NCN5130MNTWG [ONSEMI]

Transceiver for KNX Twisted Pair Networks;
NCN5130MNTWG
型号: NCN5130MNTWG
厂家: ONSEMI    ONSEMI
描述:

Transceiver for KNX Twisted Pair Networks

文件: 总58页 (文件大小:469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCN5130  
Transceiver for KNX  
Twisted Pair Networks  
Introduction  
NCN5130 is a receiver−transmitter IC suitable for use in KNX  
twisted pair networks (KNX TP1−256). It supports the connection of  
actuators, sensors, microcontrollers, switches or other applications in  
a building network.  
www.onsemi.com  
NCN5130 handles the transmission and reception of data on the bus.  
It generates from the unregulated bus voltage stabilized voltages for its  
own power needs as well as to power external devices, for example, a  
microcontroller.  
NCN5130 assures safe coupling to and decoupling from the bus.  
Bus monitoring warns the external microcontroller in case of loss of  
power so that critical data can be stored in time.  
QFN40  
MN SUFFIX  
CASE 485AU  
1
40  
MARKING DIAGRAM  
Key Features  
9600 baud KNX Communication Speed  
Supervision of KNX Bus Voltage and Current  
Supports Bus Current Consumption up to 40 mA  
NCN5130  
21420−004  
AWLYYWWG  
High Efficient DC−DC Converters  
3.3 V Fixed  
1.2 V to 21 V Selectable  
A
= Assembly Location  
Control and Monitoring of Power Regulators  
Linear 20 V Regulator  
WL = Wafer Lot  
YY = Year  
WW = Work Week  
Buffering of Sent Data Frames (Extended Frames Supported)  
Selectable UART or SPI Interface to Host Controller  
Selectable UART and SPI baud Rate to Host Controller  
Optional CRC on UART to the Host  
Optional Received Frame−end with MARKER Service  
Optional Direct Analog Signaling to Host  
Operates with Industry Standard Low Cost 16 MHz Quartz  
Generates Clock of 8 or 16 MHz for External Devices  
Auto Acknowledge (optional)  
Auto Polling (optional)  
Temperature Monitoring  
Extended Operating Temperature Range −40°C to +105°C  
These Devices are Pb−Free and are RoHS Compliant  
G
= Pb−Free Package  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 57 of this data sheet.  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
September, 2016 − Rev. 3  
NCN5130/D  
NCN5130  
BLOCK DIAGRAM  
CEQ1  
CEQ2  
VFILT  
TRIG  
VDDA VSSA  
VDDD VSSD  
Bus Coupler  
CAV  
SCK/UC2  
SDI/RXD  
SDO/TXD  
CSB/UC1  
TREQ  
UART  
SPI  
Impedance  
Control  
VBUS1  
KNX  
DLL  
Receiver  
CCP  
MODE1  
MODE2  
Mode  
Transmitter  
TXO  
VBUS2  
VIN  
NCN5130  
VSW1  
VDD1M  
VDD1  
VSS1  
Fan−In  
Control  
FANIN  
V20V  
DC/DC  
Converter 1  
20V LDO  
OSC  
RC  
OSC  
POR  
XTAL1  
XTAL2  
VSW2  
VDD2MC  
VDD2MV  
VDD2  
TW  
TSD  
DC/DC  
Converter 2  
UVD  
XSEL  
ANALOG  
BUFFER  
VSS2  
Diagnostics  
XCLKC  
XCLK  
ANAOUT  
SAVEB RESETB  
Figure 1. Block Diagram NCN5130  
PIN OUT  
VSSA  
VDDD  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
VBUS2  
TXO  
SCK/UC2  
SDO/TXD  
SDI/RXD  
CSB/UC1  
TREQ  
3
CCP  
4
CAV  
5
NCN5130  
VBUS1  
CEQ1  
CEQ2  
VFILT  
V20V  
6
MODE2  
MODE1  
TRIG  
7
8
9
XCLKC  
10  
Figure 2. Pin Out NCN5130 (Top View)  
www.onsemi.com  
2
NCN5130  
PIN DESCRIPTION  
Table 1. PIN LIST AND DESCRIPTION  
Equivalent  
Schematic  
Name  
VSSA  
VBUS2  
TX0  
Pin  
1
Description  
Type  
Supply  
Analog Supply Voltage Ground  
2
Ground for KNX Transmitter  
Supply  
3
KNX Transmitter Output  
Analog Output  
Analog I/O  
Analog I/O  
Supply  
Type 1  
Type 2  
Type 3  
Type 5  
Type 4  
Type 4  
Type 5  
Type 5  
Type 8  
Type 9  
Type 8  
CCP  
4
AC coupling external capacitor connection  
Capacitor connection to average bus DC voltage  
KNX power supply input  
CAV  
5
VBUS1  
CEQ1  
CEQ2  
VFILT  
6
7
Capacitor connection 1 for defining equalization pulse  
Capacitor connection 2 for defining equalization pulse  
Filtered bus voltage  
Analog I/O  
Analog I/O  
Supply  
8
9
V20V  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
20V supply output  
Supply  
VDD2MV  
VDD2MC  
VDD2  
VSS2  
Voltage monitor of Voltage Regulator 2  
Current monitor input 1 of Voltage Regulator 2  
Current monitor input 2 of Voltage Regulator 2  
Voltage Regulator 2 Ground  
Analog Input  
Analog Input  
Analog Input  
Supply  
VSW2  
VIN  
Switch output of Voltage Regulator 2  
Voltage Regulator 1 and 2 Power Supply Input  
Switch output of Voltage Regulator 1  
Voltage Regulator 1 Ground  
Analog Output  
Supply  
Type 6  
Type 5  
Type 6  
VSW1  
VSS1  
Analog Output  
Supply  
VDD1  
VDD1M  
XCLKC  
TRIG  
Current Input 2 and Voltage Monitor Input of Voltage Regulator 1  
Current Monitor Input 1 of Voltage Monitor 1  
Clock Frequency Configure  
Analog Input  
Analog Input  
Digital Input  
Digital Output  
Digital Input  
Digital Input  
Digital Input  
Type 8  
Type 9  
Type 12  
Transmission Trigger Output  
Type 13  
MODE1  
MODE2  
TREQ  
CSB/UC1  
Mode Selection Input 1  
Type 12  
Mode Selection Input 2  
Type 12  
Transmit Request Input  
Type 12  
Chip Select Output (SPI) or Configuration Input (UART)  
or 20 V LDO Disable (Analog Mode)  
Digital Output or  
Digital Input  
Type 13 or 14  
SDI/RXD  
SDO/TXD  
SCK/UC2  
27  
28  
29  
Serial Data Input (SPI) or Receive Input (UART)  
Serial Data Output (SPI) or Transmit Output (UART)  
Digital Input  
Type 14  
Type 13  
Digital Output  
Serial Clock Output (SPI) or Configuration Input (UART)  
or Voltage Regulator 2 Disable (Analog Mode)  
Digital Output or  
Digital Input  
Type 13 or 14  
VDDD  
VSSD  
XCLK  
XSEL  
XTAL2  
30  
31  
32  
33  
34  
Digital Supply Voltage Input  
Supply  
Supply  
Type 7  
Digital Supply Voltage Ground  
Oscillator Clock Output  
Digital Output  
Digital Input  
Type 13  
Type 12  
Clock Selection (Quartz or Digital Clock)  
Clock Generator Output (Quartz) or Input (Digital Clock)  
Analog Output or  
Digital Input  
Type 10 or 14  
XTAL1  
SAVEB  
RESETB  
FANIN  
35  
36  
37  
38  
39  
40  
Clock Generator Input (Quartz)  
Save Signal (open drain with pull−up)  
Reset Signal (open drain with pull−up)  
Fan−In Input  
Analog Input  
Digital Output  
Digital Output  
Analog Input  
Analog Output  
Supply  
Type 10  
Type 15  
Type 15  
Type 11  
Type 16  
Type 7  
ANAOUT  
VDDA  
Analog Signal Output  
Analog Supply Voltage Input  
NOTE: Type of CSB/UC1 and SCK/UC2 is depending on status MODE1 − MODE2 pin  
Type of XTAL1 and XTAL2 pin is depending on status XSEL pin.  
www.onsemi.com  
3
NCN5130  
EQUIVALENT SCHEMATICS  
Following figure gives the equivalent schematics of the user relevant inputs and outputs. The diagrams are simplified  
representations of the circuits used.  
CCP  
60V  
CAV  
TXO  
CEQx  
60V  
7V  
60V  
60V  
Type 1: TXO−pin  
Type 2: CCP−pin  
Type 3: CAV−pin  
Type 4: CEQ1 and CEQ2−pin  
VIN  
VDDD  
VDDA  
VBUS1  
60V  
VFILT  
60V  
V20V  
60V  
VIN  
60V  
VDDD  
VDDA  
VBUS1  
VFILT  
V20V  
VIN  
VSWx  
7V  
7V  
60V  
Type 7: VDDD− and VDDA−pin  
Type 5: VBUS1−, VFILT−, V20V and VIN−pin  
Type 6: VSW1 and VSW2−pin  
VDD1  
VDD2  
7V  
7V  
VDD1  
VDD2  
VDD2MV  
VDD1M  
VDD2MC  
7V  
60V  
7V  
7V  
60V  
Type 8: VDD1−, VDD2− and VDD2MV−pin  
Type 9: VDD1M− and VDD2MC−pin  
VDDD  
VDDD  
VAUX  
VDDD  
XTAL2  
XTAL1  
FANIN  
IN  
7V  
RDOWN  
Type 12: MODE1−, MODE2−,  
TREQ−, XCLKC− and XSEL−pin  
Type 10: XTAL1− and XTAL2−pin  
Type 11: FANIN−pin  
VDDA  
VDDD  
VDDD  
VDDD  
RUP  
ANAOUT  
OUT  
IN  
OUT  
Type 13: CSB/UC1−,  
SDO/TXD−, SCK/UC2−,  
TRIG− and XCLK−pin  
Type 14: CSB/UC1−,  
SDI/RXD−, SCK/UC2  
and XTAL2−pin  
Type 15: RESETB− and  
SAVEB−pin  
Type 16: ANAOUT  
NOTE: Type of CSB/UC1 and SCK/UC2 is depending on status MODE1 − MODE2 pin  
Type of XTAL1 and XTAL2 pin is depending on status XSEL pin.  
Figure 3. In− and Output Equivalent Diagrams  
www.onsemi.com  
4
NCN5130  
ELECTRICAL SPECIFICATION  
Table 2. ABSOLUTE MAXIMUM RATINGS (Notes 1 and 2)  
Symbol Parameter  
Min  
Max  
+45  
250  
Unit  
V
V
KNX Transmitter Output Voltage  
−0.3  
TXO  
TXO  
I
KNX Transmitter Output Current (Note 3)  
Voltage on CCP−pin  
mA  
V
V
CCP  
−10.5  
−0.3  
−0.3  
−0.3  
0
+14.5  
+3.6  
+45  
+3.6  
120  
V
CAV  
Voltage on CAV−pin  
V
V
BUS1  
Voltage on VBUS1−pin  
V
V
Voltage on ANAOUT pin  
Current Consumption VBUS1−pin  
Voltage on pins CEQ1 and CEQ2  
Voltage on VFILT−pin  
V
ANAOUT  
I
mA  
V
BUS1  
V
CEQ  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
+45  
+45  
+25  
+3.6  
+45  
+45  
+45  
+45  
+3.6  
+3.6  
+3.6  
V
FILT  
V
V
20V  
Voltage on V20V−pin  
V
V
V
Voltage on VDD2MV−pin  
Voltage on VDD2MC−pin  
Voltage on VDD2−pin  
V
DD2MV  
DD2MC  
V
V
V
DD2  
V
Voltage on VSW1− and VSW2−pin  
Voltage on VIN−pin  
V
SW  
V
V
IN  
V
DD1  
Voltage on VDD1−pin  
V
V
DD1M  
Voltage on VDD1M−pin  
V
V
DIG  
Voltage on pins MODE1, MODE2, TREQ, CSB/UC1, SDI/TXD, SDO/RXD, SCK/  
UC2, XCLK, XSEL, SAVEB, RESETB, XCLKC, TRIG, and FANIN  
V
V
Voltage on VDDD− and VDDA−pin  
Voltage on XTAL1− and XTAL2−pin  
Storage temperature  
−0.3  
−0.3  
−55  
−40  
−2  
+3.6  
+3.6  
+150  
+155  
+2  
V
V
DD  
V
XTAL  
T
°C  
°C  
kV  
ST  
T
Junction Temperature (Note 4)  
J
V
HBM  
Human Body Model electronic discharge immunity (Note 5)  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Convention: currents flowing in the circuit are defined as positive.  
2. VBUS2, VSS1, VSS2, VSSA and VSSD form the common ground. They are hard connected to the PCB ground layer.  
3. Room temperature, 27 W shunt resistor for transmitter, 250 mA over temperature range.  
4. Normal performance within the limitations is guaranteed up to the Thermal Warning level. Between Thermal Warning and Thermal Shutdown  
temporary loss of function or degradation of performance (which ceases after the disturbance ceases) is possible.  
5. According to JEDEC JESD22−A114.  
www.onsemi.com  
5
 
NCN5130  
Recommend Operation Conditions  
Operating ranges define the limits for functional operation and parametric characteristics of the device. Note that the  
functionality of the chip outside these operating ranges is not guaranteed. Operating outside the recommended operating ranges  
for extended periods of time may affect device reliability.  
Table 3. OPERATING RANGES  
Symbol  
Parameter  
Min  
+20  
Max  
+33  
Unit  
V
VBUS1  
VBUS1 Voltage (Note 6)  
V
Digital and Analog Supply Voltage (VDDD− and VDDA−pin)  
Input Voltage DC−DC Converter 1 and 2  
Input Voltage at CCP−pin  
+3.13  
(Note 7)  
−10.5  
0
+3.47  
+33  
V
DD  
V
V
IN  
V
CCP  
+14.5  
+3.3  
V
V
V
Input Voltage at CAV−pin  
V
CAV  
Input Voltage on VDD1−pin  
+3.13  
+3.13  
+1.2  
+1.2  
+1.2  
0
+3.47  
+3.57  
+21  
V
DD1  
V
DD1M  
Input Voltage on VDD1M−pin  
V
V
DD2  
Input Voltage on VDD2−pin  
V
V
Input Voltage on VDD2MC−pin  
Input Voltage on VDD2MV−pin  
+21.1  
VDD  
VDD  
V
DD2MC  
DD2MV  
V
V
V
DIG  
Input Voltage on pins MODE1, MODE2, TREQ, CSB/UC1, SDI/RXD, SCK/UC2,  
XCLKC, and XSEL  
V
V
Input Voltage on FANIN−pin  
Clock Frequency External Quartz  
Ambient Temperature  
0
3.6  
V
MHz  
°C  
FANIN  
f
clk  
16  
T
A
−40  
−40  
+105  
+125  
TJ  
Junction Temperature (Note 8)  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
6. Voltage indicates DC value. With equalization pulse bus voltage must be between 11 V and 45 V.  
7. Minimum operating voltage on VIN−pin should be at least 1 V larger than the highest value of VDD1 and VDD2.  
8. Higher junction temperature can result in reduced lifetime.  
www.onsemi.com  
6
 
