NCP565D2TR4 [ONSEMI]

1.5 A Low Dropout Linear Regulator; 1.5低压差线性稳压器
NCP565D2TR4
型号: NCP565D2TR4
厂家: ONSEMI    ONSEMI
描述:

1.5 A Low Dropout Linear Regulator
1.5低压差线性稳压器

线性稳压器IC 调节器 电源电路 输出元件
文件: 总12页 (文件大小:115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP565  
1.5 A Low Dropout  
Linear Regulator  
The NCP565 low dropout linear regulator will provide 1.5 A at a  
fixed output voltage or an adjustable voltage down to 0.9 V. The fast  
loop response and low dropout voltage make this regulator ideal for  
applications where low voltage and good load transient response are  
important. Device protection includes current limit, short circuit  
protection, and thermal shutdown. The NCP565 is packaged in a 5 pin  
http://onsemi.com  
MARKING  
DIAGRAMS  
2
2
D PAK for adjustable voltage version and a 3 pin D PAK for fixed  
voltage version.  
Features  
2
D PAK  
NC  
P565D2Txx  
AWLYWWG  
Pb−Free Packages are Available  
CASE 936  
FIXED  
1
Ultra Fast Transient Response (t1.0 ms)  
Low Ground Current (1.1 mA @ Iload = 1.5 A)  
Low Dropout Voltage (0.9 V @ Iload = 1.5 A)  
Low Noise (28 mVrms)  
2
3
Tab = Ground  
Pin 1. V  
in  
2. Ground  
3. V  
out  
0.9 V Reference Voltage  
Adjustable Output Voltage from 7.7 V down to 0.9 V  
1.2 V Fixed Output Version. Other Fixed Voltages Available on  
Request  
2
Current Limit Protection (3.5 A)  
Thermal Shutdown Protection (155°C)  
D PAK  
NC  
P565D2Txx  
AWLYWWG  
CASE 936A  
ADJUSTABLE  
1
5
Typical Applications  
Tab = Ground  
Pin 1. N.C.  
Servers  
2. V  
in  
3. Ground  
4. V  
5. Adj  
ASIC Power Supplies  
Post Regulation for Power Supplies  
Constant Current Source  
out  
xx = R4 or 12  
A
= Assembly Location  
WL = Wafer Lot  
Y
= Year  
WW = Work Week  
= Pb−Free  
G
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 3 of this data sheet.  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
July, 2004 − Rev. 8  
NCP565/D  
NCP565  
PIN DESCRIPTION  
Pin No.  
Pin No.  
Adjustable Version  
Fixed Version  
Symbol  
Description  
1
N.C.  
2
1
2, Tab  
3
V
Positive Power Supply Input Voltage  
in  
3, Tab  
Ground  
Power Supply Ground  
4
5
V
out  
Regulated Output Voltage  
Adj  
This pin is to be connected to the R  
resistors on the output. The  
sense  
linear regulator will attempt to maintain 0.9 V between this pin and  
ground. Refer to Figure 1 for the equation.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
Output Pin Voltage  
Adjust Pin Voltage  
V
in  
9.0  
V
−0.3 to V + 0.3  
V
out  
in  
V
adj  
−0.3 to V + 0.3  
V
in  
Thermal Characteristics (Note 2)  
Case 936A  
°C/W  
Thermal Resistance, Junction−to−Air  
Thermal Resistance, Junction−to−Case  
Rq  
45  
5.0  
JA  
Rq  
JC  
Operating Junction Temperature Range  
Storage Temperature Range  
TJ  
Tstg  
−40 to 150  
−55 to 150  
°C  
°C  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model JESD 22−A114−B  
Machine Model JESD 22−A115−A  
2. The maximum package power dissipation is:  
T
* T  
J(max)  
A
P
D
+
R
qJA  
V
in  
V
in  
C1  
C1  
Voltage  
Reference  
Block  
Voltage  
Reference  
Block  
V
ref  
= 0.9 V  
V
ref  
= 0.9 V  
V
out  
V
out  
Output  
Stage  
Output  
Stage  
5.6  
pF  
R1  
R2  
R1  
R2  
C2  
C2  
ADJ  
GND  
V
V
GND  
out  
ref  
GND  
R1 + R2 ǒ * 1Ǔ  
Figure 1. Typical Schematic, Adjustable Output  
Figure 2. Typical Schematic, Fixed Output  
http://onsemi.com  
2
 
