NCV7428MWL5R2G [ONSEMI]

System Basis Chip with Integrated LIN and Voltage Regulator;
NCV7428MWL5R2G
型号: NCV7428MWL5R2G
厂家: ONSEMI    ONSEMI
描述:

System Basis Chip with Integrated LIN and Voltage Regulator

电信 光电二极管 电信集成电路
文件: 总19页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV7428  
System Basis Chip with  
Integrated LIN and Voltage  
Regulator  
Description  
NCV7428 is a System Basis Chip (SBC) integrating functions  
typically found in automotive Electronic Control Units (ECUs).  
NCV7428 provides and monitors the low−voltage power supply for  
the application microcontroller and other loads and includes a LIN  
transceiver.  
www.onsemi.com  
8
1
1
Features  
SOIC−8  
DFN8  
Control Logic  
D SUFFIX  
CASE 751AZ  
MW SUFFIX  
CASE 506DG  
Ensures safe power−up sequence and the correct reaction to  
different supply conditions  
Controls mode transitions including the power management and  
bus wakeup treatment  
Generates reset  
MARKING DIAGRAMS  
8
1
1
NV7428xx  
3.3 V or 5 V V  
Supply depending on the Version from a  
Low−drop Voltage Regulator  
OUT  
NV7428xx  
ALYW G  
ALYWG  
G
G
Can deliver up to 70 mA with accuracy of 2%  
Supplies typically the ECU’s microcontroller  
Undervoltage detector with a reset output to the supplied  
microcontroller  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
LIN Transceiver  
LIN2.x and J2602 compliant  
TxD dominant timeout protection  
Transceiver mode controlled by dedicated input pin  
(Note: Microdot may be in either location)  
Protection and Monitoring Functions  
Thermal shutdown protection  
Load dump protection (45 V)  
PIN ASSIGNMENT  
LIN Bus pin protected against transients in an automotive  
environment  
8
7
6
5
1
2
3
4
V
V
S
OUT  
ESD protection level for LIN and V > 8 kV  
S
EN  
GND  
LIN  
RSTN  
TxD  
Wettable Flank Package for Enhanced Optical Inspection  
Quality  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100  
Qualified and PPAP Capable  
RxD  
(Top View)  
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
Compliant  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information in the  
package dimensions section on page 17 of this data sheet.  
Typical Applications  
Automotive  
Industrial Networks  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
August, 2016 − Rev. 5  
NCV7428/D  
NCV7428  
Block Diagram  
VOUT  
VS  
NCV7428  
REF  
V−reg  
OSC  
VOUT  
VS  
VOUT  
Undervoltage  
Detection  
RSTN  
EN  
Thermal  
Shutdown  
Control Logic  
VS  
Wakeup  
Detection  
VOUT  
LIN Wakeup  
RxD  
TxD  
Receiver  
LIN  
LIN Active  
VOUT  
Driver &  
Slope  
Control  
Timeout  
GND  
Figure 1. Block Diagram  
Table 1. PIN DESCRIPTION  
Pin Number  
Pin Name  
Pin Type  
Pin Function  
1
2
V
Battery supply input  
Principle power supply of the device  
Input of the LIN block enable signal  
S
EN  
LV LIN enable input;  
internal pull−down  
3
4
5
6
7
GND  
LIN  
Ground connection  
LIN bus interface  
Ground connection  
LIN bus line  
RxD  
TxD  
LV digital output; push−pull  
Output of data received on LIN bus  
Input of the data to be transmitted from LIN bus  
System reset  
LV digital input; internal pull−up  
RSTN  
LV digital output;  
open drain; internal pull−up  
8
V
LV supply output  
Exposed Pad  
Output of the 5 V or 3.3 V/70 mA low−drop regulator (for the MCU)  
Connect to GND or leave floating  
OUT  
EP  
EP  
NOTE: (LV = Low Voltage; HV = High Voltage)  
www.onsemi.com  
2
 
NCV7428  
Application Information  
(MASTER)  
(SLAVE)  
ECU1  
ECU2  
DREV  
DREV  
CVS  
CVOUT  
CVS  
CVOUT  
VBAT  
VBAT  
VCC  
VCC  
VS  
VOUT  
VS  
VOUT  
DPU_LIN  
RSTN  
EN  
RSTN  
EN  
RPU_LIN  
MCU  
MCU  
LIN  
TxD  
RxD  
LIN  
TxD  
RxD  
LIN  
LIN  
CLIN_M  
CLIN_S  
GND  
GND  
GND  
GND  
GND  
GND  
KL30  
LIN−BUS  
KL31  
Figure 2. Example Application Diagram  
External Components  
Overview of external components from application schematic in Figure 2 is given in Table 2 together with their recommended  
or required values.  
Table 2. EXTERNAL COMPONENTS OVERVIEW  
Component  
Name  
Description  
Value  
Note  
D
Reverse polarity protection diode  
parameters application−specific;  
e.g. 0.5 A / 50 V  
required values and types  
REV  
depend on the V  
load  
OUT  
and the application needs  
C
Filtering capacitor for the battery input  
recommended >100 nF ceramic  
VS  
C
Voltage regulator output filtering and  
stabilization capacitor  
> 1.8 mF, ESR < 7 W  
VOUT  
D
R
Master node Pull−up diode on LIN line  
Master node Pull−up resistor on LIN line  
Filtering capacitor on LIN line (Master node)  
required only for master  
LIN node  
PU_LIN  
PU_LIN  
1 kW nominal, 500 mW  
C
typically 1 nF  
optional; is function of the  
entire LIN network  
LIN_M  
C
Filtering capacitor on LIN line (Slave node)  
Pull−up resistor at RSTN pin  
typically 100 pF – 220 pF  
optional; is function of the  
entire LIN network  
LIN_S  
R
recommended 10 kW nominal  
optional; depends on  
application needs  
PU_RSTN  
www.onsemi.com  
3
 