NCN5130  
Table 4. DC PARAMETERS The DC parameters are given for a device operating within the Recommended Operating Conditions  
unless otherwise specified. Convention: currents flowing in the circuit are defined as positive.  
Symbol  
Pin(s)  
Parameter  
Remark/Test Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Excluding active and equalization  
pulse  
V
BUS1  
Bus DC voltage  
20  
33  
V
VBUS = 30 V, IBUS = 10 mA, DC2,  
V20V disabled, no crystal or clock  
2.00  
2.70  
I
Bus Current Consumption  
mA  
BUS1_Int  
VBUS1  
VBUS = 20 V, IBUS = 40 mA  
3.50  
18.0  
16.8  
4.40  
18.9  
17.7  
V
Undervoltage release level  
Undervoltage trigger level  
Undervoltage hysteresis  
Digital Power Supply  
Analog Power Supply  
Auxiliary Supply  
V
rising, see Figure 4  
falling, see Figure 4  
17.1  
15.9  
0.6  
V
V
V
V
V
V
BUSH  
BUS1  
BUS1  
V
V
BUSL  
V
BUS_Hyst  
V
V
VDDD  
VDDA  
3.13  
3.13  
2.8  
3.3  
3.3  
3.3  
3.47  
3.47  
3.6  
DDD  
DDA  
V
Internal supply, for info only  
AUX  
KNX BUS COUPLER  
FANIN floating, V  
> V  
0.40  
0.80  
1.51  
1.17  
0.78  
0.37  
0.17  
25.0  
50.0  
72.2  
70.7  
48.5  
23.4  
11.3  
11.4  
22.3  
43.9  
33.0  
22.1  
10.7  
5.1  
0.50  
1.00  
1.95  
1.47  
0.98  
0.48  
0.23  
30.0  
60.0  
114.0  
86.0  
57.5  
27.8  
13.1  
12  
FILT  
FILTH  
FANIN = GND, V  
> V  
FILT  
FILTH  
Resistor R6 = 10k, V  
> V  
FILTH  
FILT  
Bus Coupler Current Slope  
Limitation  
Resistor R6 = 13.3k, V  
> V  
FILTH  
DI  
/Dt  
VBUS1  
VBUS1  
VBUS1  
A/s  
FILT  
coupler  
Resistor R6 = 20k, V  
> V  
FILTH  
FILT  
Resistor R6 = 42.2k, V  
Resistor R6 = 93.1k, V  
> V  
FILT  
FILT  
FILTH  
FILTH  
> V  
FANIN floating, V  
> V  
20.0  
40.0  
45.0  
45.0  
40.0  
19.5  
9.4  
FILT  
FILT  
FILTH  
FILTH  
FANIN = GND, V  
> V  
Resistor R6 = 10k, V  
> V  
FILTH  
FILT  
I
Bus Coupler Startup Current  
Limitation  
coupler_lim,  
startup  
Resistor R6 = 13.3k, V  
> V  
FILTH  
mA  
FILT  
Resistor R6 = 20k, V  
> V  
FILTH  
FILT  
Resistor R6 = 42.2k, V  
Resistor R6 = 93.1k, V  
> V  
FILT  
FILT  
FILTH  
FILTH  
> V  
FANIN floating, V  
> V  
10.6  
20.5  
39.6  
30.0  
20.3  
9.4  
FILT  
FILT  
FILTH  
FILTH  
FANIN = GND, V  
> V  
24  
Resistor R6 = 10k, V  
> V  
47.0  
35.2  
23.6  
11.9  
6.0  
FILT  
FILTH  
Bus Coupler Current  
Limitation  
Resistor R6 = 13.3k, V  
> V  
FILTH  
I
mA  
FILT  
coupler_lim  
Resistor R6 = 20k, V  
> V  
FILTH  
FILT  
Resistor R6 = 42.2k, V  
Resistor R6 = 93.1k, V  
> V  
FILT  
FILT  
FILTH  
FILTH  
> V  
4.2  
I
I
I
I
= 10 mA  
= 20 mA  
= 30 mA  
= 40 mA  
1.72  
2.34  
2.94  
3.57  
10.6  
8.9  
2.32  
2.80  
3.40  
4.25  
11.2  
9.4  
BUS1  
BUS1  
BUS1  
BUS1  
VBUS1,  
VFILT  
Coupler Voltage Drop  
V
V
coupler_drop  
(V  
= V  
− V  
)
coupler_drop  
BUS1  
FILT  
V
FILTH  
Undervoltage release level  
Undervoltage trigger level  
V
rising, see Figure 5  
falling, see Figure 5  
10.1  
8.4  
V
V
FILT  
FILT  
VFILT  
V
FILTL  
V
www.onsemi.com  
7
 
NCN5130  
Table 4. DC PARAMETERS The DC parameters are given for a device operating within the Recommended Operating Conditions  
unless otherwise specified. Convention: currents flowing in the circuit are defined as positive.  
Symbol  
Pin(s)  
Parameter  
Remark/Test Conditions  
Min  
Typ  
Max  
Unit  
FIXED DC−DC CONVERTER  
V
VIN  
Input Voltage  
4.47  
3.13  
33  
V
V
IN  
V
DD1  
VDD1  
Output Voltage  
3.3  
40  
3.47  
V
= 25 V, I  
= 40 mA,  
IN  
DD1  
V
Output Voltage Ripple  
Overcurrent Threshold  
mV  
mA  
DD1_rip  
DD1_lim  
L1 = 220 mH  
I
R = 1 W, see Figure 13  
−100  
−200  
2
V
= 25 V, I  
= 35 mA,  
in  
DD1  
Power Efficiency  
(DC Converter Only)  
L = 220 mH (1.26 W ESR),  
h
90  
%
1
VDD1  
see Figure 12  
See Figure 18  
See Figure 18  
R
R
R
R
of power switch  
of flyback switch  
8
4
W
W
V
DS(on)_p1  
DS(on)_n1  
DS(on)  
DS(on)  
V
DD1M  
VDD1M  
Input voltage VDD1M−pin  
3.57  
ADJUSTABLE DC−DC CONVERTER  
V
VIN  
Input Voltage  
V
+1  
33  
21  
V
V
V
V
IN  
DD2  
V
DD2  
Output Voltage  
V
V
V
V
V  
DD2  
1.2  
IN  
V
Undervoltage release level  
Undervoltage trigger level  
rising, see Figure 6  
falling, see Figure 6  
0.9xV  
VDD2  
DD2H  
DD2  
DD2  
DD2  
V
DD2L  
0.8xV  
DD2  
= 25 V, V  
= 40 mA, L2 = 220 mH  
= 3.3 V,  
IN  
DD2  
V
Output Voltage Ripple  
Overcurrent Threshold  
40  
90  
mV  
mA  
DD2_rip  
DD2_lim  
I
DD2  
I
R = 1 W, see Figure 13  
−100  
−250  
3
V
I
= 25 V, V  
= 35 mA, L = 220 mH  
= 3.3 V,  
in  
DD2  
Power Efficiency  
(DC Converter Only)  
h
%
DD2  
2
VDD2  
(1.26 W ESR), see Figure 13  
R
R
R
R
of power switch  
of flyback switch  
See Figure 18  
8
4
W
W
DS(on)_p2  
DS(on)_n2  
DS(on)  
DS(on)  
See Figure 18  
V
VDD2MC Input voltage VDD2MC−pin  
VDD2MV Input Resistance VDD2MV−pin  
Half−bridge leakage  
21.1  
V
DD2M  
R
VDD2M  
1
MW  
mA  
I
20  
22  
leak,vsw2  
V20V REGULATOR  
V
V20V Output Voltage  
I
< I  
, V 21 V  
FILT  
18  
20  
1.04  
V
mA  
A
20V  
20V  
20V_lim  
R > 250 kW  
6
V20V Output Current  
Limitation Step  
10 kW < R < 93.1 kW  
50.8/R  
2.29  
DI  
6
6
20V, STEP  
R < 2 kW  
mA  
mA  
A
6
R > 250 kW  
4.34  
5.68  
8.00  
6
V20V  
V20V Output Current Limitation  
(for V20VCLIMIT[2:0] = 100)  
10 kW < R < 93.1 kW  
132.0/R 273.4/R 392.0/R  
6 6 6  
I
6
20V_lim  
R < 2 kW  
9.52  
14.2  
13.2  
12.37  
15.0  
14.0  
1.0  
16.00  
15.8  
14.8  
mA  
V
6
V
V20V Undervoltage release level  
V20V Undervoltage trigger level  
V20V Undervoltage hysteresis  
V
V
V
rising, see Figure 7  
falling, see Figure 7  
20VH  
20V  
V
V
20VL  
20V  
V
= V  
– V  
20VL  
V
20V_hyst  
20V_hyst  
20VH  
XTAL OSCILLATOR  
XTAL1,  
V
Voltage on XTAL−pin  
V
DDD  
V
XTAL  
XTAL2  
www.onsemi.com  
8
NCN5130  
Table 4. DC PARAMETERS The DC parameters are given for a device operating within the Recommended Operating Conditions  
unless otherwise specified. Convention: currents flowing in the circuit are defined as positive.  
Symbol  
Pin(s)  
Parameter  
Remark/Test Conditions  
Min  
Typ  
Max  
Unit  
FAN−IN CONTROL  
FANIN shorted to GND,  
I
FANIN  
Pull−Up Current FANIN−pin  
10  
20  
40  
mA  
pu,fanin  
Pull−up connected to V  
AUX  
DIGITAL INPUTS  
SCK/UC2,  
V
V
Logic Low Threshold  
Logic High Threshold  
0
0.7  
V
V
IL  
SDI/RXD,  
CSB/UC1,  
TREQ,  
2.65  
V
DDD  
IH  
MODE1,  
MODE2,  
XSEL,  
XCLKC,  
XTAL2  
SCK/UC2−, SDI/RXD− and  
CSB/UC1 pin excluded. Only valid  
in Normal State.  
R
Internal Pull−Down Resistor  
5
10  
28  
kW  
DOWN  
DIGITAL OUTPUTS  
V
Logic low output level  
Logic high output level  
0
0.4  
V
V
SCK/UC2,  
SDO/TXD,  
CSB/UC1,  
XCLK,TRIG  
OL  
V
DDD  
0.45  
V
OH  
V
DDD  
SCK/UC2,  
XCLK,TRIG  
8
mA  
mA  
I
L
Load Current  
SDO/TXD,  
CSB/UC1  
4
V
Logic low level open drain  
Internal Pull−up Resistor  
I
OL  
= 4 mA  
0.4  
80  
V
OL  
SAVEB,  
RESETB  
R
20  
40  
kW  
up  
ANALOG OUTPUT  
PV  
Analog output division ratio for V  
Analog output division ratio for V  
Analog output division ratio for V  
Analog output division ratio for V  
Analog output division ratio for V  
0.067  
0.071  
0.086  
0.438  
0.950  
14.0  
0.071  
0.075  
0.091  
0.462  
1.000  
20.9  
0.075  
0.079  
0.096  
0.485  
1.050  
28.8  
BUS  
FILT  
BUS  
FILT  
20V  
PV  
PV  
20V  
DDA  
DD2  
BUS  
PV  
PV  
DDA  
DD2MV  
ANAOUT  
PI  
Analog output conversion ratio for I  
V/A  
mV/K  
V
BUS  
PT  
Analog output conversion ratio for T  
−4  
J
junction  
VTJ  
Analog output offset for T  
at 300K  
1.309  
OFF  
junction  
V
OFF  
Analog output offset voltage  
−12  
12  
mV  
Time between writing Analog Control Register 1 and stable ANAOUT  
voltage (<1 nF capacitive load)  
t
33  
ms  
SW,ANA  
TEMPERATURE MONITOR  
Thermal Warning  
T
TW  
Rising temperature (See Figure 8)  
Rising temperature (See Figure 8)  
See Figure 8  
105  
130  
5
115  
140  
11  
125  
150  
15  
°C  
°C  
°C  
°C  
T
Thermal shutdown  
Thermal Hysteresis  
TSD  
Hyst  
T
DT  
Delta T  
and T  
See Figure 8  
21.7  
TSD  
TW  
PACKAGE THERMAL RESISTANCE VALUE  
Simulated Conform  
JEDEC JESD−51, (2S2P)  
30  
60  
K/W  
K/W  
K/W  
Thermal Resistance  
R ,  
q
ja  
Junction−to−Ambient  
Simulated Conform  
JEDEC JESD−51, (1S0P)  
Thermal Resistance  
Junction−to−Exposed Pad  
R ,  
0.95  
q
jp  
www.onsemi.com  
9
NCN5130  
Table 5. AC PARAMETERS The AC parameters are given for a device operating within the Recommended Operating Conditions  
unless otherwise specified.  
Symbol  
Pin(s)  
Parameter  
Remark/Test Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
t
VBUS1  
VBUS1 filter time  
See Figure 4  
2
ms  
BUS_FILTER  
FIXED DC−DC CONVERTER  
t
Rising slope at VSW1−pin  
Falling slope at VSW1−pin  
0.45  
0.6  
V/ns  
V/ns  
VSW1_rise  
VSW1  
t
VSW1_fall  
ADJUSTABLE DC−DC CONVERTER  
t
Rising slope at VSW2−pin  
Falling slope at VSW2−pin  
0.45  
0.6  
V/ns  
V/ns  
VSW2_rise  
VSW2  
t
VSW2_fall  
XTAL OSCILLATOR  
f
XTAL1, XTAL2 XTAL Oscillator Frequency  
16  
MHz  
XTAL  
WATCHDOG  
Prohibited Watchdog  
Acknowledge Delay  
t
See Watchdog, p22  
2
33  
ms  
ms  
WDPR  
WDTO  
t
Watchdog Timeout Interval  
Selectable over UART or SPI  
33  
524  
Watchdog Timeout Interval  
Accuracy  
t
=Xtal accuracy  
WDTO_acc  
t
Watchdog Reset Delay  
Reset Duration  
0
8
ns  
WDRD  
t
ms  
RESET  
MASTER SERIAL PERIPHERAL INTERFACE (MASTER SPI)  
2
8
ms  
ms  
t
SPI Clock period  
sck  
SPI Baudrate depending on  
configuration input bits (see  
Interface Mode, p26). Tolerance  
is equal to Xtal oscillator  
tolerance.  
SCK  
t
SPI Clock high time  
t
t
/ 2  
/ 2  
SCK_HIGH  
SCK  
SCK  
t
SPI Clock low time  
SCK_LOW  
See also Figure 10  
t
SPI Data Input setup time  
SPI Data Input hold time  
SPI Data Output valid time  
125  
125  
ns  
ns  
ns  
SDI_SET  
SDI_HOLD  
SDI  
t
t
SDO  
C = 20 pF, See Figure 10  
L
100  
SDO_VALID  
0.5 x  
t
SPI Chip Select high time  
SPI Chip Select setup time  
SPI Chip Select hold time  
CS_HIGH  
t
SCK  
0.5 x  
t
CSB  
See Figure 10  
See Figure 11  
CS_SET  
t
SCK  
0.5 x  
t
CS_HOLD  
t
SCK  
t
TREQ low time  
TREQ high time  
TREQ setup time  
TREQ hold time  
125  
125  
125  
125  
ns  
ns  
ns  
ns  
TREQ_LOW  
t
TREQ_HIGH  
TREQ  
t
TREQ_SET  
t
TREQ_HOLD  
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)  
Baudrate depending on  
configuration input pins (see  
Interface Mode, p26).  
Tolerance is equal to tolerance  
of Xtal oscillator tolerance.  
19200  
38400  
Baud  
Baud  
f
TXD, RXD  
UART Interface Baudrate  
UART  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
10  
 
NCN5130  
VBUS  
VBUSH  
VBUSL  
tBUS_FILTER  
tBUS_FILTER  
t
<VBUS>  
Comments:  
<VBUS> is an internal signal which can be verified with the Internal State Service.  
Figure 4. Bus Voltage Undervoltage Threshold  
VFILT  
VFILTH  
VFILTL  
t
<VFILT>  
Comments:  
<VFILT> is an internal signal which can be verified with the System State Service  
Figure 5. VFILT Undervoltage Threshold  
VDD2  
VDD2H  
VDD2L  
t
<VDD2>  
Comments:  
<VDD2> is an internal signal which can be verified with the System State Service  
Figure 6. VDD2 Undervoltage Thresholds  
www.onsemi.com  
11  
 
