NCP5392P [ONSEMI]

2/3/4-Phase Controller for CPU Applications; 2/3/ 4相位控制器的CPU应用
NCP5392P
型号: NCP5392P
厂家: ONSEMI    ONSEMI
描述:

2/3/4-Phase Controller for CPU Applications
2/3/ 4相位控制器的CPU应用

控制器
文件: 总32页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP5392P  
2/3/4-Phase Controller for  
CPU Applications  
The NCP5392P provides up to a four-phase buck solution which  
combines differential voltage sensing, differential phase current  
sensing, and adaptive voltage positioning to provide accurately  
regulated power for both Intel and AMD processors. Dual-edge  
pulse-width modulation (PWM) combined with inductor current  
sensing reduces system cost by providing the fastest initial response  
to dynamic load events. Dual-edge multiphase modulation reduces  
the total bulk and ceramic output capacitance required to meet  
transient regulation specifications.  
http://onsemi.com  
MARKING  
DIAGRAM  
1
A high performance operational error amplifier is provided to  
simplify compensation of the system. Dynamic Reference Injection  
further simplifies loop compensation by eliminating the need to  
compromise between closed-loop transient response and Dynamic  
VID performance.  
1
40  
NCP5392P  
AWLYYWWG  
40 PIN QFN, 6x6  
MN SUFFIX  
CASE 488AR  
In addition, NCP5392P provides an automatic power saving  
feature (Auto-PSI). When Auto-PSI function is enabled, NCP5392P  
will automatically detect the VID transitions and direct the Vcore  
regulator in or out of low power states. As a result, the best efficiency  
scheme is always chosen.  
NCP5392P = Specific Device  
Code  
A
= Assembly Location  
= Wafer Lot  
= Year  
WL  
YY  
WW  
G
= Work Week  
= Pb-Free Package  
Features  
ꢀMeets Intel's VR11.1 Specifications  
*Pin 41 is the thermal pad on the bottom of the device.  
ꢀMeets AMD 6 Bit Code Specifications  
ꢀDual-edge PWM for Fastest Initial Response to Transient Loading  
ꢀHigh Performance Operational Error Amplifier  
ꢀInternal Soft Start  
ꢀDynamic Reference Injection (Patent #US07057381)  
ꢀDAC Range from 0.375 V to 1.6 V  
ꢀDAC Feed Forward Function (Patent Pending)  
ꢀ 0.5% DAC Voltage Accuracy from 1.0 V to 1.6 V  
ꢀTrue Differential Remote Voltage Sensing Amplifier  
ꢀPhase-to-Phase Current Balancing  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCP5392PMNR2G* QFN-40 2500/Tape & Reel  
(Pb-Free)  
*TemperatureRange: 0°C to 85°C  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
ꢀ“Lossless” Differential Inductor Current Sensing  
ꢀDifferential Current Sense Amplifiers for each Phase  
ꢀAdaptive Voltage Positioning (AVP)  
ꢀOscillator Frequency Range of 100 kHz – 1 MHz  
ꢀLatched Over Voltage Protection (OVP)  
ꢀGuaranteed Startup into Pre-Charged Loads  
ꢀThreshold Sensitive Enable Pin for VTT Sensing  
ꢀPower Good Output with Internal Delays  
ꢀThermally Compensated Current Monitoring  
ꢀAutomatic Power Saving (AUTO PSI Mode)  
ꢀCompatible to PSI Power Saving Requirements  
ꢀThis is a Pb-Free Device  
Applications  
ꢀDesktop Processors  
©ꢀ Semiconductor Components Industries, LLC, 2008  
April, 2008 - Rev. 0  
1
Publication Order Number:  
NCP5392P/D  
NCP5392P  
PIN CONNECTIONS  
1
2
3
4
5
6
30  
29  
28  
27  
EN  
G1  
VID0  
VID1  
VID2  
VID3  
VID4  
DRVON  
CS4  
CS4N  
CS3  
26  
25  
24  
23  
NCP5392P  
CS3N  
2/3/4-PhaseBuck Controller  
(QFN40)  
7
8
VID5  
VID6  
VID7  
ROSC  
CS2  
CS2N  
CS1  
9
22  
21  
10  
CS1N  
Figure 1. NCP5392P QFN40 Pin Connections (Top View)  
http://onsemi.com  
2
NCP5392P  
VID0  
VID1  
VID2  
VID3  
VID4  
Flexible DAC  
VID5  
VID6  
VID7/AMD  
Overvoltage  
Protection  
-
+
DAC  
-
+
VSN  
VSP  
+
-
G1  
G2  
G3  
Diff Amp  
DIFFOUT  
Error Amp  
+
+
1.3 V  
-
VFB  
+
-
COMP  
+
-
VDRP  
Droop Amp  
VDFB  
-2/3  
+
CSSUM  
+
-
CS1P  
CS1N  
+
+
-
Gain = 6  
Gain = 6  
CS2P  
CS2N  
+
-
+
CS3P  
CS3N  
+
-
+
Gain = 6  
Gain = 6  
+
-
CS4P  
CS4N  
+
G4  
+
-
+
Oscillator  
IMON  
ROSC  
ILIM  
DRVON  
PSI  
+
-
Control,  
Fault Logic  
and  
APSI_EN  
PH_PSI  
ILimit  
EN  
Monitor  
Circuits  
12VMON  
VR_RDY  
VCC  
+
-
+
4.25 V  
UVLO  
GND (FLAG)  
Figure 2. NCP5392P Block Diagram  
http://onsemi.com  
3
NCP5392P  
12V_FILTER  
12V_FILTER  
12V_FILTER  
+5V  
VTT +5V  
D1  
C4  
C3  
VTT  
BST  
Q1  
C1  
VCC  
OD  
IN  
U2  
DRH  
34  
35  
L1  
NCP5359  
37  
38  
2
PSI  
PSI  
SW  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
APSI_EN  
PH_PSI  
APSI_EN  
3
4
5
6
7
8
9
40  
DRL  
Q2  
R2  
RS1  
PH_PSI  
PGND  
12  
IMON  
G1  
IMON  
C2  
CS1  
30  
22  
21  
31  
24  
23  
32  
26  
25  
33  
28  
27  
CS1P  
CS1N  
12V_FILTER  
12V_FILTER  
1
EN  
39  
G2  
VR_RDY  
CS2P  
CS2N  
14  
13  
VSN  
VSP  
NCP5392P  
BST  
G3  
CS3P  
CS3N  
G4  
VCC  
OD  
IN  
RFB  
DRH  
NCP5359  
SW  
CFB1  
RFB1  
RF  
15  
16  
17  
18  
DRL  
DIFFOUT  
COMP  
VFB  
CS4P  
CS4N  
CF  
PGND  
CH  
29  
VDRP  
VDFB  
DRVON  
RDRP  
19  
20  
12V_FILTER  
12V_FILTER  
R6  
RNOR  
CDFB  
CSSUM  
+
36  
DAC  
RISO1 RT2 RISO2  
41  
11  
10  
BST  
RDNP  
VCC  
OD  
IN  
DRH  
RLIM1  
RLIM2  
NCP5359  
SW  
DRL  
PGND  
12V_FILTER  
12V_FILTER  
BST  
VCC  
OD  
IN  
DRH  
NCP5359  
SW  
DRL  
PGND  
VCCP  
VSSN  
Figure 3. Application Schematic for Four Phases  
http://onsemi.com  
4
NCP5392P  
12V_FILTER  
12V_FILTER  
12V_FILTER  
+5V  
VTT +5V  
D1  
C4  
C3  
VTT  
BST  
Q1  
Q2  
C1  
U2  
37  
VCC  
L1  
DRH  
34  
35  
NCP5359  
PSI  
PSI  
2
SW  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
OD  
3
4
5
6
7
8
9
38  
40  
APSI_EN  
PH_PSI  
APSI_EN  
DRL  
R2  
RS1  
CS1  
IN  
PH_PSI  
PGND  
12  
IMON  
G1  
IMON  
C2  
30  
22  
21  
31  
24  
23  
32  
26  
25  
33  
28  
27  
CS1P  
CS1N  
12V_FILTER  
12V_FILTER  
1
EN  
39  
G2  
VR_RDY  
CS2P  
CS2N  
14  
13  
VSN  
VSP  
NCP5392  
BST  
G3  
CS3P  
CS3N  
G4  
VCC  
OD  
IN  
RFB  
DRH  
NCP5359  
SW  
CFB1  
RFB1  
RF  
15  
16  
17  
18  
19  
20  
DRL  
DIFFOUT  
COMP  
VFB  
CS4P  
CS4N  
CF  
PGND  
CH  
29  
VDRP  
VDFB  
DRVON  
RDRP  
12V_FILTER  
12V_FILTER  
R6  
RNOR  
CDFB  
CSSUM  
+
36  
DAC  
RISO1 RT2 RISO2  
41  
11  
10  
BST  
RDNP  
VCC  
OD  
IN  
DRH  
RLIM1  
RLIM2  
NCP5359  
SW  
DRL  
PGND  
VCCP  
VSSN  
Figure 4. Application Schematic for Three Phases  
http://onsemi.com  
5
NCP5392P  
12V_FILTER  
12V_FILTER  
12V_FILTER  
+5V  
VTT +5V  
D1  
C4  
C3  
VTT  
BST  
Q1  
Q2  
C1  
VCC  
U2  
37  
RNTC1  
PSI  
APSI_EN  
PH_PSI  
L1  
DRH  
34  
35  
NCP5359  
2
PSI  
SW  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
OD  
3
4
5
6
7
8
9
38  
40  
DRL  
APSI_EN  
PH_PSI  
R2  
RS1  
CS1  
IN  
PGND  
12  
IMON  
G1  
IMON  
C2  
30  
22  
21  
31  
24  
23  
32  
26  
25  
33  
28  
27  
CS1P  
CS1N  
1
EN  
39  
G2  
VR_RDY  
CS2P  
CS2N  
14  
13  
VSN  
VSP  
NCP5392  
G3  
CS3P  
CS3N  
G4  
RFB  
CFB1  
RFB1  
RF  
15  
16  
17  
18  
19  
20  
DIFFOUT  
COMP  
VFB  
CS4P  
CS4N  
CF  
CH  
29  
VDRP  
VDFB  
DRVON  
RDRP  
12V_FILTER  
12V_FILTER  
R6  
RNOR  
CDFB  
CSSUM  
+
36  
DAC  
RISO1 RT2 RISO2  
41  
11  
10  
BST  
RDNP  
VCC  
OD  
IN  
DRH  
RLIM1  
RLIM2  
NCP5359  
SW  
DRL  
PGND  
VCCP  
VSSN  
Figure 5. Application Schematic for Two Phases  
http://onsemi.com  
6
NCP5392P  
PIN DESCRIPTIONS  
Pin No.  
Symbol  
EN  
Description  
1
2
Threshold sensitive input. High = startup, Low = shutdown.  
Voltage ID DAC input  
VID0  
3
VID1  
Voltage ID DAC input  
4
VID2  
Voltage ID DAC input  
5
VID3  
Voltage ID DAC input  
6
VID4  
Voltage ID DAC input  
7
VID5  
Voltage ID DAC input  
8
VID6  
Voltage ID DAC input  
9
VID7/AMD  
ROSC  
Voltage ID DAC input. Pull to V (5 V) to enable AMD 6-bit DAC code.  
CC  
10  
A resistance from this pin to ground programs the oscillator frequency according to f . This pin supplies a  
SW  
trimmed output voltage of 2 V.  
11  
ILIM  
Overcurrent shutdown threshold setting. Connect this pin to the ROSC pin via a resistor divider as shown in  
the Application Schematics. To disable the overcurrent feature, connect this pin directly to the ROSC pin. To  
guarantee correct operation, this pin should only be connected to the voltage generated by the ROSC pin; do  
not connect this pin to any externally generated voltages.  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
IMON  
VSP  
0 mV to 900 mV analog signal proportional to the output load current. VSN referenced  
Non-inverting input to the internal differential remote sense amplifier  
Inverting input to the internal differential remote sense amplifier  
Output of the differential remote sense amplifier  
Output of the error amplifier  
VSN  
DIFFOUT  
COMP  
VFB  
Compensation Amplifier Voltage feedback  
VDRP  
VDFB  
CSSUM  
CS1N  
CS1  
Voltage output signal proportional to current used for current limit and output voltage droop  
Droop Amplifier Voltage Feedback  
Inverted Sum of the Differential Current Sense inputs. Av=CSSUM/CSx = -4  
Inverting input to current sense amplifier #1  
Non-inverting input to current sense amplifier #1  
Inverting input to current sense amplifier #2  
CS2N  
CS2  
Non-inverting input to current sense amplifier #2  
Inverting input to current sense amplifier #3  
CS3N  
CS3  
Non-inverting input to current sense amplifier #3  
Inverting input to current sense amplifier #4  
CS4N  
CS4  
Non-inverting input to current sense amplifier #4  
Bidirectional Gate Drive Enable  
DRVON  
G1  
PWM output pulse to gate driver. 3-level output: Low = LSFET Enabled, Mid = Diode Emulation Enabled,  
High = HSFET Enabled  
31  
32  
33  
34  
35  
36  
37  
G2  
G3  
PWM output pulse to gate driver. 3-level output (see G1)  
PWM output pulse to gate driver. 3-level output (see G1)  
PWM output pulse to gate driver. 3-level output (see G1)  
Monitor a 12 V input through a resistor divider.  
Power for the internal control circuits.  
G4  
12VMON  
VCC  
DAC  
PSI  
DAC Feed Forward Output  
Power Saving Control. Low = power saving operation, High = normal operation. PSI signal has higher priority  
over APSI_EN signal.  
38  
APSI_EN  
APSI_EN High: Enable AUTO PSI function. When PSI = low, system will be forced into PSI mode, uncondi‐  
tionally. When PSI = high, APSI_EN will determine if the system needs to be in AUTO PSI mode. Once in  
AUTO PSI mode, system switches on/off PSI functions automatically based on VID change status.  
39  
40  
VR_RDY  
PH_PSI  
Open collector output. High indicates that the output is regulating  
PH_PSI Pin select one or two phase operation in PSI mode. PH_PSI = high, two phase operation, PH_PSI =  
low, one phase operation.  
FLAG  
GND  
Power supply return (QFN Flag)  
http://onsemi.com  
7
NCP5392P  
PIN CONNECTIONS VS. PHASE COUNT  
Number of Phases  
G4  
G3  
G2  
G1  
CS4-CS4N  
CS3-CS3N  
CS2-CS2N  
CS1-CS1N  
4
Phase 4  
Out  
Phase 3  
Out  
Phase 2  
Out  
Phase 1  
Out  
Phase 4 CS  
input  
Phase 3 CS  
input  
Phase 2 CS  
input  
Phase 1 CS  
input  
3
2
Tie to  
GND  
Phase 3  
Out  
Phase 2  
Out  
Phase 1  
Out  
Tie to CSN  
pin used  
Phase 3 CS  
input  
Phase 2 CS  
input  
Phase 1 CS  
input  
Tie to  
GND  
Phase 2  
Out  
Tie to  
GND  
Phase 1  
Out  
Tie to CSN  
pin used  
Phase 2 CS  
input  
Tie to CSN  
pin used  
Phase 1 CS  
input  
MAXIMUM RATINGS  
ELECTRICAL INFORMATION  
Pin Symbol  
V
MAX  
V
MIN  
I
I
SINK  
SOURCE  
COMP  
5.5 V  
5.5 V  
-0.3 V  
10 mA  
10 mA  
V
DRP  
-0.3 V  
5 mA  
1 mA  
20 mA  
N/A  
5 mA  
1 mA  
20 mA  
20 mA  
10 mA  
N/A  
V–  
GND + 300 mV  
5.5 V  
GND – 300 mV  
-0.3 V  
DIFFOUT  
VR_RDY  
VCC  
5.5 V  
-0.3 V  
7.0 V  
-0.3 V  
N/A  
ROSC  
5.5 V  
-0.3 V  
1 mA  
IMON Output  
All Other Pins  
1.1 V  
5.5 V  
-0.3 V  
*All signals referenced to AGND unless otherwise noted.  
THERMAL INFORMATION  
Rating  
Symbol  
Value  
34  
Unit  
°C/W  
°C  
Thermal Characteristic, QFN Package (Note 1)  
Operating Junction Temperature Range (Note 2)  
Operating Ambient Temperature Range  
Maximum Storage Temperature Range  
Moisture Sensitivity Level, QFN Package  
R
q
JA  
T
J
0 to 125  
0 to +85  
-55 to +150  
1
T
A
°C  
T
STG  
°C  
MSL  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
RecommendedOperating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
*The maximum package power dissipation must be observed.  
1. JESD 51-5 (1S2P Direct-Attach Method) with 0 LFM.  
2. JESD 51-7 (1S2P Direct-Attach Method) with 0 LFM.  
http://onsemi.com  
8
 