NCV7428  
Table 3. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Min  
−0.3  
−0.3  
−45  
−0.3  
−0.3  
−40  
−40  
−55  
Max  
45  
6
Units  
V
V
S
Maximum DC voltage at V pin  
S
V
OUT  
Maximum voltage at V  
pin  
V
OUT  
V
LIN  
Maximum voltage at LIN bus pin  
45  
45  
V
V
Maximum voltage at digital input pins (TxD, EN)  
Maximum voltage at digital output pins (RxD, RSTN)  
Ambient temperature range  
V
Dig_IO_inputs  
V
V
+0.3  
OUT  
V
Dig_IO_outputs  
T
AMB  
+125  
+170  
+150  
°C  
°C  
°C  
kV  
T
J
Junction temperature range  
T
STG  
Storage temperature range  
V
ESD  
System ESD at pins VS, LIN as per IEC 61000−4−2: 330 W / 150 pF  
14  
(Verified by external test house)  
Human body model at pins VS, LIN stressed towards GND with 1500 W / 100 pF  
Human body model at all pins as per JESD22−A114 / AEC−Q100−002  
Charge device model at all pins as per JESD22−C101 / AEC−Q100−011  
Machine model; (200 pF; 0.75 mH; 10 W) as per JESD22−A115 / AEC−Q100−003  
8
4
kV  
kV  
V
500  
200  
V
MSL  
Moisture Sensitivity Level  
SOIC  
DFN  
2
1
T
SLD  
Lead temperature Soldering − Reflow (SMD styles only), Pb−Free (Note 1)  
260  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
Table 4. OPERATING RANGES  
Symbol  
Parameter  
Min  
5.5  
4
Max  
28  
Units  
V
V
S
VS operating voltage for parametric operation (Note 2)  
VS operating voltage for limited operation (Note 2)  
28  
V
V
Regulated voltage at V  
Regulated voltage at V  
supply output for 5 V versions  
supply output for 3.3 V versions  
4.9  
3.234  
70  
0
5.1  
V
OUT5  
OUT  
OUT  
V
OUT33  
I
VOUT  
3.366  
V
Current delivered by the V  
regulator  
mA  
V
OUT  
V
Operating voltage at LIN bus pin  
V
S
LIN  
Dig_IO_inputs  
V
Operating voltage at digital input pins (TxD, EN)  
Operating voltage at digital output pins (RxD, RSTN)  
0
5.5  
V
V
0
V
OUT  
V
Dig_IO_outputs  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
2. Below 5.5 V at V pin in normal mode, the bus will either stay recessive or comply with the voltage level specifications and transition time  
S
specifications as required by SAE J2602. It is ensured by the battery monitoring circuit. Above 28 V at V pin, LIN communication is  
S
operational (LIN pin toggling) but parameters cannot be guaranteed. For higher battery voltage operation above 28 V, LIN pull−up resistor  
must be selected large enough to avoid clamping of LIN pin by voltage drop over external pull−up resistor and LIN pin min current limitation.  
Table 5. THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, SOIC−8 (Note 3)  
Thermal Resistance Junction−to−Air, Free air, 1S0P PCB (Note 4)  
Thermal Resistance Junction−to−Air, Free air, 2S2P PCB (Note 5)  
R
R
125  
75  
°C/W  
°C/W  
q
q
JA  
JA  
Thermal Characteristics, DFN−8 (Note 3)  
Thermal Resistance Junction−to−Air, Free air, 1S0P PCB (Note 4)  
Thermal Resistance Junction−to−Air, Free air, 2S2P PCB (Note 5)  
R
R
133  
55  
°C/W  
°C/W  
q
q
JA  
JA  
3. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
4. Values based on test board according to EIA/JEDEC Standard JESD51−3, signal layer with 10% trace coverage.  
5. Values based on test board according to EIA/JEDEC Standard JESD51−7, signal layers with 10% trace coverage for the signal layer and  
4 thermal vias connected between exposed pad and first inner Cu layer.  
www.onsemi.com  
4
 