NCN5130  
V20V  
V20VH  
V20VL  
t
<V20V>  
Comments:  
<V20V> is an internal signal which can be verified with the System State Service.  
Figure 7. V20V Undervoltage Threshold levels  
T
TTSD  
nT  
TTW  
t
<TW>  
SAVEB  
RESETB  
Analog State  
Comments:  
- <TW> is an internal signal which can be verified with the System State Service.  
- No SPI/UART communication possible when RESETB is low!  
- It's assumed all voltage supplies are within their operating condition.  
Figure 8. Temperature Monitoring Levels  
www.onsemi.com  
12  
 
NCN5130  
RESETB  
<WDEN>  
t
t
t
treset  
Re−enable  
Watchdog  
Enable  
Watchdog  
tWDRD  
>tWDPR and <tWDTO  
vtWDPR and wt WDTO  
WD Timer  
t WDTO  
t WDPR  
Remarks:  
− WD Timer is an internal timer  
tWDTO = <WDT[3:0]>  
− <WDEN> and <WDT[3:0]> are Watchdog Register bits  
Figure 9. Watchdog Timing Diagram  
CS  
CLK  
DI  
DO  
tSDI_SET  
tCS _SET  
tSDI _HOLD  
tSCK _HIGH  
tCS _HIGH  
tSDO_VALID  
tSCK _LOW  
tSCK  
tCS_HOLD  
Figure 10. SPI Bus Timing Diagram  
CS  
CLK  
DI  
LSB  
1
2
7
DO  
Dummy  
Dummy  
Dummy  
Dummy  
TREQ  
tTREQ_HOLD  
tTREQ _SET  
tTREQ _LOW  
tTREQ_HIGH  
Figure 11. TREQ Timing Diagram  
www.onsemi.com  
13  
 
NCN5130  
TYPICAL APPLICATION SCHEMATICS  
RESETb  
SAVEb  
uC CLK  
R
6
C
C
9
8
3.3  
3.3  
X
1
C
5
VCC  
GND  
3.3  
C
6
VSSA  
VBUS2  
TXO  
VDDD  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
SCK/UC2  
SDO/TXD  
SDI/RXD  
CSB/UC1  
TREQ  
D
2
1
R
1
TxD  
RxD  
3
A
CCP  
4
C
CAV  
1
5
NCN5130  
VBUS1  
CEQ1  
6
MODE2  
MODE1  
TRIG  
7
D
C
CEQ2  
VFILT  
V20V  
2
2
8
9
XCLKC  
10  
C
C
C
7
3
4
3.3  
3.3  
B
C
10  
R
L
1
2
Figure 12. Typical Application Schematic, 9−bit UART Mode (19200bps), Single Supply, External FANIN Configuration  
and 8 MHz Microcontroller Clock Signal  
www.onsemi.com  
14  
 
NCN5130  
TYPICAL APPLICATION SCHEMATICS  
RESETb  
SAVEb  
uC CLK  
C
C
8
9
3.3  
3.3  
X
1
V2  
C
5
VCC  
VCC2  
GND  
3.3  
C
6
VSSA  
VBUS2  
TXO  
VDDD  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
SCK  
SDO  
SDI  
SCK/UC2  
SDO/TXD  
SDI/RXD  
CSB/UC1  
TREQ  
D
R
1
1
A
CCP  
C
CAV  
1
NCN5130  
VBUS1  
CEQ1  
CEQ2  
VFILT  
V20V  
SCB  
TREQ  
MODE2  
MODE1  
TRIG  
C
D
2
2
XCLKC  
C
C
C
7
3
4
3.3  
B
C
10  
L
2
L
1
R
2
R
R
4
5
R
V2  
3
C
11  
Figure 13. Typical Application Schematic, SPI (500 kbps), Dual Supply, 10 mA Bus Current Limit and 0.5 mA/ms  
Bus Current Slopes, 16 MHz Clock for Microcontroller  
www.onsemi.com  
15  
 
NCN5130  
TYPICAL APPLICATION SCHEMATICS  
RESETb  
SAVEb  
3.3  
3.3  
VCC  
GND  
C5  
3.3  
C6  
VSSA  
VBUS2  
TXO  
VDDD  
SCK/UC2  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
D1  
R1  
TxD  
RxD  
SDO/TXD  
SDI/RXD  
CSB/UC1  
TREQ  
A
CCP  
C1  
CAV  
NCN5130  
VBUS1  
CEQ1  
CEQ2  
VFILT  
V20V  
MODE2  
MODE1  
TRIG  
C2  
D2  
XCLKC  
C3  
C4  
C7  
3.3  
3.3  
B
C10  
L1  
R2  
Figure 14. Typical Application Schematic, Analog Mode, Single Supply, 20 mA Bus Current Limit and 1.0 mA/ms  
Bus Current Slopes  
www.onsemi.com  
16  
 
NCN5130  
Table 6. EXTERNAL COMPONENTS LIST AND DESCRIPTION  
Comp.  
Function  
Min  
42.3  
198  
80  
Typ  
47  
Max  
51.7  
242  
Unit  
nF  
nF  
nF  
mF  
nF  
nF  
mF  
Remarks  
50 V, Ceramic  
50 V, Ceramic  
50 V, Ceramic  
35 V  
Notes  
C
C
C
C
C
C
C
AC coupling capacitor  
9
9
1
2
3
4
5
6
7
Equalization capacitor  
220  
100  
100  
100  
100  
1
Capacitor to average bus DC voltage  
Storage and filter capacitor VFILT  
VDDA HF rejection capacitor  
VDDD HF rejection capacitor  
Load Capacitor V20V  
120  
9
12.5  
80  
4000  
9, 17  
6.3 V, Ceramic  
6.3 V, Ceramic  
35 V, Ceramic, ESR < 2 W  
80  
14,  
15, 17  
C , C  
Parallel capacitor X−tal  
Load capacitor VDD1  
8
8
10  
10  
10  
27  
1
12  
pF  
mF  
mF  
W
6.3 V, Ceramic  
6.3 V, Ceramic, ESR < 0.1 W  
Ceramic, ESR < 0.1 W  
1 W  
10  
8
9
C
10  
C
11  
Load capacitor VDD2  
8
11  
9
R
Shunt resistor for transmitting  
DC1 sensing resistor  
24.3  
0.47  
0.47  
0
29.7  
10  
1
2
3
4
5
R
W
1/16 W  
R
R
R
DC2 sensing resistor  
1
10  
W
1/16 W  
Voltage divider to specify VDD2  
1/16 W, see p19 for  
calculating the exact value  
W
0
1000  
kW  
mH  
L , L  
DC1/DC2 inductor  
220  
SS16  
1
2
D
D
Reverse polarity protection diode  
Voltage suppressor  
12  
1
2
1
1SMA40CA  
FA-238  
X
Crystal oscillator  
13  
16  
R
Fan-In Programming Resistor  
10  
93.1  
kW  
1% precision  
6
9. Component must be between minimum and maximum value to fulfill the KNX requirement.  
10.Actual capacitor value depends on X1. If a crystal oscillator is chosen, the capacitors need to be chosen in such a way that the frequency  
equals 16 MHz. Capacitors are not required if external clock signal is supplied.  
11. Voltage of capacitor depends on VDD2 value defined by R4 and R5. See p16 for more details on defining VDD2 voltage value.  
12.Reverse polarity diode is mandatory to fulfill the KNX requirement.  
13.A clock signal of 16 MHz (50 ppm or less) is mandatory to fulfill the KNX requirements. Or a crystal oscillator of 16 MHz, 50 ppm is used  
(C8 and C9 need to be of the correct value based on the crystal datasheet), or an external 16 MHz clock is used.  
14.It’s allowed to short this pin to VFILT-pin  
15.High capacitor value might affect the start up time  
16.If no resistor connected or pulled up to 3.3 V the KNX device should be certified as a bus load of 10 mA. If shorted to ground the KNX device  
should be certified as a bus load of 20 mA. If a resistor to ground is connected between 10 kW and 93.1 kW the device should be certified  
as a bus load of 10 mA (42.2 k), 20 mA (20 k), 30 mA (13.3 k) or 40 mA (10 k).  
17.Total charge of C4 and C7 may not be higher than 121 mC to fulfill the KNX requirement.  
www.onsemi.com  
17  
 
NCN5130  
ANALOG FUNCTIONAL DESCRIPTION  
Because NCN5130 follows the KNX standard only a brief  
The active pulse is produced by the transmitter and is  
description of the KNX related blocks is given in this  
datasheet. Detailed information on the KNX Bus can be  
found on the KNX website (www.knx.org) and in the KNX  
standards.  
ideally rectangular. It has a duration of 35 ms and a depth  
between 6 and 9 V (V ). Each active pulse is followed by  
act  
an equalization pulse with a duration of 69 ms. The latter is  
an abrupt jump of the bus voltage above the DC level  
followed by an exponential decay down to the DC level. The  
KNX Bus Interfacing  
equalization pulse is characterized by its height V and the  
eq  
Each bit period is 104 ms. Logic 1 is simply the DC level  
of the bus voltage which is between 20 V and 33 V. Logic 0  
is encoded as a drop in the bus voltage with respect to the DC  
level. Logic 0 is known as the active pulse.  
voltage V reached at the end of the equalization pulse.  
end  
See the KNX Twisted Pair Standard (KNX TP1−256) for  
more detailed KNX information.  
VBUS  
DC Level  
Active Pulse  
Equalization Pulse  
t
35ms  
69ms  
104ms  
104ms  
1
0
Figure 15. KNX Bus Voltage versus Digital Value  
KNX Bus Transmitter  
this a large filter capacitor is used on the VFILT−pin. Abrupt  
load current steps are absorbed by the filter capacitor.  
Long−term stability requires that the average bus coupler  
input current is equal to the average (bus coupler) load  
The purpose of the transmitter is to produce an active  
pulse (see Figure 15) between 6 V and 9 V regardless of the  
bus impedance (Note 1). In order to do this the transmitter  
will sink as much current as necessary until the bus voltage  
drops by the desired amount.  
current. This is shown by the parameter DI  
/Dt, which  
coupler  
indicates the bus current slope limit. The bus coupler will  
also limit the current to a maximum of I  
. At  
to  
coupler_lim  
KNX Bus Receiver  
startup, this current limit is increased to I  
coupler_lim,startup  
The receiver detects the beginning and the end of the  
active pulse. The detection threshold for the start of the  
active pulse is −0.45 V (typ.) below the average bus voltage.  
The detection threshold for the end of the active pulse is  
−0.2 V (typ.) below the average bus voltage giving a  
hysteresis of 0.25 V (typ.).  
allow for fast charging of the VFILT bulk capacitance.  
There are 4 conditions that determine the dimensioning of  
the VFILT capacitor. First, the capacitor value should be  
between 12.5 mF and 4000 mF to garantuee proper operation  
of the part. The next requirement on the VFILT capacitor is  
determined by the startup time of the system. According to  
the KNX specification, the total startup time must be below  
10 s. This time is comprised of the time to charge the VFILT  
capacitor to 12 V (where the DCDC convertor becomes  
operatonal) and the startup time of the rest of the system  
Bus Coupler  
The role of the bus coupler is to extract the DC voltage  
from the bus and provide a stable voltage supply for the  
purpose of powering the NCN5130. This stable voltage  
supplied by the bus coupler is called VFILT, and will follow  
the average bus voltage. The bus coupler also makes sure  
that the current drawn from the bus changes very slowly. For  
t . This gives the following formula:  
startup,system  
Icoupler_Ilim,startup  
ǒ
Ǔ
C t 10 s * tstartup,system  
 
VFILTH  
1. Maximum bus impedance is specified in the KNX Twisted Pair Standard  
www.onsemi.com  
18  
 
NCN5130  
The third limit on VFILT capacitor value is the required  
and DC2 correctly, the voltage on the VIN−pin should be  
capacitor value to filter out current steps DI  
of the system  
higher than the highest value of DC1 and DC2.  
step  
without going into reset.  
Although both DC−DC converters are capable of  
delivering 100 mA, the maximum current capability will not  
always be usable. One always needs to make sure that the  
KNX bus power consumption stays within the KNX  
specification. The maximum allowed current for the DC−DC  
converters and V20V regulator can be estimated as next:  
2
DIstep  
C u  
ǒ
Ǔ
2 @ (VBUS1 * Vcoupler_drop * VFILTL) @ Islope  
The last condition on the size of VFILT is the desired  
warning time t  
between SAVEB and RESETB in case  
warning  
the bus voltage drops away. This is determined by the current  
ǒ
Ǔ
VBUS   IBUS * I20V  
ƪǒ  
Ǔ
ǒ
Ǔƫ w 1  
consumption of the system I  
.
ǒtsystem  
Ǔ
(eq. 2)  
2   VDD1   IDD1 ) VDD2   IDD2  
warning ) tbusfilter  
C u Isystem  
 
I
will be limited by the KNX standard and should be  
BUS  
ǒV  
Ǔ
BUS1 * Vcoupler_drop * VFILTL  
lower or equal to I  
(see Table 4). Minimum V  
is  
coupler  
BUS  
20 V (see KNX standard). V  
and V  
can be found back  
The bus coupler is implemented as a linear voltage  
regulator. For efficiency purpose, the voltage drop over the  
bus coupler is kept minimal (see Table 4).  
DD1  
DD2  
in Table 4. I  
, I  
and I  
must be chosen in a correct  
DD1 DD2  
20V  
way to be in line with the KNX specification (Note 2).  
Although DC2 can operate up to 21 V, it will not be  
possible to generate this 21 V under all operating conditions.  
See application note AND9135 for defining the optimum  
inductor and capacitor of the DC−DC converters. When  
using low series resistance output capacitors on DC2, it is  
advised to split the current sense resistor as shown in  
Figure 18 to reduce ripple current for low load conditions.  
KNX Impedance Control  
The impedance control circuit defines the impedance of  
the bus device during the active and equalization pulses. The  
impedance can be divided into a static and a dynamic  
component, the latter being a function of time. The static  
impedance defines the load for the active pulse current and  
the equalization pulse current. The dynamic impedance is  
produced by a block, called an equalization pulse generator,  
that reduces the device current consumption (i.e. increases  
the device impedance) as a function of time during the  
equalization phase so as to return energy to the bus.  
V20V Regulator  
This is the 20 V low drop linear voltage regulator used to  
supply external devices. As it draws current from VFILT,  
this current is seen without any power conversion directly at  
the VBUS1 pin.  
The V20V regulator starts up by default but can be  
disabled by a command from the host controller  
(<V20VEN>, see Analog Control Register 0, p54). When  
the V20V regulator is not used, no load capacitor needs to  
be connected (see C7 of Figures 12, 13 and 14). Connect  
V20V−pin with VFILT−pin in this case.  
V20V regulator will only be enabled when VFILT−bit is  
set (<VFILT>, see System Status Service, p37). The host  
controller can also monitor the status of the regulator  
(<V20V>, see System Status Service, p37). The 20 V  
regulator has a current limit that depends on the FANIN  
resistor value, and the value of bits 0−3  
(V20VCLIMIT[0:2]) of the analog control register. In Table  
4, the typical value of the current limit at startup is given as  
Fixed and Adjustable DC−DC Converter  
The device contains two DC−DC buck converters, both  
supplied from VFILT.  
DC1 provides a fixed voltage of 3.3 V. This voltage is used  
as an internal low voltage supply (V  
and V  
) but can  
DDA  
DDD  
also be used to power external devices (VDD1−pin). DC1 is  
automatically enabled during the power−up procedure (see  
Analog State Diagram, p23).  
DC2 provides a programmable voltage by means of an  
external resistor divider. It is not used as an internal voltage  
supply making it not mandatory to use this DC−DC  
converter (if not needed, tie the VDD2MV pin to VDD1, see  
also Figure 12).  
DC2 can be monitored (<VDD2>, see System Status  
Service, p37), and/or disabled by a command from the host  
controller (<DC2EN>, see Analog Control Register 0, p54).  
DC2 will only be enabled when VFILT−bit is set (<VFILT>,  
see System Status Service, p37). The status of DC2 can be  
monitored (<VDD2>, see System Status Service, p37).  
I
(V20VCLIMIT[0:2] initializes at 100). For each bit  
20V_lim  
difference, the current limit is adjusted up or down by DI  
20  
.
V,STEP  
Xtal Oscillator  
An analog oscillator cell generates the main clock of  
16 MHz. This clock is directly provided to the digital block  
to generate all necessary clock domains.  
An input pin XSEL is foreseen to enable the use of a quartz  
crystal (see Figure 16) or an external clock generator (see  
Figure 17) to generate the main clock.  
The voltage divider can be calculated as follows:  
VDD2 * 1.2  
R4 + R5   
(eq. 1)  
1.2  
Both DC−DC converters make use of slope control to  
improve EMC performance (see Table 5). To operate DC1  
2. The formula is for a typical KNX application. It‘s only given as guidance and does not guarantee compliance with the KNX standard.  
www.onsemi.com  
19  
 