NCP5392P  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise stated: 0°C < T < 85°C; 4.75 V < V < 5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
ERROR AMPLIFIER  
Input Bias Current (Note 3)  
Test Conditions  
Min  
Typ  
Max  
Unit  
-200  
0
200  
3
nA  
V
Noninverting Voltage Range (Note 3)  
Input Offset Voltage (Note 3)  
Open Loop DC Gain  
1.3  
-
V+ = V- = 1.1 V  
C = 60 pF to GND,  
R = 10 KW to GND  
-1.0  
-
1.0  
mV  
dB  
100  
L
L
Open Loop Unity Gain Bandwidth  
Open Loop Phase Margin  
Slew Rate  
C = 60 pF to GND,  
L
R = 10 KW to GND  
-
-
-
10  
80  
5
-
-
-
MHz  
°
L
C = 60 pF to GND,  
L
R = 10 KW to GND  
L
DV = 100 mV, G = - 10 V/V,  
in  
DV = 1.5 V – 2.5 V,  
V/ms  
out  
C = 60 pF to GND,  
L
DC Load = 125 mA to GND  
Maximum Output Voltage  
Minimum Output Voltage  
I
I
= 2.0 mA  
3.5  
-
-
-
-
-
-
50  
-
V
SOURCE  
= 0.2 mA  
mV  
mA  
mA  
SINK  
Output source current (Note 3)  
Output sink current (Note 3)  
DIFFERENTIAL SUMMING AMPLIFIER  
VSN Input Bias Current  
V
= 3.5 V  
2
out  
V
= 1.0 V  
2
-
out  
VSN Voltage = 0 V  
30  
mA  
kW  
VSP Input Resistance  
DRVON = Low  
DRVON = High  
1.5  
17  
VSP Input Bias Voltage  
DRVON = Low  
DRVON = High  
0.09  
0.66  
V
Input Voltage Range (Note 3)  
-3 dB Bandwidth  
-0.3  
-
-
3.0  
-
V
C = 80 pF to GND,  
L
R = 10 KW to GND  
10  
MHz  
L
Closed Loop DC Gain VS to Diffout  
Maximum Output Voltage  
VS+ to VS- = 0.5 to 1.6 V  
0.98  
3.0  
-
1.0  
-
1.025  
V/V  
V
I
= 2 mA  
-
0.5  
-
SOURCE  
Minimum Output Voltage  
I
= 2 mA  
-
V
SINK  
Output source current (Note 3)  
Output sink current (Note 3)  
INTERNAL OFFSET VOLTAGE  
V
out  
= 3 V  
2.0  
2.0  
-
mA  
mA  
V
out  
= 0.5 V  
-
-
Offset Voltage to the (+) Pin of the  
Error Amp and the VDRP pin  
-
1.30  
-
V
VDROOP AMPLIFIER  
Input Bias Current (Note 3)  
Non-inverting Voltage Range (Note 3)  
Input Offset Voltage (Note 3)  
Open Loop DC Gain  
-200  
0
200  
3
nA  
V
1.3  
-
V+ = V- = 1.1 V  
C = 20 pF to GND including  
ESD, R = 1 kW to GND  
-4.0  
-
4.0  
mV  
dB  
100  
L
L
Open Loop Unity Gain Bandwidth  
Slew Rate  
C = 20 pF to GND including  
L
ESD, R = 1 kW to GND  
-
-
10  
5
-
-
MHz  
L
C = 20 pF to GND including  
L
ESD, R = 1 kW to GND  
V/ms  
L
Maximum Output Voltage  
Minimum Output Voltage  
I
I
= 4.0 mA  
3
-
-
-
-
1
V
V
SOURCE  
= 1.0 mA  
SINK  
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
9
NCP5392P  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise stated: 0°C < T < 85°C; 4.75 V < V < 5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
VDROOP AMPLIFIER  
Output source current (Note 3)  
Output sink current (Note 3)  
CSSUM AMPLIFIER  
V
= 3.0 V  
4
1
-
-
-
-
mA  
mA  
out  
V
out  
= 1.0 V  
Current Sense Input to CSSUM Gain  
-60 mV < CS < 60 mV  
C = 10 pF to GND,  
R = 10 kW to GND  
-4.00  
-
-3.88  
4
-3.76  
-
V/V  
Current Sense Input to CSSUM -3 dB  
Bandwidth  
MHz  
L
L
Current Sense Input to CSSUM  
Output Slew Rate  
DV = 25 mV, CL = 10 pF to  
in  
GND, Load = 1 k to 1.3 V  
-
-15  
3.0  
-
4
-
-
-
-
+15  
-
V/s  
mV  
V
Current Summing Amp Output Offset  
Voltage  
CSx – CSNx = 0, CSx = 1.1 V  
Maximum CSSUM Output Voltage  
CSx – CSxN = -0.15 V  
(All Phases) I  
= 1 mA  
SOURCE  
Minimum CSSUM Output Voltage  
CSx – CSxN = 0.066 V  
(All Phases) I = 1 mA  
0.3  
V
SINK  
Output source current (Note 3)  
Output sink current (Note 3)  
PSI (Power Saving Control, Active Low)  
Enable High Input Leakage Current  
Upper Threshold  
V
= 3.0 V  
= 0.3 V  
1
1
-
-
-
-
mA  
mA  
out  
V
out  
External 1 K Pullup to 3.3 V  
-
-
-
1.0  
770  
-
mA  
mV  
mV  
mV  
V
V
V
650  
550  
100  
UPPER  
LOWER  
UPPER  
Lower Threshold  
450  
-
Hysteresis  
- V  
-
LOWER  
APSI_EN (AUTO PSI Function Enable, Active High)  
Enable High Input Leakage Current  
Upper Threshold  
External 1k Pullup to 3.3 V  
-
-
-
1.0  
770  
-
mA  
mV  
mV  
mV  
V
V
V
650  
550  
100  
UPPER  
LOWER  
UPPER  
Lower Threshold  
450  
-
Hysteresis  
- V  
-
LOWER  
PH_PSI (PSI Phase Selection)  
Enable High Input Leakage Current  
Upper Threshold  
External 1k Pullup to 3.3 V  
-
-
-
-
-
1.0  
0.7  
-
mA  
V
V
UPPER  
LOWER  
CC  
CC  
Lower Threshold  
V
0.3  
V
DRVON  
Output High Voltage  
Sourcing Current for Output High  
Output Low Voltage  
Sinking Current for Output Low  
Delay Time  
Sourcing 500 mA  
= 5 V  
3.0  
-
-
2.5  
-
-
4.0  
0.7  
-
V
mA  
V
V
CC  
Sinking 500 mA  
-
2.5  
-
-
mA  
ns  
Propagation Delay from EN Low  
to DRVON  
10  
-
Rise Time  
C (PCB) = 20 pF, DV = 10% to  
o
-
-
130  
10  
-
-
ns  
ns  
L
90%  
Fall Time  
C (PCB) = 20 pF, DV = 10% to  
L o  
90%  
Internal Pulldown Resistance  
35  
-
70  
-
140  
2.0  
kW  
V Voltage when DRVON  
CC  
Output Valid  
V
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
10  
NCP5392P  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise stated: 0°C < T < 85°C; 4.75 V < V < 5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
CURRENT SENSE AMPLIFIERS  
Input Bias Current (Note 3)  
CSx = CSxN = 1.4 V  
-
0
-
-
nA  
V
Common Mode Input Voltage Range  
(Note 3)  
-0.3  
2.0  
Differential Mode Input Voltage Range  
(Note 3)  
-120  
-
120  
mV  
Input Offset Voltage  
CSx = CSxN = 1.1 V,  
-1.0  
5.7  
-
1.0  
6.3  
mV  
V/V  
Current Sense Input to PWM Gain  
(Note 3)  
0 V < CSx - CSxN < 0.1 V,  
6.0  
Current Sharing Offset CS1 to CSx  
All VID codes  
-2.5  
-
2.5  
mV  
IMON  
V
DRP  
V
DRP  
to IMON Gain  
1.325 V< V  
< 1.8 V  
1.98  
-
2
4
2.02  
V/V  
DRP  
to IMON -3 dB Bandwidth  
C = 30 pF to GND,  
L
R = 100 kW to GND  
MHz  
L
Output Referred Offset Voltage  
Minimum Output Voltage  
V
V
= 1.6 V, I  
= 0 mA  
SOURCE  
81  
-
90  
-
99  
0.11  
-
mV  
V
DRP  
= 1.2 V, I  
= 100 mA  
DRP  
SINK  
Output source current (Note 3)  
Output sink current (Note 3)  
Maximum Clamp Voltage  
V
out  
= 1 V  
300  
300  
-
-
mA  
mA  
V
V
out  