NCP565  
ELECTRICAL CHARACTERISTICS (V − V = 1.6 V, V = 0.9 V, T = 25°C, C = C = 150 mF, values unless otherwise noted.)  
in  
out  
out  
J
in  
out  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ADJUSTABLE OUTPUT VERSION  
Reference Voltage (10 mA < I < 1.5 A; 2.5 V < V < 9.0 V; T = −10 to 105°C)  
V
ref  
0.882  
(−2%)  
0.9  
0.9  
0.918  
(+2%)  
V
V
out  
in  
J
Reference Voltage (10 mA < I < 1.5 A; 2.5 V < V < 9.0 V; T = −40 to 125°C)  
V
out  
0.873  
(−3%)  
0.927  
(+3%)  
out  
in  
J
ADJ Pin Current  
Line Regulation (I = 10 mA)  
I
30  
0.03  
0.03  
0.9  
3.5  
85  
nA  
%
Adj  
Reg  
out  
line  
Load Regulation (10 mA < I < 1.5 A)  
Reg  
%
out  
load  
Dropout Voltage (I = 1.5 A) (Note 3)  
Vdo  
1.3  
V
out  
Current Limit  
I
1.6  
A
lim  
Ripple Rejection (120 Hz; I = 1.5 A)  
RR  
RR  
dB  
dB  
°C  
out  
Ripple Rejection (1 kHz; I = 1.5 A)  
75  
out  
Thermal Shutdown  
150  
1.1  
28  
Ground Current (I = 1.5 A)  
Iq  
3.0  
mA  
mVrms  
out  
Output Noise Voltage (f = 100 Hz to 100 kHz, I = 1.5 A)  
V
out  
n
FIXED OUTPUT VOLTAGE  
Output Voltage (10 mA < I < 1.5 A; 2.5 V < V < 9.0 V; T = −10 to 105°C)  
V
out  
1.176  
(−2%)  
1.2  
1.2  
1.224  
(+2%)  
%
%
out  
in  
J
Output Voltage (10 mA < I < 1.5 A; 2.5 V < V < 9.0 V; T = −40 to 125°C)  
V
out  
1.164  
(−3%)  
1.236  
(+3%)  
out  
in  
J
Line Regulation (I = 10 mA)  
Reg  
0.03  
0.03  
0.9  
3.5  
85  
%
%
out  
line  
Load Regulation (10 mA < I < 1.5 A)  
Reg  
load  
out  
Dropout Voltage (I = 1.5 A) (Note 3)  
Vdo  
1.3  
V
out  
Current Limit  
I
lim  
1.6  
A
Ripple Rejection (120 Hz; I = 1.5 A)  
RR  
RR  
dB  
dB  
°C  
out  
Ripple Rejection (1 kHz; I = 1.5 A)  
75  
out  
Thermal Shutdown  
150  
1.1  
28  
Ground Current (I = 1.5 A)  
Iq  
3.0  
mA  
mVrms  
out  
Output Noise Voltage (f = 100 Hz to 100 kHz, I = 1.5 A)  
V
n
out  
3. Dropout voltage is a measurement of the minimum input/output differential at full load.  
ORDERING INFORMATION  
Device  
Nominal Output Voltage*  
Package  
Shipping  
2
NCP565D2T  
Adj  
Adj  
Adj  
D PAK  
50 Tube  
2
NCP565D2TR4  
D PAK  
800 Tape & Reel  
800 Tape & Reel  
2
NCP565D2TR4G  
D PAK  
(Pb−Free)  
2
NCP565D2T12  
Fixed  
Fixed  
Fixed  
D PAK  
50 Tube  
2
NCP565D2T12R4  
NCP565D2T12R4G  
D PAK  
800 Tape & Reel  
800 Tape & Reel  
2
D PAK  
(Pb−Free)  
*For other fixed output versions, please contact the factory.  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
3
 