NCN5130  
XTAL2 34  
XTAL1  
XTAL2 34  
XTAL1 35  
OSC  
OSC  
Microcontroller  
35  
33  
XSEL  
32  
21  
VDD  
33  
21  
32  
XCLK  
XCLKC  
XCLK  
XSEL  
XCLKC  
8 MHz @ XCLC = VSS  
16 MHz @ XCLC = VDD  
VDD  
8 MHz @ XCLC = VSS  
16 MHz @ XCLC = VDD  
Figure 16. XTAL Oscillator  
Figure 17. External Clock Generator  
Transmit Trigger  
The XCLK−pin can be used to supply a clock signal to the  
host controller. This clock signal can be switched off by a  
command from the host controller (<XCLKEN>, see  
Analog Control Register 0, p54).  
After power−up, a 4 MHz (Note 3) clock signal will be  
present on the XCLK−pin during Stand−By. When Normal  
State is entered, a 8 or 16 MHz clock signal will be present  
on the XCLK−pin. See also Figure 20. To output an 8 MHz  
clock on the XCLK pin, the XCLKC pin must be pulled to  
ground. When the XCLKC pin is pulled up to VDDD, the  
XCLK pin will output a 16 MHz clock signal.  
When Normal State is left and Stand−By State is re−entered  
due to an issue different than an Xtal issue, the 8 or 16 MHz  
clock signal will still be present on the XCLK−pin during the  
Stand−By State. If however Stand−By is entered from  
Normal State due to an Xtal issue, the 4 MHz clock signal  
will be present on the XCLK−pin. See also Table 7.  
When bit 3 of analog control register 0 is set, the TRIG−pin  
will output a signal that goes high 1 bit time before the start  
of a scheduled transmission, and goes low when the  
transmission is complete or a collision is detected. This can  
be used during development as verification of transmission.  
Note that a scheduled transmission is a frame that is sent less  
than t  
(TODO s) after previous communication on  
BUS,IDLE  
the bus. When a frame is transmitted on a bus which has been  
idle for a longer time, or an ACK/NACK/BUSY response is  
sent, the transmission will start immediately after the trigger  
goes high, and the time between trigger high and frame  
transmission start will not be consistent.  
RESETB− and SAVEB−pin  
The RESETB signal can be used to keep the host  
controller in a reset state. When RESETB is low this  
indicates that the bus voltage is too low for normal operation  
and that the fixed DC−DC converter has not started up. It  
could also indicate a Thermal Shutdown (TSD). The  
RESETB signal also indicates if communication between  
host and NCN5130 is possible.  
FANIN−pin  
The FANIN−pin defines the maximum allowed bus  
current and bus current slopes. If the FANIN−pin is kept  
floating, pulled up to V , or pulled down with a resistance  
DD  
The SAVEB signal indicates correct operation. When SAVEB  
goes low, this indicates a possible issue (loss of bus power or  
too high temperature) which could trigger the host controller  
to save critical data or go to a save state. SAVEB goes low  
immediately when VFILT goes below 14 V (due to sudden  
large current usage) or after 2 ms when VBUS goes below  
20 V. RESETB goes low when VFILT goes below 12 V.  
RESETB− and SAVEB−pin are open−drain pins with an  
higher than 250 kW, NCN5130 will limit the KNX bus  
current slopes to 0.5 mA/ms at all times. NCN5130 will also  
limit the KNX bus current to 30 mA during start−up. During  
normal operation, NCN5130 is capable of taking 10.6 mA  
(= I  
) from the KNX bus for supplying external loads  
coupler  
(DC1, DC2 and V20V).  
If the FANIN−pin is pulled to ground with a resistance  
smaller than 2 kW the operation is similar as above with the  
exception that the KNX bus current slopes will be limited to  
1 mA/ms at all times, the KNX bus current will be limited  
internal pull−up resistor to V  
.
DDD  
Voltage Supervisors  
to 60 mA during start−up and up to 20.5 mA (I  
) can be  
NCN5130 has different voltage supervisors monitoring  
VBUS, VFILT, VDD2 and V20V. The general function of a  
voltage supervisor is to detect when a voltage is above or  
below a certain level. The levels for the different voltages  
monitored can be found back in Table 4 (see also Figures 4,  
5, 6 and 7).  
The status of the voltage supervisors can be monitored by  
the host controller (see System Status Service, p37).  
Depending on the voltage supervisor outputs, the device  
can enter different states (see Analog State Diagram, p23).  
coupler  
taken from the KNX bus during normal operation. When the  
FANIN−pin is pulled to ground with a resistance between  
10 kW and 93.1 kW, the current slope and current limit are  
defined by the values from Table 4. For different resistor  
values, the typical current limit can be approximated by the  
formula Ibus = 0.0004 + 434/R6 A. Using different resistor  
values is, however, not recommended.  
Definitions for Start−Up and Normal Operation (as given  
above) can be found in the KNX Specification.  
3. The 4 MHz clock signal is internally generated and will be less accurate as the crystal generated clock signal of 8 or 16 MHz.  
www.onsemi.com  
20  
 
NCN5130  
VIN  
From VFILT  
P1  
N1  
L1  
1Ω  
VSW1  
Switch  
Controller  
VDD1 = 3.3V  
F
10μ  
VSS1  
VDD1M  
VDD1  
COMP  
P2  
L2  
0.47Ω  
0.47Ω  
VSW2  
VSS2  
Switch  
Controller  
VDD2 = 1.2V – 20V  
10μF  
N2  
R4  
VDD2MV  
VDD2MC  
VDD2  
COMP  
R5  
NCN5130  
Figure 18. Fixed (VDD1) and Adjustable (VDD2) DC−DC Converter  
www.onsemi.com  
21  
NCN5130  
Table 7. STATUS OF SEVERAL BLOCKS DURING THE DIFFERENT (ANALOG) STATES  
State  
Reset  
Osc  
Off  
XCLK  
Off  
VDD1  
Off  
VDD2/V20V  
Off  
SPI/UART  
Inactive  
Inactive  
Active  
KNX  
Inactive  
Inactive  
Start−Up  
Off  
Off  
Start−up  
On  
Off  
Stand−By (Note 18)  
Off  
4 MHz  
Start−Up  
Inactive  
(Note 23)  
Stand−By (Note 19)  
Normal  
On  
(Note 21)  
On  
(Note 21)  
On  
On  
On (Note 22)  
On  
Active  
Active  
Inactive  
(Note 23)  
On  
On  
(Note 20)  
Active  
18.Only valid when entering Stand−By from Start−Up State.  
19.Only valid when entering Stand−By from Normal State.  
20.8 MHz or 16 MHz depending on XCLKC.  
21.4 MHz signal if Stand−By state was entered due to oscillator issue. Otherwise 8 MHz or 16 MHz clock signal.  
22.Only operational if Stand−By state was not entered due to VDD2 or V20V issue.  
23.Under certain conditions KNX bus is (partly) active. See Digital State Diagram for more details.  
Temperature Monitor  
Once this bit is set to ‘1’, the host controller needs to re−write  
this bit to clear the internal timer before the Watchdog  
Timeout Interval expires (Watchdog Timeout Interval =  
<WDT>, see Watchdog Register, p54).  
The device produces an over−temperature warning (TW)  
and a thermal shutdown warning (TSD). Whenever the  
junction temperature rises above the Thermal Warning level  
(T ), the SAVEB−pin will go low to signal the issue to the  
TW  
In case the Watchdog is acknowledged too early (before  
host controller. Because the SAVEB−pin will not only go  
low on a Thermal Warning (TW), the host controller needs  
to verify the issue by requesting the status (<TW>, see  
System Status Service, p37). When the junction temperature  
is above TW, the host controller should undertake actions to  
reduce the junction temperature and/or store critical data.  
When the junction temperature reaches Thermal  
t
(t  
) or not within the Watchdog Timeout Interval  
WDPR  
), the RESETB−pin will be made low (= reset host  
WDTO  
controller).  
Table 8 gives the Watchdog timings t  
and t  
.
WDPR  
WDTO  
Details on <WDT> can be found in the Watchdog Register,  
p54.  
Table 8. WATCHDOG TIMINGS  
Shutdown (T ), the device will go to the Reset State. The  
TSD  
Thermal Shutdown will be stored (<TSD>, see Analog  
Status Register, p56) and the analog and digital power  
supply will be stopped (to protect the device). The device  
will stay in the Reset State as long as the temperature stays  
WDT[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
t
[ms]  
t
[ms]  
WDPR  
WDTO  
33  
2
66  
4
6
8
98  
above T  
.
TSD  
If the temperature drops below T , Start−Up State will  
TSD  
131  
164  
197  
229  
262  
295  
328  
360  
393  
426  
459  
492  
524  
be entered (see also Figure 19). At the moment VDD1 is  
back up and the OTP memory is read, Stand−By State will  
be entered and RESETB will go high. The Xtal oscillator  
will be started. Once the temperature has dropped below  
10  
12  
14  
16  
18  
20  
23  
25  
27  
29  
30  
31  
T
and all voltages are high enough, Normal State will be  
TW  
entered. SAVEB will go high and KNX communication is  
again possible.  
The TW−bit will be reset at the moment the junction  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
temperature drops below T . The TSD−bit will only be  
TW  
reset when the junction temperature is below T  
and the  
TSD  
<TSD> bit is read (see Analog Status Register, p56).  
Figure 8 gives a better view on the temperature monitor.  
Watchdog  
NCN5130 provides a Watchdog function to the host  
controller. The Watchdog function can be enabled by means  
of the WDEN−bit (<WDEN>, see Watchdog Register, p54).  
1111  
www.onsemi.com  
22  
 
NCN5130  
Analog State Diagram  
oscillator has started, no Thermal Warning (TW) or Thermal  
Shutdown (TSD) was detected and the VBUS−, VFILT−,  
VDD2− and V20V−bits are set, the Normal State will be  
entered and SAVEB−pin will go high.  
The analog state diagram of NCN5130 is given in  
Figure 19. The status of the oscillator, XCLK−pin, DC−DC  
converters, V20V regulator, serial and KNX  
communication during the different (analog) states is given  
in Table 7.  
Figure 21 gives a detailed view on the shut−down  
behavior. If the KNX bus voltage drops below V  
for  
BUSL  
Figure 20 gives a detailed view on the start−up behavior  
of NCN5130. After applying the bus voltage, the filter  
capacitor starts to charge. During this Reset State, the  
more than t  
, the VBUS−bit will be reset (<VBUS>,  
bus_filter  
see System Status Service, p37) and the Standy−By State is  
entered. SAVEB will go low to signal this. When VFILT  
current drawn from the bus is limited to I  
(for details  
drops below V , DC2 and the V20V regulator will be  
FILTL  
coupler  
see the KNX Standards). Once the voltage on the filter  
capacitor reaches 10 V (typ.), the fixed DC−DC converter  
(powering VDDA) will be enabled and the device enters the  
switched off. When VFILT drops below 6.5 V (typ), DC1  
will be switched off and V drops below 2.8 V (typ.) the  
device goes to Reset State (RESETB low).  
DD1  
Start−Up State. When V  
gets above 2.8 V (typ.), the  
DD1  
Analog Output  
OTP memory is read out to trim some analog parameters  
(OTP memory is not accessible by the user). When done, the  
Stand−By State is entered and the RESETB−pin is made  
A multiplexed analog signal is available on the  
ANAOUT−pin for monitoring signal levels. The signal read  
out on this pin can be configured through the Analog Output  
Control bits (<ANAOUTCTRL>, see Analog Control  
Register 1, p 52).  
high. If at this moment V  
is above V  
, the VBUS−bit  
BUS  
BUSH  
will be set (<VBUS>, see System Status Service, p37). After  
aprox. 2 ms the Xtal oscillator will start. When V is  
FILT  
above V  
DC2 and V20V will be started. When the Xtal  
FILTH  
Reset  
RESETB = ‘0’  
SAVEB = ‘0’  
VFILT > 12V  
and  
Temp < TSD  
Enable DC1  
Disable DC1  
VFILT < 6.5V  
Start−Up  
RESETB = ‘0’  
SAVEB = ‘0’  
Disable DC1, DC2 and V20V  
VDDA OK  
and  
OTP read done  
and clock present  
Disable DC2 and V20V  
VFILT < VFILTL  
Enable DC2 and V20V  
VFILT > VFILTH  
VFILT < 6.5V  
Stand−By  
RESETB = ‘1’  
SAVEB = ‘0’  
<TSD> = ‘1’  
or  
VDDA nOK  
Disable DC1  
<TSD> = ‘1’  
or  
VDDA nOK  
<TW> = ‘0’ and <XTAL> = ‘1’ and  
<VBUS> = ‘1’ and <VFILT> = ‘1’ and  
<VDD2> = ‘1’ and <V20V> = ‘1’  
<TW> = ‘1’ or <XTAL> = ‘0’ or  
<VBUS> = ‘0’ or <VFILT> = ‘0’ or  
<VDD2> = ‘0’ or <V20V> = ‘0’  
Normal  
RESETB = ‘1’  
SAVEB = ‘1’  
Remarks:  
− <TW>, <XTAL>, <VBUS>, <VFILT>, <VDD2> and <V20V> are internal status bits which can be verified with the System State Service.  
− <TSD> is an internal signal indicating a Thermal Shutdown. This internal signal cannot be read out.  
− Although Reset State could be entered from Normal State on a TSD, Stand−By State will be entered first due to a TW.  
Figure 19. Analog State Diagram  
www.onsemi.com  
23  
 