= 0.3 V  
-
-
V
DRP  
Voltage = 2 V,  
= 100 k  
-
1.15  
R
LOAD  
OSCILLATOR  
Switching Frequency Range (Note 3)  
100  
200  
374  
800  
191  
354  
755  
1.95  
-
-
1000  
224  
kHz  
kHz  
Switching Frequency Accuracy 2- or  
4-Phase  
R
OSC  
R
OSC  
R
OSC  
R
OSC  
R
OSC  
R
OSC  
= 49.9 kW  
= 24.9 kW  
= 10 kW  
-
414  
-
978  
Switching Frequency Accuracy  
3-Phase  
kHz  
V
= 49.9 kW  
= 24.9 kW  
= 10 kW  
-
234  
-
434  
-
1000  
2.065  
R
OSC  
Output Voltage  
2.01  
MODULATORS (PWM Comparators)  
Minimum Pulse Width  
Propagation Delay  
F
= 800 KHz  
-
-
-
30  
10  
-
-
-
ns  
ns  
V
SW  
20 mV of Overdrive  
0% Duty Cycle  
COMP Voltage when the PWM  
Outputs Remain LO  
1.3  
100% Duty Cycle  
COMP Voltage when the PWM  
Outputs Remain HI  
-
2.3  
-
V
PWM Ramp Duty Cycle Matching  
PWM Phase Angle Error (Note 3)  
VR_RDY (POWER GOOD) OUTPUT  
VR_RDY Output Saturation Voltage  
VR_RDY Rise Time (Note 3)  
Between Any Two Phases  
Between Adjacent Phases  
-
90  
-
-
%
15  
15  
°
I
= 10 mA,  
-
-
-
0.4  
V
PGD  
External Pullup of 1 kW to 1.25  
V, C = 45ꢀpF, DV = 10% to  
90%  
100  
150  
ns  
TOT  
o
VR_RDY Output Voltage at Powerup  
(Note 3)  
VR_RDY Pulled up to 5 V via  
2ꢀkW, t 3 x t  
-
-
1.0  
V
R(VCC)  
R(5V)  
100 ms t  
20 ms  
CC  
R(V  
)
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
11  
NCP5392P  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise stated: 0°C < T < 85°C; 4.75 V < V < 5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
VR_RDY (POWER GOOD) OUTPUT  
VR_RDY High – Output Leakage  
Current (Note 3)  
VR_RDY = 5.5 V via 1 K  
-
-
-
0.2  
mA  
VR_RDY Upper Threshold Voltage  
VCore Increasing, DAC = 1.3 V  
310  
270  
mV  
Below  
DAC  
VR_RDY Lower Threshold Voltage  
VCore Decreasing  
DAC = 1.3 V  
410  
370  
mV  
Below  
DAC  
VR_RDY Rising Delay  
VR_RDY Falling Delay  
PWM OUTPUTS  
VCore Increasing  
VCore Decreasing  
-
-
500  
5
-
-
ms  
ms  
Output High Voltage  
Mid Output Voltage  
Sourcing 500 mA  
Sinking 500 mA  
3.0  
1.4  
-
-
1.5  
-
-
V
V
1.6  
0.7  
15  
Output Low Voltage  
Delay + Fall Time (Note 3)  
V
C (PCB) = 50 pF,  
L
DVo = V to GND  
-
10  
ns  
CC  
Delay + Rise Time (Note 3)  
C (PCB) = 50 pF,  
L
DVo = GND to V  
-
-
10  
75  
15  
-
ns  
CC  
Output Impedance – HI or LO State  
Resistance to V (HI) or GND  
CC  
(LO)  
W
2/3/4-PhASE DETECTION  
Gate Pin Source Current  
Gate Pin Threshold Voltage  
Phase Detect Timer  
60  
210  
15  
80  
240  
20  
150  
265  
27  
mA  
mV  
ms  
DIGITAL SOFT-START  
Soft-Start Ramp Time  
VR11 Vboot time  
DAC = 0 to DAC = 1.1 V  
1.0  
-
1.5  
ms  
400  
500  
600  
ms  
VID7/VR11/AMD INPUT  
VID Upper Threshold  
VID Lower Threshold  
VID Hysteresis  
V
V
V
-
450  
-
650  
550  
100  
-
770  
-
mV  
mV  
mV  
mA  
UPPER  
LOWER  
UPPER  
- V  
-
LOWER  
AMD Input Bias Current  
VR11 Input Bias Current (Note 3)  
10  
20  
200  
300  
nA  
ns  
Delay before Latching VID Change  
(VID De-Skewing) (Note 3)  
Measured from the edge of the  
st  
200  
-
1
VID change  
AMD Upper Threshold (Note 3)  
AMD Lower Threshold (Note 3)  
ENABLE INPUT  
2.9  
V
V
2.4  
-
Enable High Input Leakage Current  
(Note 3)  
Pullup to 1.3 V  
-
200  
nA  
VR11 Rising Threshold  
VR11 Falling Threshold  
VR11 Total Hysteresis  
AMD Upper Threshold  
AMD Lower Threshold  
-
450  
-
650  
550  
100  
1.3  
770  
-
mV  
mV  
mV  
V
Rising- Falling Threshold  
-
-
1.5  
-
0.9  
1.1  
V
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
12  
NCP5392P  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise stated: 0°C < T < 85°C; 4.75 V < V < 5.25 V; All DAC Codes; C  
= 0.1 mF)  
A
CC  
VCC  
Parameter  
ENABLE INPUT  
Test Conditions  
Min  
Typ  
Max  
Unit  
AMD Total Hysteresis  
Enable Delay Time  
Rising - Falling Threshold  
200  
mV  
ms  
Measure Time from Enable  
Transitioning HI to when Output  
Begins  
2.5  
4.0  
CURRENT LIMIT  
I
I
I
I
I
to V  
to V  
to V  
to V  
Gain  
Between V  
and V  
- V = 450 mV  
DFB  
= 650 mV  
0.95  
1
1.05  
V/V  
V/V  
V/V  
V/V  
LIM  
LIM  
LIM  
LIM  
LIM  
DRP  
DRP  
DRP  
DRP  
DRP  
- V  
DRP  
DFB  
Gain in PSI 4 phase  
Gain in PSI 3 phase  
Gain in PSI 2 phase  
Between V  
and V  
- V  
= 450 mV  
-
-
-
0.25  
0.33  
0.5  
-
-
-
DRP  
- V  
DFB  
= 650 mV  
DRP  
DFB  
Between V  
and V  
- V  
= 450 mV  
DRP  
- V  
DFB  
= 650 mV  
DRP  
DFB  
Between V  
and V  
- V  
= 450 mV  
DRP  
- V  
DFB  
= 650 mV  
DRP  
DFB  
Offset  
V
DRP  
- V  
= 520 mV  
-50  
-
0
50  
-
mV  
ns  
DFB  
Delay  
100  
OVERVOLTAGE PROTECTION  
VR11 Overvoltage Threshold  
DAC +150  
DAC +185  
DAC +200  
mV  
mV  
VR11 PSI Overvoltage Threshold  
(Note 3)  
(1.6ꢀV DAC)  
+150  
(1.6ꢀV DAC)  
+200  
AMD Overvoltage Threshold (Note 3)  
DAC +200  
DAC +235  
DAC +305  
mV  
mV  
AMD PSI Overvoltage Threshold  
(Note 3)  
(1.55ꢀV DAC)  
+200  
(1.55ꢀV DAC)  
+235  
(1.55ꢀV DAC)  
+305  
Delay  
100  
ns  
UNDERVOLTAGE PROTECTION  
VCC UVLO Start Threshold  
VCC UVLO Stop Threshold  
VCC UVLO Hysteresis  
DAC (FEED FORWARD FUNCTION)  
Output Source Current  
Output Sink Current  
4
4.25  
4.05  
200  
4.5  
4.3  
V
V
3.8  
mV  
V
V
= 3 V  
0.25  
1.5  
3
mA  
mA  
V
OUT  
= 0.3 V  
OUT  
Max Output Voltage (Note 3)  
Min Output Voltage (Note 3)  
VRM 11 DAC  
I = 2 mA  
source  
I
= 2 mA  
0.5  
V
sink  
Positive DAC Slew Rate  
11  
-
16.5  
mV/ms  
System Voltage Accuracy  
(DAC Value has a 19 mV Offset Over  
the Output Value)  
1.0 V < DAC < 1.6 V  
0.8 V < DAC < 1.0 V  
0.5 V < DAC < 0.8 V  
-
-
-
-
-
-
0.5  
5
8
%
mV  
mV  
AMD DAC  
Positive DAC Slew Rate  
-
-
3.5  
-
5
mV/ms  
System Voltage Accuracy  
(DAC Value has a 19 mV Offset Over  
the Output Value)  
1.0 V < DAC < 1.55 V  
0.3750 < DAC < 0.8 V  
0.5  
5.0  
%
mV  
V
CC  
V
CC  
Operating Current  
EN Low, No PWM  
-
15  
30  
mA  
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
13  
 
