NCV84120DR2G [ONSEMI]

Self Protected Very Low Iq High Side Driver with Analog Current Sense;
NCV84120DR2G
型号: NCV84120DR2G
厂家: ONSEMI    ONSEMI
描述:

Self Protected Very Low Iq High Side Driver with Analog Current Sense

文件: 总27页 (文件大小:511K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Self Protected Very Low Iq  
High Side Driver with  
Analog Current Sense  
8
1
SOIC8  
CASE 75107  
STYLE 11  
NCV84120  
MARKING DIAGRAM  
The NCV84120 is a fully protected single channel high side driver  
that can be used to switch a wide variety of loads, such as bulbs,  
solenoids, and other actuators. The device incorporates advanced  
protection features such as active inrush current management,  
overtemperature shutdown with automatic restart and an overvoltage  
active clamp. A dedicated Current Sense pin provides precision analog  
current monitoring of the output as well as fault indication of short to  
8
84120  
ALYWG  
G
1
V , short circuit to ground and OFF state open load detection. An  
D
84120 = Specific Device Code  
active high Current Sense Enable pin allows all diagnostic and current  
sense features to be enabled.  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
Features  
Short Circuit Protection with Inrush Current Management  
CMOS (3 V / 5 V) Compatible Control Input  
Very Low Standby Current  
(Note: Microdot may be in either location)  
Very Low Current Sense Leakage  
Proportional Load Current Sense  
Current Sense Enable  
PIN CONNECTIONS  
1
IN  
CS_EN  
GND  
VD  
OUT  
OUT  
VD  
Off State Open Load Detection  
Output Short to V Detection  
D
CS  
Overload and Short to Ground Indication  
Thermal Shutdown with Automatic Restart  
Undervoltage Shutdown  
(Top View)  
Integrated Clamp for Inductive Switching  
ORDERING INFORMATION  
Loss of Ground and Loss of V Protection  
D
Device  
NCV84120DR2G  
Package  
Shipping  
ESD Protection  
SOIC8  
(PbFree)  
2500 / Tape &  
Reel  
Reverse Battery Protection  
AECQ100 Qualified  
This is a PbFree Device  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Typical Applications  
Switch a Variety of Resistive, Inductive and Capacitive Loads  
Can Replace Electromechanical Relays and Discrete Circuits  
Automotive / Industrial  
FEATURE SUMMARY  
Max Supply Voltage  
V
V
41  
4 to 28  
120  
V
V
D
Operating Voltage Range  
D
R
(typical) T = 25°C  
R
mW  
A
DSon  
J
ON  
lim  
Output Current Limit (typical)  
I
18  
OFFstate Supply Current (max)  
I
0.5  
mA  
D(off)  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
April, 2022 Rev. 1  
NCV84120/D  
NCV84120  
BLOCK DIAGRAM & PIN CONFIGURATION  
VD  
Overvoltage  
Protection  
Undervoltage  
Protection  
IN  
Output  
Clamping  
Regulated  
Charge Pump  
CS_  
EN  
Current Limit  
Overtemperature  
and  
Power Protection  
OFF State Open  
Load Detection  
Analog Fault  
OUT  
Control  
Logic  
CS  
Current  
Sense  
GND  
Figure 1. Block Diagram  
Table 1. SO8 PACKAGE PIN DESCRIPTION  
Pin #  
Symbol  
IN  
Description  
Logic Level Input  
1
2
3
4
5
6
7
8
CS_EN  
GND  
CS  
Current Sense Enable  
Ground  
Analog Current Sense Output  
Supply Voltage  
Output  
V
D
OUT  
OUT  
Output  
V
D
Supply Voltage  
www.onsemi.com  
2
NCV84120  
ID  
VDS  
IIN  
VD  
IN  
IOUT  
OUT  
ICS  
CS  
ICS_EN  
D
V
CS_EN  
V
IN  
VOUT  
GND  
VCS  
_
CS EN  
V
IGND  
Figure 2. Voltage and Current Conventions  
Table 2. Connection suggestions for unused and or unconnected pins  
Connection  
Floating  
Input  
Output  
X
Current Sense  
Current Sense Enable  
X
X
Not Allowed  
To Ground  
Through 10 kW resistor  
Not Allowed  
Through 1 kW Resistor  
Through 10 kW resistor  
IN  
1
2
8
VD  
7
OUT  
CS _ EN  
GND  
CS  
6
5
3
4
OUT  
VD  
Figure 3. Pin Configuration (Top View)  
www.onsemi.com  
3
NCV84120  
ELECTRICAL SPECIFICATIONS  
Table 3. MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
DC Supply Voltage  
V
D
0.3  
41  
45  
Max Transient Supply Voltage (Note 1)  
Load Dump Suppresses  
V
PEAK  
V
Input Voltage  
V
10  
5  
10  
V
mA  
mA  
A
IN  
Input Current  
I
IN  
5
200  
Reverse Ground Pin Current  
Output Current (Note 2)  
Reverse CS Current  
CS Voltage  
I
GND  
I
6  
Internally Limited  
200  
OUT  
I
mA  
V
CS  
V
CS  
V
41  
V
D
D
CS_EN Voltage  
V
10  
10  
5
V
CS_EN  
CS_EN  
CS_EN Current  
I
5  
mA  
W
Power Dissipation Tc = 25°C (Note 6)  
P
tot  
1.95  
Electrostatic Discharge (Note 3)  
(HBM Model 100 pF / 1500 W)  
Input  
V
DC  
ESD  
4
4
4
4
4
kV  
kV  
kV  
kV  
kV  
Current Sense  
Current Sense Enable  
Output  
V
D
Charged Device Model  
CDMAECQ100011  
750  
56  
V
Single Pulse Inductive Load Switching Energy  
E
mJ  
AS  
(L = 5 mH, V = 13.5 V, I = 4 A, T = 150°C (Note 4)  
D
L
Jstart  
Operating Junction Temperature  
Storage Temperature  
T
40  
55  
+150  
+150  
°C  
°C  
J
T
storage  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Load Dump Test B (with centralized load dump suppression) according to ISO167502 standard. Guaranteed by design. Not tested in  
production. Passed Class C (or A, B) according to ISO167501.  
2. Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (JS0012017)  
Field Induced Charge Device Model ESD characterization is not performed on plastic molded packages with body sizes smaller than  
2 x 2 mm due to the inability of a small package body to acquire and retain enough charge to meet the minimum CDM discharge current  
waveform characteristic defined in JEDEC JS0022018  
4. Not subjected to production testing.  
Table 4. THERMAL RESISTANCE RATINGS  
Parameter  
Symbol  
Max. Value  
Units  
Thermal Resistance  
°C/W  
JunctiontoLead (Note 5)  
JunctiontoAmbient (Note 5)  
JunctiontoAmbient (Note 6)  
R
q
27.3  
50  
64  
q
JL  
R
JA  
JA  
R
q
2
5. 645 mm pad size, mounted on fourlayer 2s2p PCB FR4, 2 oz. Cu thickness for top layer and 1 oz. Cu thickness for inner layers (planes  
not electrically connected)  
2
6. 2 cm pad size, mounted on singlelayer 2s0p PCB FR4, 2 oz. Cu thickness  
www.onsemi.com  
4
 