NCV7428  
Definitions  
The characteristics defined in this section are guaranteed within the operating ranges listed in Table 4, unless stated  
otherwise. All voltages are referenced to GND (Pin 3). Positive currents flow into the respective pin.  
Table 6. DC CHARACTERISTICS (V = 5.5 V to 28 V; T = −40°C to +150°C; Bus Load = 500 W (V to LIN); unless otherwise  
S
J
S
specified. Typical values are given at V = 12 V and T = 25°C, unless otherwise specified.)  
S
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SUPPLY MONITORING  
V
V
threshold for the power−up  
V
V
V
V
rising  
falling  
3.3  
2.2  
4
3
V
V
V
V
V
V
S_PORH  
S
S
of the circuit  
V threshold for the Shutdown  
S
V
S_PORL  
S
of the circuit  
V
V
OUT  
monitoring threshold  
falling  
4.55  
2.97  
4.75  
3.135  
OUT_RES_5  
OUT  
OUT  
NV7428−5  
V
V
OUT  
monitoring threshold  
falling  
OUT_RES_33  
NV7428−3  
V
V
OUT  
monitoring threshold  
0.1  
OUT_RES_hys5  
hysteresis for NV7428−5  
V
V
OUT  
monitoring threshold  
0.06  
OUT_RES_hys33  
hysteresis for NV7428−3  
CURRENT CONSUMPTION  
I
V
V
supply current  
LIN Active, LIN bus recessive  
Standby mode; LIN Wakeup,  
1.8  
40  
mA  
VS_LIN_Active_rec  
S
I
supply current (Note 8)  
25  
12  
mA  
VS_LIN_Wakeup  
S
LIN bus recessive; I  
= 0 mA  
VOUT  
V
S
= 13.5 V, T < 105°C  
J
I
V
S
supply current (Note 8)  
Sleep mode; LIN Wakeup, LIN bus  
recessive; V off, V < 0.5 V  
25  
mA  
VS_Sleep  
OUT  
OUT  
V
S
= 13.5 V, T < 105°C  
J
V
OUT  
REGULATOR  
V
V
regulator output voltage  
V
0 < I  
regulator active,  
4.9  
3.234  
4.85  
3.201  
70  
5
5.1  
V
V
V
V
OUT_5  
OUT  
OUT  
(Note 6)  
< 70 mA, Static  
VOUT  
regulation, V = 5.5 V to 28 V  
S
V
V
OUT  
regulator output voltage  
V regulator active,  
OUT  
0 < I  
regulation, V = 4.5 V to 28 V  
3.3  
5
3.366  
5.15  
OUT_33  
(Note 6)  
< 70 mA, Static  
VOUT  
S
V
V
OUT  
regulator output voltage  
DPI EMC test applied to LIN pin.  
No bus capacitor. SOIC8 package;  
(Note 7)  
OUT_5_EMC  
under EMC (Note 8)  
V
V
OUT  
regulator output voltage  
DPI EMC test applied to LIN pin.  
No bus capacitor. SOIC8 package;  
(Note 7)  
3.3  
120  
3.399  
OUT_33_EMC  
under EMC (Note 8)  
I
V
OUT  
current limitation  
V regulator active;  
OUT  
current flowing to V  
350  
0.55  
400  
mA  
V
LIM_VOUT  
load  
OUT  
V
I
Drop−out voltage between V  
and V  
5.5 V < V < 40 V;  
S
DROP_VOUT  
SINK_VOUT  
S
I
= 70 mA  
OUT  
VOUT  
V
OUT  
sink current  
V
OUT  
regulator active, current  
100  
1.8  
240  
10  
mA  
mF  
flowing into the V  
pin  
OUT  
C
V
OUT  
regulator filtering  
Equivalent series resistance < 7 W  
VOUT  
capacitance (Note 9)  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. In case LIN bus capacitor of at least 82 pF is not used V  
and V  
needs to be taken into account.  
OUT_5_EMC  
OUT_33_EMC  
7. Tested according to: LIN Conformance Test Specification Package for LIN 2.1, October 10th, 2008. Verified by external test house.  
8. Values based on design and characterization. Not tested in production.  
9. In parallel with this capacitor any other capacitor can be placed with no limit to ESR and capacitance value  
10.The voltage drop in Normal mode between LIN and V pin is the sum of the diode drop and the drop at serial pull−up resistor. The drop  
S
at the switch is negligible. See Figure 1.  
www.onsemi.com  
5
 
