NCN5151MNTWG [ONSEMI]

Wired M-BUS Slave Transceiver;
NCN5151MNTWG
型号: NCN5151MNTWG
厂家: ONSEMI    ONSEMI
描述:

Wired M-BUS Slave Transceiver

文件: 总20页 (文件大小:174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCN5151  
Wired M-BUS Slave  
Transceiver with Low  
Power Mode Support  
Description  
www.onsemi.com  
The NCN5151 is a single−chip integrated slave transceiver for use  
in two−wire Meter Bus (M−BUS) slave devices and repeaters.  
The NCN5151 reuses the NCN5150 features and adds two low  
power modes: a 2−wire low power mode dedicated to System for  
meter Communication and Readout for powerless meters (SCR) and a  
3−wire low power mode allowing support for wireless applications.  
When configured in low power mode, the transceiver will not behave  
anymore as a constant current source in order to save energy.  
When configured and used in M−BUS mode, the NCN5151  
transceiver provides all of the functions needed to satisfy the  
European Standards EN 13757−2 and EN 1434−3 describing the  
physical layer requirements for M−BUS. It includes a programmable  
power level of up to 6 unit loads, which are available for use in  
external circuits through a 3.3 V LDO regulator.  
NQFP−20  
MN SUFFIX  
CASE 485E  
MARKING DIAGRAMS  
20  
1
NCN  
5151  
ALYW  
G
Features  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot (optional)  
= Year  
= Work Week  
= Pb-free Package  
Single−chip M−BUS Transceiver  
2 and 3−Wire Low Power Modes with Selection Input Pins  
Integrated 3.3 V VDD LDO Regulator with Extended Peak Current  
Capability of 15 mA  
Supports Powering Slave Device from the Bus  
Adjustable Constant Current Sink Up to 6 Unit Loads in M−Bus  
Mode  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 19 of  
this data sheet.  
Adjustable Current Limit up to 2 Unit Loads in Low Power Mode  
Current budget of 0.88 mA minimum for external circuits  
Low Turn−ON/OFF Levels for Low Bus Voltage Operation  
Polarity Independent  
Power−Fail Function (M−Bus mode)  
UART Communication Speeds up to 38400 baud  
Fast Startup − No External Transistor Required on STC Pin  
Industrial Ambient Temperature Range of −40°C to +85°C  
These are Pb-free Devices  
Typical Applications  
Multi−Energy Utility Meters  
Water  
Gas  
Electricity  
Heating systems  
Related Standards − European Standard  
EN 13757−2, EN 1434−3  
For more information visit www.m-bus.com  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
April, 2015 − Rev. 2  
NCN5151/D  
NCN5151  
16  
20 19  
18 17  
GND  
1
2
3
4
5
15  
14  
13  
12  
11  
3WLPM  
NC  
BUSL1  
NCN5151  
VIO  
BUSL2  
VB  
QFN20  
TX  
PMODE  
TXI  
6
7
8
9
10  
Figure 1. Pin Out NCN5151 in 20−pin NQFP  
(Top View)  
Table 1. NCN5151 PINOUT  
Signal Name  
GND  
Type  
Ground  
Bus  
Pin Number  
Pin Description  
1
2
3
4
5
6
Ground  
BUSL1  
BUSL2  
VB  
Bus line. Connect to bus through series resistors. Connections are polarity  
independent.  
Bus  
Power  
Output  
Output  
Rectified bus voltage  
PMODE  
STC  
Power Mode output indicating the voltage level on VB pin  
Storage capacitor pin. Connect to bulk storage capacitor (typically 100 mF − 470 mF,  
minimum 10 mF).  
RIDD  
Input  
7
Mark current adjustment pin.  
Connect to programming resistor.  
PF  
SC  
Output  
Output  
8
9
Power Fail, active low (disabled in low power mode)  
Mark bus voltage level storage capacitor pin. Connect to ceramic capacitor (typically  
220 nF).  
2WLPM  
TXI  
Input  
Output  
Output  
Input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
2−Wire Low Power Mode selection input  
UART Data output (inverted)  
TX  
UART Data output  
VIO  
I/O pins (RX, RXI, TX, TXI, PF) high level voltage  
Leave this pin floating.  
NC  
3WLPM  
VDD  
RX  
Input  
Power  
Input  
Input  
Output  
3−Wire Low Power Mode selection input  
Voltage regulator output. Connect to minimum 1 mF decoupling capacitor.  
UART Data input  
RXI  
UART Data input (inverted)  
OD  
Open Drain output (active low). Used for the slave to master communication in 3−Wire  
Low Power mode  
RIS  
Input  
20  
Modulation current adjustment pin  
www.onsemi.com  
2
NCN5151  
PF  
8
19  
OD  
VIO_BUF  
13  
VIO  
3−Wire LPM  
Transmitter  
VIO  
Buffer  
LP_TX  
Power  
Fail  
VB_INT  
5
4
VB  
2
BUSL1  
PMODE  
VB  
Monitor  
Detect  
CS1  
3
9
STC  
BUSL2  
SC  
Clamp  
7
6
RIDD  
STC  
VIO_BUF  
11  
12  
STC  
16  
TXI  
TX  
Voltage  
Monitor  
VDD  
Receiver  
3.3 V  
LDO &  
POR  
ECHO  
17  
18  
10  
15  
RX  
LP_TX  
2WLPM  
3WLPM  
Transmitter  
Low  
Power  
Logic  
LP_CTL  
RXI  
CS_TX  
Thermal  
NCN5151  
Shutdown  
1
20  
RIS  
PC20130527.1  
GND  
Figure 2. NCN5151 Block Diagram  
www.onsemi.com  
3
 