NCV84120  
ELECTRICAL CHARACTERISTICS (7 V V 28 V; 40°C T 150°C unless otherwise specified)  
D
J
Table 5. POWER  
Value  
Typ  
Min  
4
Max  
28  
4
Rating  
Symbol  
Conditions  
Unit  
V
Operating Supply Voltage  
Undervoltage Shutdown  
V
D
V
3.5  
V
UV  
UV_hyst  
Undervoltage Shutdown  
Hysteresis  
V
0.4  
V
On Resistance  
R
I
= 2 A, T = 25°C  
120  
mW  
ON  
OUT  
J
I
= 2 A, T = 150°C  
240  
180  
0.5  
OUT  
J
I
= 2 A, V = 4.5 V, T = 25°C  
OUT  
D
J
Supply Current (Note 7)  
I
OFFstate: V = 13 V,  
IN  
0.2  
mA  
mA  
D
D
V
= V  
= 0 V, Tj = 25°C  
OUT  
OFFstate: V = 13 V,  
OUT  
0.2  
0.5  
3
D
V
= V  
= 0 V, Tj = 85°C (Note 8)  
IN  
OFFstate: V = 13 V,  
= V  
mA  
D
V
IN  
= 0 V, Tj = 125°C  
OUT  
ONstate: V = 13 V,  
V
1.9  
3.5  
6
mA  
mA  
mA  
D
OUT  
= 5 V, I  
= 0 A  
IN  
On State Ground Current  
Output Leakage Current  
I
V
= 13 V, V  
= 5 V  
GND(ON)  
D
V
CS_EN  
OUT  
= 5 V, I  
= 1 A  
IN  
I
V
= V  
= 0 V, V = 13 V, Tj = 25°C  
0.5  
3
L
IN  
OUT  
OUT  
D
V
= V  
= 0 V, V = 13 V, Tj = 125°C  
D
IN  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. Includes PowerMOS leakage current.  
8. Not subjected to production testing.  
Table 6. LOGIC INPUTS (V = 13.5 V; 40°C T 150°C)  
D
J
Value  
Typ  
Min  
Max  
0.9  
Rating  
Input Voltage Low  
Input Current Low  
Input Voltage High  
Input Current High  
Input Hysteresis Voltage  
Input Clamp Voltage  
Symbol  
Conditions  
Unit  
V
V
IN_low  
I
V
V
= 0.9 V  
= 2.2 V  
= 1 mA  
1
mA  
V
IN_low  
IN  
IN  
IN  
V
2.1  
IN_high  
IN_high  
I
10  
mA  
V
V
0.2  
13  
13  
IN_hyst  
V
IN_cl  
I
12  
14  
14  
12  
0.9  
V
I
IN  
= 1 mA  
CS_EN Voltage Low  
CS_EN Current Low  
CS_EN Voltage High  
CS_EN Current High  
CS_EN Hysteresis Voltage  
CS_EN Clamp Voltage  
V
_
V
mA  
V
CSE low  
I
_
V
V
= 0.9 V  
= 2.2 V  
= 1 mA  
1
CSE low  
CS_EN  
CS_EN  
CS_EN  
V
_
2.1  
CSE high  
I
10  
mA  
V
CSE_high  
V
_
0.2  
13  
13  
CSE hyst  
V
_
I
12  
14  
14  
12  
V
CSE cl  
I
= 1 mA  
CS_EN  
www.onsemi.com  
5
 