NCP5392P  
Table 1. VRM11 VID Codes  
VID7  
800 mV  
VID6  
400 mV  
VID5  
200 mV  
VID4  
100 mV  
VID3  
VID2  
25 mV  
VID1  
12.5 mV  
VID0  
6.25 mV  
Voltage  
(V)  
50 mV  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
HEX  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
http://onsemi.com  
14  
 
NCP5392P  
Table 1. VRM11 VID Codes  
VID7  
800 mV  
VID6  
400 mV  
VID5  
200 mV  
VID4  
100 mV  
VID3  
50 mV  
VID2  
25 mV  
VID1  
12.5 mV  
VID0  
6.25 mV  
Voltage  
(V)  
HEX  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
1.21250  
1.20625  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
http://onsemi.com  
15  
NCP5392P  
Table 1. VRM11 VID Codes  
VID7  
800 mV  
VID6  
400 mV  
VID5  
200 mV  
VID4  
100 mV  
VID3  
50 mV  
VID2  
25 mV  
VID1  
12.5 mV  
VID0  
6.25 mV  
Voltage  
(V)  
HEX  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95625  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84375  
0.83750  
0.83125  
0.82500  
0.81875  
0.81250  
0.80625  
0.80000  
0.79375  
0.78750  
0.78125  
0.77500  
0.76875  
0.76250  
0.75625  
0.75000  
0.74375  
0.73750  
0.73125  
0.72500  
0.71875  
http://onsemi.com  
16  
NCP5392P  
Table 1. VRM11 VID Codes  
VID7  
800 mV  
VID6  
400 mV  
VID5  
200 mV  
VID4  
100 mV  
VID3  
50 mV  
VID2  
25 mV  
VID1  
12.5 mV  
VID0  
6.25 mV  
Voltage  
(V)  
HEX  
90  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
0.71250  
0.70625  
0.70000  
0.69375  
0.68750  
0.68125  
0.67500  
0.66875  
0.66250  
0.65625  
0.65000  
0.64375  
0.63750  
0.63125  
0.62500  
0.61875  
0.61250  
0.60625  
0.60000  
0.59375  
0.58750  
0.58125  
0.57500  
0.56875  
0.56250  
0.55625  
0.55000  
0.54375  
0.53750  
0.53125  
0.52500  
0.51875  
0.51250  
0.50625  
0.50000  
OFF  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
FE  
FF  
OFF  
http://onsemi.com  
17  
NCP5392P  
Table 2. AMD Processor 6-bit VID Code  
(VID) Codes  
Nominal V  
Units  
out  
V
ID5  
V
ID4  
V
ID3  
V
ID2  
V
ID1  
V
ID0  
0
0
0
0
0
0
1.550  
1.525  
1.500  
1.475  
1.450  
1.425  
1.400  
1.375  
1.350  
1.325  
1.300  
1.275  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
0.775  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
0.7000  
0.6875  
0.6750  
0.6625  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
http://onsemi.com  
18  
 
