NCV7430_17 [ONSEMI]

Automotive LIN RGB LED Driver;
NCV7430_17
型号: NCV7430_17
厂家: ONSEMI    ONSEMI
描述:

Automotive LIN RGB LED Driver

文件: 总34页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV7430  
Automotive LIN RGB LED  
Driver  
The NCV7430 is a single−chip RGB driver intended for dedicated  
multicolor LED applications. The RGB LED driver contains a LIN  
interface (slave) for parametric programming of LED color and intensity.  
The device receives instructions through the LIN bus and  
subsequently drives the LEDs independently.  
www.onsemi.com  
The NCV7430 acts as a slave on the LIN bus and the master can  
request specific status information (parameter values and error flags).  
The LIN address of the NCV7430 can be programmed in the internal  
memory of the device.  
MARKING  
DIAGRAM  
14  
14  
The NCV7430 is fully compatible with automotive requirements.  
1
NCV7430−0  
AWLYWWG  
PRODUCT FEATURES  
SOIC−14  
D2 SUFFIX  
CASE 751A  
LED Driver  
1
3 Independent LED Current Regulators  
LED Currents Adjustable with External Resistors  
NCV7430 = Specific Device Code  
A
WL  
Y
WW  
G
= Assembly Location  
= Wafer Lot  
Power Dissipation Option with External Ballast Transistor  
Controller with One−Time−Programmable Memory (OTP)  
LED Modulation Controller for 3 LEDs  
= Year  
= Work Week  
= Pb−Free Package  
Full LED Calibration Support  
Internal LED Color Calibration via Matrix Calculation  
Intensity Control (linear or logarithmic)  
Dimming and Color Transition (linear) Function  
with Programmable Transition Time  
PIN CONNECTIONS  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
LED3C  
LED1C  
LED2C  
TST1  
ANODE  
LIN Interface  
LIN Physical Layer according to LIN 2.1/ SAE J2602  
OTP−programmable Device Node Number  
OTP−programmable Group Address  
Diagnostics and Status Information  
LIN Bus Short Circuit Protection to Supply and Ground  
Protection and Diagnostics  
VBIAS  
VBB  
LIN  
GND  
TST2  
GND  
LED2R  
LED1R  
LED3R  
Overcurrent Detection  
Short Circuit Detection to GND and VBB  
Open LED Detection  
8
High Temperature Warning and Shutdown  
Retry Mode on Error Detection  
ORDERING INFORMATION  
Power Saving  
Device  
Package  
Shipping  
Sleep Mode Supply Current 10 mA  
Compliant with 14V Automotive Systems  
NCV7430D20G  
SOIC−14  
(Pb−Free)  
55 Units / Tube  
EMI Compatibility  
NCV7430D20R2G  
SOIC−14  
(Pb−Free)  
3000 / Tape &  
Reel  
LIN Bus Integrated Slope Control  
EMC Reduced LED Modulation Mode  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Quality  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100  
Qualified and PPAP Capable  
These Devices are Pb−Free and are RoHS Compliant  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
June, 2017 − Rev. 10  
NCV7430/D  
NCV7430  
BLOCK DIAGRAM  
VBB  
LIN  
Optional Ballast Control  
Error  
VBIAS  
Communication  
and  
LIN  
ANODE  
LED1C  
LED2C  
LED3C  
Programming  
LEDxC  
LEDxR  
Detection  
modulator  
325 mV  
325 mV  
LED2R  
325 mV  
GND GND LED1R  
LED3R  
Figure 1. Simple Block Diagram  
ANODE ERROR  
Modulator  
NCV7430  
ANODE  
LED1C  
LED1  
Analog  
Error  
Handler  
BUS  
Interface  
LIN  
Vref1  
Vref2  
OPA  
D
Current−reg−  
−Fet  
OPEN  
ERROR  
LED1R  
TST1  
TST2  
Main Control Processor,  
Registers  
OTP memory  
LED2  
LED3  
LED2C  
LED2R  
Temp  
Vref  
sense  
Oscillator  
LED3C  
LED3R  
VBIAS  
Voltage  
Regulator  
VRef  
VBB  
GND GND  
Figure 2. Detailed Block Diagram  
www.onsemi.com  
2
NCV7430  
MRA4003T3G  
100 nF  
D1  
VBAT  
Optional  
470  
C1  
C2  
Optional  
10 nF  
VBB  
R1  
VBIAS  
3
NJD2873T4G*  
2
Q1  
1
ANODE  
LED1C  
R
13  
NCV7430  
LED2C  
C4  
1 nF  
G
12  
14  
8
10  
9
LED3C  
B
LED3R  
LED2R  
LED1R  
LIN bus  
LIN  
4
11  
6
5
GND  
7
R
1
G
2
B
3
C3  
GND  
TST1 TST2  
Rsense  
10 ohm for 30 mA  
Figure 3. Typical Application with Ballast Transistor  
MRA4003T3G  
D1  
10 nF  
VBAT  
100 nF  
C1  
C2  
Optional  
VBB  
3
VBIAS  
2
1
ANODE  
LED1C  
LED2C  
LED3C  
R
13  
12  
NCV7430  
G
B
14  
8
10  
9
LED3R  
LED2R  
LED1R  
LIN bus  
C3  
LIN  
4
11  
TST2  
6
5
7
R
G
2
B
3
GND  
GND  
1
TST1  
Rsense  
10 ohm for 30 mA  
Figure 4. Typical Application without Ballast Transistor  
NOTES:  
C must be close to pins V and GND  
1
BB  
C and C is placed for EMC reasons; value depends on EMC requirements of the application  
2
3
R1 and Q1 and reverse polarity protection D1 and C2 are optional.  
When Q1 is not used, connect VBB to the ANODE pin. VBIAS output is kept open in this case.  
Rsense_1, Rsense_2 and Rsense_3 have to be calculated for LED current settings.  
“R”, “G”, “B” designators refer to the ON Semiconductor evaluation board software associations.  
* For lower power applications, a PZT3904T1G device can be substituted.  
RGB LED, OSRAM MULTILED LRTB GVSG or DOMINANT Multi DomiLED D6RTB−PJG  
Table 1. OPERATING RANGES  
Parameter  
Supply voltage  
Operating temperature range  
Min  
+5.5  
−40  
Max  
+18  
Unit  
V
V
BB  
T
+125  
°C  
J
www.onsemi.com  
3
NCV7430  
Table 2. PIN FUNCTION DESCRIPTION (14 LEAD SON Package)  
Pin #  
1
Label  
ANODE  
VBIAS  
VBB  
Pin Description  
Anode input for LED fault detection  
2
Bias output for ballast transistor  
VBB (14 V) Supply Voltage  
LIN−bus connection  
Supply GND  
3
4
LIN  
5
GND  
6
TST2  
Test pin (ground pin)  
Supply GND  
7
GND  
8
LED3R  
LED1R  
LED2R  
TST1  
Current program resistor to ground for LED3C  
Current program resistor to ground for LED1C  
Current program resistor to ground for LED2C  
Test pin (float pin) (Note 1)  
9
10  
11  
12  
13  
14  
LED2C  
LED1C  
LED3C  
Channel 2 regulated current output to LED cathode  
Channel 1 regulated current output to LED cathode  
Channel 3 regulated current output to LED cathode  
1. Floating pin 11 eliminates the possibility of a short to ground of the adjacent pin (LED2C).  
Table 3. MAXIMUM RATINGS  
Parameter  
Min  
−0.3  
−0.3  
−45  
−0.3  
Max  
+43 (Note 2)  
28 (Note 3)  
+45  
Unit  
V
V
BB  
Supply voltage  
Supply voltage  
V
Vlin  
Bus input voltage (LIN)  
V
VVBIAS  
IBIAS  
Ballast Transistor Drive Voltage Pin (VBIAS)  
Ballast Output Drive (VBIAS)  
VANODE  
10  
V
mA  
V
VANODE  
VLEDC  
VLEDR  
LED Fault Sense Pin (ANODE) voltage  
LED Current Pin (LEDxC) voltage (Note 7)  
Program Current Pin (LEDxR) voltage (Note 4)  
Junction temperature range (Note 5)  
−0.3  
−0.3  
−0.3  
−50  
VBB  
VBB  
V
3.6  
V
T
J
+175  
°C  
°C  
Tflw  
Peak Reflow Soldering Temperature: Pb−Free  
60 to 150 seconds at 217°C (Note 6)  
260 peak  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
2. For limited time: t < 0.5 s.  
3. t < 3 minutes  
4. VLEDR cannot exceed VLEDC.  
5. The circuit functionality is not fully guaranteed outside operating temperature range.  
6. For additional information, see or download ON Semiconductor’s Soldering and Mounting Techniques Reference Manual, SOLDERRM/D,  
and Application Note AND8003/D.  
7. Capacitive loading on LEDxC pins is limited to < 200 pF for proper functionality.  
Table 4. ATTRIBUTES  
Characteristics  
Value  
ESD Capability  
(Note 8)  
Human Body Model (LIN Pin)  
Human Body Model (All Remaining Pins)  
Machine Model  
> ± ±4 kV  
> ± 2 kV  
> ± 200 V  
Moisture Sensitivity Level (Note 6)  
Storage Temperature  
MSL 2  
−55°C to 150°C  
Package Thermal Resistance  
Junction−to−Ambient (R ) (2S2P) (Note 9)  
100°K/W  
53°K/W  
q
JA  
Junction−to−Pin (R ) (Pins 4 & 11)  
y
JL  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
8. HBM according to AEC−Q100: EIA−JESD22−A114−B (100 pF via 1.5 kW) and MM according to AEC−Q100: EIA−JESD22−A115−A.  
9. Simulated conform JEDEC JESD51  
www.onsemi.com  
4
 