NCN5151  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Min  
−40  
−55  
−50  
−0.3  
−0.3  
Max  
+150  
+150  
50  
Unit  
T
T
Junction temperature  
°C  
J
Storage temperature  
°C  
V
S
V
Bus voltage (|BUSL1 − BUSL2|)  
Voltage on pin TX, TXI  
BUS  
V
, V  
TXI  
7.5  
V
TX  
V
RX  
, V  
RXI  
,
Voltage on pin RX, RXI, VIO  
5.5  
V
V
IO  
V
Voltage on pin OD  
−0.3  
−0.3  
−0.3  
−0.3  
4.0  
40  
3.6  
3.6  
3.6  
V
V
OD  
V
V
Voltage on pin 3WLPM  
Voltage on pin 2WLPM  
Voltage on pin PMODE  
ESD Rating − Human Body Model  
ESD Rating − Machine Model  
3WLPM  
2WLPM  
PMODE  
V
V
V
ESD  
kV  
V
HBM  
ESD  
250  
750  
MM  
ESD  
ESD Rating − Charged Device Model  
V
CDM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. All voltages are referenced to GND.  
Table 3. THERMAL CHARACTERISTICS  
Symbol  
Rating  
Typical Value  
Unit  
R
Thermal Characteristics, QFN−20  
38  
°C/W  
q
JA  
Thermal Resistance, Junction−to−Air  
R
obtained with 2S2P test boards according to JEDEC JESD51 standard.  
q
JA  
Table 4. RECOMMENDED OPERATING CONDITIONS (Note 2)  
Symbol  
Parameter  
Min  
Max  
+85  
42  
Unit  
°C  
V
T
A
Ambient Temperature  
Bus voltage (|V −V  
−40  
9.2  
9.7  
4.75  
3.8  
2.5  
0
V
BUS  
|)  
M−Bus mode  
1−2 U  
3−6 U  
1−2 U  
BUSL1  
BUSL2  
L
L
L
42  
V
2 and 3−Low Power Mode  
10  
V
V
VSTC in Low Power Mode to guarantee min V of 3.1 V @ I = 15 mA peak  
V
STC,LP  
DD  
DD  
V
IO  
VIO pin voltage (Note 3)  
OD pin voltage (Note 3)  
3.8  
10  
V
V
OD  
V
ESD−HBM Human Body Model (EIA−JESD22−A114−B)  
ESD−MM Machine Model (JEDEC JESD22−A115)  
ESD−CDM Charged Device Model (EIA−JESD22−C101−A)  
LU Latch−up (EIA/JESD78)  
4
kV  
V
200  
750  
100  
V
mA  
2. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
3. All voltages are referenced to GND  
www.onsemi.com  
4
 
NCN5151  
Table 5. M−BUS MODE − ELECTRICAL CHARACTERISTICS (Notes 4 and 5)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
V
ΔV  
Voltage drop over bus rectifier (V  
Voltage drop over CS1 (V − V  
STC  
− V ) with R  
= 4.02 kW  
1.25  
BR  
BUS  
B
IDD  
ΔV  
)
1.30  
1.70  
V
R
13 kW  
CS  
B
IDD  
IDD  
IDD  
IDD  
IDD  
IDD  
IDD  
IDD  
R
4.02 kW  
= 30 kW  
I
Total current drawn from the bus, in Mark State  
1.30  
2.70  
4.10  
5.50  
6.80  
8.20  
0.2  
1.50  
3.00  
4.50  
6.00  
7.50  
9.00  
2
mA  
R
BUS  
R
= 13 kW  
R
= 8.45 kW  
= 6.19 kW  
= 4.87 kW  
= 4.02 kW  
R
R
R
ΔI  
BUS  
Bus current stability (over ΔV  
= 10 V, RX/RXI = mark)  
%
BUS  
I
Idle current available for the application to draw  
from STC and V (including current drawn from  
0.88  
2.10  
3.10  
4.20  
5.30  
6.50  
1.00  
2.30  
3.60  
4.80  
6.10  
7.40  
250  
1.20  
2.60  
4.00  
5.40  
6.90  
8.40  
mA  
R
R
R
R
R
R
= 30 kW  
STC  
IDD  
IDD  
IDD  
IDD  
IDD  
IDD  
DD  
= 13 kW  
V
DD  
)
= 8.45 kW  
= 6.19 kW  
= 4.87 kW  
= 4.02 kW  
DI  
Additional current available for the application when transmitting a space  
Threshold voltage on V to trigger PF  
mA  
STC,SPACE  
V
V
STC  
V
STC  
+
V
B,PF  
B
+0.3  
0.8  
V
PF voltage high (I = −100 mA)  
V
0.6  
V
IO  
V
V
PF,OH  
PF  
IO  
V
PF, OL  
PF voltage low (Note 6) (I = 50 mA)  
0
0.6  
PF  
4. All voltages are referenced to GND  
5. R resistor with 1% accuracy  
IDD  
6. PF pin is pulled down with an on−chip resistor of typically 2 MW  
Table 6. LOW POWER MODE − ELECTRICAL CHARACTERISTICS (Note 7)  
Symbol  
Parameter  
− V ) with I = 3 mA and external  
BUS  
Min  
Typ  
Max  
Unit  
ΔV  
Voltage drop over bus rectifier (V  
Schottky diodes (Note 8)  
0.35  
V
BR,LP  
BUS  
B
I
Max Current available for the application to draw  
from STC and VDD (including current drawn  
2.0  
4.1  
9.4  
2.3  
4.8  
2.7  
5.5  
mA  
V
R
(Note 9) = 30 kW  
STC,LP  
IDD  
(Note 9) = 13 kW  
from V ) (Note 10)  
DD  
V
Clamp voltage on pin STC (I < I ) (Note 11)  
STC  
10.5  
11.5  
STC,CLAMP,LP  
DD  
7. All voltages are referenced to GND  
8. Forward voltage of 0.3 V max  
9. Resistor with 1% accuracy  
10.When configured in low power mode, the current limit of CS1 is set to 2 x the mark current level in M−BUS mode. The NCN5151 does not  
behave as a current source but as current limiter because V never reaches the STC clamp level.  
STC  
11. The STC clamp function protects the STC capacitor in case 2WLPM or 3WLPM is accidentally enabled during regular M−Bus operation.  
Table 7. GENERAL − ELECTRICAL CHARACTERISTICS (Note 12)  
Symbol  
Parameter  
Min  
Typ  
250  
Max  
500  
0.5  
Unit  
mA  
mA  
V
I
Internal Supply Current (R  
(Note 13)) = 13kW, RX/RXI = mark)  
CC  
IDD  
I
IO  
Current drawn by the V pin  
−0.5  
1.15  
IO  
V
RIDD  
Voltage on RIDD pin  
1.2  
1.25  
12.All voltages are referenced to GND  
13.Resistor with 1% accuracy  
www.onsemi.com  
5
 