NCN5130  
VBUS  
VFILT  
VBUSH  
VFILTH  
12V  
IBUS  
Icoupler_lim,startup  
VDD1  
2.8V  
VXTAL  
Xtal Oscillator  
2ms  
2ms  
<VBUS>  
<VFILT>  
VDD2  
0.9 x VDD2  
<VDD2>  
V20V  
V20VH  
<V20V>  
RESETB  
SAVEB  
XCLK  
t
Reset  
Start−Up  
Stand−By  
Normal  
Remarks:  
VDD1 directly connected to VDDA.  
Figure 20. Start−Up Behavior  
www.onsemi.com  
24  
NCN5130  
VBUS  
VFILT  
VBUSH  
VBUSL  
VFILTL  
6.5V  
IBUS  
VDD1  
2.8V  
VXTAL  
Xtal Oscillator  
tbus_filter  
tbus_filter  
<VBUS>  
<VFILT>  
VDD2  
0.9 x VDD2  
<VDD2>  
V20V  
<V20V>  
RESETB  
SAVEB  
XCLK  
t
Normal  
Stand-By  
Normal  
Stand-By  
Reset  
Remarks:  
VDD1 directly connected to VDDA.  
Figure 21. Shut−Down Behavior  
www.onsemi.com  
25  
NCN5130  
Interface Mode  
The device can communicate with the host controller by  
means of a UART interface or an SPI interface. The  
selection of the interface is done by the pins MODE1,  
MODE2, TREQ, SCK/UC2 and CSB/UC1.  
Table 9. INTERFACE SELECTION  
TREQ  
MODE2  
MODE1  
SCK/UC2  
CSB/UC1  
SDI/RXD  
SDO/TXD  
Description  
9−bit UART−Mode, 19200 bps  
9−bit UART−Mode, 38400 bps  
8−bit UART−Mode, 19200 bps  
8−bit UART−Mode, 38400 bps  
Analog Mode  
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
RXD  
TXD  
0
0
1
1
0
1
1
DC2EN  
V20VEN  
Driver  
SDI  
Receiver  
SDO  
TREQ  
TREQ  
SPI Master, 125 kbps  
SCK (out)  
CSB (out)  
SPI Master, 500 kbps  
NOTE: X = Don‘t Care  
UART Interface  
The UART interface is selected by pulling pins TREQ,  
MODE1 and MODE2 to ground. Pin UC2 is used to select  
the UART Mode (‘0’ = 9−bit, ‘1’ = 8−bit) and pin UC1 is  
used to select the baudrate (‘0’ = 19200 bps, ‘1’ =  
38400 bps). The UART interface allows full duplex,  
asynchronous communication.  
The difference between 8−bit mode and 9−bit mode is that  
in 9−bit an additional parity bit is transmitted. This parity bit  
is used as an even parity bit (with exception of the internal  
register read and write services where the parity bit is  
meaningless and should be ignored). However, when the  
NCN5130 detects an acceptance window error or pulse  
duration error on the KNX bus, the parity bit is also encoded  
to indicate an error in the byte. In 8−bit mode one extra  
service is available (U_FrameState.ind). The SDI/RXD−pin  
is the NCN5130 UART receive pin and is used to send data  
from the host controller to the device. Pin SDO/TXD is the  
NCN5130 UART transmit pin and is used to transmit data  
between the device and the host controller. Figure 12 gives  
an UART application example (9−bit, 19200 bps). Data is  
transmitted LSB first.  
Start  
(= 0)  
Stop  
(= 1)  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 22. 8−bit UART Mode  
Start  
(= 0)  
Stop  
(= 1)  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Parity  
Figure 23. 9−bit UART Mode  
One special UART Mode is foreseen called Analog Mode.  
When this mode is selected (TREQ = ‘1’, MODEx = ‘0’) an  
immediate connection is made with the KNX transmitter  
receiver (see Figure 24). Bit level coding/decoding has to be  
done by the host controller. Keep in mind that the signals on  
the SDI/RXD− and SDO/TXD−pin are inverted. Figure 14  
gives an Analog Mode application example. In Analog  
Mode, the UC1 and UC2 pins are used to enable or disable  
the 20 V regulator and DC2 controller. When pulled low,  
these blocks are enabled. When one of these pins is pulled  
to VDDD, the respective block is disabled. When using the  
device in Analog Mode, no clock needs to be provided to the  
device.  
www.onsemi.com  
26  
 
NCN5130  
CEQ1  
CEQ2  
VFILT  
VDDA VSSA  
VDDD VSSD  
Bus Coupler  
CAV  
SCK/UC2  
Impedance  
Control  
VBUS1  
SDI/RXD  
SDO/TXD  
Receiver  
CSB/UC1  
CCP  
TREQ (TREQ = 1)  
NCN5130  
MODE1  
MODE2  
TXO  
VBUS2  
Transmitter  
VIN  
VSW1  
VDD1M  
VDD1  
VSS1  
Fan−In  
Control  
FANIN  
V20V  
DC/DC  
Converter 1  
20V LDO  
OSC  
RC  
Osc  
POR  
OSC  
XTAL1  
XTAL2  
VSW2  
VDD2MC  
VDD2MV  
VDD2  
TW/  
TSD  
DC/DC  
Converter 2  
UVD  
XSEL  
VSS2  
Diagnostics  
XCLKC  
XCLK  
ANAOUT  
SAVEB RESETB  
Figure 24. Analog UART Mode  
www.onsemi.com  
27  
NCN5130  
SPI Interface  
The SPI interface allows full duplex synchronous  
communication between the device and the host controller.  
The interface operates in Mode 0 (CPOL and CPHA = ‘0’)  
meaning that the data is clocked out on the falling edge and  
sampled on the rising edge. The LSB is transmitted first.  
The SPI interface is selected by MODE1− and  
MODE2−pin. The baudrate is determined by which  
MODE−pin is pulled high (MODE1 pulled high = 125 kbps,  
MODE2 pulled high = 500 kbps).  
0
1
2
3
4
5
6
7
CSB  
SCK  
SDI  
LSB  
LSB  
1
1
2
2
3
3
4
4
5
5
6
6
MSB  
MSB  
SDO  
Figure 25. SPI Transfer  
During SPI transmission, data is transmitted (shifted out  
serially) on the SDO/TXD−pin and received (shifted in  
serially) on the SDI/RXD−pin simultaneously. SCK/UC2 is  
set as output and is used as the serial clock (SCK) to  
synchronize shifting and sampling of the data on the SDI−  
and SDO−pin. The speed of this clock signal is selectable  
(see Table 9). The slave select line (CSB/UC1−pin) will go  
low during each transmission allowing to selection the host  
controller (CSB−pin is high when SPI is in idle state).  
SDO/TXD  
MOSI  
SDI/RXD  
MISO  
Shift Register  
Shift Register  
SCK/UC2  
SCLK  
CSB/UC1  
SS  
Control  
Control  
NCN5130  
Host Controller  
Figure 26. SPI Master  
In an SPI network only one SPI Master is allowed (in this  
case NCN5130). To allow the host controller to  
communicate with the device the TREQ−pin can be used  
(Transmit Request). When NCN5130 detects a negative  
edge on TREQ, the device will issue dummy transmission  
of 8 bits which will result in a transmission of data byte from  
the host controller to the device. See Figure 11 for details on  
the timings. See Figure 13 for an SPI application example.  
CSB  
SCK  
SDI  
0
1
2
3
4
5
6
7
0
1
2
3
4
Dummy  
SDO  
D
D
D
D
D
D
D
D
D
D
D
D
D
Start dummy transmission  
TREQ  
Figure 27. Transmission Request  
www.onsemi.com  
28  
NCN5130  
DIGITAL FUNCTIONAL DESCRIPTION  
The implementation of the Data Link Layer as specified in the KNX standard is divided in two parts. All functions related  
to communication with the Physical Layer and most of the Data Link Layer services are inside NCN5130, the rest of the  
functions and the upper communication layers are implemented into the host controller (see Figure 28).  
The host controller is responsible for handling:  
Checksum  
Parity  
Addressing  
Length  
The NCN5130 is responsible for handling:  
Checksum  
Parity  
Acknowledge  
Repetition  
Timing  
Digital State Diagram  
The digital state diagram is given in Figure 29.  
The current mode of operation can be retrieved by the host controller at any time (when RESETB−pin is high) by issuing  
the U_SystemStat.req service and parsing back U_SystemStat.ind service (see System Status Service, p37).  
Table 10. NCN5130 DIGITAL STATES  
State  
Explanation  
RESET  
Entered after Power On Reset (POR) or in response to a U_Reset.req service issued by the host controller. In this  
state NCN5130 gets initialized, all features disabled and services are ignored and not executed.  
POWER−UP /  
POWER−UP  
STOP  
Entered after Reset State or when VBUS, VFILT or Xtal are not operating correctly (operation of VBUS, VFILT and  
XTAL can be verified by means of the System Status Service, p37). Communication with KNX bus is not allowed.  
U_SystemStat.ind can be used to verify this state (code 00).  
SYNC  
NCN5130 remains in this state until it detects silence on the KNX bus for at least 40 Tbits. Although the receiver of  
NCN5130 is on, no frames are transmitted to the host controller.  
U_SystemStat.ind can be used to verify this state (code 01).  
STOP  
This state is useful for setting−up NCN5130 safely or temporarily interrupting reception from the KNX bus.  
U_SystemStat.ind can be used to verify this state (code 10).  
NORMAL  
In this state the device is fully functional. Communication with the KNX bus is allowed.  
U_SystemStat.ind can be used to verify this state (code 11).  
www.onsemi.com  
29  
 
NCN5130  
7
6
5
4
3
Application Layer  
Presentation Layer  
Session Layer  
Transport Layer  
Network Layer  
Logic Link Control  
2
1
Data Link Layer  
Media Access Control  
Physical Layer  
Figure 28. OSI Model Reference  
Reset  
POR or U_Reset.req  
Initialize device  
Deactivate all features  
Send U_StopMode.ind  
to host  
U_StopMode .req  
Power−Up  
Power−Up Stop  
U_ExitStopMode .req  
Code: 00  
Code: 00  
KNX Rx  
KNX Tx  
=
=
off  
off  
KNX Rx = off  
KNX Tx = off  
< XTAL > = ‘1’  
<XTAL> = ‘0’  
or  
<VBUS> = ‘0’  
or  
<XTAL > = 1’  
and  
<VBUS> = ‘1’  
and  
<XTAL> = ‘0’  
or  
<VBUS> = ‘0’  
or  
and  
<VBUS> = ‘1’  
and  
<VFILT> = 1’  
<VFILT> = ‘0’  
<VFILT> = ‘1’  
<VFILT> = ‘0’  
<XTAL> = ‘0’  
or  
<VBUS> = ‘0’  
Sync  
Stop  
U_ExitStopMode.req  
Code: 01  
Code: 10  
KNX Rx  
KNX Tx  
=
=
on  
off  
KNX Rx  
= off  
or  
KNX Tx = off  
<VFILT> = 0’  
U_StopMode.req  
KNX bus idle for w40 Tbits  
Send U _Reset.ind  
to host  
Send U_StopMode.ind  
to host  
U_StopMode.req and  
no activity for w30 Tbits  
Normal  
Code: 11  
KNX Rx  
KNX Tx  
=
=
on  
on  
Figure 29. Digital State Diagram  
www.onsemi.com  
30  
 
NCN5130  
Services  
Execution of services depends on the digital state (Figure 29). Certain services are rejected if received outside the Normal  
State. The following table gives a view of all services and there acceptance during the different digital states.  
Table 11. ACCEPTANCE OF SERVICES  
State  
Normal  
Stop  
E
Sync  
E
Power−Up  
Bus Monitor  
Service  
U_Reset.req  
U_State.req  
U_SetBusy.req  
E
E
E
E
E
E
E
E
E
E
I
E
E
E
E
E
E
E
E
E
E
I
E
I
E
E
E
E
I
U_QuitBusy.req  
E
E
I
U_Busmon.req  
E
E
I
U_SetAddress.req  
U_SetRepetition.req  
U_L_DataOffset.req  
U_SystemStat.req  
U_StopMode.req  
U_ExitStopMode.req  
U_Ackn.req  
E
E
I
E
E
I
E
E
I
E
E
I
I
E
E
E
I
E
I
E
E
E
E
E
E
E
E
R
E
R
E
R
E
E
E
R
R
R
E
U_Configure.req  
U_IntRegWr.req  
U_IntRegRd.req  
U_L_DataStart.req  
U_L_DataCont.req  
U_L_DataEnd.req  
U_PollingState.req  
I
E
E
E
E
I
E
E
R
R
R
E
R
R
R
E
I
I
I
NOTE:  
Bus Monitor state is not a separate state. It is applied on top of Normal, Stop, Sync or Power−Up State.  
Legend: E = service is executed  
I = service is ignored (not executed and no feedback sent to the host controller)  
R = service is rejected (not executed, protocol error is sent back to the host controller through U_State.ind)  
See Internal Register Read Service (p39) for limitations of U_IntRegRd.req  
www.onsemi.com  
31  
NCN5130  
Table 12. SERVICES FROM HOST CONTROLLER  
Control Field  
Extra Following  
Bytes  
Total  
Bytes  
7
6
5
4
3
2
1
0
Service Name  
Hex  
Remark  
INTERNAL COMMANDS – DEVICE SPECIFIC  
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
1
U_Reset.req  
01  
02  
03  
04  
05  
F1  
1
1
1
1
1
4
U_State.req  
U_SetBusy.req  
U_QuitBusy.req  
U_Busmon.req  
U_SetAddress.req  
AddrHigh  
AddrLow  
X (don’t care)  
1
0
1
0
1
0
1
0
0
1
0
i
1
i
0
i
U_SetRepetition.req  
U_L_DataOffset.req  
F2  
RepCntrs  
X (don’t care)  
X (don’t care)  
4
1
08−0C  
iii = MSB byte  
index (04)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
1
1
n
0
1
1
b
1
0
1
a
U_SystemState.req  
U_StopMode.req  
U_ExitStopMode.req  
U_Ackn.req  
0D  
0E  
1
1
1
1
0F  
10−17  
n = nack  
b = busy  
a = addressed  
0
0
0
1
1
p
c
m
U_Configure.req  
18−1F  
p = auto−polling  
c = CRC−CCITT  
m = frame end  
with MARKER  
1
0
0
1
0
0
1
1
1
1
0
1
0
1
1
s
0
0
s
a
a
s
a
a
s
U_IntRegWr.req  
U_IntRegRd.req  
U_PollingState.req  
28−2B  
38−3B  
E0−EE  
aa = address of  
internal register  
Data to be written  
2
1
4
s = slot number  
(0 14)  
PollAddrHigh  
PollAddrLow  
PollState  
KNX TRANSMIT DATA COMMANDS  
1
1
0
0
0
i
0
i
0
i
0
i
0
i
0
i
U_L_DataStart.req  
U_L_DataCont.req  
80  
Control Octet (CTRL)  
2
2
81−BF  
i = index (163)  
Data octet (CTRLE,  
SA, DA, AT, NPCI, LG,  
TPDU)  
0
1
l
l
l
l
l
l
U_L_DataEnd.req  
47−7F  
l = last index + 1  
(7 63)  
Check Octet (FCS)  
2
With respect to command length, there are two types of services from the host controller:  
Single−byte commands: the control byte is the only data sent from the host controller to NCN5130.  
Multiple−byte commands: the following data byte(s) need to be handled according to the already received control byte.  
With respect to command purpose there are two types of services from the host controller:  
Internal command: does not initiate any communication on the KNX bus.  
KNX transmit data command: initiates KNX communication  
www.onsemi.com  
32  
 