NCV7430  
Table 5. ELECTRICAL CHARACTERISTICS (5.5 V < V < 18 V, −40°C < T < 125°C, R  
= 10 W TWPROG = TWPROG2 =  
BB  
J
sense  
0, unless otherwise specified).  
Symbol  
Pin(s)  
Characteristic  
Conditions  
Min  
Typ  
Max  
Unit  
LED DRIVER  
LED1C  
LED2C  
LED3C  
I
Single LED current in nor-  
mal operation  
V
= 14 V  
32  
96  
mA  
mA  
mA  
LEDmax  
BB  
For individual LED driven  
I
All LED currents in normal  
operation  
V
BB  
= 14 V  
LEDmaxTotal  
For all LEDs driven  
I
LED current  
Uncalibrated Max ON Duty  
Cycle  
LEDxC  
28  
2.8  
30.5  
3.05  
32  
3.2  
R
= 10 W  
SENSE  
R
= 100 W  
SENSE  
I
Absolute error on LED  
current  
Calibrated  
= 14 V,  
%
MSabs  
V
BB  
3 mA < I  
< 30 mA  
= 10 W  
= 100 W  
LEDxC  
R
−1  
−3  
1
3
SENSE  
R
SENSE  
V
V
Reference voltage for cur-  
rent regulators (High)  
state  
V
= 14 V  
= 14 V  
325  
mV  
mV  
Vref1  
BB  
BB  
Reference voltage for cur-  
rent regulators (Low) state  
V
20  
Vref2  
LIN TRANSMITTER  
LIN  
I
Dominant state, driver off  
Recessive state, driver off  
V
BB  
= 0 V,  
= 8 V & 18 V  
−1  
mA  
bus_off  
linbus  
V
I
V
linbus  
= V  
,
20  
mA  
bus_off  
bat  
V
V
V
= 8 V & 18 V  
= 8 V & 18 V  
= 8 V & 18 V  
BB  
I
Current limitation  
Pull−up resistance  
40  
20  
75  
30  
200  
47  
mA  
bus_lim  
BB  
BB  
R
kW  
slave  
LIN RECEIVER  
LIN  
V
Receiver dominant state  
Receiver recessive state  
Receiver hysteresis  
V
BB  
V
BB  
V
BB  
V
BB  
= 8 V & 18 V  
= 8 V & 18 V  
= 8 V & 18 V  
= 8 V & 18 V  
0
0.4 * V  
BB  
V
V
V
V
bus_dom  
V
0.6 * V  
V
BB  
bus_rec  
BB  
V
0.05 * V  
0.175 * V  
BB  
bus_hys  
BB  
Vrec_th_wake  
LIN wake−up threshold  
V
− 1.1  
V
BB  
− 3.3  
BB  
THERMAL WARNING & SHUTDOWN  
Thermal warning  
T
tw  
107  
115  
10  
123  
°C  
°C  
(Notes 10, 11)  
T
twhyst  
Thermal warning hyster-  
esis  
T
tsd  
Thermal shutdown  
(Note 10)  
147  
155  
163  
THERMAL CONTROL  
TH_Ired_step  
LED Drive Current change  
at Thermal Warning  
−6.25  
%
per  
step  
VBIAS OUTPUT  
V
Output voltage  
V
BB  
= 14 V, I = 5 mA  
bias  
7.3  
8.3  
6.0  
V
V
bias  
VBB SUPPLY  
VBB_UV  
VBB Undervoltage  
5.40  
5.8  
for LIN Communication  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
10.Parameter guaranteed by trimming in production test.  
11. No more than 2000 cumulative hours in life time above Tw.  
www.onsemi.com  
5
 
NCV7430  
Table 5. ELECTRICAL CHARACTERISTICS (5.5 V < V < 18 V, −40°C < T < 125°C, R  
= 10 W TWPROG = TWPROG2 =  
BB  
J
sense  
0, unless otherwise specified).  
Symbol  
Pin(s)  
Characteristic  
Conditions  
Min  
Typ  
Max  
Unit  
VBB SUPPLY  
VBB_UV_hys  
VBB Undervoltage Hys-  
teresis for LIN Communic-  
ation  
0.2  
0.4  
V
PORH_V  
Power−on Reset for out-  
put drive capability  
V
Rising V  
4.4  
bb  
bb  
Falling V  
1.9  
13  
bb  
V
BB  
V
bbOTP  
Supply voltage for OTP  
zapping  
16  
V
I
Total current consumption  
Unloaded outputs  
= 18 V, LEDs OFF  
5.0  
10  
7.0  
20  
mA  
mA  
bat  
V
BB  
I
Sleep mode current con-  
sumption  
V
= 13.5 V, T = 85°C  
BB J  
bat_sleep  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
10.Parameter guaranteed by trimming in production test.  
11. No more than 2000 cumulative hours in life time above Tw.  
www.onsemi.com  
6
NCV7430  
AC PARAMETERS  
The AC parameters are guaranteed for temperature and V in the operating range unless otherwise specified.  
BB  
The LIN transmitter and receiver physical layer parameters are compliant to LIN rev. 2.0 & 2.1.  
Table 6. AC CHARACTERISTICS  
Symbol  
POWER−UP AND WAKE−UP  
Power−up time  
Pin(s)  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
t
pu  
Guaranteed by design  
Sleep mode  
10  
ms  
t
LIN Dominant Wake−up pulse  
filter time  
80  
150  
ms  
LIN_Wake  
t
Reaction time after valid  
Wake−up pulse  
Sleep mode  
0.3  
3
1
ms  
ms  
Wake  
t
Sleep mode to Normal mode  
transition time  
t
> 150 ms  
10  
Sleep_to_Normal  
LIN_Wake  
Guaranteed by design  
INTERNAL OSCILLATOR  
f
Frequency of internal oscillator  
V
= 14 V  
1.8  
2
2.2  
MHz  
%
osc  
BB  
LIN TRANSMITTER CHARACTERISTICS ACCORDING TO LIN v2.0 & v2.1  
D1  
D2  
LIN  
Duty cycle 1  
= (t  
TH  
TH  
= 0.744 x V  
= 0.581 x V  
BB  
39.6  
Rec(max)  
Dom(max)  
7.0 V < V < 18 V;  
BB  
BB  
/ (2 x t )) x 100  
;
Bus_rec(min)  
Bit  
See Figure 5  
t
Bit  
= 50ms  
Duty cycle 2  
TH  
TH  
= 0.422 x V  
= 0.284 x V  
58.1  
%
Rec(min)  
Dom(min)  
BB  
;
= (t  
/ (2 x t )) x 100  
Bus_rec(max)  
Bit  
BB  
See Figure 5  
7.6 V < V < 18 V;  
BB  
t
Bit  
= 50ms  
LED DRIVERS  
f
LEDx  
LED modulation frequency for  
MODFREQ = 0  
117  
234  
122  
244  
127  
254  
Hz  
LEDmodulation  
LED modulation frequency for  
MODFREQ = 1  
t
Turn−on transient time  
Between 10% and 90%  
1
1
1
ms  
ms  
ms  
brise  
t
Turn−off transient time  
bfall  
I
Settling time of Current regulators  
Between 10% and 90%  
full scale  
0.8  
1.5  
LED settling  
THERMAL CONTROL  
t
Timeout for current reduction af-  
ter TW  
10  
s
s
TH_timeout  
ERROR RETRY CONTROL  
Intervaltime between retries  
2.7  
3
3.3  
t
retryinterval  
N
Number of retries before LEDs  
are switched off definitely  
20  
numberofretries  
www.onsemi.com  
7
NCV7430  
t
t
BUS_rec(min)  
BUS_dom(max)  
LIN  
TH  
Rec(max)  
Thresholds of  
receiving node 1  
TH  
Dom(max)  
TH  
Rec(min)  
Thresholds of  
receiving node 2  
TH  
Dom(min)  
t
t
t
BUS_rec(max)  
BUS_dom(min)  
Figure 5. Timing for AC Characteristics According to LIN 2.0 and LIN 2.1  
LIN  
Detection of Remote Wake−Up  
VBB  
recessive  
> t  
LIN_Wake  
(150 μs)  
60% VBB  
40% VBB  
dominant  
t
t
Wake  
t
Sleep_to_Normal  
Sleep mode  
Init  
Normal mode  
Figure 6. Timing for Wake Up from Sleep Mode via LIN Bus Transitions  
LIN Timing  
LIN Frames must be Sent in a Regular Manner  
Precise color settings for RGB LEDs is achieved using  
independent current modulators. The three LED modulation  
controllers have eleven bit resolution with a choice of base  
frequencies of 122 Hz or 244 Hz.  
The internal oscillator is adapted to an accurate frequency  
based on the reception of multiple LIN synchronization  
fields. Although the NCV7430 is functional without LIN  
communication, the timing specifications cannot be  
guaranteed without periodic error−free LIN frame inputs.  
System Operation  
The programmability of the NCV7430 is achieved via a  
LIN bus interface. The device is operated in slave mode and  
accepts lighting instruction commands from a bus master.  
The physical node address of a slave can be programmed in  
OTP “address bits ADx” at address 0x03: For multi node  
operation the NCV7430 accepts broadcast commands. With  
the broadcast command and four additional “GROUP_ID”  
bits programming of up to 16 different slave clusters can be  
done. In this approach each slave belongs to a specific  
cluster (GROUP).  
Detailed Operating Description  
General  
The NCV7430 is an automotive 3 channel LED driver  
suitable for use in a broad range of applications. Although  
designed to drive an RGB LED, it can easily be used to drive  
3 independent LEDs. Each LED is driven by a constant  
current source externally programmed for maximum current  
using external resistors.  
www.onsemi.com  
8
 