NCN5151  
Table 8. VDD REGULATOR ELECTRICAL CHARACTERISTICS (Note 14)  
Symbol  
Parameter  
Min  
3.1  
Typ  
3.3  
Max  
3.6  
Unit  
V
V
DD  
Voltage on V (I < 15 mA)  
DD DD  
I
Peak current that can be supplied by V Note 15 with condition V  
> 3.8 V  
15  
mA  
mA  
V
DD  
DD  
STC  
I
V
BUS  
= 0 V, V = 0 V  
STC  
−0.5  
2.65  
2.55  
5.6  
0.5  
3.15  
3.00  
6.4  
DD, OFF  
V
Power−on reset threshold to connect V  
2.85  
2.75  
6.0  
POR, ON  
DD  
V
Power−on reset threshold to disconnect V  
V
POR, OFF  
DD  
V
Threshold voltage on pin STC to turn on V  
regulator and pull high PF pin.  
PMODE high (VB > 10.6 V)  
M−Bus Mode  
V
STC,VDDON  
DD  
PMODE low (VB < 10.6 V)  
Low Power Mode  
3.1  
2.7  
3.4  
3.0  
3.6  
3.2  
V
V
V
Threshold voltage on pin STC to turn off V regulator and pull low PF pin  
DD  
STC,VDDOFF  
14.All voltages are referenced to GND  
15.Average current draw limited by I  
STC  
Table 9. M−BUS RECEIVER ELECTRICAL CHARACTERISTICS (Note 16)  
Symbol Parameter  
Min  
Typ  
Max  
Mark − 5.7  
Unit  
V
T
Receiver threshold voltage  
Mark −  
8.2  
V
V
SC  
Mark level storage capacitor voltage  
V
B
V
I
Mark level storage capacitor charge current  
Mark level storage capacitor discharge current  
−40  
0.3  
−25  
0.6  
−15  
mA  
mA  
SC, charge  
I
−0.033 x  
SC, discharge  
I
SC, charge  
CDR  
Charge/Discharge current ratio  
30  
40  
V
V
TX/TXI high−level voltage (I /I  
= −100 mA) (Note 17)  
= 100 mA)  
TX TXI  
V
IO  
V
IO  
V
V
TX,OH1  
TXI,OH1  
TX TXI  
0.6  
V
TX/TXI low−level voltage (I /I  
0
0.20  
0.35  
TXI,OL1  
V
TX,OL1  
V
TX/TXI low−level voltage (I  
= 1.1 mA)  
0
1
1.5  
16  
V
TX,OL2  
TXI  
I
, I  
V
TX  
= 7.5 V, V = 6 V  
STC  
11  
mA  
TX TXI  
16.All voltages are referenced to GND  
17.V > V + 1 V  
STC  
IO  
Table 10. LOW POWER MODE RECEIVER ELECTRICAL CHARACTERISTICS (Note 18)  
Symbol  
Parameter  
Receiver low threshold voltage (Falling V  
Min  
1.2  
1.5  
Typ  
Max  
Unit  
V
V
TL,LP  
)
BUS  
1.6  
2
2.4  
2.7  
V
TH,LP  
Receiver high threshold voltage (Rising V  
)
V
BUS  
V
V
TX/TXI high−level output voltage (I /I  
= −100 mA) with V  
V + 0.7 V  
V
0.75  
V
0.6  
V
IO  
V
TX,OH2  
TXI,OH2  
TX TXI  
STC  
IO  
IO  
IO  
V
V
TX/TXI high−level output voltage (I /I  
= −50 mA) with V  
V + 0.5 V  
V
0.6  
V
0.45  
V
V
V
TX,OH3  
TXI,OH3  
TX TXI  
STC  
IO  
IO  
IO  
IO  
V
TX/TXI low−level output voltage (I /I  
= 100 mA)  
0
0.20  
0.35  
TXI,OL3  
TX TXI  
V
TX,OL3  
18.All voltages are referenced to GND  
www.onsemi.com  
6
 