NCV84120  
Table 7. SWITCHING CHARACTERISTICS (Note 9) (V = 13 V, 40°C T 150°C)  
D
J
Value  
Typ  
70  
Min  
5
Max  
120  
100  
0.7  
Rating  
TurnOn Delay Time  
TurnOff Delay Time  
Slew Rate On  
Symbol  
Conditions  
high to 20% V , R = 6.5 W, T = 25°C  
Unit  
ms  
t
V
IN  
d_on  
d_off  
OUT  
L
J
t
V
IN  
low to 80% V  
, R = 6.5 W, T = 25°C  
5
40  
ms  
OUT  
L
J
dV /dt  
out on  
20% to 80% V  
, R = 6.5 W, T = 25°C  
0.1  
0.1  
0.27  
0.35  
0.15  
V / ms  
V / ms  
mJ  
OUT  
L
J
Slew Rate Off  
dV /dt  
out off  
80% to 20% V  
, R = 6.5 W, T = 25°C  
0.7  
OUT  
L
J
TurnOn Switching Loss  
(Note 9)  
E
on  
R = 6.5 W  
L
0.32  
TurnOff Switching Loss  
E
R = 6.5 W  
0.1  
0.32  
50  
mJ  
off  
L
(Note 9)  
Differential Pulse Skew, (t  
t
R = 6.5 W  
L
50  
ms  
(OFF)  
skew  
t  
) see Figure 4 (Switching  
(ON)  
Characteristics)  
9. Not subjected to production testing.  
Table 8. OUTPUT DIODE CHARACTERISTICS  
Value  
Typ  
Min  
Max  
Rating  
Forward Voltage  
Symbol  
Conditions  
Unit  
V
F
I
= 1 A, T = 150°C, V = V  
V  
D
0.7  
V
OUT  
J
F
OUT  
Table 9. PROTECTION FUNCTIONS (Note 10) (7 V V 18 V; 40°C T 150°C)  
D
J
Value  
Typ  
175  
7
Min  
150  
Max  
200  
Rating  
Symbol  
Conditions  
Unit  
°C  
Temperature Shutdown (Note 11)  
T
SD  
SD_hyst  
Temperature Shutdown  
T
°C  
Hysteresis (T T ) (Note 11)  
SD  
R
Reset Temperature (Note 11)  
T
T
+1  
T
+7  
°C  
°C  
R
RS  
RS  
Thermal Reset of CS_Fault  
(Note 11)  
T
RCS  
135  
Delta T Temperature Limit (Note 11)  
DC Output Current Limit  
T
T = 40°C, V = 13 V  
9
60  
18  
27  
27  
°C  
A
DELTA  
J
D
I
V
D
= 13 V  
limH  
4 V < V < 18 V  
A
D
Short Circuit Current Limit during  
Thermal Cycling (Note 11)  
I
V
R
= 13 V  
6
A
LIMTCycling  
D
T
< Tj < T  
TSD  
Switch Off Output Clamp Voltage  
Overvoltage Protection  
V
I
= 0.2 A, V = 0 V, L = 20 mH  
V
D
41  
V
D
46  
V 52  
D
V
V
OUT_clamp  
OUT  
IN  
V
OV  
V
IN  
= 0 V, I = 20 mA  
41  
46  
20  
52  
D
Output Voltage Drop Limitation  
V
I
= 0.07 A  
mV  
DS_ON  
OUT  
10.To ensure long term reliability during overload or short circuit conditions, protection and related diagnostic signals must be used together  
with a fitting hardware & software strategy. If the device operates under abnormal conditions, this hardware & software solution must limit  
the duration and number of activation cycles.  
11. Not subjected to production testing.  
Table 10. OPENLOAD DETECTION (7 V V 18 V, 40°C T 150°C)  
D
J
Value  
Typ  
Min  
Max  
Rating  
Symbol  
Conditions  
Unit  
Openload Off State  
Detection Threshold  
V
OL  
V
IN  
= 0 V, V = 5 V  
CS_EN  
2
4
V
Openload Detection  
Delay at Turn Off  
t
100  
350  
850  
ms  
d_OL_off  
Off State Output Current  
I
V
= 0 V, V  
= V  
OL  
3  
3
mA  
ms  
OLOFF1  
IN  
OUT  
Output rising edge to CS rising  
edge during open load  
t
V
= 4 V, V = 0 V  
5
30  
d_OL  
OUT  
IN  
V
CS  
= 90% of V  
CS_High  
www.onsemi.com  
6
 