NCV7430  
Current Sources  
NOTE: For the Set_Color_Short and Set_Intensity  
commands the GROUP_ID bits are split. The  
lower two bits are used to assign the NCV7430  
to one of four groups for the color setting, while  
the upper two bits are used to assign the device  
to one of four groups for the intensity setting.  
The NCV7430 has three independent analog current  
sources driving the LEDs. The currents are programmed by  
a fixed 325 mV voltage reference at the LEDxR pin. The  
delta current through the resistor resulting from Vref1 −  
Vref2, equals the LED drive current at the LEDxC. Each  
maximum LED current (DC = Max ON) can be adjusted to  
a typical value up to 30.5 mA. The external resistor can be  
calculated as follows:  
Power−up  
The NCV7430 powers up in an active mode. Reference  
the “Sleep Mode” section for low power standby conditions.  
The device has a VBB Power−on Reset Level of 4.4 V,  
(max) for output drive capability. Operation of the device is  
guaranteed above the 4.4 V level. All integrated circuit  
activity will remain off prior to breaching the 4.4 V level. All  
output current sources (LEDxC), current programming pins  
(LEDxR), error dection pin (ANODE), ballast drive pin  
(VBIAS), and LIN communication pin (LIN) will be high  
impedance below 4.4 V. The device becomes fully  
operational above 4.4 V with the default parameters copied  
from OTP and will operate up to 18 V.  
325 mV * 20 mV  
R +  
(eq. 1)  
ILEDhigh  
For I  
= 30.5 mA the resistor is:  
LEDhigh  
0.305 V  
0.0305 A  
R +  
+ 10 W  
When not being modulated for color setting purposes, or  
under abnormal or error conditions, the LEDs can be  
switched on and off independently by their <LEDx  
ENABLE> bit in the control register. Additionally, bit  
<LEDs ON/OFF> will activate and deactivate all LEDs at  
the same time. When there are error conditions, the LEDs  
will not turn on.  
The <DEFAULT> bit in OTP determines if the LEDs are  
enabled or disabled on power−up.  
The VBB Reset bit at Byte 4, Bit 4 in the Get_Full_Status  
In frame response 1 gets set to a one on Power−up and goes  
to “0” after the first Get_Full_Status command.  
The minimum Power−on Reset Threshold is 1.9 V. The  
output drive is guaranteed to be inactive at or below this  
threshold.  
NOTE: The LED modulation current regulator switches  
between I  
and a reduced current, I  
LEDhigh  
LEDlow.  
The reduced current value is determined by a  
low reference voltage V All references to  
Max ON duty cycle in this datasheet run at  
2040/2048 duty cycle to provide for internal  
analog compensation.  
ref2.  
NOTE: While LIN is operational for voltages at the  
minimum battery voltage level of 5.75 V (typ)  
(VBB Undervoltage), the LIN conformance is  
only guaranteed for a battery voltage higher  
than 8 V.  
There is additional sensing of VBB with VBB  
Undervoltage detection (5.75 V) and is recorded at Byte 4,  
Bit 5 of the Get_Full_Status In frame response 1 and Byte  
2, Bit 5 of Get_Status In frame response. The LIN  
communication pin will not accept traffic during VBB  
Undervoltage, but will record the VBB undervoltage  
situation and can only be cleared with a Get_Full_Status  
frame.  
LED Modulation Sources  
Each LED output has its own LED modulation controller.  
The NCV7430 blends the modulated LED currents in an  
RGB LED to create colors. The NCV7430 provides  
additional OTP registers for each channel to store color  
calibration factors. The calibration factors are used by the  
NCV7430 to create the modulation needed for an exact color  
setting.  
The calibration functionality can be enabled and disabled  
via the CAL_EN bit. If the CAL_EN bit is ‘0’, the LIN  
command (8 bit) is save into the modulation registers. When  
the CAL_EN is set to ‘1’, the received modulation values are  
first corrected, and then stored in the LED modulation  
registers.  
For the calibration a matrix calculation is used. The matrix  
has the following form:  
ǒ
Ǔ
LED1Ȁ + (a11 ) 1) @ LED1 ) (a12 ) 0) @ LED2 ) (a13 ) 0) @ LED3 ń32  
ǒ
Ǔ
LED2Ȁ + (a21 ) 0) @ LED1 ) (a22 ) 1) @ LED2 ) (a23 ) 0) @ LED3 ń32 (eq. 2)  
LED Modulation Matrix  
ǒ
Ǔ
LED3Ȁ + (a31 ) 0) @ LED1 ) (a32 ) 0) @ LED2 ) (a33 ) 1) @ LED3 ń32  
www.onsemi.com  
9
NCV7430  
The calibration factors have a value of eight bits and  
fraction the programmed LED modulation value between  
0% and Max ON duty cycle.  
Transitions from color to color, or changes in intensity  
will vary in a linear fashion through the color/intensity  
spectrum (optional logarithmic mode for intensity). The  
fading time can be set between 0 and 6.3 seconds via a 6 bit  
register giving a resolution of 0.1 second. The fading  
function can be enabled and disabled by programming the  
FADING ON/OFF bit in the control registers. The default  
state of this bit depends on the <DEFAULT> bit that is set  
in OTP memory.  
With high values chosen for the coefficients in one row,  
the calculation can cross the Max ON duty cycle boundary  
(clipping) for the color. As a rule: For proper design, the sum  
of the calibration values should stay under Max ON duty  
cycle to prevent color saturation.  
If one of the calculated LED1, LED2, or LED3values  
exceeds the upper practical boundaries of Max ON duty  
cycle, the modulator automatically adapts the modulation  
speed to the color that exceeded the Max ON duty cycle.  
This method guarantees that the color integrity is  
maintained.  
Intensity − Linear or logarithmic dimming  
Color − Linear dimming only  
LED Update Modes  
Bits <UPDATECOLOR[1:0]> are used to enable the  
NCV7430 for operation in different update modes. The  
following modes are implemented:  
The calibration factors a11 to a33 reside in nine dedicated  
OTP registers:  
UPDATECOLOR:  
(0x04 to 0x08, and 0x0A to 0x0D).:  
00  
01  
10  
11  
immediate update  
LED modulation Calibration data a11 to a33.  
These registers can be programmed in OTP and are  
generally used for the compensation of LED colors which  
occur due to system design changes and lot−to−lot variation  
of LEDs.  
store and do not update  
update to the already stored values  
discard  
The UPDATECOLOR bits are included in the command  
Set_Color (Byte 5, Bits 6 and 7).  
LED Intensity  
Short Circuit and Open Circuit Detection  
The overall intensity of the LEDs is programmable with  
a four bit scaling factor that is applied over the LED  
modulation. The register containing this value is  
AMBLIGHTINTENSITY. The scaling is linear. The light  
output function is described with the following formula:  
The NCV7430 provides protection features for each LED  
driver. The device monitors for LED Open Circuit (ANODE  
to LEDxC), LED Short Circuit (ANODE to LEDxC), Short  
LEDxC to GND and Open Circuit R  
(LEDxR to  
SENSE  
GND) as shown in Figure 7. Detection of these errors will  
set the appropriate error bits in the status register  
(<ERRLEDx[2:0]>), and proper action will be taken  
(reference Table 7).  
There is a minimum detection activation time of 8 msec for  
error detection (use of a 0.2% duty cycle is recommended).  
This is derived from a combination of color, intensity levels,  
and PWM frequency settings (122 Hz or 244 Hz). The  
system design should monitor error detection at high  
intensity settings to avoid missing short or open circuit  
conditions at low duty cycles. LEDxC shorts to ground do  
not require a minimum duty cycle.  
Additionally, error detection must be sequential  
(transitioning from a known good state to an error state).  
Mixing of errors (i.e. transitioning from a short condition to  
an open condition) could result in signal false errors in  
identity.  
Intensity Matrix  
LED1int  
LED1Ȁ  
AMBLIGHTINTENSITY  
16  
LED2int  
LED2Ȁ  
+ ǒ  
Ǔ*  
NJ Nj  
NJ Nj(eq. 3)  
LED3Ȁ  
LED3int  
If the intensity value is set to 15 the used value for the  
calculation is 16, resulting in a multiplication factor of 1 (no  
intensity reduction). Changing the intensity from one to  
another value can follow a linear or logarithmic transition  
based on the fading time as described in “Theatre dimming  
function”.  
LED Modulation Frequency  
The LED modulation frequency can be chosen to be 122  
or 244 Hz.  
Theatre Dimming Function  
The NCV7430 has a fading function to give a theater  
dimming effect when changing color and/or intensity  
settings. The effect presents itself as a smooth transition  
between colors, or increases or decreases in intensity.  
www.onsemi.com  
10  
NCV7430  
Table 7. ERROR CONDITIONS FOR EACH INDIVIDUAL LED  
Retry Option  
<RETRYSTATE>  
Error Description:  
No Error  
ERR[2]  
ERR[1]  
ERR[0]  
Action:  
No Action  
0
0
0
1
0
1
No  
Open circuit LEDxR  
Yes  
Thermal Sense  
Short from ANODE to LEDxC  
Short from LEDxC to GND (Note 13)  
“Shorted LED cathode to GND”  
0
1
1
0
0
1
Yes  
No  
ANODE OFF (Note 12)  
LEDxC OFF  
Open circuit (LEDxC to ANODE)  
Thermal Shutdown  
Thermal Sense  
Automatic retry below Thermal  
Warning Threshold  
LED & ANODE OFF  
(Note 12)  
12.ANODE OFF is realized by internal circuitry that switches VBIAS to 0 V. The Anode can only be switched off when an external transistor is used.  
13.A short from (LEDxC) to (LEDxR), or (ANODE) to (LEDxR) may damage the device. When the external ballast transistor is not used, the  
LED and/or Rsense may also be damaged.  
ANODE  
LED Open Circuit  
Detection  
LEDxC  
Error  
Detection  
Manager  
LED Short Circuit  
Detection  
Short Circuit  
Detection  
LEDxC to GND  
LEDxR  
GND  
Open Circuit  
Detection  
RSENSE to GND  
Figure 7. Short Circuit and Open Circuit Detection  
Thermal Warning and Thermal Shutdown  
Thermal Control Bit  
The NCV7430 has thermal warning and thermal  
shutdown protection features. When the junction  
temperature of the NCV7430 rises above the thermal  
When the thermal control bit <TH_CONT> is set, the  
NCV7430 will actively regulate the LED currents as  
programmed by the user when exceeding a thermal warning  
threshold. This function protects the device and the LEDs  
from overheating without interaction from the LIN master.  
When T<TW> is reached, the NCV7430 will decrease the  
LED currents by a step defined by the parameter  
TH_Ired_step. The reduction in current is represented by the  
warning level (T  
), the <TW> warning flag is set in the  
<TW>  
status register. When the junction temperature rises above  
the device will switch off the LEDs, and set the  
T
<TSD>,  
<TSD> flag in the status register. <TSD> and <TW> flags  
represent an event has happened and may not represent the  
current state of the IC. After the <TSD> flag is set, the device  
can only enter normal operation again after it is cooled down  
status bit <TH_CONT_STATE>. If after t  
seconds  
TH_timeout  
the thermal warning condition is still present, the current is  
decreased further. If the thermal warning condition is  
below the T  
level. After a <TSD > occurrence and the  
<TW>  
cooling down period, the NCV7430 will resume normal  
operation.  
removed within the t  
keeps the reduced current setting for the next t  
seconds, the NCV7430  
TH_timeout  
TH_timeout  
www.onsemi.com  
11  
 