NCN5151  
Table 11. M−BUS TRANSMITTER ELECTRICAL CHARACTERISTICS (Note 19)  
Symbol  
Parameter  
Space level modulating current with R = 100 W (Note 20)  
Min  
12.5  
1.2  
Typ  
15  
Max  
18  
Unit  
mA  
V
I
MC  
RIS  
V
RIS  
Voltage on RIS pin  
1.4  
1.6  
5.5  
V
, V  
RXI,IH  
RX/RXI high−level input voltage  
V
IO  
V
RX,IH  
0.8  
V
, V  
RX/RXI low−level input voltage  
0
6
0.8  
30  
V
RX,IL  
RXI,IL  
I
, I  
Current drawn from RX/RXI pins (Note 21) (V = 3 V)  
mA  
RX RXI  
IO  
19.All voltages are referenced to GND  
20.Resistor with 1% accuracy  
21.Including internal pull−up resistor on RX and internal pull−down resistor on RXI  
Table 12. LOW POWER MODE TRANSMITTER ELECTRICAL CHARACTERISTICS (Note 22)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
2−WIRE LOW POWER MODE  
I
Transmission current with R  
= 100 W (Note 23)  
RIS  
8.5  
10  
11.5  
1.15  
mA  
V
TX,2WLPM  
V
Voltage on RIS pin  
0.85  
1.00  
RIS,2WLPM  
3−WIRE LOW POWER MODE  
OD low−level output voltage, I = 2 mA  
V
OD,OL  
0
0
0.1  
0.3  
1
V
OD  
I
OD leakage current, V = 10 V  
mA  
LEAK,OD  
OD  
22.All voltages are referenced to GND  
23.Resistor with 1% accuracy  
Table 13. VB MONITOR ELECTRICAL CHARACTERISTICS (Note 24)  
Symbol  
Parameter  
VB voltage level to enable PMODE pin  
Min  
Typ  
9.4  
Max  
Unit  
V
V
8.0  
10.5  
VB,PMODE  
V
PMODE high−level output voltage, I  
= −50 mA  
V
DD  
V
DD  
V
PMODE,OH  
PMODE  
0.3  
V
PMODE low−level output voltage , I  
= 50 mA  
0
0.3  
V
PMODE,OL  
PMODE  
24.All voltages are referenced to GND  
Table 14. 2WLPM and 3WLPM INPUT CHARACTERISTICS (Note 25)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
I
I
2WLPM / 3WLPM pull−down current, (voltage range: 0.2 to 3.3 V)  
2
uA  
2WLPM,IL  
3WLPM,IL  
V
V
2WLPM / 3WLPM low−level input voltage  
2WLPM / 3WLPM high−level input voltage  
0
0.2 x  
VDD  
V
V
2WLPM,IL  
3WLPM,IL  
V
V
0.8 x  
VDD  
VDD  
2WLPM,IH  
3WLPM,IH  
25.All voltages are referenced to GND  
Table 15. 2WLPM, 3WLPM, and OD TRUTH TABLE  
2WLPM  
3WLPM  
Operating Mode  
M−Bus  
OD  
L
L
L
HiZ  
H
3 Wire Low Power Mode  
Space (Note 26) state: Low  
Mark (Note 27) state: HiZ  
H
H
L
2 Wire Low Power Mode  
Not Valid (Note 28)  
High Impedance  
H
Space state: Low  
Mark state: HiZ  
26.Space” state means RX “0” or RXI “1”  
27.Mark” state means RX “1” or RXI “0”  
28.Note 2WLPM and 3WLPM both High is not a valid combination. This state is not destructive for the NCN5151 device, but the communication  
will fail  
www.onsemi.com  
7
 
NCN5151  
APPLICATION SCHEMATICS − M−BUS APPLICATION ONLY  
CVDD  
VIO  
VDD  
16  
13  
PMODE  
2WLPM  
3WLPM  
PF  
5
10  
15  
8
OD  
19  
RBUS1  
BUSL1  
VB  
NCN5151  
2
4
3
TX  
12  
11  
17  
18  
mC  
TXI  
RX  
TVS1  
M−BUS  
RXI  
BUSL2  
20  
9
1
7
6
RBUS2  
RIS  
SC  
GND RIDD STC  
RIDD CSTC  
CSC  
R
IS  
PC20130419.4  
Figure 3. General Application Schematic  
CVDD  
VIO  
VDD  
16  
13  
PMODE  
2WLPM  
3WLPM  
PF  
5
10  
15  
8
OD  
19  
RBUS1  
BUSL1  
VB  
NCN5151  
2
4
3
TX  
12  
11  
17  
18  
mC  
TXI  
RX  
TVS  
1
M−BUS  
RXI  
BUSL2  
20  
9
1
7
6
RBUS2  
RIS  
SC  
GND RIDD STC  
CSTC  
CSC  
R
R
IS  
IDD  
PC2010419.5  
Figure 4. Application Schematic with External Power Supply  
www.onsemi.com  
8
 
NCN5151  
VBB  
VDD  
CVDD  
VIO  
13  
VDD  
16  
PMODE  
VSTC  
5
2WLPM  
3WLPM  
PF  
10  
15  
8
OD  
19  
RBUS1  
BUSL1  
VB  
NCN5151  
2
4
3
TX  
12  
11  
VDD  
VBB  
TXI  
RX  
TVS  
1
M−BUS  
mC  
17  
18  
RXI  
20  
9
1
7
6
RBUS2  
BUSL2  
RIS  
SC  
GND RIDD STC  
VSTC  
CSC  
R
CSTC  
IDD  
R
IS  
PC20130419.6  
Figure 5. Optically Isolated Application Schematic  
Table 16. TYPICAL BILL OF MATERIALS − M−BUS MODE  
Reference Designator  
Value (Typical)  
Tolerance  
Manufacturer  
ON Semiconductor  
ON Semiconductor  
Part Number  
U
NCN5151  
1
TVS  
C
40 V  
1SMA40CAT3G  
1
1 mF  
−20%,  
+80%  
VDD  
R
100W  
1%  
IS  
C
220 nF  
−20%,  
+80%  
SC  
R
, R  
220 W  
30 kW  
10%  
1%  
BUS1  
BUS2  
R
1 UL  
2 UL  
IDD  
13 kW  
1%  
3 UL (Note 29)  
4 UL (Note 29)  
5 UL (Note 29)  
6 UL (Note 29)  
1 UL  
8.45 kW  
6.19 kW  
4.87 kW  
4.02 kW  
<330 mF  
<680 mF  
<1000 mF  
<1500 mF  
<2200 mF  
<2200 mF  
1%  
1%  
1%  
1%  
C
10%  
10%  
10%  
10%  
10%  
10%  
STC  
2 UL  
3 UL (Note 29)  
4 UL (Note 29)  
5 UL (Note 29)  
6 UL (Note 29)  
29.3−6 UL configurations are only possible for the NQFP variant.  
www.onsemi.com  
9
 