NCP5392P  
Table 2. AMD Processor 6-bit VID Code  
(VID) Codes  
Nominal V  
Units  
out  
V
ID5  
V
ID4  
V
ID3  
V
ID2  
V
ID1  
V
ID0  
1
0
1
0
0
1
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
http://onsemi.com  
19  
NCP5392P  
FUNCTIONAL DESCRIPTION  
General  
High Performance Voltage Error Amplifier  
The NCP5392P provides up to four-phase buck solution  
The error amplifier is designed to provide high slew rate  
and bandwidth. Although not required when operating as  
the controller of a voltage regulator, a capacitor from  
COMP to VFB is required for stable unity gain test  
configurations.  
which combines differential voltage sensing, differential  
phase current sensing, and adaptive voltage positioning to  
provide accurately regulated power necessary for both  
Intel VR11.1 and AMD CPU power system. NCP5392P has  
been designed to work with the NCP5359 driver.  
Gate Driver Outputs and 2/3/4 Phase Operation  
The part can be configured to run in 2-, 3-, or 4-phase  
mode. In 2-phase mode, phases 1 and 3 should be used to  
drive the external gate drivers as shown in the 2-phase  
Applications Schematic, G2 and G4 must be grounded. In  
3-phase mode, gate output G4 must be grounded as shown  
in the 3-phase Applications Schematic. In 4-phase mode  
all 4 gate outputs are used as shown in the 4-phase  
Applications Schematic. The Current Sense inputs of  
unused channels should be connected to VCCP shown in  
the Application Schematics. Please refer to table “PIN  
CONNECTIONS vs. PHASE COUNTS” for details.  
AUTO-PSI Function  
NCP5392P makes energy saving possible without  
receiving PSI signal from the CPU by wisely introducing  
Auto-PSI feature. The device will monitor VID lines for  
transition into/out-of Low Power States. When the VID  
drops (An indication of entering power saving state), the  
Auot-PSI logic will detect the transition and enable PSI  
mode. On the other hand, when the VID rises (exiting  
power saving mode), the Auto-PSI logic detects the  
transition and exit PSI mode automatically. Auto-PSI uses  
the dynamic VID(DVID) transitions of VR11.0 and  
VR11.1 to shed phases. The phase shedding improves the  
efficiency of the Vcore regulator eventually. In PSI mode,  
the total current limit is reduced by the ratio of the phase  
count left after phase shedding.  
Differential Current Sense Amplifiers and Summing  
Amplifier  
Four differential amplifiers are provided to sense the output  
current of each phase. The inputs of each current sense  
amplifier must be connected across the current sensing  
element of the phase controlled by the corresponding gate  
output (G1, G2, G3, or G4). If a phase is unused, the  
differential inputs to that phase's current sense amplifier must  
be shorted together and connected to the output as shown in  
the 2- and 3-phase Application Schematics.  
Auto-PSI function can be activated and deactivated by  
toggling APSI_EN (PIN38), but with lower priority  
compared to PSI signal. When PSI (PIN37) is pulled to low,  
the system will be forced into PSI mode unconditionally,  
and APSI_EN signal will be shielded.  
NCP5392P can be operated up to four phases. It can be  
configured as 1 or 2 phase operation when the system enter  
PSI mode automatically (for example, VID down from 1.2ꢁV  
to 1.1ꢁV). Choice of going down to 1 or 2 phases can be set  
up by Pin40-PH_PSI. PH_PSI=high means one-phase  
operation. PH_PSI=low means two-phase operation.  
The current signals sensed from inductor DCR are fed into  
a summing amplifier to have a summed-up output (CSSUM).  
Signal of CSSUM combines information of total current of all  
phases in operation.  
The outputs of current sense amplifiers control three  
functions. First, the summing current signal (CCSUM) of  
all phases will go through DROOP amplifier and join the  
voltage feedback loop for output voltage positioning.  
Second, the output signal from DROOP amplifier also goes  
to ILIM amplifier to monitor the output current limit.  
Finally, the individual phase current contributes to the  
current balance of all phases by offsetting their ramp  
signals of PWM comparators.  
Remote Output Sensing Amplifier(RSA)  
A true differential amplifier allows the NCP5392P to  
voltage feedback with respect to the V  
core  
measure V  
ground reference point by connecting the V  
core  
reference  
ground reference point to VSN.  
core  
point to VSP, and the V  
core  
This configuration keeps ground potential differences  
between the local controller ground and the V ground  
core  
reference point from affecting regulation of V  
and V  
between  
ground reference points. The RSA also  
core  
V
core  
core  
Thermal Compensation Amplifier with VDRP and VDFB  
Pins  
subtracts the DAC (minus VID offset) voltage, thereby  
producing an unamplified output error voltage at the  
DIFFOUT pin. This output also has a 1.3 V bias voltage as  
the floating ground to allow both positive and negative  
error voltages.  
Thermal compensation amplifier is an internal amplifier  
in the path of droop current feedback for additional  
adjustment of the gain of summing current and temperature  
compensation. The way thermal compensation is  
implemented separately ensures minimum interference to  
the voltage loop compensation network.  
Precision Programmable DAC  
A precision programmable DAC is provided and system  
trimmed. This DAC has 0.5% accuracy over the entire  
operating temperature range of the part. The DAC can be  
programmed to support either Intel VR11 or AMD 6-bit  
VID code specifications.  
Oscillator and Triangle Wave Generator  
A programmable precision oscillator is provided. The  
oscillator's frequency is programmed by the resistance  
http://onsemi.com  
20  
NCP5392P  
Output Overvoltage and Undervoltage Protection and  
Power Good Monitor  
connected from the ROSC pin to ground. The user will  
usually form this resistance from two resistors in order to  
create a voltage divider that uses the ROSC output voltage  
as the reference for creating the current limit setpoint  
voltage. The oscillator frequency range is 100ꢁkHz per  
phase to 1.0ꢁMHz per phase. The oscillator generates up to  
4 symmetrical triangle waveforms with amplitude between  
1.3ꢁV and 2.3ꢁV. The triangle waves have a phase delay  
between them such that for 2-, 3- and 4-phase operation  
the PWM outputs are separated by 180, 120, and 90 angular  
degrees, respectively.  
An output voltage monitor is incorporated. During normal  
operation, if the output voltage is 180ꢁmV (typical) over the  
DAC voltage, the VR_RDY goes low, the DRVON signal  
remains high, the PWM outputs are set low. The outputs will  
remain disabled until the V  
voltage is removed and  
CC  
reapplied. During normal operation, if the output voltage falls  
more than 350ꢁmV below the DAC setting, the VR_RDY pin  
will be set low until the output voltage rises.  
Soft-Start  
There are two possible soft-start modes: AMD and  
from 0 V directly  
PWM Comparators with Hysteresis  
VR11. AMD mode simply ramps V  
to the DAC setting at a fixed rate. The VR11 mode ramps  
to 1.1ꢁV boot voltage at a fixed rate of 0.8ꢁmV/mS,  
core  
Four PWM comparators receive an error signal at their  
noninverting input. Each comparator receives one of the  
triangle waves at its inverting output. The output of each  
comparator generates the PWM outputs G1, G2, G3, and G4.  
During steady state operation, the duty cycle will center  
on the valley of the triangle waveform, with steady state  
V
core  
pauses at 1.1ꢁV for around 500ꢁmS, reads the VID pins to  
determine the DAC setting. Then ramps V to the final  
core  
DAC setting at the Dynamic VID slew rate of up to  
12.5ꢁmV/mS. Typical AMD and VR11 soft-start sequences  
are shown in the following graphs (Figure 9 and 10).  
duty cycle calculated by V /V . During a transient event,  
out in  
both high and low comparator output transitions shift phase  
to the points where the error signal intersects the down and  
up ramp of the triangle wave.  
APPLICATION INFORMATION  
The NCP5392P demo board for the NCP5392P is  
available by request. It is configured as a four phase  
solution with decoupling designed to provide a 1ꢁmW load  
line under a 100ꢁA step load.  
PROTECTION FEATURES  
Undervoltage Lockout  
An undervoltage lockout (UVLO) senses the V input.  
CC  
Startup Procedure  
During power-up, the input voltage to the controller is  
monitored, and the PWM outputs and the soft-start circuit  
are disabled until the input voltage exceeds the threshold  
voltage of the UVLO comparator. The UVLO comparator  
incorporates hysteresis to avoid chattering.  
Start by installing the test tool software. It is best to  
power the test tool from a separate ATX power supply. The  
test tool should be set to a valid VID code of 0.5ꢁV or above  
in order for the controller to start. Consult the VTT help  
manual for more detailed instruction.  
Overcurrent Shutdown  
Step Load Testing  
A programmable overcurrent function is incorporated  
within the IC. A comparator and latch make up this  
function. The inverting input of the comparator is  
connected to the ILIM pin. The voltage at this pin sets the  
maximum output current the converter can produce. The  
ROSC pin provides a convenient and accurate reference  
voltage from which a resistor divider can create the  
overcurrent setpoint voltage. Although not actually  
disabled, tying the ILIM pin directly to the ROSC pin sets  
the limit above useful levels - effectively disabling  
overcurrent shutdown. The comparator noninverting input  
is the summed current information from the VDRP minus  
offset voltage. The overcurrent latch is set when the current  
information exceeds the voltage at the ILIM pin. The  
outputs are pulled low, and the soft-start is pulled low. The  
The VTT tool is used to generate the d /d step load.  
t
i
Select the dynamic loading option in the VTT test tool  
software. Set the desired step load size, frequency, duty,  
and slew rate. See Figure 6.  
outputs will remain disabled until the V  
voltage is  
CC  
removed and re-applied, or the ENABLE input is brought  
low and then high.  
Figure 6. Typical Load Step Response  
(full load, 35 A - 100 A)  
http://onsemi.com  
21  
 
