°C  
V
T
A
V
V
Supply Voltage (Notes 3, 4)  
High Level Input Voltage  
DD1 DD2  
V
INH  
V
DDI  
V
DDI  
V
INL  
Low Level Input Voltage  
0.1 x V  
V
DDI  
V
V
Supply Voltage UVLO Rising Threshold  
Supply Voltage UVLO Falling Threshold  
Supply Voltage UVLO Hysteresis  
High Level Output Current  
Low Level Output Current  
2.2  
2.0  
0.1  
2  
V
UVLO+  
V
UVLO  
UVLO  
V
HYS  
I
mA  
mA  
Mbps  
OH  
I
OL  
2
DR  
Signaling Rate  
0
50  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
3. During power up or down, ensure that both the input and output supply voltages reach the proper recommended operating voltages to avoid  
any momentary instability at the output state.  
4. For reliable operation at recommended operating conditions, V supply pins require at least a pair of external bypass capacitors, placed  
DD  
within 2 mm from V pins 3 and 14 and GND pins 1 and 16. Recommended values are 0.1 mF and 1 mF.  
DD  
ISOLATION CHARACTERISTICS  
Apply over all recommended conditions. All typical values are measured at T = 25°C.  
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
V
InputOutput Isolation Voltage  
T = 25°C, Relative Humidity < 50%,  
5000  
V
RMS  
ISO  
A
t = 1.0 minute, I  
v 10 mA, 50 Hz (Notes 5, 6, 7)  
IO  
11  
R
C
Isolation Resistance  
Isolation Capacitance  
V
IO  
V
IO  
= 500 V (Note 5)  
10  
ISO  
ISO  
= 0 V, Frequency = 1.0 MHz (Note 5)  
1
pF  
5. Device is considered a twoterminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together.  
6. 5,000 V for 1minute duration is equivalent to 6,000 V for 1second duration.  
RMS  
RMS  
7. The inputoutput isolation voltage is a dielectric voltage rating per UL1577. It should not be regarded as an inputoutput continuous voltage  
rating. For the continuous working voltage rating, refer to equipmentlevel safety specification or DIN EN/IEC 6074717 Safety and Insulation  
Ratings Table on page 3.  
ELECTRICAL CHARACTERISTICS  
Apply over all recommended conditions, T =40°C to +125°C, V  
= V  
= 2.5 V to 5.5 V, unless otherwise specified. All typical values  
A
DD1  
DD2  
are measured at T = 25°C.  
A
Symbol  
Parameter  
Conditions  
= –4 mA  
Min Typ  
– 0.4 V – 0.1  
DDO  
Max  
Units Figure  
V
OH  
High Level Output Voltage  
Low Level Output Voltage  
Rising Input Voltage Threshold  
Falling Input Voltage Threshold  
Input Threshold Voltage Hysteresis  
High Level Input Current  
I
I
V
DDO  
V
V
7
8
OH  
V
OL  
= 4 mA  
0.11  
0.4  
OL  
V
INT+  
0.7 x V  
V
DDI  
V
INT−  
0.1 x V  
0.1 x V  
V
DDI  
V
0.2 x V  
V
INT(HYS)  
DDI  
DDI  
I
V
V
= V  
DDI  
1
mA  
mA  
kV/ms  
pF  
INH  
IH  
I
Low Level Input Current  
= 0 V  
1  
INL  
IL  
CMTI  
Common Mode Transient Immunity V = V  
or 0 V, V = 1500 V  
100  
150  
2
10  
I
DDI  
CM  
C
Input Capacitance  
V
= V /2 + 0.4 x sin (2pft),  
IN  
IN DDI  
f = 1 MHz, V = 5 V  
DD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
4
 