NCV7428  
Table 6. DC CHARACTERISTICS (V = 5.5 V to 28 V; T = −40°C to +150°C; Bus Load = 500 W (V to LIN); unless otherwise  
S
J
S
specified. Typical values are given at V = 12 V and T = 25°C, unless otherwise specified.)  
S
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LIN TRANSMITTER  
V
LIN dominant output voltage  
LIN dominant output voltage  
LIN recessive output voltage  
Short circuit current limitation  
Internal Pull−up Resistance  
Capacitance at pin LIN (Note 8)  
TxD = Low; V = 7.3 V  
1.2  
2.0  
V
V
LIN_dom_LoSup  
S
V
TxD = Low; V = 18 V  
S
LIN_dom_HiSup  
V
TxD = High; I  
= 10 mA (Note 10)  
V
S
– 1.5  
V
S
V
LIN_REC  
LIN  
I
V
LIN  
= V = 18 V  
40  
20  
200  
47  
mA  
kW  
pF  
LIN_lim  
S
R
LIN Normal or Receive−only mode  
33  
20  
slave  
C
30  
LIN  
LIN Receiver  
V
Bus voltage for Dominant state  
Bus voltage for Recessive state  
Receiver threshold  
0.4  
V
V
V
bus_dom  
S
S
S
V
0.6  
0.4  
bus_rec  
V
LIN bus going from Recessive to  
Dominant  
0.6  
0.6  
rec_dom  
V
Receiver threshold  
LIN bus going from Dominant to  
Recessive  
0.4  
V
S
rec_rec  
V
Receiver center voltage  
Receiver hysteresis  
(V  
+ V  
)/2  
0.475  
0.05  
−1  
0.525  
0.175  
V
V
rec_cnt  
rec_dom  
rec_rec  
S
V
V
− V  
rec_hys  
rec_rec rec_dom  
S
I
LIN output current,  
Bus in dominant state  
LIN Active Mode, Driver Off;  
V = 12 V, V = 0 V  
S
mA  
mA  
mA  
LIN_off_dom  
LIN  
I
LIN output current,  
Bus in dominant state  
LIN Wakeup Mode;  
V = 12 V, V = 0 V  
S
−20  
−15  
−2  
1
LIN_off_dom_wake  
LIN  
I
LIN output current,  
Driver Off; V < 18 V;  
S
LIN_off_rec  
Bus in recessive state  
V
S
V
S
V
S
< V  
< 18 V  
LIN  
I
LIN current with missing GND  
= GND = 12 V; 0 < V  
< 18 V  
−1  
1
5
mA  
LIN_no_GND  
LIN  
I
LIN current with missing V  
= GND = 0 V; 0 < V < 18 V  
LIN  
mA  
LIN_no_VBB  
S
PIN EN  
V
Low−level input voltage  
High−level input voltage  
−0.3  
2
0.8  
5.5  
V
V
IL_EN  
IH_EN  
V
R
Pull−down resistance to GND  
55  
100  
185  
kW  
pulldown_EN  
PIN TxD  
V
Low−level input voltage  
High−level input voltage  
−0.3  
2
0.8  
5.5  
185  
1
V
V
IL_TxD  
IH_TxD  
V
R
Pull−up resistance to V  
55  
−1  
100  
0
kW  
mA  
pullup_TxD  
OUT  
I
Leakage current  
V
TxD  
= V  
= 5.5 V  
leak_TxD  
OUT  
PIN RSTN  
I
Low−level output driving current  
Low−level output voltage  
V
V
= 4 V to 28 V; V  
= 0.4 V  
RSTN  
4
30  
mA  
OL_RSTN  
S
V
= 2 V to 4 V; V  
= 0 V to  
0.1  
V
OUT  
OL_RSTN  
S
OUT  
5.5 V; I  
= 100 mA  
RSTN  
V
S
< 2 V; V  
= 1 V to 5.5 V;  
0.1  
V
OUT  
OUT  
I
= 100 mA  
RSTN  
R
Pull−up resistance to V  
55  
100  
185  
kW  
pullup_RSTN  
OUT  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. In case LIN bus capacitor of at least 82 pF is not used V  
and V  
needs to be taken into account.  
OUT_5_EMC  
OUT_33_EMC  
7. Tested according to: LIN Conformance Test Specification Package for LIN 2.1, October 10th, 2008. Verified by external test house.  
8. Values based on design and characterization. Not tested in production.  
9. In parallel with this capacitor any other capacitor can be placed with no limit to ESR and capacitance value  
10.The voltage drop in Normal mode between LIN and V pin is the sum of the diode drop and the drop at serial pull−up resistor. The drop  
S
at the switch is negligible. See Figure 1.  
www.onsemi.com  
6
NCV7428  
Table 6. DC CHARACTERISTICS (V = 5.5 V to 28 V; T = −40°C to +150°C; Bus Load = 500 W (V to LIN); unless otherwise  
S
J
S
specified. Typical values are given at V = 12 V and T = 25°C, unless otherwise specified.)  
S
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PIN RSTN  
V
V
level guaranteeing Low level  
Shutdown mode; Low level guar-  