NCN5151  
APPLICATION INFORMATION − M−BUS MODE  
This section provides some information related to M−bus  
mode application.  
1.5 mA called unit loads. Table 5 lists the different values of  
programming resistors needed for different unit loads, as  
The NCN5151 is a slave transceiver for use in the M−Bus  
protocol. The bus connection is fully polarity independent.  
The transceiver will translate the bus voltage modulation  
from master−to−slave communication to TTL UART  
communication, and in the other direction translate UART  
voltage levels to bus current modulation. The transceiver  
also integrates a voltage regulator for utilizing the current  
drawn in this way from the bus, and an early power fail  
warning. The transceiver also supports an external power  
supply and the I/O high level can be set to match the slave  
sensor circuit. A complete block diagram is shown in  
Figure 2. Each section will be explained in more detail  
below.  
well as the current drawn from the bus (I  
) and the current  
BUS  
that can be drawn from the STC pin (I ). I  
is slightly  
STC STC  
less than I  
to account for the internal power consumption  
BUS  
of the NCN5151.  
The resistors R  
used must be at least 1% accurate. Note  
IDD  
that using 5 and 6 Unit Loads is not covered by the M−BUS  
standard.  
When the voltage on the STC pin reaches V  
the LDO is turned on, and will regulate the voltage on the  
VDD pin to 3.3 V, drawing current from the storage  
capacitor. A decoupling capacitor of minimum 1 mF is  
required on the VDD pin for stability of the regulator. On the  
STC pin, a minimum capacitance of 10 mF is required.  
STC,VDDON  
Furthermore, the ratio C /C  
The voltage on the STC pin is clamped to V  
must be larger than 9.  
STC VDD  
M−Bus Protocol  
by a shunt  
STC  
M−BUS is a European standard for communication and  
powering of utility meters and other sensors.  
Communication from master to slave is achieved by  
voltage−level signaling. The master will apply a nominal  
+36 V to the bus in idle state, or when transmitting a logical  
1 (“mark”). When transmitting a logical 0 (“space”), the  
master will drop the bus voltage to a nominal +24 V.  
Communication from the slave to the master is achieved by  
current modulation. In idle mode or when transmitting a  
logical 1 (“mark”), the slave will draw a fixed current from  
the bus. When transmitting a logical 0 (“space”), the slave  
will draw an extra nominal 15 mA from the bus. M−BUS  
uses a half−duplex 11−bit UART frame format, with 1 start  
bit, 8 data bits, 1 even parity bit and a stop bit.  
Communication speeds allowed by the M−BUS standard are  
300, 600, 2400, 4800, 9600, 19200 and 38400 baud, all of  
which are supported by the NCN5151.  
regulator which will dissipate any excess current that is not  
used by the NCN5151 or external circuits.  
Slave Power Supply (External Battery)  
In case the external sensor circuit consumes more than the  
allowed bus current or the sensor should be kept operational  
when the bus is not present, an external power supply, such  
as a battery, is required (Figure 4).  
When the external circuitry uses different logical voltage  
levels, simply connect the power supply of that voltage level  
to VIO, so that the RX, RXI, TX, TXI and PF pins will  
respond to the correct voltage levels. The NCN5151 will still  
be powered from the bus, but all communication will be  
translated to the voltage level of VIO.  
Contrary to the NCN5150, the NCN5151 does not support  
the remote supply/Battery support because of the  
V
level which has been lowered below 3.3 V for  
STC,VDDOFF  
low bus voltage operation.  
Bus Connection and Rectification  
The bus should be connected to the pins BUSL1 and  
BUSL2 through series resistors to limit the current drawn  
from the bus in case of failure (according to the M−BUS  
standard). Typically, two 220 W resistors are used for this  
purpose.  
Communication, Master to Slave  
M−BUS communication from master to slave is based on  
voltage level signaling. To differentiate between master  
signaling and voltage drop caused by the signaling of  
another slave over cabling resistance, etc., the mark level  
Since the M−BUS connection is polarity independent, the  
NCN5151 will first rectify the bus voltage through a  
semi−active bridge rectifier.  
V
is stored, and only when the bus voltage drops to  
MARK  
less than V will the NCN5151 detect communication. A  
T
simplified schematic of the receiver is shown in Figure 7.  
The received data is transmitted on the pins TX and TXI, as  
shown in the waveforms in Figure 6.  
An external capacitor must be connected to the SC pin to  
store the mark voltage level. This capacitor is charged to V .  
Discharging of this capacitor is typically 40x slower, so  
that the voltage on SC drops only a little during the time the  
master is transmitting a space. The value of C must be  
Slave Power Supply (Bus Powered)  
A slave device can be powered by the M−BUS or from an  
external supply. The M−BUS standard requires the slave to  
draw a fixed current from the bus. This is accomplished by  
the constant current source CS1. This current is used to  
S
charge the external storage capacitor C . The current  
STC  
SC  
drawn from the bus is defined by the programming resistor  
chosen in the range of 100 nF − 330 nF.  
R
IDD  
. The bus current can be chosen in increments of  
www.onsemi.com  
10  
NCN5151  
V
V
RX  
BUS  
V
V
MARK  
IO  
V
0
T
V
T
= 21 42 V  
MARK  
V
V
= V  
− 6 V  
MARK  
MARK  
= V  
V
SPACE  
− 12 V  
I
SPACE  
BUS  
I
I
I
= I  
+ 15 mA  
SPACE  
SPACE  
MARK  
V
TX  
V
IO  
= N unit loads  
MARK  
I
MARK  
0
PC20130514.5  
V
TXI  
V
Figure 8. Slave to Master Communication Driving RX  
IO  
V
RX  
0
V
IO  
PC20130419.1  
0
Figure 6. Master to Slave Communication  
I
BUS  
CSC  
I
SPACE  
I
I
= I  
+ 15 mA  
SPACE  
MARK  
PC20130516.2  
SC  
= N unit loads  
I
MARK  
MARK  
9
VB_INT  
NCN5151  
PC20130514.6  
VIO_BUF  
ICHARGE  
Figure 9. Slave to Master Communication Driving RXI  
12  
11  
TX  
A
B
Encoding  
IDISCHARGE  
A: M−Bus Mode  
B: 2&3Wire LPM  
TXI  
VIO_BUF  
17  
LP_CTL  
ECHO  
Figure 7. Receiver Block  
ECHO  
LP_TX  
LP_CTL  
VB_IN  
RX  
A: M−Bus/2WLP Mode  
B: 3−Wire LP Mode  
B
Decoding  
18  
Communication, Slave to Master  
RXI  
A
M−BUS communication from slave to master uses bus  
current level modulation while the voltage remains constant.  
This current modulation can be controlled from either the  
RX or RXI pin as shown in Figures 8 and 9. When  
transmitting a space (“0”), the current modulator will draw  
an additional current from the bus. This current can be set  
CS_TX  
M−Bus: 1.5V  
2−Wire LP: 1V  
with a programming resistor R . To achieve the space  
RIS  
current required the M−BUS standard, R  
should be  
RIS  
100 W. A simplified schematic of the transmitter is shown in  
Figure 10.  
NCN5151  
20  
RIS  
PC20130516.1  
RIS  
Because the M−BUS protocol is specified as half−duplex,  
an echo function will cause the transmitted signal on RX or  
RXI to appear on the receiver outputs TX and TXI. Should  
the master attempt to send at the same time, the bitwise  
added signal of both sources will appear on these pins,  
resulting in invalid data.  
Figure 10. Transmitter Block  
www.onsemi.com  
11  
 