NCV84120  
Table 11. CURRENT SENSE CHARACTERISTICS (7 V V 18 V, 40°C T 150°C)  
D
J
Value  
Typ  
Min  
350  
350  
25  
350  
20  
350  
15  
450  
10  
515  
5  
Max  
930  
880  
15  
Rating  
Symbol  
Conditions  
= 0.010 A, V = 0.5 V, V  
Unit  
Current Sense Ratio  
K
I
I
I
= 5 V  
= 5 V  
= 5 V  
0
1
OUT  
OUT  
OUT  
CS  
CS_EN  
CS_EN  
CS_EN  
Current Sense Ratio  
K
= 0.025 A, V = 0.5 V, V  
600  
CS  
Current Sense Ratio Drift (Note 13)  
Current Sense Ratio  
DK / K  
= 0.025 A, V = 0.5 V, V  
%
%
%
%
1
1
2
3
4
5
CS  
K
2
I
= 0.07 A, V = 4 V, V  
= 5 V  
570  
800  
10  
OUT  
CS  
CS_EN  
CS_EN  
CS_EN  
CS_EN  
CS_EN  
Current Sense Ratio Drift (Note 13)  
Current Sense Ratio  
DK / K  
I
= 0.07 A, V = 4V, V  
= 5 V  
= 5 V  
= 5 V  
= 5 V  
2
OUT  
OUT  
OUT  
CS  
K
3
I
= 0.15 A, V = 4V, V  
570  
755  
10  
CS  
Current Sense Ratio Drift (Note 13)  
Current Sense Ratio  
DK / K  
I
= 0.15 A, V = 4V, V  
CS  
3
K
4
I
= 0.7 A, V = 4 V, V  
570  
650  
10  
OUT  
CS  
Current Sense Ratio Drift (Note 13)  
Current Sense Ratio  
DK / K  
I
= 0.7 A, V = 4V, V  
= 5 V  
= 5 V  
= 5 V  
4
OUT  
CS  
CS_EN  
CS_EN  
CS_EN  
K
5
I
= 2 A, V = 4 V, V  
570  
600  
5
OUT  
CS  
Current Sense Ratio Drift (Note 13)  
Current Sense Leakage Current  
DK / K  
I
= 2 A, V = 4V, V  
%
5
OUT  
CS  
CS  
I
= 0 A, V = 0 V  
1
mA  
Ilkg  
OUT  
CS  
V
= 5 V, V = 0 V  
CS_EN  
IN  
I
= 0 A, V = 0 V  
2
0.5  
7
OUT  
CS  
V
= 5 V, V = 5 V  
CS_EN  
IN  
I
= 2 A, V = 0 V  
CS  
OUT  
V
= 0 V, V = 5 V,  
CS_EN  
IN  
CS Max Voltage  
CS  
V
= 7 V, V = 5 V, R = 10 kW,  
OUT  
5
V
V
Max  
D
IN  
CS  
CS_EN  
I
= 2 A, V  
= 5 V  
Current Sense Voltage in Fault Con-  
dition (Note 12)  
V
V
= 13 V, V = 0 V, R = 1 k,  
10  
20  
CS_fault  
CS_fault  
OUT_sat  
D
IN  
CS  
= 5 V  
V
= 4 V, V  
OUT  
CS_EN  
Current Sense Current in Fault Con-  
dition (Note 12)  
I
V
= 13 V, V = 5 V, V = 0 V,  
7
30  
mA  
A
D
CS  
= 4 V, V  
IN  
= 5 V  
V
OUT  
CS_EN  
Output Saturation Current (Note 13)  
CS_EN High to CS High Delay Time  
CS_EN Low to CS Low Delay Time  
I
V
= 7 V, V = 4 V, V = 5 V,  
2.4  
D
CS  
IN  
T = 150°C, V  
= 5 V  
J
CS_EN  
t
V
= 5 V, V = 0 to 5 V,  
CS_EN  
100  
25  
250  
250  
100  
ms  
ms  
ms  
ms  
ms  
CS_High1  
IN  
IN  
IN  
IN  
R
= 1 kW, R = 6.5 W  
CS  
L
t
V
V
V
= 5 V, V  
CS  
= 5 to 0 V,  
5
CS_Low1  
CS_EN  
R
= 1 kW, R = 6.5 W  
L
V
V
High to CS High Delay Time  
Low to CS Low Delay Time  
t
= 0 to 5 V, V  
CS  
= 5 V,  
100  
50  
in  
CS_High2  
CS_EN  
L
R
= 1 kW, R = 6.5 W  
t
= 5 to 0 V, V  
CS  
= 5 V,  
in  
CS_Low2  
CS_EN  
L
R
= 1 kW, R = 6.5 W  
Delay Time I Rising Edge to Rising  
Dt  
CS_High2  
V
= 5 V, V = 5 V  
CS_EN  
D
IN  
Edge of CS  
R
= 1 kW, I = 90% of I Max  
CS CS CS  
12.The following fault conditions included are: Overtemperature, Power Limitation, and OFF State OpenLoad Detection.  
13.Not subjected to production testing. For more information, refer to the AND9733D Application Note.  
www.onsemi.com  
7
 
NCV84120  
Table 12. TRUTH TABLE  
Conditions  
Input  
Output  
CS (V  
= 5 V) (Note 14)  
CS_EN  
Normal Operation  
L
H
L
H
0
I
= I  
/K  
CS  
OUT NOMINAL  
Overtemperature  
Undervoltage  
L
L
L
0
H
V
CS_fault  
L
H
L
L
0
0
Overload  
H
H
H (no active current mgmt)  
Cycling (active current mgmt)  
I
= I  
/K  
CS_fault  
CS  
OUT NOMINAL  
V
Short circuit to Ground  
OFF State Open Load  
L
L
L
0
H
V
V
CS_fault  
L
H
CS_fault  
14.If V  
is low, the Current Sense output is at a high impedance, its potential depends on leakage currents and external circuitry.  
CS_EN  
www.onsemi.com  
8
 