NCP5392P  
Dynamic VID Testing  
Understanding Soft-Start  
The VTT tool provides for VID stepping based on the  
Intel Requirements. Select the Dynamic VID option.  
Before enabling the test set the lowest VID to 0.5ꢁV or  
greater and set the highest VID to a value that is greater than  
the lowest VID selection, then enable the test. See Figures  
7 and 8.  
The controller supports two different startup routines. An  
AMD ramp to the initial VID code, or a VR11 Ramp to the  
1.1ꢁV boot voltage, with a pause to capture the VID code  
then resume ramping to target value based on internal slew  
rate limit. The initial ramp rate was set to be 0.8 mV/mS.  
Figure 9. VR11.1 Startup  
Figure 7. 1.6 V to 0.5 V Dynamic VID response  
Figure 10. AMD Startup  
Figure 8. Dynamic VID Settling Time Rising  
(CH1: VID1, CH2: DAC, CH3:VCCP)  
Programming the Current Limit and the Oscillator  
Frequency  
The demo board is set for an operating frequency of  
pin provides a 2.0ꢁV  
Design Methodology  
approximately 330ꢁkHz. The R  
OSC  
reference voltage which is divided down with a resistor  
divider and fed into the current limit pin ILIM. Then  
calculate the individual RLIM1 and RLIM2 values for the  
divider. The series resistors RLIM1 and RLIM2 sink  
current from the ILIM pin to ground. This current is  
Decoupling the VCC Pin on the IC  
An RC input filter is required as shown in the V pin to  
minimize supply noise on the IC. The resistor should be  
sized such that it does not generate a large voltage drop  
between 5ꢁV supply and the IC.  
CC  
http://onsemi.com  
22  
 
NCP5392P  
internally mirrored into a capacitor to create an oscillator.  
The current limit function is based on the total sensed  
current of all phases multiplied by a controlled gain  
(Acssum*Adrp). DCR sensed inductor current is a function  
of the winding temperature. The best approach is to set the  
maximum current limit based on expected average  
maximum temperature of the inductor windings,  
The period is proportional to the resistance and frequency  
is inversely proportional to the total resistance. The total  
resistance may be estimated by Equation 1. This equation  
is valid for the individual phase frequency in both three and  
four phase mode.  
Rosc ^ 20947   FSWā*1.1262  
30.5ꢀkW ^ 20947   330*1.1262  
(eq. 1)  
(eq. 2)  
DCRTmax + DCR25C(1 ) 0.00393 @ (Tmax * 25))  
60  
50  
40  
30  
20  
10  
Calculation  
Real  
0
100  
1000  
Freq-kHz  
Figure 11. ROSC vs. Frequency  
For multiphase controller, the ripple current can be calculated as,  
(Vin * N @ Vout) @ Vout  
(eq. 3)  
(eq. 4)  
Ipp +  
L @ FSW @ Vin  
Therefore calculate the current limit voltage as below,  
VLIMIT ^ ACSSUM @ ADRP @ DCRTmax @ (IMIN_OCP @ ) 0.5 @ Ipp)  
(Vin * N @ Vout) @ Vout  
@ ǒ  
are the gain of current summing amplifier and droop amplifier.  
Ǔ
VLIMIT ^ ACSSUM @ ADRP @ DCRTmax  
IMIN_OCP @ ) 0.5 @  
L @ FSW @ Vin  
In Equation 4, A  
and A  
CSSUM  
DRP  
Acssum  
Adrp  
RNOR  
R
temperature sense resistor placed near inductor. R  
and R  
are in series with R , the NTC  
is  
ISO1  
ISO2 T2  
SUM  
RISO1  
RSUM  
the resistor connecting between pin VDFB and pin  
CSSUM. If PSI = 1, PSI function is off, the current limit  
follows the Equation 7; if PSI = 0, the power saving mode  
will be enabled, COEpsi is a coefficient for the current  
limiting related with power saving function (PSI), the  
current limit can be calculated from Equation 8. COEpsi  
value is one over the original phase count N. Refer to the  
PSI and phase shedding section for more details.  
RISO2  
I1  
RT2  
-
+
I2  
I3  
I4  
+
+
-
OCP  
event  
Ilim  
Figure 12. ACSSUM and ADRP  
As introduced before, V  
comes from a resistor  
LIMIT  
divider connected to Rosc pin, thus,  
RLIM2  
(eq. 5)  
(eq. 6)  
VLIMIT + 2ꢀV @  
RLIM1 ) RLIM2  
@ COEpsi  
ACSSUM + *4  
RNOR @ (RISO1 ) RISO2 ) RT2  
)
ADRP + *  
(RNOR ) RISO1 ) RISO2 ) RT2) @ RSUM  
http://onsemi.com  
23  
 