NCV7430  
period. The reduced current state is presented by the 4 bit  
<TH_CONT_STATE[3:0]> register.  
Under normal conditions the Thermal Warning level has  
The currents can be set back to their normal operating  
values by writing the <LEDs ON/OFF> bit to ‘1’ in the  
control register where the bit was previously set. After this  
command the < TH_CONT_STATE > is reset to ‘0’.  
Note: During thermal control the device is still protected  
for over temperatures at the Thermal Shutdown threshold.  
the value as specified by T  
With the OTP  
<TW>.  
programmable bit <TWPROG>, the Thermal warning and  
Thermal Shutdown levels can be reduced by 20°C.  
T shutdown level  
T
T warning level  
t
T <tw> bit  
T < Ttw and*  
getfullstatus  
T < Ttw and*  
getfullstatus  
LED’s turn on  
T <tsd> bit  
T > Ttsd,  
LED’s turn OFF  
* TSD and TW flags remain set until  
cleared with getfullstatus.  
Figure 8. Thermal Management  
Retry Mode  
A retry mode will be entered upon error detection (as per  
Table 12). Information on this event is stored in the status  
register (bit <RETRYSTATE>).  
LED currents will be regulated as described in “Thermal  
warning and thermal control”.  
NOTE: Care has to be taken not to overstress the system  
by switching on the LEDs repeatedly after  
detection of errors.  
The <ERROFF> bit residing in OTP can program to act  
on all LEDs when an error occurs or to act only on the  
LED(s) that is (are) failing.  
After entering the retry mode, the device will switch ON  
the LED(s) after t  
If the error(s) still exists, the  
retryinterval.  
device will switch OFF the LEDs. The retry actions are  
taken place N times. After the last retry, the  
numberofretries  
device will switch OFF the LEDs until a turn−on signal is  
reinitiated by the user via the LIN pin. This is done by  
resetting the internal retry counter by reading the Status  
Register via a GetFullStatus command. After reading, the  
<RETRYSTATE> and error flags are cleared.  
The error conditions “Shorted LED” and “Open circuit”  
do not switch OFF the LEDs. For these errors, the device  
relies on the (always active) thermal shutdown and thermal  
control. When the thermal shutdown temperature threshold  
is reached, the device will switch OFF the LEDs (reference  
<ERROFF> below). When thermal control is activated, the  
NOTE: The NCV7430 utilizes a single timeout counter  
for the Retry Interval time. Additional errors  
st  
occurring after the 1 error detection will cause  
the timer to be reset. This results in an extended  
retry interval time for the initial detected error.  
This is highlighted in Figure 9. The device  
attempts to turn on 20 times (after a  
GetFullStatus request).  
www.onsemi.com  
12  
 
NCV7430  
1
5
10  
15  
20  
T shutdown level  
T warning level  
Getfullstatus  
request  
1
5
1
5
10  
15  
20  
T shutdown level  
T warning level  
Getfullstatus  
request  
Figure 9. Retry Counter  
Sleep Mode  
detection of a transition of LIN recessive state to dominant  
state followed by a dominant level for a time period  
In sleep mode, LEDs are turned OFF and the VBIAS  
output is brought to 0V, turning OFF the optional bypass  
transistor. The internal circuitry of the NCV7430, including  
the band gap reference, internal oscillator and current  
sources are put in low power mode and the internal registers  
are reset. In Sleep mode the total battery current  
>t  
.
LIN_Wake  
Refer to Figure 6 for wake time and voltage threshold  
definitions to wake up via LIN bus transitions.  
As per the LIN protocol, a special master request frame is  
issued to force slave nodes to sleep mode. Reference Table  
29 for details of the command structure.  
consumption is reduced to I  
as specified in the DC  
bat_sleep  
parameter table. The NCV7430 wakes up from sleep after  
www.onsemi.com  
13  
NCV7430  
OTP REGISTERS  
Table 8. OTP MEMORY STRUCTURE  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
Bit 7  
OSC4  
Bit 6  
OSC3  
Bit 5  
OSC2  
Bit 4  
OSC1  
Bit 3  
Bit 2  
ZAP2  
BG2  
Bit 1  
ZAP1  
BG1  
Bit 0  
ZAP0  
BG0  
OSC0  
BG3  
TSD3  
TSD2  
TSD1  
TSD0  
DEFAULT  
LOCKBT1  
ERROFF  
CMDSOFF  
TWPROG  
AD5  
LOCKBT0  
AD4  
PPOL3  
AD3  
PPOPL2  
AD2  
PPOL1  
AD1  
PPOL0  
AD0  
LED modulation Calibration data a11  
LED modulation Calibration data a12  
LED modulation Calibration data a13  
LED modulation Calibration data a21  
LED modulation Calibration data a22  
0
1
reserved  
TWPROG2  
LOW BAUD  
BALLAST  
LED modulation Calibration data a23  
LED modulation Calibration data a31  
LED modulation Calibration data a32  
LED modulation Calibration data a33  
LOCKBT2 LED_MOD_FREQ  
1
TH_CONT  
GROUP_ID3 GROUP_ID2 GROUP_ID1 GROUP_ID0  
Table 9. OTP PROGRAMMING BIT DESCRIPTION  
Programming  
Table 10. OTP OVERWRITE PROTECTION  
Lock Bit  
Protected Bytes  
Bit  
DEFAULT  
ERROFF  
Description  
LOCKBT0  
(factory zapped  
before delivery)  
0x00 − All bits  
‘1’ Enables the LEDs on power−up.  
0x01− All bits  
‘1’ Turns off all LEDs during LEDxC  
short to ground.  
0x02 − bit 0 to bit 5  
LOCKBT1  
LOCKBT2  
0x03  
TWPROG,  
TWPROG2  
(See table below)  
0x0E − GROUP_IDx bits  
LOCKBT1  
CMDSOFF  
‘1’ Locks bits per Table 13.  
0x04 to 0x0D  
‘1’ Limits command recognition to  
Set_Color_Short and Set_Iintensity.  
0x02 − DEFAULT, ERROFF, TWPROG,  
and TWPROG2  
AD0 − AD5  
LOW BAUD  
NCV7430 address programming bits.  
Expected Low Baud Rate  
‘0’ = 9600 BAUD  
0x03 − CMDSOFF  
0x0E − LED_MOD_FREQ and  
TH_CONT  
‘1’ = 10400 BAUD  
Parameters stored at address 0x00 and 0x01, and bit 0 to  
bit 4 of address 0x02 are pre−programmed in the OTP  
memory at the factory. They correspond to the calibration of  
the circuit. This does not correspond to LED calibration.  
Each OTP bit is set to ‘0’ prior to zapping. Zapping a bit  
will set it to ‘1’. Zapping of a bit already at ‘1’ will have no  
effect.  
Each OTP byte needs to be programmed separately (see  
command SetOTPparam). Once OTP programming is  
completed, bit <LOCKBT1> and <LOCKBT2> can be  
zapped to disable future zapping.  
BALLAST  
This bit must be zapped (‘1’) when us-  
ing an external ballast transistor. An un-  
zapped bit with the use of a ballast tran-  
sistor could result in LEDxC short to  
ground errors.  
LOCKBT2  
‘1’ Locks bits per Table 13.  
LED_MOD_FREQ  
‘0’ LED modulation frequency − 122 Hz  
‘1’ LED modulation frequency − 244 Hz  
TH_CONT  
‘1’ Thermal Control Enabled.  
NCV7430 group programming bits.  
16 possible groups.  
GROUP_ID0−  
GROUP_ID3  
After programming the OTP, the contents only become  
active after a power−on reset. The power−on reset copies the  
OTP information to the registers.  
Thermal Warning Temperature Select  
TWPROG2  
TWPROG  
Temperature  
95°C  
0
0
1
1
1
0
1
0
115°C  
120°C  
130°C  
www.onsemi.com  
14  
 