NCID9210 / NCID9216  
SUPPLY CURRENT CHARACTERISTICS  
Apply over all recommended conditions, T =40°C to +125°C unless otherwise specified. All typical values are measured at T = 25°C.  
A
A
Symbol  
Parameter  
Conditions  
= 5 V, V = 0 V  
Min  
Typ  
4.5  
Max  
Units Figure  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DC Supply Current  
Input Low  
V
6.3  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
IN  
5.0  
V
V
V
V
V
= 3.3 V, V = 0 V  
4.4  
6.1  
6
IN  
4.9  
= 2.5 V, V = 0 V  
4.3  
IN  
4.8  
DC Supply Current  
Input High  
= 5 V, V = 5 V  
11.8  
12.1  
11.7  
11.9  
11.6  
11.8  
8.3  
14.5  
14.3  
14.3  
10.5  
10.3  
10.1  
12  
mA  
IN  
= 3.3 V, V = 3.3 V  
IN  
= 2.5 V, V = 2.5 V  
IN  
AC Supply Current  
1 Mbps  
V
V
= 5 V, C = 15 pF  
mA  
mA  
mA  
3,4  
L
= 5 V Square Wave  
IN  
8.7  
V
V
= 3.3 V, C = 15 pF  
8.1  
DD  
L
= 3.3 V Square Wave  
IN  
8.5  
V
V
= 2.5 V, C = 15 pF  
8.0  
DD  
L
= 2.5 V Square Wave  
IN  
8.4  
AC Supply Current  
10 Mbps  
V
V
= 5 V, C = 15 pF  
9.9  
DD  
L
= 5 V Square Wave  
IN  
10.2  
8.9  
V
V
= 3.3 V, C = 15 pF  
11  
DD  
L
= 3.3 V Square Wave  
IN  
9.3  
V
V
= 2.5 V, C = 15 pF  
8.6  
10.5  
17.5  
14.3  
13  
DD  
L
= 2.5 V Square Wave  
IN  
9.0  
AC Supply Current  
50 Mbps  
V
V
= 5 V, C = 15 pF  
14.8  
15.2  
12.1  
12.6  
11.1  
11.6  
DD  
L
= 5 V Square Wave  
IN  
V
V
= 3.3 V, C = 15 pF  
L
= 3.3 V Square Wave  
DD  
IN  
V
V
= 2.5 V, C = 15 pF  
L
= 2.5 V Square Wave  
DD  
IN  
www.onsemi.com  
5
NCID9210 / NCID9216  
SWITCHING CHARACTERISTICS  
Apply over all recommended conditions, T =40°C to +125°C unless otherwise specified. All typical values are measured at T = 25°C.  
A
A
Symbol  
Parameter  
Conditions  
= 5 V, V Square Wave, C = 15 pF  
Min  
Typ  
17.0  
18.3  
20.0  
13.0  
14.5  
16.0  
3.6  
Max  
Units Figure  
t
Propagation Delay  
to Logic Low Output  
(Note 8)  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
25  
ns  
ns  
ns  
ns  
ns  
ns  
6,9  
PHL  
IN  
L
= 3.3 V, V Square Wave, C = 15 pF  
IN  
L
= 2.5 V, V Square Wave, C = 15 pF  
IN  
L
t
Propagation Delay  
to Logic High Output  
(Note 9)  
= 5 V, V Square Wave, C = 15 pF  
25  
10  
10  
PLH  
IN  
L
= 3.3 V, V Square Wave, C = 15 pF  
IN  
L
= 2.5 V, V Square Wave, C = 15 pF  
IN  
L
PWD  
Pulse Width Distor-  
= 5 V, V Square Wave, C = 15 pF  
IN L  
tion | t  
– t  
PLH  
|
PHL  
= 3.3 V, V Square Wave, C = 15 pF  
3.8  
IN  
L
(Note 10)  
= 2.5 V, V Square Wave, C = 15 pF  
3.8  
IN  
L
t
Propagation Delay  
Skew (Part to Part)  
(Note 11)  
= 5 V, V Square Wave, C = 15 pF  
10  
PSK(PP)  
IN  
L
= 3.3 V, V Square Wave, C = 15 pF  
IN  
L
= 2.5 V, V Square Wave, C = 15 pF  
IN  
L
t
R
Output Rise Time  
(10% to 90%)  
= 5 V, V Square Wave, C = 15 pF  
1.1  
1.5  
2.2  
1.1  
1.4  
3.0  
IN  
L
= 3.3 V, V Square Wave, C = 15 pF  
IN  
L
= 2.5 V, V Square Wave, C = 15 pF  
IN  
L
t
F
Output Fall Time  
(90% to 10%)  
= 5 V, V Square Wave, C = 15 pF  
IN L  
= 3.3 V, V Square Wave, C = 15 pF  
IN  
L
= 2.5 V, V Square Wave, C = 15 pF  
IN  
L
8. Propagation delay t  
9. Propagation delay t  
is measured from the 50% level of the falling edge of the input pulse to the 50% level of the falling edge of the V signal.  
O
PHL  
PLH  
is measured from the 50% level of the rising edge of the input pulse to the 50% level of the rising edge of the V signal.  
O
10.PWD is defined as | t  
– t  
PLH  
| for any given device.  
PHL  
11. Parttopart propagation delay skew is the difference between the measured propagation delay times of a specified channel of any two parts  
at identical operating conditions and equal load.  
www.onsemi.com  
6
NCID9210 / NCID9216  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
15  
10  
5
20  
TA = 25°C  
LOAD = No Load  
TA = 25°C  
LOAD = 15 pF  
IDD1  
IDD2  
IDD1  
IDD2  
15  
10  
5
= 3.3 V  
V DD  
VDD = 3.3 V  
= 5 V  
VDD  
V
DD = 5 V  
= 2.5 V  
VDD  
= 2.5 V  
VDD  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 3. Supply Current vs. Data Rate (No Load)  
Figure 4. Supply Current vs. Data Rate  
(Load = 15 pF)  
3.0  
25  
20  
15  
10  
5
= 2.5 V  
VDD  
tPHL  
= 3.3 V  
VDD  
t PHL  
= 5 V  
VDD  
t PHL  
2.5  
V UVLO+  
V UVLO  
= 5 V  
VDD  
tPLH  
= 3.3 V  
VDD  
tPLH  
2.0  
= 2.5 V  
VDD  
tPLH  
1.5  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
AMBIENT TEMPERATURE (°C)  
TA  
20  
40  
60  
80  
100 120  
AMBIENT TEMPERATURE (°C)  
TA  
Figure 5. Supply Voltage UVLO Threshold vs.  