2
V
S_DigOut_Low  
S
at RSTN pin  
anteed for V > V  
S S_DigOut_Low  
PIN RxD  
I
Low−level output driving current  
High−level output driving current  
V
V
= 0.4 V  
0.4  
mA  
mA  
OL_RXD  
RxD  
I
= V  
− 0.4 V  
−0.16  
200  
OH_RXD  
RXD  
OUT  
THERMAL SHUTDOWN  
Junction temperature for ther-  
T
J_SD  
160  
180  
10  
°C  
°C  
mal Shutdown  
T
Thermal Shutdown hysteresis  
J_SD_hys  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. In case LIN bus capacitor of at least 82 pF is not used V  
and V  
needs to be taken into account.  
OUT_5_EMC  
OUT_33_EMC  
7. Tested according to: LIN Conformance Test Specification Package for LIN 2.1, October 10th, 2008. Verified by external test house.  
8. Values based on design and characterization. Not tested in production.  
9. In parallel with this capacitor any other capacitor can be placed with no limit to ESR and capacitance value  
10.The voltage drop in Normal mode between LIN and V pin is the sum of the diode drop and the drop at serial pull−up resistor. The drop  
S
at the switch is negligible. See Figure 1.  
www.onsemi.com  
7
NCV7428  
Table 7. AC CHARACTERISTICS (V = 5.5 V to 28 V; T = −40°C to +150°C; unless otherwise specified. For the transmitter  
S
J
parameters, the following bus loads are considered: L1 = 1 kW / 1 nF; L2 = 660 W / 6.8 nF; L3 = 500 W / 10 nF)  
Symbol  
LIN TRANSMITTER  
D1  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Duty Cycle 1 =  
/ (2 x t  
TH  
TH  
= 0.744 x V  
REC(max)  
= 0.581 x V  
DOM(max) S  
0.396  
0.5  
S
t
)
BIT  
BUS_REC(min)  
t
V
= 50 ms  
= 7 V to 18 V  
BIT  
S
D2  
D3  
D4  
Duty Cycle 2 =  
/ (2 x t  
TH  
TH  
= 0.422 x V  
0.5  
0.417  
0.5  
0.581  
0.5  
REC(min)  
= 0.284 x V  
DOM(min) S  
= 50 ms  
S
t
)
BUS_REC(max)  
BIT  
t
BIT  
V
S
= 7.6 V to 18 V  
Duty Cycle 3 =  
/ (2 x t  
TH  
TH  
= 0.778 x V  
S
REC(max)  
= 0.616 x V  
DOM(max) S  
t
)
BUS_REC(min)  
BIT  
t
= 96 ms  
BIT  
V
S
= 7 V to 18 V  
Duty Cycle 4 =  
/ (2 x t  
TH  
TH  
= 0.389 x V  
0.590  
REC(min)  
= 0.251 x V  
DOM(min) S  
S
t
)
BUS_REC(max)  
BIT  
t
V
= 96 ms  
= 7.6 V to 18 V  
BIT  
S
t
LIN falling edge normal slope  
Normal Mode; V = 12 V  
22.5  
22.5  
4
ms  
ms  
ms  
ms  
ms  
ms  
fallNS  
S
t
LIN rising edge normal slope  
Normal Mode; V = 12 V  
S
riseNS  
t
LIN slope symmetry normal slope  
LIN falling edge low slope (Note 12)  
LIN rising edge low slope (Note 12)  
Normal Mode; V = 12 V  
−4  
0
symNS  
S
t
Normal Mode; V = 12 V  
45  
fallLS  
S
t
Normal Mode; V = 12 V  
45  
riseLS  
tx_prop_down  
S
t
Propagation Delay of TxD to LIN.  
TxD high to low  
(Note 11)  
10  
t
Propagation Delay of TxD to LIN.  
TxD low to high  
(Note 11)  
10  
24  
ms  
tx_prop_up  
t
TxD dominant timeout  
TxD = Low; LIN dominant  
timeout enabled  
7
13  
ms  
TxD_timeout  
LIN RECEIVER  
t
Propagation delay of receiver falling  
edge  
0.1  
0.1  
−2  
6
6
ms  
ms  
ms  
ms  
rec_prop_down  
t
Propagation delay of receiver rising  
edge  
rec_prop_up  
t
Propagation delay symmetry  
T
T
2
rec_sym  
rec_prop_down  
rec_prop_up  
t
Dominant duration for wakeup  
LIN in wakeup mode  
30  
80  
150  
LIN_wake  
MODE TRANSITIONS AND TIMEOUTS  
t
Input signal synchronization delay  
5
15  
25  
40  
55  
ms  
ms  
synch  
synch_action  
t
Delay from the asynchronous input  
pin change to the system state  
change  
11  
t
Low power mode selection delay  
RSTN pulse extension  
17  
2
30  
5
55  
10  
55  
ms  
ms  
ms  
modsel_set  
t
reset  
VOUT_RES_filt  
t
Undervoltage detection filter time  
11  
25  
11. Values based on design and characterization. Not tested in production.  
12.For low slope versions only (NV7428L5 and NV7428L3)  
www.onsemi.com  
8
 