NCV7430  
Table 11. REGISTERS AND FLAGS  
Length  
(bit)  
Register  
Mnemonic  
Related Commands  
Comment  
Reset State  
LED color value  
LED1  
Led 1’  
8
Get_Color  
Set_Color  
Set_Color_Short  
Get_Actual_param  
8−bit unsigned: 0x00 .. 0xFF  
“00”  
LED color value  
LED2  
Led 2’  
Led 3’  
8
8
Get_Color  
Set_Color  
Set_Color_Short  
Get_Actual_param  
8−bit unsigned: 0x00 .. 0xFF  
8−bit unsigned: 0x00 .. 0xFF  
“00”  
“00”  
LED color value  
LED3  
Get_Color  
Set_Color  
Set_Color_Short  
Get_Actual_param  
LED modulation  
Calibration a11  
Cal_a11  
Cal_a22  
Cal_a33  
Cal_a12  
8
8
8
8
Get_Actual_Param  
Set_Primary_Cal_Param  
8−bit unsigned: 0x00 .. 0xFF  
8−bit unsigned: 0x00 .. 0xFF  
8−bit unsigned: 0x00 .. 0xFF  
8−bit unsigned: 0x00 .. 0xFF  
From OTP or “FF” when  
all OTP values are “0”  
LED modulation  
Calibration a22  
Get_Actual_Params  
Set_Primary_Cal_Param  
From OTP or “FF” when  
all OTP values are “0”  
LED modulation  
Calibration a33  
Get Actual Param  
Set_Primary_Cal_Param  
From OTP or “FF” when  
all OTP values are “0”  
LED modulation  
Calibration a12  
Get Actual Param  
Set_Secondary_Cal_Param  
FROM OTP  
FROM OTP  
FROM OTP  
FROM OTP  
FROM OTP  
FROM OTP  
“1”  
LED modulation  
Calibration a13  
Cal_a13  
Cal_a21  
Cal_a23  
Cal_a31  
Cal_a32  
CAL_EN  
8
8
8
8
8
1
Get_ Actual _Param  
Set_Secondary_Cal_Param  
8−bit unsigned: 0x00 .. 0xFF  
8−bit unsigned: 0x00 .. 0xFF  
8−bit unsigned: 0x00 .. 0xFF  
8−bit unsigned: 0x00 .. 0xFF  
8−bit unsigned: 0x00 .. 0xFF  
LED modulation  
Calibration a21  
Get Actual_Param  
Set_Secondary_Cal_Param  
LED modulation  
Calibration a23  
Get_ Actual _Param  
Set_Secondary_Cal_Param  
LED modulation  
Calibration a31  
Get_ Actual _Param  
Set_Secondary_Cal_Param  
LED modulation  
Calibration a32  
Get_ Actual _Param  
Set_Secondary_Cal_Param  
Calibration  
Enable  
Get_LED_Control  
Set_LED_Control  
Get_Actual_Param  
“0”: Calibration is not used  
“1”: Calibration is used  
Ambient light  
intensity  
AMBLIGHT  
INTENSITY  
4
6
1
1
1
Set_Intensity  
4 bit linear scaling for intensity  
“15”  
“00”  
Fading Time  
Fading  
time[5:0]  
Set_Color  
Get_Actual_Param  
6−bit unsigned: 0 .. 6..3 seconds  
in resolution steps of 0.1 secs  
Fading ON/OFF  
Fading Slope  
Thermal Control  
FADING  
ON/OFF  
Set_Color  
Get_Actual_Param  
“0” : Fading off  
“1” : Fading on  
If DEFAULT = 1: “1”  
If DEFAULT = 0: “0”  
FADING  
SLOPE  
Set_Color  
Get_Actual_Param  
“0” : Fading slope logarithmic  
“1” : Fading slope Linear  
“0”  
TH_CONT  
DEFAULT  
ERROFF  
Set_LED_Control  
Get_Actual_Param  
Get_LED_Control  
“0” : Automatic thermal control  
Disabled  
FROM OTP  
“1” : Automatic thermal control  
Enabled  
DEFAULT state  
after power−on  
1
1
1
Set_OTP_Param  
Set_OTP_Param  
Set_OTP_Param  
“0” : Default power−up state:  
LEDs and Fading OFF  
FROM OTP  
FROM OTP  
FROM OTP  
“1” : Default power−up state:  
LEDs and Fading ON  
LED error  
detection  
selection  
“0” : Only failing LED off when  
an error is detected  
“1” : All LEDs off when an  
error is detected  
Commands OFF  
CMDSOFF  
“0” : All LIN commands are  
validated and executed  
“1” : Only LIN command  
Set_Color_Short and  
Set_intensity are validated  
and executed, all other  
command are disabled for  
use.  
www.onsemi.com  
15  
 