NCN5130  
Table 13. SERVICES TO HOST CONTROLLER  
Control Field  
Extra  
Following  
Bytes  
Total  
Bytes  
7
6
5
4
3
2
1
0
Service Name  
Remark  
DLL (LAYER 2) SERVICES (DEVICE IS TRANSPARENT)  
1
0
1
0
0
1
r
r
1
1
1
p1  
p1  
0
p0  
p0  
0
0
0
0
0
0
0
L_Data_Standard.ind  
r = not repeated (‘1’) or  
repeated L_Data frame (‘0’)  
p1, p0 = priority  
n
n
n
L_Data_Extended.ind  
L_Poll_Data.ind  
1
ACKNOWLEDGE SERVICES (DEVICE IS TRANSPARENT IN BUS MONITOR MODE)  
x
z
x
0
0
0
0
x
x
0
1
0
1
L_Ackn.ind  
L_Data.con  
x = acknowledge frame  
1
1
0
1
0
z = positive (‘1’) or negative  
(‘0’) confirmation  
CONTROL SERVICES – DEVICE SPECIFIC  
0
0
0
0
0
0
1
1
1
1
1
U_Reset..ind  
1
1
sc  
re  
te  
pe  
tw  
U_State.ind  
sc = slave collision  
re = receive error  
te = transmit error  
pe = protocol error  
tw = temperature warning  
re  
0
ce  
b
te  
1
res  
c
0
1
0
1
1
U_FrameState.ind  
U_Configure.ind  
re = parity or bit error  
ce = checksum or length  
error  
te = timing error  
res = reserved  
1
1
aa  
ap  
m
b = reserved  
aa = auto−acknowledge  
ap = auto−polling  
c = CRC−CCITT  
m = frame end with  
MARKER  
1
0
0
1
0
1
0
1
0
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
U_FrameEnd.ind  
U_StopMode.ind  
U_SystemStat.ind  
1
1
2
V20V, VDD2,  
VBUS, VFILT,  
XTAL, TW,  
Mode  
Each data byte received from the KNX bus is transparently transmitted to the host controller. An exception is the  
Acknowledge byte which is transmitted to the host controller only in bus monitoring mode. Other useful information can be  
transmitted to the host controller by request using internal control services.  
A detailed description of the services is given on the next pages. For all figures, the MSB bit is always given on the left side  
no matter how the arrow is drawn.  
Host Ctrl  
NCN5130  
KNX Bus  
Figure 30. Bit Order of Services  
www.onsemi.com  
33  
NCN5130  
Reset Service  
Reset the device to the initial state.  
Host Ctrl  
NCN5130  
KNX Bus  
U_Reset.req  
0
0
0
0
0
0
0
0
0
1
1
U_Reset.ind  
0
0
0
0
1
Figure 31. Reset Service  
Remark: U_Reset.Ind will be send when entering Normal State (see Digital State Diagram, p29).  
State Service  
Get internal communication state of the device.  
Host Ctrl  
NCN5130  
KNX Bus  
U_State.req  
0
0
0
0
0
0
1
1
0
1
U_State.ind  
sc re te pe tw  
1
Figure 32. State Service  
sc (slave collision):  
re (receive error):  
‘1’ if collision is detected during transmission of polling state  
‘1’ if corrupted bytes were sent by the host controller. Corruption involves incorrect parity (9−bit  
UART only) and stop bit of every byte as well as incorrect control octet, length or checksum of frame  
for transmission.  
te (transceiver error): ‘1’ if error detected during frame transmission (sending ‘0’ but receiving ‘1’).  
pe (protocol error): ‘1’ if an incorrect sequence of commands sent by the host controller is detected.  
tw (thermal warning): ‘1’ if thermal warning condition is detected.  
Set Busy Service  
Activate BUSY mode.  
During this time and when autoacknowledge is active (see Set Address Service p35), NCN5130 rejects the frames whose  
destination address corresponds to the stored physical address by sending the BUSY acknowledge. This service has no effect  
if autoacknowledge is not active.  
Host Ctrl  
NCN5130  
KNX Bus  
U_SetBusy.req  
0
0
0
0
0
0
1
1
Figure 33. Set Busy Service  
Remark: BUSY mode is deactivated immediately if the host controller confirms a frame by sending U_Ackn.req service.  
Quit Busy Service  
Deactivate the BUSY mode.  
Restores back to the normal autoacknowledge behavior with ACK sent on the bus in response to addressing frame (only if  
autoacknowledge is active). This service has no effect if autoacknowledge is not active or BUSY mode was not set.  
Host Ctrl  
NCN5130  
KNX Bus  
U_QuitBusy.req  
0
0
0
0
0
1
0
0
Figure 34. Quit Busy Service  
www.onsemi.com  
34  
 
NCN5130  
Bus Monitor Service  
Activate bus monitoring state.  
In this mode all data received from the KNX bus is sent to the host controller without performing any filtering on Data Link  
Layer. Acknowledge Frames are also transmitted transparently. This state can only be exited by the Reset Service (see p34).  
Host Ctrl  
NCN5130  
KNX Bus  
U_Busmon.req  
0
x
0
0
0
0
1
0
x
1
x
KNX Message  
x
x
x
x
x
x
x
x
KNX Message  
x
x
x
x
x
KNX Message  
x
x
x
x
x
x
x
x
x
x
KNX Message  
x
x
0
x
x
0
x
x
x
x
x
0
0
x
0
1
Acknowledge  
0
0
x
x
0
0
Acknowledge  
0
0
x
x
U_Reset.req  
0
0
0
0
U_Reset.ind  
0
0
0
0
0
0
1
1
Figure 35. Bus Monitor Service  
Remark:  
x = don‘t care  
Set Address Service  
Sets the physical address of the device and activates the auto−acknowledge function.  
NCN5130 starts accepting all frames whose destination address corresponds to the stored physical address or whose  
destination address is the group address by sending IACK on the bus. In case of an error detected during such frame reception,  
NCN5130 sends NACK instead of IACK.  
When issued several times after each other, the first call will set the physical address and activate the auto−acknowledge.  
Following calls will only set the physical address because auto−acknowledge is already activated.  
NCN5130 confirms activation of auto−acknowledge function by sending the U_Configure.ind service to the host controller.  
Host Ctrl  
NCN5130  
KNX Bus  
U_SetAddress.req  
1
x
x
x
0
1
1
1
0
0
0
1
x
x
x
1
Address High Byte  
x
x
x
x
x
x
Address Low Byte  
x
x
x
x
x
x
x
x
x
x
Dummy  
x
x
U_Configure.ind  
b
aa ap  
c
m
0
Figure 36. Set Address Service  
www.onsemi.com  
35  
 
NCN5130  
b (busy mode):  
‘1’ if busy mode is active. Can be enabled with U_SetBusy.req (see Set Busy Service, p34) and  
disabled with U_QuitBusy.req service (see Quit Busy Service, p34) or U_Ackn.req service  
(see Receive Frame Service, p47).  
aa (auto−acknowledge):‘1’ if auto−acknowledge feature is active. Can be enabled with U_SetAddress.req service  
(see Set Address Service, p35).  
ap (auto−polling):  
c (CRC−CCITT):  
‘1’ if auto−polling feature is active. This feature can be enabled with U_Configure.req service  
(see Configure Service, p38).  
‘1’ if CRC−CCITT feature is active. This feature can be enabled with U_Configure.req service  
(see Configure Service, p38).  
m (frame end with MARKER): ‘1’ when feature is active. This feature can be enabled with U_Configure.req service  
(see Configure Service, p38).  
Remarks:  
Set Address Service can be issued any time but the new physical address and the autoacknowledge function will only  
get active after the KNX bus becomes idle.  
Autoacknowledge can only be deactivated by a Reset Service (p34)  
x = don’t care  
Dummy byte can be anything. NCN5130 completely disregards this information.  
Set Repetition Service  
Specifies the maximum repetition count for transmitted frames when not acknowledged with IACK.  
Separate counters can be set for NACK and BUSY frames. Initial value of both counters is 3.  
If the acknowledge from remote Data Link Layer is BUSY during frame transmission, NCN5130 tries to repeat after at least  
150 bit times KNX bus idle. The BUSY counter determines the maximum amount of times the frame is repeated. If the BUSY  
acknowledge is still received after the last try, an L_Data.con with a negative conformation is sent back to the host controller.  
For all other cases (NACK acknowledgment received, invalid/corrupted acknowledge received or time−out after 30 bit  
times) NCN5130 will repeat after 50 bit times of KNX bus idle. The NACK counter determines the maximum retries.  
L_Data.con with a negative confirmation is send back to the host controller when the maximum retries were reached.  
In worst case, the same request is transmitted (NACK + BUSY + 1) times before NCN5130 stops retransmission.  
Host Ctrl  
NCN5130  
KNX Bus  
U_SetRepetition.req  
1
0
x
x
1
1
1
0
0
1
0
n
x
x
Maximum Repetitions  
b
x
x
b
x
x
b
0
n
x
x
n
x
x
Dummy  
x
x
Dummy  
x
x
Figure 37. Set Repetition Service  
bbb: BUSY counter (a frame will be retransmitted bbb−times if acknowledge with BUSY).  
nnn: NACK counter (a frame will be retransmitted nnn−times if acknowledge with NACK).  
Remark: Bit 3 and 7 of the second byte need to be zero (‘0’)!  
www.onsemi.com  
36  
 
NCN5130  
System Status Service  
Request the internal system state of the device.  
Host Ctrl  
NCN5130  
KNX Bus  
U_SystemStat.req  
0
0
0
0
0
1
1
0
1
U_SystemStat.ind  
1
0
0
1
0
1
1
2nd byte  
Figure 38. System State Service  
V20V:  
VDD2:  
VBUS:  
VFILT:  
XTAL:  
TW:  
‘1’ if V20V linear voltage regulator is within normal operating range  
‘1’ if DC2 regulator is within normal operating range  
‘1’ if KNX bus voltage is within normal operating range  
‘1’ if voltage on tank capacitor is within normal operating range State Service  
‘1’ if crystal oscillator frequency is within normal operating range  
‘1’ if thermal warning condition is present (can also be verified with U_State.ind service (see State Service,  
p34)  
Mode:  
Operation mode (see also Digital State Diagram, p29).  
Bit  
1
0
0
1
1
0
0
1
0
1
Mode  
Power−Up  
Sync  
Stop  
Normal  
Note: SAVEB−pin is low if any of bits 3 to 7 is ‘0’ (zero) or bit 2 is ‘1’.  
Stop Mode Service  
Go to Stop State. A confirmation is sent to indicate that device has switched to the Stop State. See also Digital State Diagram,  
p29  
Host Ctrl  
NCN5130  
KNX Bus  
U_StopMode.req  
0
0
0
0
0
1
1
1
0
1
U_StopMode.ind  
0
1
0
1
0
1
Figure 39. Stop Mode Service  
www.onsemi.com  
37  
NCN5130  
Exit Stop Mode Service  
Request transition from Stop to Sync State. An acknowledge service is send later to confirm that device has switched from  
Sync to Normal State. See also Digital State Diagram, p29.  
Host Ctrl  
NCN5130  
KNX Bus  
U_ExitStopMode .req  
0
0
0
0
0
0
1
1
1
1
1
1
U_Reset.ind  
0
0
0
0
Figure 40. Exit Stop Mode Service  
Configure Service  
Activate additional features (which are disabled after reset).  
U_Configure.ind service is send back to the host controller at the exact moment when the new features get activated. This  
is done during bus idle or outside the Normal State. It confirms the execution of the request service.  
Host Ctrl  
NCN5130  
KNX Bus  
U_Configure.req  
0
0
0
0
1
1
p
c
m
1
U_Configure.ind  
b
aa ap  
c
m
0
Figure 41. Configure Service  
p (auto polling):  
c (CRC−CCITT):  
when active, NCN5130 automatically fills in corresponding poll slot of polling telegrams.  
Host controller is responsible to provide appropriate polling information with the  
U_PollingState.req service (See Slave Polling Frame Service and Master Polling Frame  
Service, p50 and 51).  
when active, NCN5130 accompanies every received frame with a 2−byte CRC−CCITT  
value. CRC−CCITT is also known as CRC−16−CCITT.  
m (frame end with MARKER): End of received frames is normally reported with a silence of 2.6 ms on the Tx line to the host  
controller. With this feature active, NCN5130 marks end of frame with U_FrameEnd.ind +  
U_FrameState.ind services (See Send Frame Service and Receive Frame Service, p39 and 47).  
b:  
‘1’ if busy mode is active. Can be enabled with U_SetBusy.req (see Set Busy Service, p34)  
and disabled with U_QuitBusy.req service (see Quit Busy Service, p34) or U_Ackn.req  
service (see Receive Frame Service, p47).  
aa:  
‘1’ if auto−acknowledge feature is active. Can be enabled with U_SetAddress.req service  
(see Set Address Service, p35).  
ap (auto−polling):  
c (CRC−CCITT):  
‘1’ if auto−polling feature is active. This feature can be enabled with U_Configure.req service.  
‘1’ if CRC−CCITT feature is active. See p53 for info on CRC−CCITT.  
This feature can be enabled with U_Configure.req service.  
m (frame end with MARKER): ‘1’ when feature is active. This feature can be enabled with U_Configure.req service.  
Remark:  
Activation of the additional features is done by setting the corresponding bit to ‘1’. Setting the bit to ‘0’ (zero) has no effect  
(will not deactivate feature). Features can only be deactivated by a reset. Set all bits (m, c and p) to ‘0‘ (zero) to poll the current  
configuration status.  
www.onsemi.com  
38  
NCN5130  
Internal Register Write Service  
Write a byte to an internal device−specific register (see Internal Device−Specific Registers, p54). The address of the register  
is specified in the request. The data to be written is transmitted after the request.  
Host Ctrl  
NCN5130  
KNX Bus  
U_IntRegWr.req  
0
x
0
x
1
0
1
0
a
x
a
x
Data Byte  
x
x
x
x
Figure 42. Internal Register Write Service  
aa: address of the internal register  
Remarks:  
x = don’t care (in line with Internal Device−Specific Registers, p54).  
Internal Register Write is not synchronized with other services. One should only use this service when all previous  
services are ended. When using communication over SPI, it is recommended to go to stop mode when performing a  
register write. When communicating over UART, this is not required.  
Internal Register Read Service  
Read a byte from an internal device−specific register (see Internal Device−Specific Registers, p54). The address of the  
register is specified in the request. The next byte returns the data of the addressed register.  
Host Ctrl  
NCN5130  
KNX Bus  
U_IntRegRd.req  
0
x
0
1
1
1
0
a
a
x
Data Byte  
x
x
x
x
x
x
Figure 43. Internal Register Read Service  
aa: address of the internal register  
Remarks:  
x = don’t care (in line with Internal Device−Specific Registers, p54).  
It’s advised to only use this service in Stop, Power−Up Stop or Power−Up State. In the other state erroneous behavior  
could occur.  
Internal Register Read is not synchronized with other services. One should only use this service when all previous  
services are ended. When using communication over SPI or UART, it is recommended to go to stop mode when  
performing a register write.  
Send Frame Service  
Send data over the KNX bus.  
The U_L_DataStart.req is used to start transmission of a new frame. The byte following this request is the control byte of  
the KNX telegram.  
The different bytes following the control byte are assembled by using U_L_DataCont.req. The byte following  
U_L_DataCont.req is the data byte of the KNX telegram. U_L_DataCont.req contains the index which specifies the position  
of the data byte inside the KNX telegram. It‘s allowed to transmit bytes in random order and even overwrite bytes (= write  
several times into the same index). It‘s up to the host controller to correctly populate all data bytes of the KNX telegram.  
U_L_DataEnd.req is used to finalize the frame and start the KNX transfer. The byte following U_L_DataEnd.req is the  
checksum of the KNX telegram. If the checksum received by the device corresponds to the calculated checksum, the device  
starts the transmission on the KNX bus. If not, the device returns U_State.ind message to the host controller with Receive Error  
flag set (see State Service p34 for U_State.ind).  
www.onsemi.com  
39  
NCN5130  
U_L_DataStart/DataCont/DataEnd only provides space for 6 index bits. Because an extended frame can consist out of  
263 bytes, an index of 9 bits long is needed. U_DataOffset.req provides the 3 most significant bits of the data byte index. The  
value is stored internally until a new offset is provided with another call.  
Each transmitted data octet on the KNX bus will also be transmitted back to the host controller.  
Each transmission is ended with a L_Data.con service where the MSB indicates if an acknowledgment was received or not.  
When operating in SPI or UART 8−bit Mode, L_Data.con is preceded with U_FrameState.ind.  
Depending on the activated features, a CRC−CCITT service and/or a MARKER could be included.  
Next figures give different examples of send frames.  
Host Ctrl  
NCN5130  
KNX Bus  
U_L_DataStart.req  
1
x
1
x
0
0
0
0
0
0
0
x
i
Control Byte  
x
x
x
x
x
x
U_L_DataCont.req  
0
i
i
i
i
i
Data Octet 1  
x
x
x
x
x
x
x
U_L_DataOffSet.req  
0
1
x
0
0
0
1
i
i
i
i
U_L_DataCont.req  
0
x
i
i
i
i
i
Data Octet N  
x
x
x
x
x
x
U_L_DataEnd.req  
0
x
x
x
1
x
0
x
l
l
l
l
l
l
Checksum  
x
x
x
x
x
0
x
x
0
x
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
r
1
p1 p0  
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
x
x
x
Checksum  
x
x
x
x
Immediate Ackn  
x
x
x
x
x
w
2.6ms silence  
U_FrameState.ind  
res  
re ce te  
1
0
1
1
1
L_Data.con  
x
0
0
0
1
0
1
Figure 44. Send Frame, SPI or 8−bit UART Mode, Frame End with Silence, No CRC−CCITT  
www.onsemi.com  
40  
 