NCV84120  
WAVEFORMS AND GRAPHS  
Resistive Switching Characteristics  
V
OUT  
90%  
80%  
90%  
80%  
dVOUT/ dt  
(off)  
dVOUT/dt  
(on)  
10%  
10%  
td  
(on)  
td  
(off)  
V
IN  
t
(on)  
t
(off)  
Figure 4. Switching Characteristics  
V
IN  
Normal Operation  
t
t
t
t
t
I
t
ON  
OFF  
t
OUT  
ON  
V
CS_EN  
t
Δt  
CS_High2  
CS_Low1  
I
t
CS  
CS_High1  
t
CS_High2  
Figure 5. Normal Operation with Current Sense Timing Characteristics  
www.onsemi.com  
9
NCV84120  
V
IN  
Dt  
CS_High2  
t
I
OUT  
I
OUTMAX  
90% I  
OUTMAX  
t
I
CS  
I
CSMAX  
90% I  
CSMAX  
t
Figure 6. Delay Response from Rising Edge of IOUT and Rising Edge of CS (for CS_EN = 5 V)  
OffState Open Load Delay Timing  
V
IN  
t
V
OUT  
V
OL  
t
t
V
CS  
V
CS_FAULT  
t
d_OL_off  
Figure 7. OFFState OpenLoad Flag Delay Timing  
www.onsemi.com  
10  
NCV84120  
V
IN  
V
OUT  
V
OL  
I
OUT  
V
CS  
V
CS_Fault  
t
d_OL_off  
t
CS_Low1  
V
CS_EN  
Figure 8. OffState OpenLoad with Added External Components  
V
D
V  
OUT  
T = 150°C  
J
T = 25°C  
J
T = 40°C  
J
V
DS_ON  
V
/R  
(T)  
DS_ON DS_ON  
I
OUT  
Figure 9. Voltage Drop Limitation for VDS_ON  
www.onsemi.com  
11  
NCV84120  
30  
20  
10  
0
1000  
900  
800  
700  
600  
500  
400  
A. Max, 40°C T 150°C  
J
A. Max, 40°C T 150°C  
J
B. Typ, 40°C T 150°C  
J
10  
B. Min, 40°C T 150°C  
J
C. Min, 40°C T 150°C  
J
20  
30  
300  
200  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
(A)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
I
I
(A)  
OUT  
OUT  
Figure 10. IOUT/ICS vs. IOUT  
Figure 11. Current Sense Ratio Drift vs. Load  
Current  
V
IN  
I
OUT  
I
limH  
I
limTCycling  
I
CS  
I
CS_Fault  
V
CS_EN  
Figure 12. Short to GND or Overload  
www.onsemi.com  
12  
NCV84120  
V
IN  
t
t
Overload  
DC Output Current Limit  
I
OUT  
Current Limit during  
thermal cycling  
I
LIMH  
I
LIMTCycling  
T
J
T
TSD  
T
R
T
RS  
ΔT  
J
ΔT  
J_RST  
T
J_Start  
t
Figure 13. How TJ progresses During Short to GND or Overload  
V
IN  
Overload  
I
OUT  
I
NOMINAL  
I
limH  
I
limTCycling  
I
CS  
I
CS_Fault  
I
/K  
NOM  
V
CS_EN  
Figure 14. Discontinuous Overload or Short to GND  
www.onsemi.com  
13  
NCV84120  
Resistive short  
from OUT to VD  
Short from OUT  
to VD  
V
OUT  
V
OL  
I
OUT  
V
CS  
V
CS_Fault  
t
t
d_OL_off  
d_OL_off  
V
CS_EN  
Figure 15. Short Circuit from OUT to VD  
www.onsemi.com  
14  
NCV84120  
TYPICAL CHARACTERISTICS  
6
5
4
3
2
7.5  
7.0  
6.5  
V
IN  
V
OUT  
= 0 V  
= 0 V  
V
= 5.0 V  
IN  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
T = 150°C  
J
V
= 13 V  
D
T = 125°C  
J
V
V
= 0.9 V  
= 2.1 V  
IN  
T = 25°C  
J
3.0  
2.5  
2.0  
1
0
IN  
T = 40°C  
J
0
5
10  
15  
20  
(V)  
25  
30  
35  
40 20  
0
20  
40  
60  
80 100 120 140  
V
TEMPERATURE (°C)  
D
Figure 16. Output Leakage Current vs. VD  
Figure 17. Input Current vs. Temperature  
14.0  
13.5  
11.5  
12.0  
12.5  
13.0  
13.0  
12.5  
I
IN  
= 1 mA  
I
IN  
= 1 mA  
13.5  
14.0  
12.0  
11.5  
40 20  
0
20  
40  
60  
80 100 120 140  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 18. Input Clamp Voltage (Positive) vs.  
Temperature  
Figure 19. Input Clamp Voltage (Negative) vs.  
Temperature  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.7  
1.6  
V
D
= 13 V  
V
D
= 13 V  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.3  
1.2  
40 20  
0
20  
40  
60  
80 100 120 140  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. VIN Threshold High vs. Temperature  
Figure 21. VIN Threshold Low vs. Temperature  
www.onsemi.com  
15  
NCV84120  
TYPICAL CHARACTERISTICS  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
220  
200  
180  
160  
140  
120  
100  
80  
V
= 13.5 V  
= 2.0 A  
D
I
OUT  
0.05  
0
60  
40  
40 20  
40 20  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. Hysteresis Input Voltage vs.  
Temperature  
Figure 23. RON vs. Temperature  
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
3.30  
I
= 2.0 A  
OUT  
3.25  
3.20  
T = 150°C  
J
T = 125°C  
J
T = 25°C  
J
3.15  
3.10  
T = 40°C  
J
80  
60  
40  
3
7
11  
15  
19  
23  
27  
40 20  
0
20  
40  
60  
80 100 120 140  
V
D
(V)  
TEMPERATURE (°C)  
Figure 24. RON vs. VD Voltage  
Figure 25. Undervoltage Shutdown vs.  
Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.7  
0.6  
0.5  
0.4  
V
R
= 13 V  
V = 13 V  
D
D
= 6.5 W  
R
= 6.5 W  
LOAD  
LOAD  
0.3  
0.2  
0.1  
0
0.1  
0
40 20  
0
20  
40  
60  
80 100 120 140  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 26. Slew Rate ON vs. Temperature  
Figure 27. Slew Rate OFF vs. Temperature  
www.onsemi.com  
16  
NCV84120  
TYPICAL CHARACTERISTICS  
23  
22  
21  
2.2  
V
D
= 13 V  
V
D
= 13 V  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
20  
19  
18  
17  
16  
15  
14  
40 20  
1.3  
1.2  
40 20  
0
20  
40  
60  