NCP5392P  
Final Equations for the Current Limit Threshold  
Final equations are described based on two conditions: normal mode and PSI mode.  
2V@R  
LIM2  
R
)R  
(Vin * N @ Vout) @ Vout  
L @ FSW @ Vin  
LIM1  
LIM2  
ILIMIT(normal) ^  
* 0.5 @  
R
@(R  
)R )R  
ISO2  
)
T2  
)R )@R  
SUM  
NOR  
)R  
ISO1  
4 @ (R  
@ DCR25C(1 ) 0.00393 @ (Tinductor * 25))  
@ COEpsi  
LIM2  
(eq. 7)  
)R  
T2  
NOR  
ISO1  
ISO2  
2V@R  
LIM2  
)R  
R
(Vin * Vout) @ Vout  
L @ FSW @ Vin  
LIM1  
)R )  
ISO2  
ILIMIT(PSI) ^  
* 0.5 @  
(eq. 8)  
R
@(R  
)R  
T2  
@ DCR25C(1 ) 0.00393 @ (Tinductor * 25))  
)R )@R  
SUM  
NOR  
)R  
ISO1  
)R  
4 @ (R  
T2  
NOR  
ISO1  
ISO2  
Inductor Current Sensing Compensation  
N is the number of phases involved in the circuit.  
The inductors on the demo board have a DCR at 25°C of  
0.6ꢁmW. Selecting the closest available values of 21.3 kW  
The NCP5392P uses the inductor current sensing  
method. An RC filter is selected to cancel out the  
impedance from inductor and recover the current  
information through the inductor's DCR. This is done by  
matching the RC time constant of the sensing filter to the  
L/DCR time constant. The first cut approach is to use a 0.1  
mF capacitor for C and then solve for R.  
for R  
and 9.28 kW for R  
yields a nominal  
operating frequency of 330 kHz. Select R 1 = 1ꢁk, R  
LIM1  
LIM2  
ISO  
ISO2  
= 1 k, R = 10 K (25°C), R  
/R  
= 2, (refer to  
T2  
NOR SUM  
application diagram). That results to an approximate  
current limit of 133ꢁA at 100°C for a four phase operation  
and 131ꢁA at 25°C. The total sensed current can be  
observed as a scaled voltage at the VDRP with a positive  
no-load offset of approximately 1.3 V.  
(eq. 9)  
L
Rsense(T) +  
0.1 @ mF @ DCR25C @ (1 ) 0.00393(T * 25))  
Because the inductor value is a function of load and  
inductor temperature final selection of R is best done  
Inductor Selection  
When using inductor current sensing it is recommended  
that the inductor does not saturate by more than 10% at  
maximum load. The inductor also must not go into hard  
saturation before current limit trips. The demo board  
includes a four phase output filter using the T44-8 core  
from Micrometals with 3 turns and a DCR target of 0.6ꢁmW  
@ 25°C. Smaller DCR values can be used, however,  
current sharing accuracy and droop accuracy decrease as  
DCR decreases. Use the NCP5392P design aide for  
regulation accuracy calculations for specific value of DCR.  
experimentally on the bench by monitoring the V  
droop  
and performing a step load test on the actual solution.  
pin  
http://onsemi.com  
24  
NCP5392P  
Simple Average SPICE Model  
A simple state average model shown in Figure 13 can be used to determine a stable solution and provide insight into the  
control system.  
GAIN = 1  
{-2/3*4}  
E1  
+
+
-
-
Voff  
E
GAIN = {6}  
V3  
12V  
0
0
L
LBRD  
100p  
RBRD  
0.75m  
DCR  
{0.6E-3/4}  
2
1
{185e-9/4}  
1
2
0
12  
CCer  
{22e-6*18}  
CBulk  
{560e-6*6}  
VRamp_min  
I1 = 50  
I2 = 110  
TD = 100u  
RSUM  
1k  
1.3V  
ESRCer  
{1.5e-3/18}  
I1  
ESRBulk  
{7e-3/6}  
TR = 50n  
0Aac  
0Adc  
2
2
22p  
CDFB  
Vdrp  
RDFB  
2k  
TF = 50n  
PW = 100u  
PER = 200u  
ESLCer  
{1.5e-9/18}  
Vout  
ESLBulk  
{3.5e-9/6}  
1E3  
R8  
1k  
Voff  
1
1
C5  
10.6p  
RDAC CDAC  
0
0
VDAC  
50  
12n  
DC = 1.2V  
AC = 0  
R12  
5.11k  
CFB1  
680P  
CH  
RFB1  
69.8  
TRAN = PULSE  
(0 0.05 400u 5u 5u 500u 1000u)  
22p  
RFB  
RF  
2.2k  
CF  
1.8n  
R6  
0
1k  
Voff  
1E3  
R11  
1k  
Vdrp  
Voffset  
1.3V  
1k  
C4  
10.6p  
R10  
2k  
Unity Gain BW=15MHz  
1E3  
0
0
R9  
C6  
0
Voff  
IMON  
1k 10.6p  
Figure 13. NCP5392P Average SPICE Model  
Compensation and Output Filter Design  
If the required output filter and switching frequency are  
significantly different, it's best to use the available PSPICE  
models to design the compensation and output filter from  
scratch.  
plus the board impedance is 1.15 mW + 0.75 mW or  
1.9 mW. The actual output filter impedance does not drop  
to 1.0 mW until the ceramic breaks in at over 375 kHz. The  
controller must provide some loop gain slightly less than  
one out to a frequency in excess 300 kHz. At frequencies  
below where the bulk capacitance ESR breaks with the  
bulk capacitance, the DC-DC converter must have  
sufficiently high gain to control the output impedance  
completely. Standard Type-3 compensation works well  
with the NCP5392P.  
The design target for this demo board was 1.0 mW up to  
2.0 MHz. The phase switching frequency is currently set to  
330 kHz. It can easily be seen that the board impedance of  
0.75 mW between the load and the bulk capacitance has a  
large effect on the output filter. In this case the six 560 mF  
bulk capacitors have an ESR of 7.0 mW. Thus the bulk ESR  
http://onsemi.com  
25  
 
NCP5392P  
Zout Open Loop  
Zout Closed Loop  
Open Loop Gain with Current Loop Closed  
Voltage Loop Compensation Gain  
80  
60  
40  
20  
0
-20  
-40  
-60  
1mOhm  
-80  
-100  
100  
1000  
10000  
100000  
1000000  
10000000  
Frequency  
Figure 14. NCP5392P Circuit Frequency Response  
CH  
CF  
The goal is to compensate the system such that the  
resulting gain generates constant output impedance from  
DC up to the frequency where the ceramic takes over  
holding the impedance below 1.0 mW. See the example of  
the locations of the poles and zeros that were set to optimize  
the model above.  
CFB1  
RFB1  
RF  
I Bias  
RFB  
-
+
-
+
Error  
Amp  
1.3 V  
Droop  
Amp  
RDRP  
RISO2  
PWM  
Comparator  
By matching the following equations a good set of  
starting compensation values can be found for a typical  
mixed bulk and ceramic capacitor type output filter.  
+
-
RNOR  
RT  
1.3 V  
RISO1  
RSUM  
Gain = 4  
-
1
1
+
(eq. 10)  
(eq. 11)  
2p @ CF @ RF  
2p @ (RBRD ) ESRBulk) @ CBulk  
+
CSSUM  
Amp  
1.3 V  
1
1
RSx  
+
+
2p @ CFB1 @ (RFB1 ) RFB)  
2p @ C  
@ (RBRD ) ESR  
)
Bulk  
Cer  
+
-
RL  
+
R
should be set to provide optimal thermal  
compensation in conjunction with thermistor R , R  
FB  
CSx  
Gain = 1  
T2  
ISO1  
and R  
. With R set to 1.0 kW, R  
FB  
is usually set to  
ISO2  
FB1  
100 W for maximum phase boost, and the value of RF is  
typically set to 3.0 kW.  
Figure 15. Droop Injection and Thermal  
Compensation  
RDRP determines the target output impedance by the  
basic equation:  
Droop Injection and Thermal Compensation  
The VDRP signal is generated by summing the sensed  
output currents for each phase. A droop amplifier is added  
to adjust the total gain to approximately eight. VDRP is  
externally summed into the feedback network by the  
resistor RDRP. This introduces an offset which is  
proportional to the output current thereby forcing a  
controlled, resistive output impedance.  
RFB @ DCR @ ACSSUM @ ADRP  
V
out + Zout  
Iout  
+
(eq. 12)  
RDRP  
RFB @ DCR @ ACSSUM @ ADRP  
RDRP  
+
(eq. 13)  
Zout  
The value of the inductor's DCR is a function of  
temperature according to the Equation 14:  
DCRꢀ(T) + DCR25C @ (1 ) 0.00393 @ (T * 25))  
(eq. 14)  
http://onsemi.com  
26  
 