NCV7428  
Functional Description  
VS Supply Input  
LIN Operating Modes  
V pin of NCV7428 is typically connected to the car  
battery through a reverse−protection diode and can be  
exposed to all relevant automotive disturbances (ISO7637  
In LIN Active mode the transceiver can transmit and  
receive data via LIN bus with speed up to 20 kBaud for  
normal slope mode and 10 kBaud/s for low slope version.  
The transmit data stream of the LIN protocol is present on  
the TxD pin and converted by the transmitter into a LIN bus  
signal with controlled slew rate to minimize EMC emission.  
The receiver consists of the comparator that has a threshold  
with hysteresis in respect to the supply voltage and an input  
filter to remove bus noise. The LIN output is pulled HIGH  
via an internal pull−up resistor (typ. 30 kW). For master  
applications, it is needed to put an external resistor (typ.  
S
pulses, system ESD ...). V supplies mainly the integrated  
S
LIN transceiver. Filtering capacitors should be connected  
between V and GND.  
S
During power−up of the battery supply, V pin must reach  
S
V
level in order for the circuit to become functional  
S_PORH  
– the internal state machine is initiated and the V  
OUT  
regulator is activated. The circuit remains functional until  
V falls back below V  
level, when the device enters  
S
S_PORL  
the Shutdown mode.  
1 kW) with a serial diode between LIN and V . The mode  
S
selection is done by EN = High.  
VOUT Low−drop Voltage Regulator  
The application low−voltage supply is provided by an  
integrated low−drop voltage regulator delivering a 5 V or  
The transmission is only initiated with the TxD falling  
edge in LIN Active mode. Entering this mode with TxD  
already Low will not lead to transmitting bus Dominant  
signal.  
When leaving Normal mode (EN pin falling edge), the  
transmitter is deactivated immediately.  
The LIN Wakeup mode can be entered if the EN pin is  
Low. The LIN receiver stays active to be able to detect a  
remote wake−up via bus. The LIN transmitter is disabled  
and the slave internal termination resistor of 30 kW between  
3.3 V output V  
. It is able to deliver up to 70 mA with  
OUT  
given precision and is primarily intended to supply the  
application microcontroller unit (MCU) and related 5 V or  
3.3 V loads (e.g. its own MCU−related digital inputs/  
outputs). An external capacitor needs to be connected on  
V
OUT  
pin in order to ensure the regulator’s stability and to  
filter the disturbances caused by the connected loads.  
All low−voltage digital pins are related to V  
.
OUT  
LIN and V is disconnected in order to minimize current  
S
consumption. Only a pull−up current source between Vs and  
LIN is active. The valid LIN wakeup event causes driving  
RxD Low until EN pin is pulled High.  
A Wakeup pattern that is initiated in LIN Active mode and  
ends in LIN Wakeup mode is also considered a valid Wakeup  
event.  
The LIN Wakeup mode is also forced if the device enters  
to the Sleep operating mode.  
The LIN Off mode provides extreme low current  
consumption, LIN transceiver is fully deactivated. Pin RxD  
LIN Transceiver  
NCV7428 integrates on−chip LIN transceiver interface  
between physical LIN bus and the LIN protocol controller.  
This LIN physical layer is compatible to LIN2.x and  
J2602 specifications.  
NCV7428 LIN2.2 compliant physical layer can be  
combined on the network with all previous LIN physical  
layers.  
NCV7428 LIN transceiver consists of a transmitter,  
receiver and wakeup detector. The LIN transceiver can be  
connected to the bus line via LIN pin, and to the digital  
control through pins TxD and RxD. The functional mode of  
the LIN transceiver depends on the operating mode and on  
EN pin state – see Figure 3. The LIN transceiver is supplied  
stays High (as long as V  
on TxD is ignored.  
is provided) and logical level  
OUT  
The bus pin is internally pulled to V with a current source  
S
(thus limiting V consumption in case of a permanent LIN  
S
short to GND).  
This mode is entered when NCV7428 is in Shutdown  
directly from the V pin.  
S
mode (V < V  
) or in Thermal Shutdown mode (T >  
S
S_PORL  
J
T
).  
J_SD  
www.onsemi.com  
9
NCV7428  
LIN Mode  
LIN Off  
LIN Wakeup  
LIN Active  
Bus Pin  
Pull−up  
W
30 k Resistor  
Current Source  
recessive  
LIN  
dominant  
TxD  
RxD  
EN  
tTxD_timeout  
LIN Wakeup  
detected  
LIN Active  
mode set  
Figure 3. LIN Modes  
< tLIN_wake  
tLIN_wake  
recessive  
LIN  
dominant  
RxD  
EN  
LIN Wakeup  
detected  
LIN Active  
mode restored  
Figure 4. LIN Wakeup Detection  
www.onsemi.com  
10  
NCV7428  
Operating Modes  
The principal operating modes of NCV7428 are shown in Figure 5 and described in the following paragraphs.  
Any mode  
(except for shutdown)  
Any mode  
VS < VS_PORL  
TJ > TJ_SD  
THERMAL  
SHUTDOWN  
SHUTDOWN  
−VOUT: off  
−VOUT: off  
VS powerup  
−RSTN: Low  
−RSTN: Low  
−LIN: Wakeup mode  
−RxD: Low after Wakeup/  
pulled to VOUT otherwise  
−LIN: Off mode  
−RxD: pulled to V  
OUT  
VS > VS_PORH  
and TJ < TJ_SD  
TJ < TJ_SD  
RESET  
−VOUT: on  
−RSTN: Low  
−LIN: Wakeup mode  
−RxD: Low after Wakeup/  
High otherwise  
STANDBY  
NORMAL  
EN= 1  
−VOUT: on  
−RSTN: High  
−LIN: Wakeup mode  
−RxD: Low after Wakeup/  
High otherwise  
−VOUT: on  
−RSTN: High  
−LIN: Active mode  
−RxD: Received LIN Data  
EN= 0  
and  
TxD = 1  
LIN_EN= 0  
and  
TxD = 0  
LIN wakeup  
or  
EN = 1  
SLEEP  
−VOUT: off  
−RSTN: Low  
−LIN: Wakeup mode  
−RxD: pulled to V  
OUT  
Figure 5. Operating Modes  
www.onsemi.com  
11  
 