80 100 120 140  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 28. Current Limit vs. Temperature  
Figure 29. CS_EN Threshold High vs.  
Temperature  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
14.0  
13.5  
13.0  
12.5  
12.0  
V
= 13 V  
D
I
= 1 mA  
CS_EN  
11.5  
11.0  
0.9  
0.8  
40 20  
0
20  
40  
60  
80 100 120 140  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 30. CS_EN Threshold Low vs.  
Temperature  
Figure 31. CS_EN Clamp Voltage (Positive) vs.  
Temperature  
11.0  
11.5  
12.0  
12.5  
13.0  
I
= 1 mA  
CS_EN  
13.5  
14.0  
40 20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
Figure 32. CS_EN Clamp Voltage (Negative)  
vs. Temperature  
www.onsemi.com  
17  
NCV84120  
Table 13. ISO 76372: 2011(E) PULSE TEST RESULTS  
ISO  
Test Severity Levels  
76372:2011(E)  
III  
IV  
Test Pulse  
Delays and Impedance  
2 ms, 10 W  
# of Pulses or Test Time  
Pulse / Burst Rep. Time  
1
112  
+55  
150  
+112  
220  
+150  
500 pulses  
500 pulses  
1 h  
0.5 s  
0.5 s  
2a  
3a  
3b  
0.05 ms, 2 W  
165  
+112  
0.1 ms, 50 W  
100 ms  
100 ms  
0.1 ms, 50 W  
1 h  
ISO  
Test Results  
76372:2011(E)  
III  
IV  
A
C
A
A
Test Pulse  
1
2a  
3a  
3b  
Class  
Functional Status  
All functions of a device perform as designed during and after exposure to disturbance.  
A
B
All functions of a device perform as designed during exposure. However, one or more of them can go beyond  
specified tolerance. All functions return automatically to within normal limits after exposure is removed. Memory  
functions shall remain class A.  
C
D
E
One or more functions of a device do not perform as designed during exposure but return automatically to normal  
operation after exposure is removed.  
One or more functions of a device do not perform as designed during exposure and do not return to normal  
operation until exposure is removed and the device is reset by simple “operator/use” action.  
One or more functions of a device do not perform as designed during and after exposure and cannot be returned to  
proper operation without replacing the device.  
www.onsemi.com  
18  
NCV84120  
APPLICATION INFORMATION  
+5 V  
VD  
RμC  
ZCS  
CS  
IN  
Output  
Clamping  
Dld  
RμC  
ZVD  
Micro  
Controller  
RμC  
VBAT  
Control  
Logic  
CS_EN  
ZBody  
OUT  
Cexternal  
RCS  
ZESD  
GND  
ZL  
RGND  
Figure 33. Application Schematic  
www.onsemi.com  
19  
NCV84120  
Loss of Ground Protection  
Undervoltage Protection  
When device or ECU ground connection is lost and load  
is still connected to ground, the device will turn the output  
OFF. In loss of ground state, the output stage is held OFF  
independent of the state of the input. Input resistors are  
recommended between the device and microcontroller.  
The device has two undervoltage threshold levels,  
V
and V . Switching function (ON/OFF) requires  
D_MIN  
UV  
supply voltage to be at least V  
. The device features a  
D_MIN  
lower supply threshold V , above which the output can  
UV  
remain in ON state. While all protection functions are  
guaranteed when the switch is ON, diagnostic functions are  
operational only within nominal supply voltage range V  
D.  
VOUT  
V
UV  
V
D_MIN  
VD  
Figure 34. Undervoltage Behavior  
Overvoltage Protection  
The NCV84120 has two Zener diodes Z  
which provide integrated overvoltage protection. Z  
current flowing through Z and out of the CS pin into the  
microcontroller I/O pin. With RGND, the GND pin voltage  
CS  
and Z  
,
VD  
CS  
is elevated to V – V  
when the supply voltage V rises  
VD  
D
ZVD  
D
protects the logic block by clamping the voltage between  
supply pin V and ground pin GND to V . Z limits  
above V  
. ESD diodes Z  
pull up the voltage at logic  
ZVD  
ESD  
pins IN, CS_EN close to the GND pin voltage V – V  
External resistors R , and R  
.
D
ZVD CS  
D
ZVD  
voltage at current sense pin CS to V – V . The output  
are required to limit the  
D
ZCS  
IN  
CS_EN  
power MOSFET’s output clamping diodes provide  
protection by clamping the voltage across the MOSFET  
current flowing out of the logic pins into the  
microcontroller I/O pins. During overvoltage exposure, the  
device transitions into a selfprotection state, with  
automatic recovery after the supply voltage comes back to  
the normal operating range. The specified parameters as  
well as short circuit robustness and energy capability cannot  
be guaranteed during overvoltage exposure.  
(between V pin and OUT pin) to V  
. During  
CLAMP  
D
overvoltage protection, current flowing through Z , Z  
VD CS  
and the output clamp must be limited. Load impedance Z  
L
limits the current in the body diode Z . In order to limit  
Body  
the current in Z a resistor, R  
(150 W), is required in  
VD  
GND  
the GND path. External resistors R and R  
limit the  
CS  
SENSE  
www.onsemi.com  
20  
 