NCN5151  
200  
150  
100  
50  
be used to dimension the value of the bulk C  
taking into account that the M−BUS standard requires t to  
be less than 3 s.  
For certain applications where the power drawn from the  
bus is not used in external circuits, the storage capacitor  
value can be much lower. The NCN5151 requires a  
needed,  
STC  
on  
minimum STC capacitance of 10 mF (and C /C  
> 9)  
STC VDD  
to ensure that the bus current regulation is stable under all  
conditions.  
V
BUS  
V
= V  
STC  
+ 0.6  
B
V
B,min  
5
10  
15  
20  
25  
I
(mA)  
MC  
V
STC  
Figure 11. Typical Modulation Current and RIS  
Resistor  
V
STC,CLAMP  
V
STC,VDD ON  
V
STC,VDD OFF  
0
Power On/Off Sequence and Power Fail Indicator  
The power-on and power-off sequence of the NCN5150  
is shown in Figure 12. Shown also in Figure 12 is the  
operation of the PF pin. This pin is used to give an early  
warning to the microcontroller that the bus power is  
collapsing, allowing the microcontroller to save its data and  
t
t
OFF  
ON  
V
DD  
0
V
PF  
V
IO  
shut down gracefully. The times t and t can be  
on  
off  
approximated by the following formulas:  
0
PC20130419.3  
CSTC  
Figure 12. Power−on and Power−off  
ton  
+
VSTC,VDDON  
ISTC  
CSTC  
Thermal Shutdown  
ǒ
Ǔ
toff  
+
VSTC,CLAMP * VSTC,VDDOFF  
IDD ) ISTC  
The NCN5151 includes a thermal shutdown function  
disabling the transmitter in case of excessive junction  
temperature.  
Where I  
is the internal current consumption of the  
CC  
NCN5151 and I  
is the current consumed by external  
DD  
circuits drawn from either VDD or STC. These formulas can  
www.onsemi.com  
12  
 
NCN5151  
APPLICATION SCHEMATICS  
LOW−POWER MODE and M−BUS APPLICATIONS  
CVDD  
VOD  
PF  
VOD  
VIO  
VDD  
16  
13  
8
RF−MODULE  
PMODE  
2WLPM  
ROD  
5
OD  
19  
Data IN  
“0”  
“1”  
10  
15  
12  
11  
TVS  
1
3WLPM  
Sensor  
System  
RBUS1LP  
BUSL1  
VB  
NCN5151  
2
4
3
TX  
TXI  
DC  
Supply  
+
TVS  
D1  
2
RX  
17  
18  
D2  
ON/OFF  
Keying  
TVS3  
RXI  
BUSL2  
20  
9
1
7
6
RBUS2LP  
RIS  
SC  
GND RIDD STC  
RIDD CSTC  
CSC  
BAT_RF  
RIS  
Min: 4.75 V  
Max: 9 V  
4.75 .. 9 V  
0 V  
PC20130419.9  
Figure 13. 3−Wire Low Power Mode and M−Bus Application Schematic  
4.75 .. 9 V  
C
VDD  
V
V
OD  
OD  
PF  
0 V  
VIO  
VDD  
13  
16  
8
MODULE  
PMODE  
2WLPM  
R
OD  
5
OD  
19  
“1”  
“0”  
10  
15  
12  
11  
TVS  
TVS  
1
2
3WLPM  
TX  
Sensor  
System  
R
BUS1LP  
BUSL1  
VB  
NCN5151  
2
4
DC  
Supply  
+
D
1
TXI  
RX  
17  
18  
D
R
2
ON/OFF  
Keying  
TVS  
3
RXI  
3
6
BUSL2  
20  
9
1
7
BUS2LP  
RIS  
SC  
GND RIDD  
STC  
BAT  
C
SC  
R
C
IDD  
R
STC  
IS  
Min: 4,75 V  
Max: 9 V  
PC20130419.7  
Figure 14. 2−Wire Low Power Mode and M−Bus Application Schematic  
www.onsemi.com  
13  
 