NCV7428  
Shutdown Mode  
Normal Mode  
The Shutdown mode is a passive state, in which all  
NCV7428 resources are inactive. The Shutdown mode  
provides a defined starting point for the circuit in case of  
supply undervoltage, thermal Shutdown or the first supply  
connection.  
Normal mode is entered from Standby mode after a host  
request – driving EN pin High (Figure 9), or if EN pin is  
High when leaving Reset mode – t  
(Figure 8).  
time elapsed  
reset  
LIN transceiver is in Active mode. V  
RSTN remains High.  
is kept on. Pin  
OUT  
On−chip power−supply V  
is switched off and the LIN  
OUT  
pin remains passive so that it does not disturb the  
communication of other nodes connected to the LIN bus.  
Standby Mode  
Standby mode is entered from Normal mode after host  
request – EN pin falling edge followed by TxD pin High.  
RxD pin stays pulled to V . No wakeups can be detected.  
OUT  
RSTN pin is forced Low – RSTN Low level is guaranteed  
for V supply above V  
TxD is sampled t  
+ t  
after EN edge (Figure 9).  
synch  
modesel  
.
S_DigOut_Low  
S
Standby mode is also entered if EN pin is Low when leaving  
Reset mode – t time elapsed (Figure 7).  
The Shutdown mode is entered asynchronously whenever  
the V level falls below the power−on−reset level V  
reset  
.
S_PORL  
S
LIN transceiver is in Wakeup mode – RxD pin is latched  
Low after valid Wakeup recognition until Normal mode is  
The Shutdown mode is left only when the V supply  
S
exceeds the high power−on−reset level V  
while  
S_PORH  
requested. V  
is kept active. Pin RSTN remains High.  
OUT  
junction temperature is below T  
. When exiting the  
J_SD  
Shutdown mode, NCV7428 always enters the Reset mode.  
Sleep Mode  
Sleep mode can be only entered from Normal mode after  
a host request – EN pin falling edge followed by TxD pin  
RESET Mode  
The Reset mode is a transient mode providing a defined  
RSTN pulse for the application microcontroller.  
Low. TxD is sampled t  
(Figure 10).  
+ t  
after EN pin edge  
synch  
modesel  
V
OUT  
supply is kept active. The LIN pin is passive so that  
V
OUT  
regulator is switched off, LIN transceiver is in the  
it does not disturb the communication of other nodes  
connected to the bus. RxD pin is High if no wakeup was  
detected, RxD Low level indicates pending LIN wakeup.  
Pin RSTN is forced Low.  
Reset mode will be entered as a consequence of one of the  
following events:  
Shutdown mode is exited  
Thermal Shutdown mode is exited  
Wakeup mode.  
If LIN wakeup is detected or EN goes High, Reset mode  
is entered. LIN wakeup is signaled by RxD, which remains  
Low until Normal mode is restored (EN is High).  
Thermal Shutdown  
The device junction temperature is monitored in order to  
avoid permanent degradation or damage of the chip.  
Junction temperature exceeding the Shutdown level T  
V  
voltage falls below V  
level  
J_SD  
OUT  
OUT_RES  
puts the chip into Thermal Shutdown mode.  
LIN wakeup or EN = High was detected in Sleep mode  
In Thermal Shutdown mode, V  
regulator is switched  
OUT  
Normally, the Reset mode is left when V voltage is  
OUT  
off. LIN transceiver is in Wakeup mode and can detect bus  
Wakeup. RxD pin stays pulled to V or is driven Low  
above V  
threshold and defined time t  
elapses.  
OUT_RES  
reset  
OUT  
The RSTN pin is internally released to High and the chip  
then goes to the Normal or Standby mode, depending on EN  
state.  
after valid Wakeup recognition. RSTN pin is pulled low. The  
mode is automatically left only when the junction cools  
down below the T  
threshold.  
J_SD  
www.onsemi.com  
12  
NCV7428  
VS  
VS  
VOUT  
tVOUT_RES_filt  
tVOUT_RES_filt tVOUT_RES_filt  
< tVOUT_RES_filt  
VOUT  
VOUT_RES  
VS_PORH  
treset  
treset  
RSTN  
EN  
Operating  
mode  
Shutdown  
Reset  
Standby  
Reset  
Standby  
Figure 6. VOUT Regulator Voltage Monitoring  
EN  
ignored  
TxD  
ignored  
RxD  
LIN wakeup indication  
treset  
RSTN  
Operating  
mode  
Reset  
Standby  
RSTN pulse released  
EN sampled  
VOUT > VOUT_RES  
Figure 7. Operating Modes, Transition from Reset to Standby Mode  
www.onsemi.com  
13  
NCV7428  
ignored  
EN  
TxD  
RxD  
ignored  
LIN wakeup indication  
treset  
tsynch_action  
RSTN  
Operating  
mode  
Reset  
Normal  
RSTN pulse released  
EN sampled  
Mode change  
LIN wakeup flag cleared  
VOUT > VOUT_RES  
Figure 8. Operating Modes, Transition from Reset to Normal Mode  
EN  
TxD  
RxD  
ignored  
ignored  
LIN wakeup indication  
RSTN  
Operating  
mode  
Normal  
Standby  
Normal  
tsynch  
tmodsel_set  
tsynch_action  
LIN transmission blocked  
TxD sampling  
Figure 9. Operating Modes, Transition from Normal to Standby Mode  
www.onsemi.com  
14  
NCV7428  
EN  
TxD  
RxD  
ignored  
ignored  
LIN wakeup  
indication  
VOUT OFF  
RSTN  
Operating  