NCP565  
TYPICAL CHARACTERISTICS  
0.9005  
0.9000  
0.8995  
0.8990  
0.8985  
0.8980  
0.8975  
0.8970  
3.90  
3.85  
3.80  
3.75  
3.70  
3.65  
3.60  
3.55  
3.50  
3.45  
3.40  
3.35  
V
= 2.5 V  
= 0.9 V  
= C = 150 mF  
out  
in  
V
out  
V
= 2.5 V  
= 0.9 V  
= C = 150 mF  
out  
in  
C
in  
V
out  
C
in  
−50 −25  
0
25  
50  
75  
100 125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. Output Voltage vs. Temperature  
Figure 4. Short Circuit Current Limit  
vs. Temperature  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
I
= 1.5 A  
out  
I
= 50 mA  
out  
V
= 2.5 V  
= 0.9 V  
= 1.5 V  
= C = 150 mF  
out  
in  
V
out  
I
out  
C
= C = 150 mF  
out  
in  
C
in  
−50 −25  
0
25  
50  
75  
100  
125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Dropout Voltage vs. Temperature  
Figure 6. Ground Current vs. Temperature  
1.28  
1.26  
1.24  
1.22  
1.2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.18  
1.16  
1.14  
1.12  
I
= 1.5 A  
out  
0
300  
600  
900  
1200  
1500  
10  
100  
1000  
10000  
100000 1000000  
I
, OUTPUT CURRENT (mA)  
F, FREQUENCY (Hz)  
out  
Figure 7. Ground Current vs. Output Current  
Figure 8. Ripple Rejection vs. Frequency  
http://onsemi.com  
4
NCP565  
TYPICAL CHARACTERISTICS  
10  
10  
0
−10  
−20  
−30  
−40  
0
−10  
V
= 4.59 V  
= 0.9 V  
V = 4.59 V  
in  
in  
−20  
−30  
−40  
V
out  
V
out  
= 0.9 V  
1.50  
1.00  
0.50  
0
1.50  
1.00  
0.50  
0
0
50 100  
150 200 250 300 350 400  
TIME (nS)  
0
0.5  
1.0  
1.5 2.0  
2.5 3.0  
3.5  
4.0  
TIME (ms)  
Figure 9. Load Transient from 10 mA to 1.5 A  
Figure 10. Load Transient from 10 mA to 1.5 A  
50  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
V
= 4.59 V  
= 0.9 V  
V
V
= 4.59 V  
= 0.9 V  
in  
in  
out  
out  
1.50  
1.00  
0.50  
1.50  
1.00  
0.50  
0
0
−50  
200  
250 300 350  
0
50  
100 150  
400  
0
0.2  
0.4 0.6  
0.8  
1.0 1.2  
1.4  
1.6  
TIME (nS)  
TIME (ms)  
Figure 11. Load Transient from 1.5 A to 10 mA  
Figure 12. Load Transient from 1.5 A to 10 mA  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.0 V  
= 0.9 V  
= 1.5 A  
in  
V
out  
V
= 3.0 V  
= 0.9 V  
= 10 mA  
in  
I
out  
V
out  
I
out  
Start 1.0 kHz  
Stop 100 kHz  
Start 1.0 kHz  
Stop 100 kHz  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 13. Noise Density vs. Frequency  
Figure 14. Noise Density vs. Frequency  
http://onsemi.com  
5
 