NCP5392P  
Actual DCR increases by temperature, the system can be  
thermally compensated to cancel this effect to a great  
degree by adding an NTC in parallel with R to reduce  
temperature. The series resistor is split and inserted on both  
sides of the NTC to reduce noise injection into the feedback  
loop. The recommended total value for R  
approximately 1.0 kW.  
plus R  
is  
NOR  
ISO1  
ISO2  
the droop gain as the temperature increases. The NTC  
device is nonlinear. Putting a resistor in series with the NTC  
helps make the device appear more linear with  
The output impedance varies with inductor temperature  
by the equation:  
RFB @ DCR25C @ (1 ) 0.00393 @ (T * 25)) @ ACSSUM @ ADRP  
(eq. 15)  
(eq. 16)  
Zout(T) +  
RDRP  
By including the NTC R and the series isolation resistors the new equation becomes:  
T2  
R
@(R  
)R )R  
ISO2  
)R  
)
T2  
)R )@R  
SUM  
NOR  
)R  
ISO1  
RFB @ DCR25C @ (1 ) 0.00393 @ (T * 25)) @ ACSSUM  
@
(R  
T2  
NOR  
ISO1 ISO2  
Zout(T) +  
RDRP  
Acssum  
Adrp  
RNOR  
The typical equation of an NTC is based on a curve fit  
Equation 17  
RISO1  
RISO2  
1
1
298  
I1  
ƪǒ  
Ǔ*ǒ Ǔƫ  
RT2  
273)T  
(eq. 17)  
RT2(T) + RT225C @ eb  
I2  
I3  
I4  
-
+
+
RSUM  
The demo board use a 10 kW NTC with a b value of 3740.  
Figure 16 shows the comparison of the compensated output  
impedance and uncompensated output impedance varying  
with temperature.  
+
-
OCP  
event  
Ilim  
Imon  
+
-
0.0013  
Zout  
Zout(uncomp)  
0.0012  
Gain = 2  
0.0011  
0.001  
Figure 17. IMON Circuit  
0.0009  
0.0008  
0.0007  
0.0006  
Vimon vs. Iout  
1.05  
0.84  
0.63  
0.42  
0.21  
0
25  
45  
65  
85  
105  
Celsius  
Figure 16. Zout vs. Temperature  
IMON for Current Monitor  
Since VDRP signal reflects the current information of all  
phases. It can be fed into the IMON amplifier for current  
monitoring as shown in Figure 17. IMON amplifier has a  
fixed gain of 2 with an offset when VDRP is equal to 1.3ꢁV,  
the internal floating reference voltage. The IMON  
amplifier will be saturated at an maximum output of 1.09ꢁV  
therefore the total gain of current should be carefully  
considered to make the maximum load current indicated by  
the IMON output. Figure 18 shows a typical of the relation  
between IMON output and the load current.  
0
10 20 30 40 50 60 70 80 90 100  
Iout-A  
Figure 18. IMON Output vs. Output Current  
Power Saving Indicator (PSI) and Phase Shedding  
VR11.1 requires the processor to provide an output  
signal to the VR controller to indicate when the processor  
is in a low power state. NCP5392P use the status of PSI pin  
to decide if there is a need to change its operating state to  
maximize efficiency at light loads. When PSI = 0, the PSI  
function will be enabled, and VR system will be running at  
a single phase power saving mode.  
The PSI signal will de-assert 1 ms prior to moving to a  
normal power state.  
At power saving mode, NCP5392P works with the  
NCP5359 driver to represent diode emulation mode at light  
load for further power saving.  
When system switches on PSI function, a phase shedding  
will be presented. Only one or two phases (depending on  
http://onsemi.com  
27  
 
NCP5392P  
Auto-PSI Function:  
PH_PSI) are active in the emulation mode while other  
phases are shed. Figure 19 indicates a PSI-on transition  
from a 3-phase mode to a single phase mode. While staying  
stable in PSI mode, the PWM signal of phase 1 will vary  
from a mid-state level (1.5 V typical) to high level while  
other phases all go to mid-state level. Vice verse, when PSI  
signal goes high, the system will go back to the original  
phase mode such as shown in Figure 20.  
In Auto-PSI mode (APSI_EN=1, PSI=1), the device will  
monitor VID lines for transition into/out-of Low Power  
States. Figure 21 to 24 describe the Auto-PSI function  
during VID transitions, in one-phase and two-phase  
operation respectively.  
Figure 21. 10 A Load, VID Down, into PSI (One Phase)  
Figure 19. PSI turns on, CH1: PWM1, CH2: PWM2,  
CH3: PWM3, CH4: PSI  
Figure 22. 10 A Load, VID Up, Out of PSI (One Phase)  
Figure 20. PSI turns off, CH1: PWM1, CH2: PWM2,  
CH3: PWM3, CH4: PSI  
http://onsemi.com  
28  
 
NCP5392P  
voltage even during a dynamic change in the VID setting  
during operation.  
Figure 23. 10 A Load, VID Down, into PSI (Two Phase)  
Figure 25. VR11.1, 1.6 V OVP Event  
Figure 26. AMD, 1.55 V OVP Event  
Gate Driver and MOSFET Selection  
Figure 24. 10 A Load, VID Up, Out of PSI  
(Two Phase)  
ONꢁSemiconductor provides the NCP5359 as  
a
OVP Improved Performance  
companion gate driver IC. The NCP5359 driver is  
optimized to work with a range of MOSFETs commonly  
used in CPU applications. The NCP5359 provides special  
functionality including power saving mode operation and  
is required for high performance dynamic VID operation.  
Contact your local ONꢁSemiconductor applications  
engineer for MOSFET recommendations.  
The overvoltage protection threshold is not adjustable.  
OVP protection is enabled as soon as soft-start begins and  
is disabled when part is disabled. When OVP is tripped, the  
controller commands all four gate drivers to enable their  
low side MOSFETs and VR_RDY transitions low. In order  
to recover from an OVP condition, V must fall below the  
CC  
UVLO threshold. See the state diagram for further details.  
The OVP circuit monitors the output of DIFFOUT. If the  
DIFFOUT signal reaches 180 mV (typical) above the  
nominal 1.3ꢁV offset the OVP will trip and VRRDY will be  
pulled low, after eight consecutive OVP events are  
detected, all PWMs will be latched. The DIFFOUT signal  
is the difference between the output voltage and the DAC  
voltage (minus 19 mV if in VR11.1 modes) plus the 1.3ꢁV  
internal offset. This results in the OVP tracking on the DAC  
Board Stackup and Board Layout  
Close attention should be paid to the routing of the sense  
traces and control lines that propagate away from the  
controller IC. Routing should follow the demo board  
example. For further information or layout review contact  
ONꢁSemiconductor.  
http://onsemi.com  
29  
NCP5392P  
SYSTEM TIMING DIAGRAM  
12 V (Gate Driver)  
5 V (Controller)  
UVLO  
UVLO  
EN  
3.5 ms  
VID  
Valid VID  
DRVON  
1 ms min  
1.5 ms  
500 ms  
VSP-VSN  
VR_RDY  
500 ms  
Figure 27. Normal Startup  
12 V (Gate Driver)  
UVLO  
5 V (Controller)  
UVLO  
POR  
EN  
3.5 ms  
DRVON  
VID  
Valid VID  
1 ms min  
1.5 ms  
500 ms  
1 ms  
VSP-VSN  
VR_RDY  
500 ms  
Figure 28. Driver UVLO Limited Startup  
http://onsemi.com  
30  
NCP5392P  
1
2
3
4
5
6
7
8
185 mV  
Diffout ~ 1.3 V  
VR_RDY  
DRVON = High  
1
2
3
4
5
6
7
8
185 mV  
VSP = VID - 19 mV  
Figure 29. OVP Shutdown  
I
+ 1.3  
limit  
VDRP  
VR_RDY  
DRVON  
Figure 30. Non-PSI Current Limit  
http://onsemi.com  
31  
NCP5392P  
PACKAGE DIMENSIONS  
QFN40 6x6, 0.5P  
CASE 488AR-01  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
A B  
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30mm FROM TERMINAL  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
LOCATION  
E
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
2X  
0.15  
C
0.18  
0.30  
D
D2  
E
E2  
e
L
6.00 BSC  
TOP VIEW  
2X  
0.15  
C
4.00  
4.20  
6.00 BSC  
4.00 4.20  
0.50 BSC  
(A3)  
0.10  
C
C
0.30  
0.20  
0.50  
---  
A
K
40X  
0.08  
SIDE VIEW  
D2  
A1  
SOLDERING FOOTPRINT*  
SEATING  
PLANE  
C
6.30  
4.20  
L
40X  
K
40X  
11  
20  
40X  
21  
10  
0.65  
EXPOSED PAD  
1
E2  
4.20 6.30  
40X b  
1
30  
0.10  
0.05  
C
C
A B  
40  
31  
36X  
e
BOTTOM VIEW  
40X  
36X  
0.50 PITCH  
0.30  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb-Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
The products described herein (NCP5392P), is covered by one or more of the following U.S. patent; US07057381. There may be other patents pending.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
ꢁLiterature Distribution Center for ON Semiconductor  
ꢁP.O. Box 5163, Denver, Colorado 80217 USA  
N. American Technical Support: 800-282-9855 Toll Free  
ꢁUSA/Canada  
Europe, Middle East and Africa Technical Support:  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada ꢁPhone: 421 33 790 2910  
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your loca  
Sales Representative  
Japan Customer Focus Center  
ꢁPhone: 81-3-5773-3850  
NCP5392P/D  

相关型号:

NCP5392PMNR2G

2/3/4 相 VR11.1 降压控制器
ONSEMI

NCP5392Q

2/3/4-Phase Controller for CPU Applications
ONSEMI

NCP5392QMNR2G

2/3/4-Phase Controller for CPU Applications
ONSEMI

NCP5392T

2/3/4-Phase Controller with Light Load Power Saving Enhancement for CPU Applications
ONSEMI

NCP5392TMNR2G

2/3/4-Phase Controller with Light Load Power Saving Enhancement for CPU Applications
ONSEMI

NCP5393

2/3/4-Phase Controller for CPU Applications
ONSEMI

NCP5393A

2/3/4-Phase Controller for CPU Applications
ONSEMI

NCP5393AMNR2G

2/3/4-Phase Controller for CPU Applications
ONSEMI

NCP5393B

2/3/4-Phase Controller for CPU Applications
ONSEMI

NCP5393BMNR2G

2/3/4-Phase Controller for CPU Applications
ONSEMI

NCP5393MNR2G

2/3/4-Phase Controller for CPU Applications
ONSEMI

NCP5395

CPU Applications
ONSEMI