mode  
Normal  
Sleep  
Reset  
tsynch  
tmodsel_set  
tsynch_action  
LIN transmission blocked  
TxD sampling  
Figure 10. Operating Modes, Transition from Normal to Sleep Mode  
tBIT  
tBIT  
TxD  
LIN  
50%  
t
tBUS_dom(max)  
tBUS_rec(min)  
THREC(max)  
THDOM(max)  
Thresholds of  
receiving node 1  
THREC(min)  
THDOM(min)  
Thresholds of  
receiving node 2  
t
tBUS_dom(min)  
tBUS_rec(max)  
Figure 11. Definition of LIN Duty Cycle Parameters  
www.onsemi.com  
15  
NCV7428  
LIN  
100%  
60%  
40%  
60%  
40%  
0%  
t
tfall  
trise  
Figure 12. Definition of LIN Edge Parameters  
TxD  
tBIT  
tBIT  
50%  
t
LIN  
VS  
60% VS  
40% VS  
t
ttx_prop_down  
ttx_prop_up  
Figure 13. Definition of LIN Transmitter Timing Parameters  
LIN  
VS  
60% VS  
40% VS  
t
t
trec_prop_down  
trec_prop_up  
RxD  
50%  
Figure 14. Definition of LIN Receiver Timing Parameters  
www.onsemi.com  
16  
NCV7428  
ORDERING INFORMATION  
Part Number  
Description  
Marking  
NV7428−5  
NV7428−3  
Package  
Shipping  
NCV7428D15R2G  
LIN transceiver with 5 V regulator  
LIN transceiver with 3.3 V regulator  
NCV7428D13R2G  
SOIC−8  
(Pb−Free)  
NCV7428D1L5R2G  
LIN transceiver with 5 V regulator,  
low slope LIN  
3000 / Tape & Reel  
NV7428L5  
NV7428L3  
NCV7428D1L3R2G  
LIN transceiver with 3.3 V regulator,  
low slope LIN  
NCV7428MW5R2G  
NCV7428MW3R2G  
NCV7428MWL5R2G  
LIN transceiver with 5 V regulator  
LIN transceiver with 3.3 V regulator  
NV7428−5  
NV7428−3  
DFN8  
Wettable Flanks  
(Pb−Free)  
LIN transceiver with 5 V regulator,  
low slope LIN  
3000 / Tape & Reel  
NV7428L5  
NV7428L3  
NCV7428MWL3R2G  
LIN transceiver with 3.3 V regulator,  
low slope LIN  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
17  
NCV7428  
PACKAGE DIMENSIONS  
SOIC 8  
CASE 751AZ  
ISSUE B  
NOTES 4&5  
0.10 C D  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.  
ALLOWABLE PROTRUSION SHALL BE 0.004 mm IN EXCESS OF  
MAXIMUM MATERIAL CONDITION.  
455CHAMFER  
D
NOTE 6  
h
D
A
2X  
H
8
5
4. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS  
SHALL NOT EXCEED 0.006 mm PER SIDE. DIMENSION E1 DOES  
NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD  
FLASH OR PROTRUSION SHALL NOT EXCEED 0.010 mm PER SIDE.  
5. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOT­  
TOM. DIMENSIONS D AND E1 ARE DETERMINED AT THE OUTER­  
MOST EXTREMES OF THE PLASTIC BODY AT DATUM H.  
6. DIMENSIONS A AND B ARE TO BE DETERMINED AT DATUM H.  
7. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD  
BETWEEN 0.10 TO 0.25 FROM THE LEAD TIP.  
0.10 C D  
NOTES 4&5  
E
E1  
L2  
SEATING  
L
C
PLANE  
DETAIL A  
1
4
0.20 C D  
8X b  
8. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING  
PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.  
B
M
0.25  
C A-B D  
NOTE 6  
MILLIMETERS  
TOP VIEW  
NOTES 3&7  
DIM MIN  
MAX  
1.75  
0.25  
---  
DETAIL A  
A
A1  
A2  
b
---  
0.10  
1.25  
0.31  
0.10  
A2  
NOcTE 7  
0.10 C  
0.51  
0.25  
c
D
4.90 BSC  
A
E
6.00 BSC  
3.90 BSC  
1.27 BSC  
e
END VIEW  
SEATING  
PLANE  
E1  
e
C
A1  
SIDE VIEW  
NOTE 8  
h
0.25  
0.40  
0.41  
1.27  
L
L2  
0.25 BSC  
RECOMMENDED  
SOLDERING FOOTPRINT*  
8X  
0.76  
8X  
1.52  
7.00  
1
1.27  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
18  
NCV7428  
PACKAGE DIMENSIONS  
DFN8, 3x3, 0.65P  
CASE 506DG  
ISSUE A  
L
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.30mm FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
DETAIL A  
ALTERNATE TERMINAL  
CONSTRUCTION  
MILLIMETERS  
E
PIN ONE  
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
REFERENCE  
A
2X  
A3  
b
0.20 REF  
0.10  
C
0.25  
0.35  
D
3.00 BSC  
D2 2.30  
2.50  
2X  
0.10  
C
C
TOP VIEW  
E
3.00 BSC  
E2 1.50  
1.70  
A
e
K
L
0.65 BSC  
0.30 TYP  
0.35 0.45  
A3  
0.05  
0.05  
C
RECOMMENDED  
SEATING  
PLANE  
NOTE 4  
C
A1  
SIDE VIEW  
D2  
SOLDERING FOOTPRINT*  
8X  
0.60  
2.56  
DETAIL A  
1
4
8X  
L
3.30  
1.70  
E2  
K
1
8
5
08.4X0  
8X b  
e/2  
0.65  
PITCH  
0.10 C A B  
DIMENSIONS: MILLIMETERS  
e
NOTE 3  
C
0.05  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
BOTTOM VIEW  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV7428/D  

相关型号:

NCV7428_15

System Basis Chip with Integrated LIN and Voltage Regulator
ONSEMI

NCV7428_16

System Basis Chip with Integrated LIN and Voltage Regulator
ONSEMI

NCV7429

System Basis Chip
ONSEMI

NCV7429DE5R2G

System Basis Chip
ONSEMI

NCV7430

Automotive LIN RGB LED Driver
ONSEMI

NCV7430-D

Automotive LIN RGB LED Driver
ONSEMI

NCV7430D20G

Automotive LIN RGB LED Driver
ONSEMI

NCV7430D20R2G

Automotive LIN RGB LED Driver
ONSEMI

NCV7430_17

Automotive LIN RGB LED Driver
ONSEMI

NCV7441

Dual High Speed Low Power CAN Transceiver
ONSEMI

NCV7441D20G

Dual High Speed Low Power CAN Transceiver
ONSEMI

NCV7441D20R2G

Dual High Speed Low Power CAN Transceiver
ONSEMI