Ambient Temperature  
Figure 6. Propagation Delay vs. Ambient  
Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
6
TA = 25°C  
TA = 25 °C  
= 5 V  
VDD  
5
4
3
2
1
0
= 3.3 V  
= 2.5 V  
VDD  
VDD  
VDD = 2.5 V  
VDD = 3.3 V  
V
DD = 5 V  
0
2
4
6
8
10  
10  
8  
6  
4  
2  
0
LOW LEVEL OUTPUT CURRENT (mA)  
IOL  
IOH HIGH LEVEL OUTPUT CURRENT (mA)  
Figure 7. High Level Output Voltage vs. Current  
Figure 8. Low Level Output Voltage vs. Current  
www.onsemi.com  
7
NCID9210 / NCID9216  
TEST CIRCUITS  
50%  
VI  
VDDI  
VDDO  
t PLH  
t PHL  
VI  
VO  
CL  
+
+
90%  
VIN  
50%  
VO  
10%  
tR  
tF  
Figure 9. VIN to VO Propagation Delay Test Circuit and Waveform  
1
0
VDDI  
VDDO  
VIN  
VO  
S at 0, V remain consistently low  
O
2
S
S at 1, V remain consistently high  
O
S at 2, V data same as V data  
O
IN  
SCOPE  
VCM  
Figure 10. Common Mode Transient Immunity Test Circuit  
www.onsemi.com  
8
NCID9210 / NCID9216  
APPLICATIONS INFORMATION  
Theory of Operation  
signal lines and power fill on top, and signal lines and ground  
fill at the bottom. The alternating polarities of the layers  
creates interplane capacitances that aids the bypass  
capacitors required for reliable operation at digital  
switching rates.  
In the layout with digital isolators, it is required that the  
isolated circuits have separate ground and power planes. The  
section below the device should be clear with no power,  
ground or signal traces. Maintain a gap equal to or greater  
than the specified minimum creepage clearance of the  
device package.  
NCID9210 and NCID9216 are dualchannel digital  
isolators that enable bidirectional communication between  
two isolated circuits. They use offchip ceramic capacitors  
that serve both as the isolation barrier and as the medium of  
transmission for signal switching using OnOff keying  
(OOK) technique, illustrated in the single channel  
operational block diagram in Figure 11.  
At the transmitter side, the V input logic state is  
IN  
modulated with a high frequency carrier signal. The  
resulting signal is amplified and transmitted to the isolation  
barrier. The receiver side detects the barrier signal and  
demodulates it using an envelope detection technique. The  
Signal Lines / V  
Fill  
Signal Lines / V  
Fill  
DD2  
DD1  
output signal determines the V output logic state. V is at  
default state low when the power supply at the transmitter  
O
O
GND1 Plane  
Plane  
GND2 Plane  
Plane  
No Trace  
V
V
DD2  
side is turned off or the input V is disconnected.  
DD1  
IN  
Signal Lines / GND1 Fill  
Signal Lines / GND2 Fill  
ISOLATION  
BARRIER  
TRANSMITTER  
RECEIVER  
Figure 14. 4Layer PCB for Digital Isolator  
TX  
OOK  
Modulator  
RX  
Amplifier  
Envelope  
Detector  
IO  
VIN  
VO  
For NCID9210 and NCID9216, it is highly advised to  
connect at least a pair of low ESR supply bypass capacitors,  
placed within 2 mm from the power supply pins 3 and 14 and  
ground pins 1 and 16. Recommended values are 1 mF and  
Amplifier  
OFFCHIP  
CAPACITORS  
OSC  
Figure 11. Operational Block Diagram of Single  
Channel  
0.1 mF, respectively. Place them between the V pins of the  
DD  
device and the via to the power planes, with the higher  
frequency, lower value capacitor closer to the device pins.  
Directly connect the device ground pins 1, 7, 9 and 16 by via  
to their corresponding ground planes.  
VIN  
ISOLATION  
BARRIER  
SIGNAL  
1mF 0.1mF  
0.1mF 1mF  
GND1  
GND2  
VO  
V
DD1  
V
DD2  
Figure 12. OnOff Keying Modulation Signals  
OFFCHIP CAPACITIVE  
ISOLATION BARRIER  
GND1  
GND2  
VINA  
VOB  
IO  
+
VTX  
VOA  
IO  
IO  
RX  
TX  
TX  
RX  
Figure 15. Placement of Bypass Capacitors  
OSC  
VINB  
+
VTX  
Over Temperature Detection  
IO  
NCID9210 and NCID9216 have builtin Over  
Temperature Detection (OTD) feature that protects the IC  
from thermal damage. The output pins will automatically  
switch to default state when the ambient temperature  
exceeds the maximum junction temperature at threshold of  
approximately 160°C. The device will return to normal  
operation when the temperature decreases approximately  
20°C below the OTD threshold.  
OSC  
Figure 13. NCID9210 Operational Block Diagram  
Layout Recommendation  
Layout of the digital circuits relies on good suppression of  
unwanted noise and electromagnetic interference. It is  
recommended to use 4layer FR4 PCB, with ground plane  
below the components, power plane below the ground plane,  
www.onsemi.com  
9
 