NCN5130  
Host Ctrl  
NCN5130  
KNX Bus  
U_L_DataStart.req  
1
x
1
x
0
0
0
0
0
0
0
x
i
Control Byte  
x
x
x
x
x
x
U_L_DataCont.req  
0
i
i
i
i
i
Data Octet 1  
x
x
x
x
x
x
x
U_L_DataOffSet.req  
0
1
x
0
0
0
1
i
i
i
i
U_L_DataCont.req  
0
x
i
i
i
i
i
Data Octet N  
x
x
x
x
x
x
U_L_DataEnd.req  
0
x
x
x
1
x
0
x
l
l
l
l
l
l
Checksum  
x
x
x
x
x
0
x
x
0
x
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
r
1
p1 p0  
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
x
x
x
Checksum  
x
x
x
x
Immediate Ackn  
x
x
x
x
x
w
2.6ms silence  
L_Data.con  
x
0
0
0
1
0
1
1
Figure 45. Send Frame, 9−bit UART Mode, Frame End with Silence, No CRC−CCITT  
www.onsemi.com  
41  
NCN5130  
Host Ctrl  
NCN5130  
KNX Bus  
U_L_DataStart.req  
1
x
1
x
0
0
0
0
0
0
x
0
x
i
Control Byte  
x
x
x
x
x
U_L_DataCont.req  
0
i
i
i
i
i
Data Octet 1  
x
x
x
x
x
x
x
U_L_DataOffSet.req  
0
1
x
0
0
0
1
i
i
i
i
U_L_DataCont.req  
0
x
i
i
i
i
i
Data Octet N  
x
x
x
x
x
x
U_L_DataEnd.req  
0
x
x
x
1
x
0
x
l
l
l
l
l
l
Checksum  
x
x
x
x
x
0
x
x
0
x
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
r
1
p1 p0  
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
Checksum  
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
x
x
CRCCCITT High Byte  
x
x
x
x
x
x
x
CRCCCITT Low Byte  
x
x
x
x
x
x
x
Immediate Ackn  
x
x
x
x
x
x
x
x
w
2.6 ms silence  
L_Data.con  
x
0
0
0
1
0
1
1
Figure 46. Send Frame, 9−bit UART Mode, Frame End with Silence, with CRC−CCITT  
www.onsemi.com  
42  
NCN5130  
Host Ctrl  
NCN5130  
KNX Bus  
U_L_DataStart.req  
1
x
1
x
0
0
0
0
0
0
0
x
i
Control Byte  
x
x
x
x
x
x
U_L_DataCont.req  
0
i
i
i
i
i
Data Octet 1  
x
x
x
x
x
x
x
U_L_DataOffSet.req  
0
1
x
0
0
0
1
i
i
i
i
U_L_DataCont.req  
0
x
i
i
i
i
i
Data Octet N  
x
x
x
x
x
x
U_L_DataEnd.req  
0
x
x
x
1
x
0
x
l
l
l
l
l
l
Checksum  
x
x
x
x
x
0
x
x
0
x
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
r
1
p1 p0  
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
x
Checksum  
x
x
x
x
Checksum  
x
x
x
x
x
x
x
CRCCCITT High Byte  
x
x
x
x
x
x
x
CRCCCITT Low Byte  
x
x
x
x
x
x
x
Immediate Ackn  
x
x
x
x
x
x
x
x
w
2.6ms silence  
U_FrameState.ind  
res  
re ce te  
1
0
1
1
1
L_Data.con  
x
0
0
0
1
0
1
Figure 47. Send Frame, SPI or 8−bit UART Mode, Frame End with Silence, with CRC−CCITT  
www.onsemi.com  
43  
NCN5130  
Host Ctrl  
NCN5130  
KNX Bus  
U_L_DataStart.req  
1
x
1
x
0
0
0
0
0
0
0
Control Byte  
x
x
x
x
x
x
x
i
U_L_DataCont.req  
0
i
i
i
i
i
Data Octet 1  
x
x
x
x
x
x
x
U_L_DataOffSet .req  
0
1
x
0
0
0
1
i
i
i
i
U_L_DataCont.req  
0
x
i
i
i
i
i
Data Octet N  
x
x
x
x
x
x
U_L_DataEnd.req  
0
x
x
x
1
x
0
x
l
l
l
l
l
l
Checksum  
x
x
x
x
x
0
x
x
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
r
1
p1 p0  
0
x
Data Octet 1  
x
x
x
x
x
x
x
Data Octet 1  
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
Checksum  
x
x
x
x
Checksum  
x
x
x
x
x
x
1
1
1
U_FrameEnd.ind  
1
1
0
0
1
0
1
Immediate Ackn  
x
x
x
x
x
x
x
x
U_FrameState .ind  
res  
re ce te  
1
0
1
L_Data.con  
0
x
0
0
1
0
1
Figure 48. Send Frame, All Modes, Frame End with MARKER, No CRC−CCITT  
www.onsemi.com  
44  
NCN5130  
Host Ctrl  
NCN5130  
KNX Bus  
U_L_DataStart.req  
1
x
1
x
0
0
0
0
0
0
0
x
i
Control Byte  
x
x
x
x
x
x
U_L_DataCont.req  
0
i
i
i
i
i
Data Octet 1  
x
x
x
x
x
x
x
U_L_DataOffSet.req  
0
1
x
0
0
0
1
i
i
i
i
U_L_DataCont.req  
0
x
i
i
i
i
i
Data Octet N  
x
x
x
x
x
x
U_L_DataEnd.req  
0
x
x
x
1
x
0
x
l
l
l
l
l
l
Checksum  
x
x
x
x
x
0
x
x
x
0
x
x
Control Byte  
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
r
1
p1 p0  
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
Checksum  
x
x
x
x
x
Checksum  
x
x
x
x
x
x
U_FrameEnd.ind  
1
1
0
0
1
0
1
1
x
1
Immediate Ackn  
x
x
x
x
x
x
x
U_FrameState.ind  
res  
re ce te  
1
0
1
CRCCCITT High Byte  
x
x
x
x
x
x
x
x
x
1
CRCCCITT Low Byte  
x
x
x
x
x
x
x
x
L_Data.con  
0
0
0
1
0
1
Figure 49. Send Frame, All Modes, Frame End with MARKER and with CRC−CCITT  
www.onsemi.com  
45  
NCN5130  
re (receive error):  
‘1’ if newly received frame contained corrupted bytes (wrong parity, wrong stop bit or  
incorrect bit timings)  
ce (checksum or length error): ‘1’ if newly received frame contained wrong checksum or length which does not correspond  
to the number of received bytes  
te (timing error):  
‘1’ if newly received frame contained bytes whose timings do not comply with the KNX  
standard  
res (reserved):  
Remarks:  
Reserved for future use (will be ‘0’).  
If the repeat flag is not set (see Set Repetition Service p36), the device will only perform one attempt to send the KNX  
telegram.  
− Sending of the KNX telegram over the KNX bus is only started after all data bytes are received and the telegram is  
assembled.  
− When starting transmission of a new frame with U_L_DataStart.req, the device automatically resets the internal offset of  
the data index to zero.  
− Data offsets of 5, 6 and 7 are forbidden (U_L_DataOffset.req)!  
Remarks on Figures 44 to 49:  
− x = don‘t care (in respect with KNX standard)  
− See Tables 12 and 13 for more details on all the bits  
− Code of U_FrameEnd.ind (0xCB) can also be part of the KNX frame content (Data Octet). When NCN5130 transmits  
the data octet (0xCB) on the KNX bus, 2 bytes (2 times 0xCB) will be transmitted back to the host controller to make it  
possible for the host controller to distinguish between a data octet (0xCB) and U_FrameEnd.ind. This remark is only  
valid if frame end with MARKER is enabled.  
See p53 for info on CRC−CCITT.  
www.onsemi.com  
46  
NCN5130  
Receive Frame Service  
Receive data over the KNX bus.  
Upon reception from the control byte, the control byte is checked by the device. If correct, the control byte is transmitted  
back to the host (L_Data_Standard.ind or L_Data_Extended.ind depending if standard or extended frame type is received).  
After the control byte, all data bytes are transparently transmitted back to the host controller. Handling of this data is a task  
for the Data Link Layer which should be implemented in the host controller.  
The host controller can indicate if the device is addressed by setting the NACK, BUSY or ACK flag (U_Ackn.req).  
When working in SPI or 8−bit UART Mode, each frame is ended with an U_FrameState.ind. Depending on the activated  
features, a CRC−CCITT or MARKER could be added to the complete frame.  
Below figures give different examples of receive frames.  
Host Ctrl  
NCN5130  
KNX Bus  
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
x
x
0
x
r
1
p1 p0  
0
x
0
x
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
U_Ackn.req  
0
x
0
x
0
1
0
n
b
x
a
x
Data Octet N  
x
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
Immediate Ackn  
x
x
x
x
x
w
2.6 ms silence  
U_FrameState .ind  
re ce te  
1
0
0
1
1
Figure 50. Receive Frame, SPI or 8−bit UART Mode, Frame End with Silence, No CRC−CCITT  
www.onsemi.com  
47  
 