NCV7430  
Table 11. REGISTERS AND FLAGS  
Length  
(bit)  
Register  
Mnemonic  
Related Commands  
Comment  
4 bits unsigned  
“0” : current reduced to  
6.25% DC  
Reset State  
Thermal Control  
Status  
TH_CONT  
_STATE[3:0]  
4
Get_Full_Status  
“15”  
“15” : current not reduced  
(Max ON DC)  
TWPROG  
TWPROG  
TWPROG2  
1
1
1
Set_OTP_Param  
Set_OTP_Param  
“0”  
“1”  
FROM OTP  
FROM OTP  
Works with TWPROG2  
Thermal Warning Level  
Set per the Temperature  
Select Table.  
TWPROG2  
“0”  
“1”  
Works with TWPROG  
Thermal Warning Level  
Set per the Temperature  
Select Table.  
LEDs ON/OFF  
LEDs ON/OFF  
Set_LED_Control  
Set_Color  
Get_LED_Control  
“0” : All LEDs OFF  
“1” : All LEDs ON if individual  
LEDx ENABLE is set to “1”  
If DEFAULT = 1: “1”  
If DEFAULT = 0: “0”  
LED1 ENABLE  
LED2 ENABLE  
LED3 ENABLE  
LED1 ENABLE  
LED2 ENABLE  
LED3 ENABLE  
1
1
1
2
Set_LED_Control  
Get_LED_Control  
“0” : LED 1 OFF  
“1” : LED1 ON  
If DEFAULT = 1: “1”  
If DEFAULT = 0: “0”  
Set_LED_Control  
Get_LED_Control  
“0” : LED 2 OFF  
“1” : LED 2 ON  
If DEFAULT = 1: “1”  
If DEFAULT = 0: “0”  
Set_LED_Control  
Get_LED_Control  
“0” : LED 3 OFF  
“1” : LED 3 ON  
If DEFAULT = 1: “1”  
If DEFAULT = 0: “0”  
UPDATECOLOR  
mode  
UPDATE  
COLOR[1:0]  
Set_Color  
“00”: immediate update  
“01”: store and do not update  
“10”: update to the already  
stored values  
“0”  
“11”: discard  
RETRY state  
RETRYSTATE  
1
1
Get_Full_Status  
Get_Status  
“0”: not in retry state  
“1”: device is retrying to  
recover from error  
“0”  
LED modulation  
frequency  
LED_MOD_  
FREQ  
Set_LED_Control  
Get_Actual_Param  
Get_LED_Control  
“0” : 122 Hz  
“1” : 244 Hz  
FROM OTP  
ERROR LED 1  
ERROR LED 2  
ERROR LED 3  
ERRLED1[2:0]  
ERRLED2[2:0]  
ERRLED3[2:0]  
TW  
3
3
3
1
1
2
Get_Full_Status  
GetStatus  
Refer to Table 8  
“x”  
“x”  
“x”  
“x”  
“x”  
“x”  
Get_Full_Status  
GetStatus  
Refer to Table 8  
Get_Full_Status  
GetStatus  
Refer to Table 8  
Thermal  
warning  
Get_Full_Status  
GetStatus  
Thermal warning detected  
Thermal Shutdown detected  
Thermal  
Shutdown  
TSD  
Get_Full_Status  
GetStatus  
Tinfo  
Tinfo[1:0]  
Get_Full_Status  
00: T < T  
<TW>  
01: T  
<T < T  
<TW>  
<TSD>  
11: T > T  
<TSD>  
VBB_reset  
VBB_Reset  
1
1
Get_Full_Status  
Get_Full_Status  
POR reset detected  
“1”  
“x”  
LIN Data Error  
LIN Data Error  
Checksum Error + Stopbit  
Error + Length Error  
LIN Header Error LIN Header Error  
LIN Bit Error LIN Bit Error  
1
1
Get_Full_Status  
Get_Full_Status  
Parity Error + Synch field Error  
“x”  
“x”  
Difference in sent and  
monitored bit  
www.onsemi.com  
16  
NCV7430  
LIN CONTROLLER  
General Description  
VBB  
The LIN (local interconnect network) is a serial  
communications protocol that efficiently supports the  
control of distributed nodes in automotive applications. The  
physical interface implemented in the NCV7430 is  
compliant to the LIN rev. 2.0 & 2.1 specifications. It features  
a slave node, thus allowing for:  
single−master / multiple−slave communication  
self synchronization without quartz or ceramics  
resonator in the slave nodes  
30 kW  
RxD  
TxD  
LIN  
protocol  
handler  
to  
control  
block  
LIN  
Filter  
Slope  
Control  
guaranteed latency times for signal transmission  
LIN address  
single−signal−wire communication  
transmission speed of 19.2 kbit/s, 10.4 kbit/s and  
9.6 kbit/s  
from OTP  
selectable length of Message Frame: 2, 4, and 8 bytes  
configuration flexibility  
Figure 10.  
data checksum (classic checksum) security and error  
detection  
Functional Description  
Analog Part  
The transmitter is a low−side driver with a pull−up resistor  
and slope control. The receiver mainly consists of a  
comparator with a threshold equal to V /2. Figure 5 shows  
the characteristics of the transmitted and received signal.  
See AC Parameters for timing values.  
detection of defective nodes in the network  
It includes the analog physical layer and the digital  
protocol handler.  
The analog circuitry implements a low side driver with a  
pull−up resistor as a transmitter, and a resistive divider with  
a comparator as a receiver. The specification of the line  
driver/receiver follows the ISO 9141 standard with some  
enhancements regarding the EMI behavior.  
BB  
Protocol Handler  
This block implements:  
Bit synchronization  
Bit timing  
Slave Operational Range for Proper Self  
Synchronization  
The LIN interface will synchronize properly in the  
following conditions:  
The MAC layer  
The LLC layer  
The supervisor  
Vbat: sufficiently high  
Ground shift between master node and slave node < 1V  
It is highly recommended to use the same type of reverse  
battery voltage protection diode for the Master and the Slave  
nodes.  
Error Status Register  
The LIN interface implements a register containing an  
error status of the LIN communication. This register is as  
follows:  
Table 12. LIN ERROR REGISTER  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Not  
used  
Not  
used  
Not  
used  
Not  
used  
Not  
used  
Data  
error Flag  
Header  
error Flag  
Bit  
error Flag  
With:  
Data error flag: (= Checksum error + StopBit error + Length error)  
Header error flag: (= Parity error + SynchField error)  
Bit error flag: Difference in bit sent and bit monitored on the LIN bus  
A GetFullStatusframe will reset the LIN error status register.  
www.onsemi.com  
17  
NCV7430  
Physical Address of the Circuit  
NOTE: For the Set_Color_Short and Set_Intensity  
commands the GROUP_ID bits are split. The  
lower two bits are used to assign the NCV7430  
to one of four groups for the color setting, while  
the upper two bits are used to assign the device  
to one of four groups for the intensity setting.  
The circuit must be provided with a node address in order  
to discriminate this circuit from other ones on the LIN bus.  
This address is coded on 6 bits, yielding the theoretical  
possibility of 64 different devices on the same (logical) bus.  
However the maximum number of nodes in a LIN network  
is also limited by the physical properties of the bus line.  
Beside the node address a 4 bit “GROUP_ID” identifier  
is available. This “GROUP_ID” identifier is only evaluated  
when the Broad bit is recognized as ‘0’. The “GROUP_ID”  
identifier assigns the node to one of 16 groups. The node can  
only be assigned to one group. The LIN message will use 16  
bit locations for the Groups. When the Node “GROUP_ID”  
identifier matches the bit in the message, the message will  
be evaluated. Refer to Figure 8.  
BAUD Rate  
The NCV7430 device automatically distinguishes  
between high and low baud rates.  
A high baud rate of 19200 transmitted by the master will  
be duplicated by the slave.  
There are two low baud rates in use between the US and  
Europe. They are 9600 and 10400. To eliminate possible  
confusion between these two closely related frequencies, the  
device is programmable via the OTP register to select  
between the two frequencies (reference Table 8).  
Group ID  
programmed  
in NCV7430  
LIN Frames  
The LIN frames can be divided in writing and reading  
frames. A frame is composed of an 8−bit Identifier followed  
by 2, 4 or 8 data−bytes and a checksum byte.  
NOTE: The checksum conforms to LIN 1.3. This means  
that all identifiers are validated with classic  
checksum.  
Send by  
Master  
The message can address one or more Nodes at the  
same time by setting the appropriate Group bit(s).  
Writing frames will be used to:  
Program the OTP Memory;  
Figure 11.  
Configure the LED parameters (Modulation value etc);  
Resuming: The NCV7430 is individually addressable by  
its LIN node address and cluster addressable via the “Group”  
bits when ‘Broad’ is ‘0’.  
Control of the LED Outputs.  
Whereas reading frames will be used to:  
Get status information such as error flags;  
Reading OTP for calibration by MCU;  
Verify the right programming and configuration of the  
component.  
Writing Frames  
The LIN master sends commands and/or information to  
the slave nodes by means of a writing frame. According to  
the LIN specification, identifiers are to be used to determine  
a specific action. If a physical addressing is needed, then  
some bits of the data field can be dedicated to this, as  
illustrated in the example below.  
Identifier Byte  
Data Byte 1  
Data Byte 2  
ID  
0
ID  
1
ID  
2
ID  
3
ID  
4
ID  
5
ID  
6
ID  
7
phys. address  
command parameters (e.g. position)  
<ID6> and <ID7> are used for parity check over <ID0> to <ID5>, conforming to LIN2.1 specification. <ID6> = <ID0> ⊕  
<ID1> <ID2> <ID4> (even parity) and <ID7> = NOT(<ID1> <ID3> <ID4> <ID5>) (odd parity).  
www.onsemi.com  
18  
NCV7430  
Another possibility is to determine the specific action within the data field in order to use fewer identifiers. One can for  
example use the reserved identifier 0x3C and take advantage of the 8 byte data field to provide a physical address, a command  
and the needed parameters for the action, as illustrated in the example below.  
ID  
0x3C  
Data Byte 1 Data Byte 2 Data Byte 3  
Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7  
Data Byte 8  
00  
1
AppCmd  
command  
physical  
address  
parameters  
NOTE: Bit 7 of Data byte 1 must be at ‘1’ since the LIN specification requires that contents from 0x00 to 0x7F must be  
reserved for broadcast messages (0x00 being for the “Sleep” message). See also LIN command Sleep. The  
NCV7430 is using both of above mentioned methods.  
LIN Commands:  
In the following paragraphs all LIN frame commands are described. The gray filled cells of the tables present the bytes sent  
by the master while the white cells present the bytes sent by the slave (NCV7430).  
Table 13. COMMAND SUMMARY  
Command  
Get_Full_Status  
Response  
Get_Full_Status In frame response 1  
Get_Actual_Param1  
Get_Actual_Param In frame response 1  
Get_Actual_Param2  
Get_Actual_Param In frame response 2  
Get_OTP_Param 1  
Get_OTP_Param In frame response 1  
Get_OTP_Param 2  
Get_OTP_Param In frame response 2  
Get_Status READING FRAME  
Get_Color READING FRAME  
Get_LED_Control READING FRAME  
Set_LED_Control WRITING FRAME  
Set_Color WRITING FRAME  
Set_Color_Short  
Get_Status In frame response 1  
Get_Color In frame response 1  
Get_LED In frame response 1  
Set_Intensity  
Set_Primary_Cal_Param  
Set_Secondary_Cal_Param  
Set_OTP_Param  
Sleep  
www.onsemi.com  
19  
NCV7430  
Get_Full_Status  
Note: A Get_Full_Status command will clear flags <TW>,  
<TSD>, <ERRLEDx[2:0]>, <VBB_Reset> and  
<RETRYSTATE>. If the error condition persists, the  
value will be set again.  
This command is provided to the circuit by the LIN master  
to get a complete status of the circuit. Refer to Registers and  
Flags Table to see the meaning of the parameters sent to the  
LIN master.  
Get _Full_Status conforms to a 0x3C command structure.  
Table 14. Get_Full_Status  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
4
5
6
7
8
9
0
0
1
1
1
1
0
0
AppCMD =0x80  
Data 2  
1
1
CMD[6:0] = 0x01  
Data 3  
1
AD[5:0]  
Data 4  
0xFF  
Data 5  
0xFF  
Data 6  
0xFF  
Data 7  
0xFF  
0xFF  
Data 8  
Checksum  
Classic Checksum over data  
Get_Full_Status In frame response 1  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
0
1
1
1
1
1
1
1
0
1
AD[5:0]  
0xFF  
Data 2  
Data 3  
1
1
1
1
1
1
1
LIN Data  
error  
LIN Header  
LIN Bit  
error  
error  
4
5
6
7
Data 4  
Data 5  
Data 6  
Data 7  
VBB Under VBB Reset  
Voltage  
TSD  
TW  
Tinfo[1:0]  
TH_CONT TH_CONT TH_CONT TH_CONT  
STATE 3  
RETRY  
STATE  
ERR[2]  
LED1  
ERR[1]  
LED1  
ERR[0]  
LED1  
STATE 2  
STATE 1  
STATE 0  
1
ERR[2]  
LED3  
ERR[1]  
LED3  
ERR[0]  
LED3  
1
ERR[2]  
LED2  
ERR[1]  
LED2  
ERR[0]  
LED2  
LED3  
LED2  
LED1  
LEDs  
GROUP_ID3 GROUP_ID2 GROUP_ID1 GROUP_ID0  
ENABLE  
ENABLE  
ENABLE  
ON/OFF  
8
9
Data 8  
0xFF  
Checksum  
Classic Checksum over data  
Where:  
Tinfo[1:0] gives the actual state of the temperature, while TW and TSD present the Latched status  
The Error states are as follows:  
Error Description:  
ERR[2] LEDx  
ERR[1] LEDx  
ERR[0] LEDx  
No Error  
0
0
1
0
0
1
0
1
0
1
1
0
Open circuit − LEDxR, Short from ANODE to LEDxC  
Open circuit − LEDxC to ANODE  
Short from LEDxC to Ground  
www.onsemi.com  
20  
NCV7430  
The TH_CONT_STATE[3:0] read only bits represent the degree of current reduction when the thermal control bit  
<TH_CONT> is set .  
TH_CONT_STATE[3:0]  
Current in % of Nominal  
15  
14  
13  
12  
11  
10  
9
Max ON  
93.75  
87.50  
81.25  
75.00  
68.75  
62.50  
56.25  
50.00  
43.75  
37.50  
31.25  
25.00  
18.75  
12.50  
6.25  
8
7
6
5
4
3
2
1
0
www.onsemi.com  
21  
NCV7430  
Get_Actual_Param  
Reads the full set of the actual parameters of the NCV7430. For this command two messages are needed. This is a 0x3C  
command requiring an in frame slave responses.  
Table 15. Get_Actual_Param1  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
4
5
6
7
8
9
0
0
1
1
1
1
0
0
AppCMD =0x80  
Data 2  
1
1
CMD[6:0] = 0x02  
Data 3  
1
AD[5:0]  
Data 4  
0xFF  
Data 5  
0xFF  
Data 6  
0xFF  
Data 7  
0xFF  
0xFF  
Data 8  
Checksum  
Classic Checksum over data  
Get_Actual_Param In frame response 1  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
0
1
2
3
4
5
6
7
8
0
1
1
1
1
1
1
1
0
1
AD[5:0]  
LED color value LED 1 [7:0]  
LED color value LED 2 [7:0]  
LED color value LED 3 [7:0]  
LED modulation Calibration data a11[7:0]  
LED modulation Calibration data a22[7:0]  
LED modulation Calibration data a33[7:0]  
Fading time [5:0]  
FADING  
ON/OFF  
FADING  
SLOPE  
9
Checksum  
Classic Checksum over data  
www.onsemi.com  
22  
NCV7430  
Table 16. Get_Actual_Param2  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
1
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
4
5
6
7
8
9
0
0
1
1
1
0
0
AppCMD =0x80  
Data 2  
1
1
CMD[6:0] = 0x03  
Data 3  
1
AD[5:0]  
Data 4  
0xFF  
Data 5  
0xFF  
Data 6  
0xFF  
Data 7  
0xFF  
0xFF  
Data 8  
Checksum  
Classic Checksum over data  
Get_Actual_Param In frame response 2  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
0
1
2
3
4
5
6
7
8
0
1
1
1
1
1
1
1
0
1
AD[5:0]  
LED modulation Calibration value a12[7:0]  
LED modulation Calibration value a13[7:0]  
LED modulation Calibration value a21[7:0]  
LED modulation Calibration value a23[7:0]  
LED modulation Calibration value a31[7:0]  
LED modulation Calibration value a32[7:0]  
CAL_EN  
LED_MOD_  
FREQ  
1
TH  
CONT  
GROUP_ID3 GROUP_ID2 GROUP_ID1 GROUP_ID0  
9
Checksum  
Classic Checksum over data  
www.onsemi.com  
23  
NCV7430  
Get_OTP_Param  
Reads the full set of OTP settings of the NCV7430. For this command two messages are needed. This is a 0x3C command  
requiring an in frame slave response.  
Table 17. Get_OTP_Param 1  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
4
5
6
7
8
9
0
0
1
1
1
1
0
0
AppCMD =0x80  
CMD[6:0] = 0x04  
AD[5:0]  
Data 2  
1
1