NCN5151  
Table 17. TYPICAL BILL OF MATERIALS − LOW POWER MODE  
Reference  
Designator  
Value  
(Typical)  
Tolerance  
Manufacturer  
Part Number  
NCN5151  
Note  
U
ON Semiconductor  
ON Semiconductor  
ON Semiconductor  
ON Semiconductor  
1
TVS  
TVS  
40 V  
30 V  
1SMA40AT3G  
1SMA30AT3G  
BAS70LT1G  
1
2
D1, D2  
Absolute maximum reverse  
voltage >40 V  
C
1 mF  
100 W  
220 nF  
33 W  
−20%, +80%  
1%  
VDD  
R
IS  
C
−20%, +80%  
SC  
R
R
,
Murata  
PRG18B330MB1RB  
Over−current protection resistor  
type are recommended for Low  
Power Modes  
BUS1LP  
BUS2LP  
R
560 W  
30 kW  
10%  
1%  
OD  
R
C
1 U  
2 U  
1 U  
2 U  
IDD  
L
L
L
L
13 kW  
1%  
<330 mF  
<680 mF  
10%  
10%  
Min : 22 mF with C  
/ C  
> 9  
STC  
STC  
VDD  
APPLICATION INFORMATION − LOW POWER MODE  
3−Wire LP Mode − RF Module − Bidirectional  
This section provides some information related to the  
NCN5151 operating in Low Power mode. As depicted in  
Figure 13, the NCN5151 also offers the possibility to build  
an extremely low power communication with an external RF  
Module.  
between 4.75 and 9 V; two 3 V lithium batteries are normally  
used in a system like this.  
Figure 17 illustrates this bidirectional communication in  
3−wire LP mode.  
The OD pin has to be protected against surge transients  
with a TVS and a series resistor R . This resistor acts also  
OD  
This topology uses a 3−wire interface: the regular bus  
lines (BUSL1, BUSL2) and the open drain pin (OD).  
This three−wire interface is designed in such a way that  
when the system is switched on, the Sensor System detects  
as a current limiter in case of a short between the 9V battery  
module and the wire “Data_In” going to the OD connector,  
while 3WLPM and RX/RXI are active. The current through  
the OD pin is limited to 20 mA. Therefore a typical R  
OD  
via the third contact V whether any direct connection with  
resistor of 560 W is recommended. (Note that the internal  
OD switch has a typical R of 50 W)  
OD  
the external battery module exists. If this is the case, the  
Sensor System enables the 3WLPM (three−wire low power  
mode) pin. The low power logic changes the operating mode  
of the transmitter block (Figures 2 and 10). The  
communication from slave to RF module does not take place  
via energy−intensive current modulation, but instead by  
means of a purely digital signal on the OD pin. This enables  
extremely energy−saving communication with the master.  
As with the M−Bus, the RF module signals the data to the  
NCN5151 through voltage modulation but in this case this  
is purely ON/OFF keying. This means the power supply  
(maximum of 9 V) is simply switched on and off. As  
illustrated in Figure 7 the receiver threshold switches to a  
level referenced to ground instead of the mark state. The  
sensor system has to make sure that it has sufficient energy  
to send data and save enough energy in a capacitor for this  
purpose. During communication from the RF module to the  
sensor, the sensor system must also have sufficient energy  
and buffer this if necessary. The power supply can be  
DS(on)  
2−Wire LP Mode − SCR − Bidirectional  
The second low power mode works with a 2−wire  
interface also called SCR (System for meter  
Communication and Readout for powerless meters) which  
is enabled with the 2WLPM input pin (see Figure 14).  
The communication from master to slave is done with  
ON/OFF keying similar to 3−wire LP mode, but the  
communication from slave to master uses current  
modulation similar to the current modulation used in the  
M−Bus protocol. In order to handle the low supply voltage  
(down to 4.75 V) and limit voltage losses, the current  
modulation amplitude is reduced with 33% (10 mA vs  
15 mA) as illustrated in Figure 10.  
Figure 18 illustrates the bidirectional communication in  
2−wire LP mode.  
Precautions regarding the stored energy during ON/OFF  
keying are also valid for this mode  
www.onsemi.com  
14  
NCN5151  
MBUS and Low Power Mode Recognition  
This current limit in low power mode is double compared  
to the M−BUS mode (Table 6, Figures 15 and 16). This  
The NCN5151 includes a VB voltage monitor with an  
output pin PMODE (Power Mode) indicating whether VB  
voltage is above 9.5 V typical. This information is sent to the  
sensor system which determines the relevant mode (using  
the OD state pin): M−Bus, 2−wire or 3−wire low power  
mode. The sensor system then signals the NCN5151 the  
chosen operating mode using 2WLPM and 3WLPM pins  
(see Figures 15 and 16). During 2WLPM or 3WLPM the PF  
output is disabled and pulled to ground.  
By keeping the selection mode mechanism outside the  
NCN5151, the user can enhance the meter application  
robustness and its reliability through the sensor system  
firmware based on their application environment.  
allows a faster recharge of C  
a duty cycle close to 50%.  
during ON/OFF keying and  
STC  
Low Power Mode and Minimum Operating Voltage  
The user should take several precautions when using the  