NCP565  
Adjustable Operation  
APPLICATION INFORMATION  
The typical application circuit for the adjustable output  
regulators is shown in Figure 1. The adjustable device  
develops and maintains the nominal 0.9 V reference voltage  
between Adj and ground pins. A resistor divider network R1  
and R2 causes a fixed current to flow to ground. This current  
creates a voltage across R1 that adds to the 0.9 V across R2  
and sets the overall output voltage.  
The NCP565 low dropout linear regulator provides  
adjustable voltages at currents up to 1.5 A. It features ultra  
fast transient response and low dropout voltage. These  
devices contain output current limiting, short circuit  
protection and thermal shutdown protection.  
Input, Output Capacitor and Stability  
The output voltage is set according to the formula:  
An input bypass capacitor is recommended to improve  
transient response or if the regulator is located more than a  
few inches from the power source. This will reduce the  
circuit’s sensitivity to the input line impedance at high  
frequencies and significantly enhance the output transient  
response. Different types and different sizes of input  
capacitors can be chosen dependent on the quality of power  
supply. A 150 mF OSCON 16SA150M type from Sanyo  
should be adequate for most applications. The bypass  
capacitor should be mounted with shortest possible lead or  
track length directly across the regulator’s input terminals.  
The output capacitor is required for stability. The NCP565  
remains stable with ceramic, tantalum, and aluminum−  
electrolytic capacitors with a minimum value of 1.0 mF as  
long as the ESR remains between 50 mW and 2.5 W. The  
NCP565 is optimized for use with a 150 mF OSCON  
16SA150M type in parallel with a 10 mF OSCON 10SL10M  
type from Sanyo. The 10 mF capacitor is used for best AC  
stability while 150 mF capacitor is used for achieving  
excellent output transient response. The output capacitors  
should be placed as close as possible to the output pin of the  
device. If not, the excellent load transient response of  
NCP565 will be degraded.  
R1 ) R2  
ǒ
Ǔ* I  
V
+ V  
 
  R2  
out  
ref  
Adj  
R2  
The adjust pin current, Iadj, is typically 30 nA and  
normally much lower than the current flowing through R1  
and R2, thus it generates a small output voltage error that can  
usually be ignored.  
Load Transient Measurement  
Large load current changes are always presented in  
microprocessor applications. Therefore good load transient  
performance is required for the power stage. NCP565 has  
the feature of ultra fast transient response. Its load transient  
responses in Figures 9 through 12 are tested on evaluation  
board shown in Figure 15. On the evaluation board, it  
consists of NCP565 regulator circuit with decoupling and  
filter capacitors and the pulse controlled current sink to  
obtain load current transitions. The load current transitions  
are measured by current probe. Because the signal from  
current probe has some time delay, it causes  
un−synchronization between the load current transition and  
output voltage response, which is shown in Figures 9  
through 12.  
GEN  
V
out  
−V  
CC  
V
NCP565  
RL  
V
in  
Evaluation Board  
Pulse  
GND  
+
+
GND  
Scope Voltage Probe  
Figure 15. Schematic for Transient Response Measurement  
http://onsemi.com  
6
 
NCP565  
PCB Layout Considerations  
several capacitors in parallel. This reduces the overall ESR  
and reduces the instantaneous output voltage drop under  
transient load conditions. The output capacitor network  
should be as close as possible to the load for the best results.  
The schematic of NCP565 typical application circuit, which  
this PCB layout is base on, is shown in Figure 16. The output  
voltage is set to 3.3 V for this demonstration board according  
to the feedback resistors in the Table 1.  
Good PCB layout plays an important role in achieving  
good load transient performance. Because it is very sensitive  
to its PCB layout, particular care has to be taken when  
tackling Printed Circuit Board (PCB) layout. The figures  
below give an example of a layout where parasitic elements  
are minimized. For microprocessor applications it is  
customary to use an output capacitor network consisting of  
V
out  
2
4
5
V
V
out  
V
in  
in  
NCP565  
1
Adj  
NC  
C
C
C
C
C
3
1
2
4
3
150 m  
150 m  
10 m  
150 m  
150 m  
GND  
3
GND  
GND  
R
R
2
1
15.8 k  
42.2 k  
C
6
5.6 p  
Figure 16. Schematic of NCP565 Typical Application Circuit  
Figure 17. Top Layer  
http://onsemi.com  
7
 