NCV84120  
Reverse Battery Protection  
Since this resistor can be used amongst multiple  
HighSide devices, please take note the sum of the  
maximum active GND currents (I ) for each  
device when sizing the resistor. Please note that if the  
microprocessor GND is not shared by the device GND, then  
Solution 1: Resistor in the GND line only  
(no parallel Diode)  
The following calculations are true for any type of load.  
In the case for no diode in parallel with R  
calculations below explain how to size the resistor.  
Consider the following parameters:  
GND(On)max  
, the  
GND  
R
GND  
produces a shift of (I  
× R  
) in the input  
GND(On)max  
GND  
thresholds and CS output values. If the calculated power  
dissipation leads to too large of a resistor size or several  
devices have to share the same resistor, please look at the  
second solution for Reverse Battery Protection. Refer to  
–I  
Maximum = 200 mA for up to V = 32 V.  
GND  
D
Where –I  
is the DC reverse current through the GND  
GND  
pin and –V is the DC reverse battery voltage.  
D
Figure 34 for selecting the proper R  
.
GND  
* VD  
RGND  
* IGND  
+
(eq. 1)  
Figure 35. Reverse Battery RGND Considerations  
www.onsemi.com  
21  
NCV84120  
Overload Protection  
MOSFET will automatically be reactivated after a  
minimum OFF time or when the junction temperature  
returns to a safe level.  
Current limitation as well as overtemperature shutdown  
mechanisms are integrated into NCV84120 to provide  
protection from overload conditions such as bulb inrush or  
short to ground.  
Output Clamping with Inductive Load Switch Off  
The output voltage VOUT drops below GND potential  
when switching off inductive loads. This is because the  
inductance develops a negative voltage across the load in  
response to a decaying current. The integrated clamp of the  
device clamps the negative output voltage to a certain level  
relative to the supply voltage VBAT. During output clamping  
with inductive load switch off, the energy stored in the  
inductance is rapidly dissipated in the device resulting in  
high power dissipation. This is a stressful condition for the  
device and the maximum energy allowed for a given load  
inductance should not be exceeded in any application.  
Current Limitation  
In case of overload, NCV84120 limits the current in the  
output power MOSFET to a safe value. Due to high power  
dissipation during current limitation, the device’s junction  
temperature increases rapidly. In order to protect the device,  
the output driver is shut down by one of the two  
overtemperature protection mechanisms. The output current  
limit is dependent on the device temperature, and will fold  
back once the die reaches thermal shutdown. If the input  
remains active during the shutdown, the output power  
V
IN  
t
t
t
I
OUT  
V
OUT  
V
BAT  
V
CLAMP  
V
BAT  
V  
CLAMP  
Figure 36. Inductive Load Switching  
20  
10  
V
= 13.5 V  
D
R = 0 W  
L
T
Jstart  
= 150°C, Single Pulse  
1
1
10  
100  
L (mH)  
Figure 37. Maximum SwitchOff Current vs. Load Inductance, VD = 13.5 V; RL = 0 W  
www.onsemi.com  
22  
NCV84120  
Inverse Current:  
When the output voltage V  
(I ), the current sense output current is reduced to a very  
OL  
rises above the supply  
low value (I ). This mechanism helps to overcome a high  
OUT  
OL  
voltage V , the output power MOSFET’s integral body  
absolute tolerance of the current sense signal at very low  
load current and to implement an accurate underload  
detection threshold.  
D
diode will be forward biased causing a current flow from the  
OUT pin to the V pin. The device does not provide any  
D
protection function such as current limitation or  
overtemperature shutdown.  
Open Load Detection in OFF State  
Open load diagnosis in OFF state can be performed by  
activating an external resistive pullup path (R ) to V  
Underload Detection in ON State  
.
PU  
BAT  
An underload condition in ON state is indicated by  
reducing the sense output current to a very minimal current.  
In order to detect an underload condition, NCV84090  
performs a realtime monitoring of the load current. In case  
the output current falls below a specified threshold level  
To calculate the pullup resistance, external leakage  
currents (designed pulldown resistance, humidityinduced  
leakage etc) as well as the open load threshold voltage V  
have to be taken into account.  
OL  
V
BAT  
V
D
V
OL_OFF  
IN  
Z
R
BODY  
PU  
I
CS_FAULT  
OUT  
CS  
R
R
LEAK  
PD  
GND  
Z
L
R
CS  
R
GND  
Figure 38. Off State Open Load Detection Circuit  
Current Sense in PWM Mode  
circuit. When V switches from low to high, there will be  
IN  
When operating in PWM mode, the current sense  
functionality can be used, but the timing of the input signal  
and the response time of the current sense need to be  
considered. When operating in PWM mode, the following  
performance is to be expected. The CS_EN pin should be  
held high to eliminate any unnecessary delay time to the  
a typical delay (t  
) before the current sense responds.  
CS_High2  
Once this timing delay has passed, the rise time of the current  
sense output (Dt ) also needs to be considered. When  
CS_High2  
V
IN  
switches from high to low a delay time (t  
) needs  
CS_Low1  
to be considered. As long as these timing delays are allowed,  
the current sense pin can be operated in PWM mode.  
www.onsemi.com  
23  
NCV84120  
PACKAGE AND PCB THERMAL DATA  
100  
10  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
NCV84120, 8SOIC, PCB Copper  
Area = 645 mm , PCB:80x80x1.6 mm,  
0.1  
2
FR4, fourlayer 2s2p  
Single Pulse  
0.01  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (s)  