low power modes in order to maximize the voltage seen by  
the NCN5151 circuitry.  
It is required to replace the 220 W bus resistors with  
current limiting resistor (33 W typ, PTC type with rapid  
operation). This will significantly reduce the voltage drop,  
especially during current modulation (slave to master) in  
2WLPM and guarantee sufficient short protection.  
An external Schottky (with forward voltage of 0.3 V max)  
is also required between BUSL1/BUSL2 and the VB pin in  
order to reduce the overall voltage drop on the internal diode  
bridge.  
Table 15 gives an overview of the low power pin truth  
table. Note that both 2WLPM and 3WLPM pins enabled is  
not allowed. This combination is safe for the NCN5151 but  
the communication with the master may fail.  
These adaptations allow the NCN5151 to operate in low  
power mode with a minimum battery voltage of 4.75 V.  
As mentioned in both low power mode sections, it is  
important to maintain a minimum voltage level on the STC  
pin during the ON/OFF keying. Below 3.8 V on STC, the  
low dropout regulator may not be able to regulate the VDD  
supply pin correctly.  
CS1 Current Source and STC Clamp  
Contrary to M−BUS mode, in low power mode the  
NCN5151 does not behave as a constant current load. The  
STC clamp level (V ) is increased higher than  
STC,CLAMP,LP  
the low power mode supply (9.5 V typical) in order to never  
trigger it under normal operating range. Thus the CS1 will  
only act as current limiter during startup and ON/OFF  
keying and in steady state the CS1 block will be pinched off  
between STC and VB.  
www.onsemi.com  
15  
NCN5151  
V
VBUS  
5 V  
VSTC  
VSTC,VDDON  
VPOR,ON  
VDD  
1
1
2
V
release  
DD  
0
Drop of I  
due to clamping of STC to V  
BUS  
IBUS  
BUS  
IBUS_MAX= 2 x f(RIDD  
)
3
4
Detection and enabling 3−wire low power  
mode by the external mC/sensor  
2
Increases of bus current limit (x2) and  
increase of STC clamp level  
IBUS_MAX= f(RIDD  
)
ICC + ISENSOR  
0
VOD  
4
0
VPMODE  
0
V2WLPM  
0
V3WLPM  
3
0.8 V  
DD  
0
VTX  
V
IO  
0
VTXI  
0
PC20130514.1  
Figure 15. Startup Sequence in 3−Wire Low Power Mode  
www.onsemi.com  
16  
NCN5151  
V
VBUS  
5 V  
VSTC  
VSTC,VDDON  
VPOR,ON  
VDD  
1
1
2
V
release  
DD  
0
Drop of I  
due to clamping of STC to V  
BUS  
IBUS  
BUS  
IBUS_MAX = 2 x f(RIDD  
)
Detection and enabling 2−wire low power  
mode by the external mC/sensor  
3
4
2
Increases of bus current limit (x2) and  
increase of STC clamp level  
IBUS_MAX = f(RIDD  
)
ICC + ISENSOR  
0
VOD  
4
0
VPMODE  
0
V2WLPM  
0.8 VDD  
0
V3WLPM  
3
0
VTX  
V
IO  
0
VTXI  
0
PC20130514.2  
Figure 16. Startup Sequence in 2−Wire Low Power Mode  
www.onsemi.com  
17  
NCN5151  
Master to Slave  
Slave to Master  
V
VBUS  
VSTC  
VTH,LP  
VTL,LP  
0
IBUS  
IBUS_MAX= 2 x f(R  
)
IDD  
ICC + ISENSOR  
0
VOD  
V
IO  
0
VRX  
VDD  
0
VTX  
V
IO  
0
VTXI  
V
IO  
0
V2WLPM  
VDD  
0
V3WLPM  
VDD  
PC20130514.3  
0
Figure 17. Communication in 3−wire Low Power Mode  
www.onsemi.com  
18  
NCN5151  
Master to Slave  
Slave to Master  
V
VBUS  
VSTC  
VTH,LP  
VTL,LP  
0
IBUS  
ITX,2WLPM  
IBUS_MAX= 2xf(R  
)
IDD  
ICC  
+
ISENSOR  
0
VOD  
V
IO  
0
VRX  
V
IO  
0
VTX  
V
IO  
0
VTXI  
V
IO  
0
V2WLPM  
VDD  
0
V3WLPM  
VDD  
0
PC20130514.4  
Figure 18. Communication in 2−wire Low Power Mode  
Table 18. ORDERING INFORMATION  
Device  
Package  
Shipping  
2500 / Tape & Reel  
NCN5151MNTWG  
NQFP20, 4x4  
(Pb-free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
19  
NCN5151  
PACKAGE DIMENSIONS  
QFN20, 4x4, 0.5P  
CASE 485E  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND 0.30 MM  
FROM THE TERMINAL TIP.  
A
B
D
A3  
EXPOSED Cu  
MOLD CMPD  
PIN ONE  
REFERENCE  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
E
A1  
2X  
MILLIMETERS  
DETAIL B  
OPTIONAL CONSTRUCTIONS  
DIM MIN  
MAX  
1.00  
0.05  
0.15  
C
A
A1  
A3  
b
0.80  
---  
2X  
0.20 REF  
0.15  
C
0.20  
0.30  
L
L
TOP VIEW  
D
4.00 BSC  
D2  
E
2.60  
2.60  
2.90  
4.00 BSC  
(A3)  
DETAIL B  
L1  
A
E2  
e
2.90  
0.10  
C
0.50 BSC  
0.20 REF  
K
DETAIL A  
OPTIONAL CONSTRUCTIONS  
L
0.35  
0.00  
0.45  
0.15  
0.08  
C
L1  
SEATING  
PLANE  
A1  
C
SIDE VIEW  
SOLDERING FOOTPRINT*  
0.10 C A B  
4.30  
20X  
D2  
DETAIL A  
0.58  
20X L  
6
2.88  
0.10 C A B  
11  
E2  
1
1
2.88  
4.30  
20  
K
20X b  
e
0.10 C A B  
0.05  
C
NOTE 3  
PKG  
OUTLINE  
BOTTOM VIEW  
20X  
0.35  
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb-free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCN5151/D  

相关型号:

NCN5192

HART Modem
ONSEMI

NCN5192MNG

HART Modem
ONSEMI

NCN5192MNRG

HART Modem
ONSEMI

NCN5193

HART Modem
ONSEMI

NCN5193MNTWG

HART Modem
ONSEMI

NCN5193_16

HART Modem
ONSEMI

NCN5193_3

HART Modem
ONSEMI

NCN6000

Compact Smart Card Interface IC
ONSEMI

NCN6000/D

Compact Smart Card Interface IC
ETC

NCN6000DTB

Compact Smart Card Interface IC
ONSEMI

NCN6000DTBG

Compact Smart Card Interface IC
ONSEMI

NCN6000DTBR2

Compact Smart Card Interface IC
ONSEMI