NCID9210 / NCID9216  
ORDERING INFORMATION  
Part Number  
Grade  
Package  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
Shipping  
NCID9210  
Industrial  
Industrial  
50 Units / Tube  
750 Units / Tape & Reel  
50 Units / Tube  
NCID9210R2  
NCID9216 (pending)  
NCID9216R2 (pending)  
NCIV9210* (pending)  
NCIV9210R2* (pending)  
NCIV9216* (pending)  
NCIV9216R2* (pending)  
Industrial  
Industrial  
750 Units / Tape & Reel  
50 Units / Tube  
Automotive  
Automotive  
Automotive  
Automotive  
750 Units / Tape & Reel  
50 Units / Tube  
750 Units / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
*NCIV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC*Q100 Qualified and PPAP  
Capable.  
www.onsemi.com  
10  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC16 W  
CASE 751EN  
ISSUE A  
DATE 24 AUG 2021  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
*This information is generic. Please refer to  
A
= Assembly Location  
WL = Wafer Lot  
= Year  
WW = Work Week  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
AWLYWW  
XXXXXXXXXX  
XXXXXXXXXX  
Y
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13751G  
SOIC16 W  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCID9211

High Speed Dual-Channel, Bi-Directional Ceramic Digital Isolator
ONSEMI

NCID9211R2

High Speed Dual-Channel, Bi-Directional Ceramic Digital Isolator
ONSEMI

NCID9301

High Speed 3-Channel Digital Isolator
ONSEMI

NCID9301R2

High Speed 3-Channel Digital Isolator
ONSEMI

NCID9311

High Speed 3-Channel Digital Isolator
ONSEMI

NCID9311R2

High Speed 3-Channel Digital Isolator
ONSEMI

NCID9400

High Speed Quad-Channel Digital Isolator
ONSEMI

NCID9400R2

High Speed Quad-Channel Digital Isolator
ONSEMI

NCID9401

High Speed Quad-Channel Digital Isolator
ONSEMI

NCID9401R2

High Speed Quad-Channel Digital Isolator
ONSEMI

NCID9410

High Speed Quad-Channel Digital Isolator
ONSEMI

NCID9410R2

High Speed Quad-Channel Digital Isolator
ONSEMI