NCN5130  
Host Ctrl  
NCN5130  
KNX Bus  
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
x
x
0
x
r
1
p1 p0  
0
x
0
x
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
U_Ackn.req  
0
x
0
x
0
1
0
n
b
x
a
x
Data Octet N  
x
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
Immediate Ackn  
x
x
x
x
x
w
2.6 ms silence  
Figure 51. Receive Frame, 9−bit UART Mode, Frame End with Silence, No CRC−CCITT  
Host Ctrl  
NCN5130  
KNX Bus  
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
x
x
0
x
r
1
p1 p0  
0
x
0
x
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
U_Ackn.req  
0
x
0
x
0
1
0
n
b
x
a
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
Checksum  
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
CRCCCITT High Byte  
x
x
x
x
x
x
x
x
Immediate Ackn  
x
x
x
x
x
x
x
x
CRCCCITT Low Byte  
x
x
x
x
x
x
x
x
w
2.6ms silence  
Figure 52. Receive Frame, 9−bit UART Mode, Frame End with Silence, with CRC−CCITT  
www.onsemi.com  
48  
NCN5130  
Host Ctrl  
NCN5130  
KNX Bus  
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
x
x
0
x
r
1
p1 p0  
0
x
0
x
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
U_Ackn.req  
0
x
0
x
0
1
0
n
b
x
a
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
Checksum  
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
CRCCCITT High Byte  
x
x
x
x
x
x
x
x
Immediate Ackn  
x
x
x
x
x
x
x
x
CRCCCITT Low Byte  
x
x
x
x
x
x
x
x
w
2.6ms silence  
U_FrameState.ind  
res  
re ce te  
1
0
1
1
Figure 53. Receive Frame, SPI or 8−bit UART Mode, Frame End with Silence, with CRC−CCITT  
Host Ctrl  
NCN5130  
KNX Bus  
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
x
x
0
x
r
1
p1 p0  
0
x
0
x
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
U_Ackn.req  
0
x
0
x
0
1
0
n
b
x
a
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
Checksum  
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
1
1
U_FrameEnd.ind  
1
1
0
0
1
0
1
Immediate Ackn  
x
x
x
x
x
x
x
x
U_FrameState.ind  
res  
re ce te  
1
0
1
Figure 54. Receive Frame, All Modes, Frame End with MARKER, No CRC−CCITT  
www.onsemi.com  
49  
NCN5130  
Host Ctrl  
NCN5130  
KNX Bus  
Control Byte  
x
x
x
x
x
x
x
x
x
x
x
L_Data.ind  
x
x
0
x
r
1
p1 p0  
0
x
0
x
x
Data Octet 1  
x
x
x
x
Data Octet 1  
x
x
x
x
U_Ackn.req  
0
x
0
x
0
1
0
n
b
x
a
x
x
Data Octet N  
x
x
x
x
x
x
x
x
x
x
Data Octet N  
x
x
x
x
Checksum  
x
x
x
x
x
Checksum  
x
x
x
x
x
x
x
x
U_FrameEnd.ind  
1
1
0
0
1
0
1
1
x
1
Immediate Ackn  
x
x
x
x
x
x
x
U_FrameState .ind  
res  
re ce te  
1
0
1
CRCCCITT High Byte  
x
x
x
x
x
x
x
x
x
CRCCCITT Low Byte  
x
x
x
x
x
x
x
Figure 55. Receive Frame, All Modes, Frame End with MARKER, with CRC−CCITT  
re (receive error):  
‘1’ if newly received frame contained corrupted bytes (wrong parity, wrong stop bit or  
incorrect bit timings)  
ce (checksum or length error): ‘1’ if newly received frame contained wrong checksum or length which does not correspond  
to the number of received bytes  
te (timing error) :  
‘1’ if newly received frame contained bytes whose timings do not comply with the KNX  
standard  
res (reserved) :  
Reserved for future use (will be ‘0’).  
Remarks on Figures 50 to 55:  
− x = don‘t care (in respect with KNX standard)  
− See Tables 12 and 13 for more details on all the bits  
− Code of U_FrameEnd.ind (0xCB) can also be part of the KNX frame content (Data Octet). To make a distinguish  
between a data octet and U_FrameEnd.ind, NCN5130 duplicates the data content (if 0xCB). This will result in 2 bytes  
transmitted to the host controller (two times 0xCB) corresponding to 1 byte received on the KNX bus.  
Above is only valid if frame end with MARKER is enabled.  
See p53 for info on CRC−CCITT.  
Slave Polling Frame Service  
Upon reception and consistency check of the polling control byte, the control byte is send back to the host controller  
(L_Poll_Data.ind). The host controller will send the slot number to the device (U_PollingState.req), followed by the polling  
address and the polling state. At the same time the source address, polling address, slot count and checksum is received over  
the KNX bus. If the polling address received from the KNX bus is equal to the polling address received from the host controller,  
NCN5130 will send the polling data in the slot as define by U_PollingState.req (only if the slotcount is higher as the define  
slot).  
U_PollingState.req can be sent at any time (not only during a transmission of a polling telegram). The information is stored  
internally in NCN5130 and can be reused for further polling telegrams if auto−polling function gets activated.  
www.onsemi.com  
50  
NCN5130  
Host Ctrl  
NCN5130  
KNX Bus  
Control Byte  
1
1
1
1
0
0
0
0
x
x
x
x
x
x
L_Poll_Data.ind  
1
1
x
x
x
1
1
1
0
0
0
0
Source Address  
x
x
x
x
x
x
x
x
x
x
x
x
U_PollingState.req  
1
x
x
x
1
0
s
s
s
x
x
x
s
x
x
x
Source Address  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
PollAddrHigh  
x
x
x
x
Poll Address  
x
x
x
x
PollAddrLow  
x
x
x
x
Poll Address  
x
x
x
x
PollState  
x
x
x
x
Slot Count  
x
x
x
x
Checksum  
x
x
x
x
x
x
Slot 0  
x
x
x
x
x
x
x
x
Slot N  
x
x
x
x
x
x
Figure 56. Slave Polling Frame Service  
Remarks:  
x = don’t care (in respect with KNX standard)  
ssss = slot number  
Master Polling Frame Service  
When NCN5130 receives the polling frame from the host controller, the polling frame will be transmitted over the KNX bus.  
www.onsemi.com  
51  
NCN5130  
Host Ctrl  
NCN5130  
KNX Bus  
Control Byte  
1
x
x
x
x
x
x
1
x
1
x
x
x
x
x
x
x
x
1
1
1
0
0
0
0
Source Address  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Source Address  
x
x
x
x
x
x
x
x
x
Poll Address  
x
x
x
x
Poll Address  
x
x
x
x
Slot Count  
x
x
x
x
Checksum  
x
x
x
x
Control Byte  
1
x
1
1
1
0
0
0
0
x
L_Poll_Data.ind  
1
1
1
0
0
0
0
x
s
x
x
x
x
x
x
x
x
Source Address  
x
x
x
x
x
x
Source Address  
x
x
x
x
x
x
U_PollingState.req  
1
1
0
s
s
s
x
x
x
x
x
x
x
x
Source Address  
x
x
x
x
x
x
x
x
x
x
x
Source Address  
x
x
x
x
x
x
x
x
x
x
x
x
Poll Address  
x
x
x
x
x
PollAddrHigh  
x
x
x
x
Poll Address  
x
x
x
x
Poll Address  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
PollAddrLow  
x
x
x
x
Poll Address  
x
x
x
x
x
Slot Count  
x
x
x
x
PollState  
x
x
x
Slot Count  
x
x
x
x
Checksum  
x
x
x
x
Checksum  
x
x
x
x
Slot 0  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Slot 0  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Slot N  
x
x
Slot N  
x
x
Figure 57. Master Polling Frame Service  
Remarks:  
x = don‘t care (in respect with KNX standard)  
ssss = slot number  
www.onsemi.com  
52  
NCN5130  
CRC−CCITT  
CRC order - 16 bit  
CRC polynom (hex) - 1021  
Initial value (hex) − FFFF  
Final XOR value (hex) − 0  
No reverse on output CRC  
Test string „123456789“ is 29B1h  
CRC−CCITT value over a buffer of bytes can be calculated with following code fragment in C, where  
pBuf is pointer to the start of frame buffer  
uLength is the frame length in bytes  
unsigned short calc_CRC_CCITT(unsigned char* pBuf, unsigned short uLength)  
{
unsigned short u_crc_ccitt;  
for (u_crc_ccitt = 0xFFFF; uLength−−; p++)  
{
u_crc_ccitt = get_CRC_CCITT(u_crc_ccitt, *p);  
}
return u_crc_ccitt;  
}
unsigned short get_CRC_CCITT(unsigned short u_crc_val, unsigned char btVal)  
{
u_crc_val = ((unsigned char)(u_crc_val >> 8)) | (u_crc_val << 8);  
u_crc_val ^= btVal;  
u_crc_val ^= ((unsigned char)(u_crc_val & 0xFF)) >> 4;  
u_crc_val ^= u_crc_val << 12;  
u_crc_val ^= (u_crc_val & 0xFF) << 5;  
return u_crc_val;  
}
www.onsemi.com  
53  
NCN5130  
Internal Device−Specific Registers  
In total 4 device-specific register are available:  
Watchdog Register (0x00)  
Analog Control Register 0 (0x01)  
Analog Control Register 1 (0x02)  
Analog Status Register 0 (0x03)  
Revision ID Register (0x05)  
Watchdog Register  
The Watchdog Register is located at address 0x00 and can be used to enable the watchdog and set the watchdog time.  
Table 14. WATCHDOG REGISTER  
ExtWatchdogCtrl (ExtWR)  
Address  
Bit 7  
R/W  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
R/W  
1
Bit 2  
R/W  
1
Bit 1  
R/W  
1
Bit 0  
R/W  
1
Access  
Reset  
Data  
R/W  
R/W  
R/W  
0
-
0
-
0
-
0x00  
WDEN  
WDT  
Table 15. WATCHDOG REGISTER PARAMETERS  
Parameter  
Value  
Disable  
Description  
Info  
0
WDEN  
Enables/disables the watchdog  
1
Enable  
33 ms  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
66 ms  
98 ms  
131 ms  
164 ms  
197 ms  
229 ms  
262 ms  
295 ms  
328 ms  
360 ms  
393 ms  
426 ms  
459 ms  
492 ms  
524 ms  
p22  
Defines the watchdog time. The watchdog needs to be re-enabled (WDEN)  
within this time or a watchdog event will be triggered.  
WDT  
Remark: Bit 4 6 are reserved.  
Analog Control Register 0  
The Analog Control Register 0 is located at address 0x01 and can be used to disable the V20V and the DC2 regulator, to  
disable the XCLK-pin, to enable the transmit trigger signal and to set the 20 V LDO current limit.  
Table 16. ANALOG CONTROL REGISTER 0  
Analog Control Register 0 (AnaCtrl0)  
Address  
Bit 7  
R/W  
0
Bit 6  
R/W  
Bit 5  
R/W  
Bit 4  
R/W  
Bit 3  
R/W  
Bit 2  
R/W  
1
Bit 1  
R/W  
Bit 0  
R/W  
0
Access  
Reset  
Data  
1
1
1
0
0
0x01  
V20VEN  
DC2EN  
XCLKEN  
TRIGEN  
V20VCLIMIT  
www.onsemi.com  
54  
NCN5130  
Table 17. ANALOG CONTROL REGISTER 0 PARAMETERS  
Parameter  
Value  
Description  
Info  
0
1
0
1
0
1
0
1
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
V20VEN  
Enables/disables the V20V regulator  
Enables/disables the DC2 converter  
Enables/disables the XCLK output signal  
p 19  
DC2EN  
p 19  
p 19  
XCLKEN  
TRIG/ARXD pin outputs the Tx activity monitor signal when enabled.  
When disabled the TRIG/ARXD pin is tri−state.  
TRIGEN  
p 19  
p 19  
V20VCLIMIT  
000 − 111  
Adjustment of the V20V current limit as configured by R by DI  
per bit  
6
20V, STEP  
Remark: Bit 7 is reserved.  
Analog Control Register 1  
The Analog Control Register 1 is located at address 0x02 and can be used to configure the voltage monitors.  
Table 18. ANALOG CONTROL REGISTER 1  
Analog Control Register 1 (AnaCtrl1)  
Address  
Bit 7  
R/W  
0
Bit 6  
R/W  
Bit 5  
R/W  
Bit 4  
R/W  
Bit 3  
R/W  
0
Bit 2  
R/W  
Bit 1  
R/W  
0
Bit 0  
Access  
Reset  
Data  
R/W  
1
1
0
0
0
-
0x02  
V20V_OK_M  
VDD2_OK_M  
VFILT_OK_M  
ANAOUTCTRL  
Table 19. ANALOG CONTROL REGISTER 1 PARAMETERS  
Parameter  
Value  
Enable  
Description  
Info  
0
1
V20V_OK_M  
Enable to include the voltage monitor output in the SAVEB calculation.  
Enable to include the voltage monitor output in the SAVEB calculation.  
Enable to include the voltage monitor output in the SAVEB calculation.  
p 19  
p 19  
p 18  
Disable  
Enable  
Disable  
Enable  
Disable  
Disable  
Enable  
Enable  
Enable  
Enable  
Enable  
Enable  
Enable  
0
VDD2_OK_M  
VFILT_OK_M  
1
0
1
000  
001  
010  
011  
100  
101  
110  
111  
Analog output is disabled  
Analog output monitors VBUS1  
Analog output monitors VFILT  
Analog output monitors V20V  
Analog output monitors VDD2  
Analog output monitors VDDA  
Analog output monitors Bus current  
Analog output monitors Temperature  
ANAOUTCTRL  
p 23  
Remark: Bit 0 and bit 7 are reserved.  
www.onsemi.com  
55  
NCN5130  
Analog Status Register  
The Analog Status Register is located at address 0x03 and can be used to verify the voltage monitors, Xtal and thermal status.  
Table 20. ANALOG STATUS REGISTER  
Analog Status Register (AnaStat)  
Address  
Bit 7  
Bit 6  
R
Bit 5  
R
Bit 4  
R
Bit 3  
R
Bit 2  
R
Bit 1  
R
Bit 0  
R
Access  
Reset  
Data  
R
0
0
0
0
0
0
0
0
0x03  
V20V  
VDD2  
VBUS  
VFILT  
XTAL  
TW  
TSD  
Table 21. ANALOG STATUS REGISTER PARAMETERS  
Parameter  
Value  
Value  
nOK  
OK  
Description  
Info  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
V20V  
‘1’ if voltage on V20V-pin is above the V20V undervoltage level  
‘1’ if voltage on VDD2-pin is above the VDD2 undervoltage level  
‘1’ if bus voltage is above the VBUS undervoltage level  
‘1’ if voltage on VFILT-pin is above the VFILT undervoltage level  
‘1’ if XTAL is up and running  
p 19  
p 19  
P 18  
p 18  
p 19  
nOK  
OK  
VDD2  
VBUS  
VFILT  
XTAL  
TW  
nOK  
OK  
nOK  
OK  
nOK  
OK  
No TW  
TW  
‘1’ if Thermal Warning detected  
p 22  
No TSD  
TSD  
TSD  
Contains information about the previous Thermal Shutdown situation  
Remark: Bit 7 is reserved.  
Revision ID register  
The Revision ID register is located at address 0x05 and can be read out to check the revision ID of the silicon and by the  
firmwire of the host controller to determine the part number of the transceiver  
Table 22. REVISION ID REGISTER  
Revision ID Register (RevID)  
Address  
Bit 7  
R
Bit 6  
Bit 5  
R
Bit 4  
R
Bit 3  
R
Bit 2  
Bit 1  
R
Bit 0  
R
Access  
Reset  
Data  
R
X
R
X
X
0
1
1
0
0
0x05  
Revision  
Part Number  
Table 23. REVISION ID REGISTER PARAMETERS  
Parameter  
Revision  
Value  
Value  
Description  
Info  
Silicon revision ID  
Part Number  
01100  
NCN5130  
Transceiver Part Number  
www.onsemi.com  
56  
NCN5130  
PACKAGE THERMAL CHARACTERISTICS  
The NCN5130 is available in a QFN40 package. For cooling optimizations, the QFN40 has an exposed thermal pad which  
has to be soldered to the PCB ground plane. The ground plane needs thermal vias to conduct the heat to the bottom layer.  
Figure 58 gives an example of good heat transfer. The exposed thermal pad is soldered directly on the top ground layer (left  
picture of Figure 58). It‘s advised to make the top ground layer as large as possible (see arrows Figure 58). To improve the heat  
transfer even more, the exposed thermal pad is connected to a bottom ground layer by using thermal vias (see right picture of  
Figure 58). It‘s advised to make this bottom ground layer as large as possible and with as less as possible interruptions.  
For precise thermal cooling calculations the major thermal resistances of the device are given (Table 4). The thermal media  
to which the power of the devices has to be given are:  
− Static environmental air (via the case)  
− PCB board copper area (via the exposed pad)  
The major thermal resistances of the device are the Rth from the junction to the ambient (Rth ) and the overall Rth from  
ja  
the junction to exposed pad (Rth ). In Table 4 one can find the values for the Rth and Rth , simulated according to JESD−51.  
jp  
ja  
jp  
The Rth for 2S2P is simulated conform JEDEC JESD−51 as follows:  
ja  
− A 4−layer printed circuit board with inner power planes and outer (top and bottom) signal layers is used  
− Board thickness is 1.46 mm (FR4 PCB material)  
2
− The 2 signal layers: 70 mm thick copper with an area of 5500 mm copper and 20% conductivity  
2
− The 2 power internal planes: 36 mm thick copper with an area of 5500 mm copper and 90% conductivity  
The Rth for 1S0P is simulated conform to JEDEC JESD−51 as follows:  
ja  
− A 1−layer printed circuit board with only 1 layer  
− Board thickness is 1.46 mm (FR4 PCB material)  
− The layer has a thickness of 70 mm copper with an area of 5500 mm copper and 20% conductivity  
2
Figure 58. PCB Ground Plane Layout Condition (left picture displays the top ground layer, right picture displays  
the bottom ground layer)  
ORDERING INFORMATION  
Device Number  
NCN5130MNG  
Temperature Range  
Package  
Shipping  
−40°C to 105°C  
QFN−40  
(Pb−Free)  
50 Units / Tube  
100 Tubes / Box  
NCN5130MNTWG  
−40°C to 105°C  
QFN−40  
(Pb−Free)  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
www.onsemi.com  
57  
 
NCN5130  
PACKAGE DIMENSIONS  
QFN40 6x6, 0.5P  
CASE 485AU  
ISSUE O  
NOTES:  
D
A B  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L
L
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30mm FROM TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
LOCATION  
L1  
DETAIL A  
OPTIONAL  
E
CONSTRUCTIONS  
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
0.15  
C
EXPOSED Cu  
MOLD CMPD  
0.18  
0.30  
TOP VIEW  
D
D2  
E
E2  
e
K
6.00 BSC  
0.15  
C
3.10  
3.10  
3.30  
6.00 BSC  
DETAIL B  
(A3)  
DETAIL B  
3.30  
0.10  
C
C
OPTIONAL  
0.50 BSC  
0.20 MIN  
0.30 0.50  
−−− 0.15  
CONSTRUCTIONS  
A
L
L1  
0.08  
A1  
NOTE 4  
SEATING  
PLANE  
C
SIDE VIEW  
D2  
SOLDERING FOOTPRINT*  
0.10  
C A B  
DETAIL A  
6.30  
3.32  
K
40X  
0.63  
11  
10  
20  
21  
30  
1
E2  
L
0.10  
C A B  
1
3.32  
6.30  
40  
31  
40X b  
e
0.10  
C
C
A B  
BOTTOM VIEW  
0.05  
PACKAGE  
OUTLINE  
40X  
0.28  
0.50 PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
KNX and the KNX Logos are trademarks of KNX Association.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCN5130/D  

相关型号:

NCN5130_16

Transceiver for KNX Twisted Pair Networks
ONSEMI

NCN5150

Wired M-BUS Slave Transceiver
ONSEMI

NCN5150DG

Wired M-BUS Slave Transceiver
ONSEMI

NCN5150DR2G

Wired M-BUS Slave Transceiver
ONSEMI

NCN5150MNTWG

Wired M-BUS Slave Transceiver
ONSEMI

NCN5151

Wired M-BUS Slave Transceiver
ONSEMI

NCN5151MNTWG

Wired M-BUS Slave Transceiver
ONSEMI

NCN5192

HART Modem
ONSEMI

NCN5192MNG

HART Modem
ONSEMI

NCN5192MNRG

HART Modem
ONSEMI

NCN5193

HART Modem
ONSEMI

NCN5193MNTWG

HART Modem
ONSEMI