Figure 39. Junction to Ambient Transient Thermal Impedance (Min Pad Cu Area)  
100  
10  
Duty Cycle = 0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
1
NCV84120, 8SOIC, PCB Copper  
Area = 2 cm , PCB:80x80x1.6 mm,  
0.1  
2
FR4, fourlayer 2s0p  
Single Pulse  
0.000001 0.00001  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (s)  
Figure 40. Junction to Ambient Transient Thermal Impedance (2 cm2 Cu Area)  
www.onsemi.com  
24  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
8
1
DATE 16 FEB 2011  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
Y
B
0.25 (0.010)  
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
8
1
8
1
8
8
XXXXX  
ALYWX  
XXXXXX  
AYWW  
G
XXXXX  
ALYWX  
XXXXXX  
AYWW  
1.52  
0.060  
G
1
1
Discrete  
Discrete  
(PbFree)  
IC  
IC  
(PbFree)  
7.0  
0.275  
4.0  
0.155  
XXXXX = Specific Device Code  
XXXXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
A
= Assembly Location  
= Year  
Y
Y
W
G
= Year  
= Work Week  
= PbFree Package  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 1 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC8 NB  
CASE 75107  
ISSUE AK  
DATE 16 FEB 2011  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6. BASE  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. ANODE  
6. EMITTER, #2  
7. BASE, #1  
6. SOURCE, #2  
7. GATE, #1  
7. BASE  
8. EMITTER  
8. EMITTER, #1  
8. SOURCE, #1  
8. COMMON CATHODE  
STYLE 5:  
STYLE 6:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR, DIE #1  
2. BASE, #1  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5. GATE  
PIN 1. INPUT  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
7. SECOND STAGE Vd  
8. FIRST STAGE Vd  
3. DRAIN  
3. BASE, #2  
4. SOURCE  
5. SOURCE  
6. GATE  
7. GATE  
8. SOURCE  
4. COLLECTOR, #2  
5. COLLECTOR, #2  
6. EMITTER, #2  
7. EMITTER, #1  
8. COLLECTOR, #1  
6. GATE  
7. SOURCE  
8. SOURCE  
STYLE 9:  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 12:  
PIN 1. EMITTER, COMMON  
2. COLLECTOR, DIE #1  
3. COLLECTOR, DIE #2  
4. EMITTER, COMMON  
5. EMITTER, COMMON  
6. BASE, DIE #2  
PIN 1. SOURCE  
2. SOURCE  
3. SOURCE  
4. GATE  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. INPUT  
8. GROUND  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
7. BASE, DIE #1  
8. EMITTER, COMMON  
STYLE 13:  
PIN 1. N.C.  
2. SOURCE  
3. SOURCE  
4. GATE  
STYLE 14:  
PIN 1. NSOURCE  
2. NGATE  
STYLE 15:  
PIN 1. ANODE 1  
2. ANODE 1  
STYLE 16:  
PIN 1. EMITTER, DIE #1  
2. BASE, DIE #1  
3. PSOURCE  
4. PGATE  
5. PDRAIN  
6. PDRAIN  
7. NDRAIN  
8. NDRAIN  
3. ANODE 1  
4. ANODE 1  
5. CATHODE, COMMON  
6. CATHODE, COMMON  
7. CATHODE, COMMON  
8. CATHODE, COMMON  
3. EMITTER, DIE #2  
4. BASE, DIE #2  
5. COLLECTOR, DIE #2  
6. COLLECTOR, DIE #2  
7. COLLECTOR, DIE #1  
8. COLLECTOR, DIE #1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 17:  
PIN 1. VCC  
2. V2OUT  
3. V1OUT  
4. TXE  
STYLE 18:  
STYLE 19:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 20:  
PIN 1. ANODE  
2. ANODE  
3. SOURCE  
4. GATE  
PIN 1. SOURCE (N)  
2. GATE (N)  
3. SOURCE (P)  
4. GATE (P)  
5. DRAIN  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. MIRROR 2  
7. DRAIN 1  
8. MIRROR 1  
5. RXE  
6. VEE  
7. GND  
8. ACC  
5. DRAIN  
6. DRAIN  
7. CATHODE  
8. CATHODE  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 21:  
STYLE 22:  
STYLE 23:  
STYLE 24:  
PIN 1. CATHODE 1  
2. CATHODE 2  
3. CATHODE 3  
4. CATHODE 4  
5. CATHODE 5  
6. COMMON ANODE  
7. COMMON ANODE  
8. CATHODE 6  
PIN 1. I/O LINE 1  
PIN 1. LINE 1 IN  
PIN 1. BASE  
2. COMMON CATHODE/VCC  
3. COMMON CATHODE/VCC  
4. I/O LINE 3  
5. COMMON ANODE/GND  
6. I/O LINE 4  
7. I/O LINE 5  
8. COMMON ANODE/GND  
2. COMMON ANODE/GND  
3. COMMON ANODE/GND  
4. LINE 2 IN  
2. EMITTER  
3. COLLECTOR/ANODE  
4. COLLECTOR/ANODE  
5. CATHODE  
6. CATHODE  
7. COLLECTOR/ANODE  
8. COLLECTOR/ANODE  
5. LINE 2 OUT  
6. COMMON ANODE/GND  
7. COMMON ANODE/GND  
8. LINE 1 OUT  
STYLE 25:  
PIN 1. VIN  
2. N/C  
STYLE 26:  
PIN 1. GND  
2. dv/dt  
STYLE 27:  
PIN 1. ILIMIT  
2. OVLO  
STYLE 28:  
PIN 1. SW_TO_GND  
2. DASIC_OFF  
3. DASIC_SW_DET  
4. GND  
3. REXT  
4. GND  
5. IOUT  
6. IOUT  
7. IOUT  
8. IOUT  
3. ENABLE  
4. ILIMIT  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. VCC  
3. UVLO  
4. INPUT+  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. DRAIN  
5. V_MON  
6. VBULK  
7. VBULK  
8. VIN  
STYLE 30:  
PIN 1. DRAIN 1  
2. DRAIN 1  
STYLE 29:  
PIN 1. BASE, DIE #1  
2. EMITTER, #1  
3. BASE, #2  
3. GATE 2  
4. SOURCE 2  
5. SOURCE 1/DRAIN 2  
6. SOURCE 1/DRAIN 2  
7. SOURCE 1/DRAIN 2  
8. GATE 1  
4. EMITTER, #2  
5. COLLECTOR, #2  
6. COLLECTOR, #2  
7. COLLECTOR, #1  
8. COLLECTOR, #1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 2 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCV8412ADDR2G

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8412ASTT1G

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8412ASTT3G

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8413DTRKG

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV84140DR2G

Self Protected Very Low Iq High Side Driver with Analog Current Sense
ONSEMI

NCV8415

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8415DTRKG

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8415STT1G

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV8415STT3G

Self-Protected Low Side Driver with In-Rush Current Management
ONSEMI

NCV84160DR2G

Protected MOSFET High-Side Driver, 12 A, 160 mΩ
ONSEMI

NCV8440

Protected Power MOSFET 2.6 A, 52 V, N−Channel, Logic Level, Clamped MOSFET w/ ESD Protection
ONSEMI

NCV8440A

Protected Power MOSFET
ONSEMI