Data 3  
1
Data 4  
0xFF  
Data 5  
0xFF  
Data 6  
0xFF  
Data 7  
0xFF  
Data 8  
0xFF  
Checksum  
Classic Checksum over data  
Get_OTP_Param In frame response 1  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
4
5
6
7
8
9
0
1
1
1
1
1
0
1
1
1
AD[5:0]  
Data 2  
1
1
1
1
1
1
1
1
1
1
1
1
LOW BAUD DIAGALLOFF  
Data 3  
1
1
1
1
Data 4  
DEFAULT  
ERROFF  
TWPROG  
AD5  
1
1
1
Data 5  
LOCKBT1 CMDSOFF  
AD4  
AD3  
AD2  
AD1  
AD0  
Data 6  
LED modulation Calibration data a11[7:0]  
LED modulation Calibration data a12[7:0]  
LED modulation Calibration data a13[7:0]  
Classic Checksum over data  
Data 7  
Data 8  
Checksum  
NOTE: After programming bit <CMDSOFF> all the LIN commands (except Set_Color_Short and Set_intensity) are  
disabled (The commands are not evaluated and interpreted by the NCV7430).  
www.onsemi.com  
24  
NCV7430  
Table 18. Get_OTP_Param 2  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
1
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
4
5
6
7
8
9
0
0
1
1
1
0
0
AppCMD =0x80  
Data 2  
1
1
CMD[6:0] = 0x05  
Data 3  
1
AD[5:0]  
Data 4  
0xFF  
Data 5  
0xFF  
Data 6  
0xFF  
Data 7  
0xFF  
0xFF  
Data 8  
Checksum  
Classic Checksum over data  
Get_OTP_Param In frame response 2  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
0
1
2
3
4
5
6
7
8
0
1
1
1
1
1
1
1
0
1
AD[5:0]  
LED modulation Calibration data a21[7:0]  
LED modulation Calibration data a22[7:0]  
LED modulation Calibration data a23[7:0]  
LED modulation Calibration data a31[7:0]  
LED modulation Calibration data a32[7:0]  
LED modulation Calibration data a33[7:0]  
LOCKBT2  
LED_MOD_  
FREQ  
1
TH_CO GROUP_ID3 GROUP_ID2 GROUP_ID1 GROUP_  
NT  
ID0  
9
Checksum  
Classic Checksum over data  
www.onsemi.com  
25  
NCV7430  
Get_Status  
This command delivers a short overview of the device status. It will not attempt to reset the error bits. Resetting error bits  
requires execution of the Get_Full_Status command.  
Conform a two byte in frame command structure.  
Table 19. Get_Status READING FRAME  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
0
1
0
1
1
0
0
0
0
0
AD[5:0]  
8’hFF  
Classic Checksum over data  
Data 2  
Checksum  
Get_Status In frame response 1  
0
1
2
Identifier  
Data 1  
0
1
0
1
0
1
0
0
0
1
AD[5:0]  
Data 2  
TSD  
TW  
VBB  
Under  
Voltage  
RETRY ERROR LED3 ERRORLED2 ERRORLED1  
STATE  
LIN ERROR  
3
Checksum  
Classic Checksum over data  
Where:  
LIN ERROR = Or function of all LIN Errors  
Error LED1 = function ERRLED1[2:0] 0; refer to Table 8  
Error LED2 = function ERRLED2[2:0] 0; refer to Table 8  
Error LED3 = function ERRLED3[2:0] 0; refer to Table 8  
RETRY STATE = NCV7430 is retrying to recover from errors  
VBB Undervoltage = “0” at power−on reset. Set to a “1” with VBB Undervoltage. Cleared with a GET_FULL_STATUS  
command.  
www.onsemi.com  
26  
NCV7430  
Get_Color  
Gives the real modulation register values (after calibration).  
Conform an eight byte in frame command structure.  
Table 20. Get_Color READING FRAME  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
0
1
0
1
1
0
0
AD[5:0]  
0
0
0
Data 2  
8’hFF  
Checksum  
Classic Checksum over data  
Get_Color In frame response 1  
Structure  
Bit 3  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
0
1
2
3
4
5
6
7
8
1
1
0
1
0
1
0
0
1
0
AD[5:0]  
LED modulation value LED 1’ [7:0] (real LED modulation register)  
LED modulation overflow LED1 LED modulation value LED 1’ [10:8]  
LED modulation value LED 2’ [7:0] (real LED modulation register)  
LED modulation overflow LED2 LED modulation value LED 2’ [10:8]  
LED modulation value LED 3’ [7:0] (real LED modulation register)  
1
1
1
1
1
1
1
1
Intensity[3:0]  
LED modulation overflow LED3 LED modulation value LED 3’ [10:8]  
Fading time [5:0]  
FADING  
ON/OFF  
FADING  
SLOPE  
9
Checksum  
Classic Checksum over data  
www.onsemi.com  
27  
NCV7430  
Get_LED_Control  
This command reads the control bits conform a two byte in frame command structure.  
Table 21. Get_LED_Control READING FRAME  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
0
1
0
1
1
0
0
0
0
0
AD[5:0]  
8’hFF  
Data 2  
Checksum  
Classic Checksum over data  
Get_LED In frame response 1  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
0
1
1
1
0
1
0
0
0
0
AD[5:0]  
Data 2  
CAL_EN  
LED_MOD_  
FREQ  
LEDs  
ON/OFF  
TH CONT  
LED3  
ENABLE  
LED2  
ENABLE  
LED1  
ENABLE  
1
3
Checksum  
Classic Checksum over data  
Set_LED_Control  
This command is the overall control command to switch the LEDs on and off.  
Table 22. Set_LED_Control WRITING FRAME  
Structure  
Bit 7  
1
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
0
1
1
0
0
0
1
1
Broad  
AD[5:0]  
Data 2  
Group 7  
selected  
Group 6  
selected  
Group 5  
selected  
Group 4  
selected  
Group 3  
selected  
Group 2  
selected  
Group 1  
selected  
Group 0  
selected  
3
4
Data 3  
Data 4  
Group 15  
selected  
Group 14  
selected  
Group 13  
selected  
Group 12  
selected  
Group 11  
selected  
Group 10  
selected  
Group 9  
selected  
Group 8  
selected  
CAL_EN  
LED_MOD_  
FREQ  
LEDs  
ON/OFF  
TH CONT  
LED3  
ENABLE  
LED2  
ENABLE  
LED1  
ENABLE  
1
5
Checksum  
Classic Checksum over data  
Where:  
Broad: Broad = ‘0’ means group addressing. One or more groups can be selected by setting the corresponding ‘GroupX  
Selected’ bit to ‘1’. All nodes with GROUP_ID matching the selected groups will act. AD[5:0] bits are ignored.  
Broad = ‘1’ means single node addressing. The target node address is indicated by the AD[5:0] bits. Group selection bits are  
ignored.  
This command is executed immediately.  
www.onsemi.com  
28  
NCV7430  
Set_Color  
When CAL_EN is set to ‘0’, the real value for the color setting is written into the LED modulation register. When CAL_EN is  
set to ‘1’ the received 8 bit values are first corrected by the matrix calculation and then applied to the LED modulation registers.  
Table 23. Set_Color WRITING FRAME  
Structure  
Bit 7  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
1
1
1
0
0
1
0
0
Broad  
AD[5:0]  
Data 2  
Group 7  
selected  
Group 6  
selected  
Group 5  
selected  
Group 4  
selected  
Group 3  
selected  
Group 2  
selected  
Group 1  
selected  
Group 0  
selected  
3
4
5
Data 3  
Data 4  
Data 5  
Group 15  
selected  
Group 14  
selected  
Group 13 Group 12 Group 11 Group 10  
Group 9  
selected  
Group 8  
selected  
selected  
selected  
selected  
selected  
UPDATE  
COLOR[1]  
UPDATE  
COLOR[0]  
Fading time[5:0]  
FADING  
ON/OFF  
FADING*  
SLOPE  
LEDs  
1
Intensity[3:0]  
ON/OFF  
6
Data 6  
Data 7  
LED color value LED 1 [7:0]  
LED color value LED 2 [7:0]  
LED color value LED 3 [7:0]  
Classic Checksum over data  
7
8
9
Data 8  
Checksum  
Where:  
Broad: Broad = ’0’ means group addressing. One or more groups can be selected by setting the corresponding ’GroupX  
Selected’ bit to ’1’. All nodes with GROUP_ID matching the selected groups will act. AD[5:0] bits are ignored.  
Broad = ’1’ means single node addressing. The target node address is indicated by the AD[5:0] bits. Group selection bits are  
ignored.  
The update of the LED colors is determined by UPDATECOLOR[1:0]  
00  
01  
10  
11  
immediate update  
store and do not update  
update to the already stored values  
discard  
www.onsemi.com  
29  
NCV7430  
Set_Color_Short  
The Set_Color_Short command is used to set the LED colors directly for the four groups that are indicated. This command  
is short and does not contain all the parameters as used in the Set_Color command. Only four groups can be approached, so  
the NCV7430 needs to be programmed as member of one of these groups:  
(lowest two bits of GROUP_ID in OTP; GROUP_ID0 and GROUP_ID1; presenting 0 to 3 for color).  
NOTE: This command is always acting towards groups. Individual node addresses are not implemented.  
Table 24. Set_Color_Short WRITING FRAME  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
Data 2  
Data 3  
Data 4  
0
1
2
3
4
0
1
1
0
1
1
1
1
LED color value LED 1 [7:0]  
LED color value LED 2 [7:0]  
LED color value LED 3 [7:0]  
1
1
1
1
C_GroupD C_GroupC C_GroupB C_GroupA  
selected selected selected selected  
5
Checksum  
Classic Checksum over data  
Where:  
Color Groups  
Corresponding GROUP_ID Range  
C_GroupA  
C_GroupB  
C_GroupC  
C_GroupD  
xx00  
xx01  
xx10  
xx11  
*Fading Scope = 0 = logarithmic  
= 1 = linear  
Choose either 0 or 1 when setting control for intensity  
Fading Slope must be set to ’1’ for color control (only Linear is allowed).  
Set_Intensity  
The Set_Intensity command is used to set the LED colors directly for the groups that are indicated. Only four groups can  
be approached, so the NCV7430 needs to be programmed as member of one of these groups:  
(higher two bits of GROUP_ID in OTP; GROUP_ID2 and GROUP_ID3; presenting group 0 to 3 for intensity).  
NOTE: This command is always acting towards groups. Individual node addresses are not implemented.  
Table 25. Set_Intensity WRITING FRAME  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
0
0
1
0
1
1
1
0
I_GroupD I_GroupC  
selected  
I_GroupB  
selected  
I_GroupA  
selected  
Intensity[3:0]  
selected  
2
3
Data 2  
1
1
Fading time[5:0]  
Checksum  
Classic Checksum over data  
Where:  
Intensity Groups  
Corresponding GROUP_ID Range  
I_GroupA  
00xx  
01xx  
10xx  
11xx  
I_GroupB  
I_GroupC  
I_GroupD  
www.onsemi.com  
30  
NCV7430  
Set_ Primary _Cal_Param  
Using a four byte command structure. These registers are updated as default from OTP after a power−on reset.  
Table 26. Set_Primary_Cal_ Param WRITING FRAME  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
4
5
0
1
0
1
1
0
0
1
0
1
AD[5:0]  
Data 2  
LED modulation Calibration value a11[7:0]  
LED modulation Calibration value a22[7:0]  
LED modulation Calibration value a33[7:0]  
Classic Checksum over data  
Data 3  
Data 4  
Checksum  
Set_ Secondary_Cal _Param  
Using an eight byte command structure. These registers are updated as default from OTP after a power−on reset.  
Table 27. Set_ Secondary _Cal_Param WRITING FRAME  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
4
5
6
7
8
9
0
1
1
1
1
1
0
1
1
0
AD[5:0]  
Data 2  
LED modulation Calibration value a12[7:0]  
LED modulation Calibration value a13[7:0]  
LED modulation Calibration value a21[7:0]  
LED modulation Calibration value a23[7:0]  
LED modulation Calibration value a31[7:0]  
LED modulation Calibration value a32[7:0]  
0xFF  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Checksum  
Classic Checksum over data  
www.onsemi.com  
31  
NCV7430  
Set_OTP_Param  
This command is used for programming the individual bytes of the OTP memory. The OTP address is the pointer to the byte  
in OTP (refer to Table 8 OTP memory structure).  
Used is a four byte command structure.  
Table 28. Set_OTP_Param WRITING FRAME  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
4
5
1
1
1
1
1
0
0
1
1
1
AD[5:0]  
0xFF  
Data 2  
Data 3  
1
1
1
1
OTP address pointer[3:0]  
Data 4  
OTP contents [7:0]  
Checksum  
Classic Checksum over data  
Sleep  
This command is provided to the circuit by the LIN master to put all the slave nodes connected to the LIN bus into sleep mode.  
See LIN 2.1 specification and Sleep Mode. The corresponding LIN frame is a master request command frame (identifier 0x3C)  
with data byte 1 containing 0x00 while the followings contain 0xFF.  
Table 29. SLEEP WRITING FRAME  
Structure  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte  
Content  
Identifier  
Data 1  
0
1
2
3
4
5
6
7
8
9
0
0
1
1
1
1
0
0
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Checksum  
Classic Checksum over data  
www.onsemi.com  
32  
NCV7430  
APPLICATIONS INFORMATION  
High Current LEDs  
network comprised of a resistor in series with a schottky  
diode in parallel with another resistor as shown in Figure 13.  
The NCV7430 is designed to drive RGB LEDs up to  
currents of 30 mA per channel. The system capability can be  
increased to drive higher current LEDs by configuring the  
device with an external PNP transistor as shown in  
Figure 12. In this setup, all the LED current is external to the  
device. Output current is limited by the base drive to the PNP  
(30 mA) and the beta of the PNP. Operation is controlled by  
the external feedback provided by R3 through R2 to the  
device pin LEDxR.  
R
redled  
sets the nominal LED current and the Schottky diode  
with the series resistor (R1) sets the temperature behavior.  
The NCV7430 uses a bandgap referenced circuit for  
creating the programming reference voltage on the LEDxR  
pins. The bandgap reference voltage targets to maintain a  
zero TC voltage.  
If the system design is able to correlate the red LED  
temperature to the NCV7430 IC temperature, there is a  
potential to create a compensation for these thermal effects.  
Starting with the zero temperature coefficient reference  
voltage on the LED1R pin, we can break up the voltage into  
two components by mandating a negative temperature  
coefficient associated with one component, and leave a  
positive temperature coefficient associated with the other  
component. This is done by adding a schottky diode in series  
with the programming resistor on the LED1R pin. The  
negative temperature coefficient of the schottky diode  
creates an overall positive temperature coefficient on the  
resistor in series. The system designer should consider the  
resulting positive voltage temperature coefficient with the  
discrete resistor temperature coefficient to obtain the desired  
temperature performance. Note, a schottky diode is required  
over p−n junction diodes due to the low voltage on the  
LED1R pin (325 mV [typ]).  
VBB  
ANODE  
R1  
LEDxC  
NCV7430  
NJVMJD253T4G  
10 ohm  
R2  
LEDxR  
10 ohm  
R3  
1.2ohm  
GND  
Figure 12. Using the NCV7430 with Higher Current  
LEDs  
VBB  
ANODE  
D1  
D2  
D3  
LED1C  
LED2C  
LED3C  
Temperature Correction  
Light output from LEDs change with temperature. As  
temperature increases, light output goes down. The  
magnitude of change typically depends on the type of LEDs  
which are used. Red LEDs are typically manufactured using  
AlInGaP while green and blue LEDs are typically  
manufactured using AlInGaN. These processing differences  
result in the red LED temperature sensitivity being much  
more sensitive than the green or blue LEDs. As a result, the  
green and blue LEDs do not require any corrective  
adjustments while the red LEDs require the drive current to  
be increased as temperature goes up to keep a constant light  
output.  
LED3R  
LED2R  
LED1R  
D4  
NCV7430  
R1*  
R
*
R3*  
10 W  
R4*  
10 W  
redled  
GND  
Figure 13. External Temperature Compensation  
*R3, R4 = 10 W for 30 mA LED current.  
values dependent on application.  
R1, D4 set the LED current temperature coefficient.  
R1, R  
redled  
Temperature correction can be implemented using the  
current programming pin, LED1R by using a programming  
www.onsemi.com  
33  
 