NCP565  
Figure 18. Bottom Layer  
NCP565  
ON Semiconductor  
www.onsemi.com  
D1  
R2  
R1  
C6  
VIN  
VOUT  
C2  
C3  
C5  
C1  
GND  
GND  
July, 2003  
Figure 19. Silkscreen Layer  
Table 1. Bill of Materials for NCP565 Adj Demonstration Board  
Item  
Used #  
Component  
Designators  
Suppliers  
Part Number  
1
4
Radial Lead Aluminum Capacitor  
C1, C2, C3, C5  
Sanyo Oscon  
16SA150M  
150 mF/16 V  
2
1
Radial Lead Aluminum Capacitor  
C4  
Sanyo Oscon  
10SL10M  
10 mF/10 V  
3
4
5
6
1
1
1
1
SMT Chip Resistor (0805) 15.8 K 1%  
SMT Chip Resistor (0805) 42.2 K 1%  
SMT Ceramic Capacitor (0603) 5.6 pF 10%  
NCP565 Low Dropout Linear Regulator  
R2  
R1  
C6  
U1  
Vishay  
Vishay  
CRCW08051582F  
CRCW08054222F  
VJ0603A5R6KXAA  
NCP565D2TR4  
Vishay  
ON Semiconductor  
http://onsemi.com  
8
NCP565  
Protection Diodes  
Thermal Considerations  
When large external capacitors are used with a linear  
regulator it is sometimes necessary to add protection diodes.  
If the input voltage of the regulator gets shorted, the output  
capacitor will discharge into the output of the regulator. The  
discharge current depends on the value of the capacitor, the  
This series contains an internal thermal limiting circuit  
that is designed to protect the regulator in the event that the  
maximum junction temperature is exceeded. This feature  
provides protection from a catastrophic device failure due to  
accidental overheating. It is not intended to be used as a  
substitute for proper heat sinking. The maximum device  
power dissipation can be calculated by:  
output voltage and the rate at which V drops. In the  
in  
NCP565 linear regulator, the discharge path is through a  
large junction and protection diodes are not usually needed.  
If the regulator is used with large values of output  
capacitance and the input voltage is instantaneously shorted  
to ground, damage can occur. In this case, a diode connected  
as shown in Figure 20 is recommended.  
T
* T  
A
J(max)  
P
+
D
R
qJA  
2
The devices are available in surface mount D PAK  
package. The package has an exposed metal tab that is  
specifically designed to reduce the junction to air thermal  
resistance, R , by utilizing the printed circuit board  
qJA  
copper as a heat dissipater. Figure 21 shows typical R  
qJA  
1N4002 (Optional)  
V
in  
V
out  
values that can be obtained from a square pattern using  
economical single sided 2.0 ounce copper board material.  
The final product thermal limits should be tested and  
quantified in order to insure acceptable performance and  
V
V
out  
in  
C
NCP565  
Adj  
C
C
2
1
Adj  
GND  
R
R
1
2
reliability. The actual R  
can vary considerably from the  
qJA  
graph shown. This will be due to any changes made in the  
copper aspect ratio of the final layout, adjacent heat sources,  
and air flow.  
Figure 20. Protection Diode for Large  
Output Capacitors  
3.5  
80  
P
D(max)  
for T = +50°C  
A
3.0  
70  
60  
50  
40  
30  
Free Air  
Mounted  
Vertically  
2.0 oz. Copper  
L
2.5  
2.0  
Minimum  
Size Pad  
L
1.5  
1.0  
R
q
JA  
0
5.0  
10  
15  
20  
L, LENGTH OF COPPER (mm)  
25  
30  
Figure 21. 3−Pin and 5−Pin D2PAK  
Thermal Resistance and Maximum Power  
Dissipation vs. P.C.B Length  
http://onsemi.com  
9
 