NCV7430  
PACKAGE DIMENSIONS  
SOIC−14 NB  
CASE 751A−03  
ISSUE K  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
B
0.25  
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
B
0.25  
C A  
DETAIL A  
h
A
X 45  
_
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0
M
A1  
e
M
7
0
7
_
_
_
_
SEATING  
PLANE  
C
SOLDERING FOOTPRINT*  
6.50  
14X  
1.18  
1
1.27  
PITCH  
14X  
0.58  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV7430/D  

相关型号:

NCV7441

Dual High Speed Low Power CAN Transceiver
ONSEMI

NCV7441D20G

Dual High Speed Low Power CAN Transceiver
ONSEMI

NCV7441D20R2G

Dual High Speed Low Power CAN Transceiver
ONSEMI

NCV7446MW0R2G

Dual CAN FD Transceiver, High Speed, Low Power
ONSEMI

NCV7450DB0R2G

具有 CAN FD、LDO 稳压器和 HS 驱动器的系统基础芯片
ONSEMI

NCV7451MW0R2G

System Basis Chip with CAN FD, LDO Regulator and Wake-up Comparator
ONSEMI

NCV7462

LIN/CAN SBC/System-IC
ONSEMI

NCV7462DQ0R2G

LIN/CAN SBC/System-IC
ONSEMI

NCV7462DQ1R2G

LDO 稳压器,250 mA/50 mA,低漏,超低 Iq,高 PSRR
ONSEMI

NCV7462_1

LIN/CAN SBC/System-IC
ONSEMI

NCV7462_16

LIN/CAN SBC/System-IC
ONSEMI

NCV7471

System Basis Chip
ONSEMI