NCP565  
PACKAGE DIMENSIONS  
D2PAK−3  
D2T SUFFIX  
CASE 936−03  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS  
A AND K.  
TERMINAL 4  
−T−  
OPTIONAL  
CHAMFER  
K
E
A
U
4. DIMENSIONS U AND V ESTABLISH A MINIMUM  
MOUNTING SURFACE FOR TERMINAL 4.  
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH OR GATE PROTRUSIONS. MOLD FLASH  
AND GATE PROTRUSIONS NOT TO EXCEED  
0.025 (0.635) MAXIMUM.  
S
V
B
H
F
1
2
3
M
L
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN MAX  
9.804 10.236  
J
D
P
N
A
B
C
D
E
F
0.386  
0.356  
0.170  
0.026  
0.045  
0.403  
0.368  
0.180  
0.036  
0.055  
9.042  
4.318  
0.660  
1.143  
9.347  
4.572  
0.914  
1.397  
G
0.010 (0.254) M  
T
R
0.051 REF  
0.100 BSC  
0.539 0.579 13.691 14.707  
0.125 MAX  
0.050 REF  
0.000  
0.088  
0.018  
0.058  
1.295 REF  
2.540 BSC  
G
H
J
C
3.175 MAX  
1.270 REF  
K
L
0.010  
0.102  
0.026  
0.078  
0.000  
0.254  
2.591  
0.660  
1.981  
M
N
P
R
S
U
V
2.235  
0.457  
1.473  
5_REF  
5_REF  
0.116 REF  
0.200 MIN  
0.250 MIN  
2.946 REF  
5.080 MIN  
6.350 MIN  
SOLDERING FOOTPRINT*  
8.38  
0.33  
1.016  
0.04  
10.66  
0.42  
5.08  
0.20  
3.05  
0.12  
17.02  
0.67  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
10  
NCP565  
PACKAGE DIMENSIONS  
D2PAK−5  
D2T SUFFIX  
CASE 936A−02  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A  
AND K.  
−T−  
TERMINAL 6  
OPTIONAL  
CHAMFER  
A
E
U
4. DIMENSIONS U AND V ESTABLISH A MINIMUM  
MOUNTING SURFACE FOR TERMINAL 6.  
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH OR GATE PROTRUSIONS. MOLD FLASH  
AND GATE PROTRUSIONS NOT TO EXCEED 0.025  
(0.635) MAXIMUM.  
S
K
V
B
H
1
2
3
4 5  
M
L
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN MAX  
9.804 10.236  
D
P
N
A
B
C
D
E
G
H
K
L
0.386  
0.356  
0.170  
0.026  
0.045  
0.067 BSC  
0.539  
0.050 REF  
0.000  
0.088  
0.018  
0.058  
0.403  
0.368  
0.180  
0.036  
0.055  
M
0.010 (0.254)  
T
9.042  
4.318  
0.660  
1.143  
9.347  
4.572  
0.914  
1.397  
G
R
1.702 BSC  
0.579 13.691 14.707  
1.270 REF  
0.010  
0.102  
0.026  
0.078  
0.000  
0.254  
2.591  
0.660  
1.981  
C
M
N
P
R
S
U
V
2.235  
0.457  
1.473  
5_REF  
5_REF  
0.116 REF  
0.200 MIN  
0.250 MIN  
2.946 REF  
5.080 MIN  
6.350 MIN  
SOLDERING FOOTPRINT*  
8.38  
0.33  
1.702  
0.067  
10.66  
0.42  
1.016  
0.04  
3.05  
0.12  
16.02  
0.63  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
11  
NCP565  
The product described herein (NCP565), may be covered by one or more of the following U.S. patents: 5,920,184; 5,834,926.  
There may be other patents pending.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP565/D  

相关型号:

NCP565D2TR4G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565MN12T2G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565MN15T2G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565MN28T2G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565MN30T2G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565MN33T2G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565MNADJT2G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565ST12T3G

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565_07

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565_10

1.5 A Low Dropout Linear Regulator
ONSEMI

NCP565_16

80 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP566

1.5 A Low Dropout Linear Regulator
ONSEMI