935312743518 [NXP]

RISC Microcontroller;
935312743518
型号: 935312743518
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总31页 (文件大小:937K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number S9KEA128P80M48SF0  
Rev 4, 09/2014  
Freescale Semiconductor  
Data Sheet: Technical Data  
S9KEA128P80M48SF0  
KEA128 Sub-Family Data  
Sheet  
Supports the following:  
S9KEAZ64AMLK(R),  
S9KEAZ128AMLK(R),  
S9KEAZ64AVLK(R),  
S9KEAZ128AVLK(R),  
S9KEAZ64ACLK(R),  
S9KEAZ128ACLK(R),  
S9KEAZ64AMLH(R),  
S9KEAZ128AMLH(R),  
S9KEAZ64AVLH(R),  
S9KEAZ128AVLH(R),  
S9KEAZ64ACLH(R) and  
S9KEAZ128ACLH(R)  
Key features  
• System peripherals  
– Power management module (PMC) with three power  
modes: Run, Wait, Stop  
– Low-voltage detection (LVD) with reset or interrupt,  
selectable trip points  
– Watchdog with independent clock source (WDOG)  
– Programmable cyclic redundancy check module  
(CRC)  
– Serial wire debug interface (SWD)  
– Aliased SRAM bitband region (BIT-BAND)  
– Bit manipulation engine (BME)  
• Operating characteristics  
– Voltage range: 2.7 to 5.5 V  
– Flash write voltage range: 2.7 to 5.5 V  
– Temperature range (ambient): -40 to 125°C  
• Performance  
– Up to 48 MHz ARM® Cortex-M0+ core  
– Single cycle 32-bit x 32-bit multiplier  
– Single cycle I/O access port  
• Memories and memory interfaces  
– Up to 128 KB flash  
• Security and integrity modules  
– Up to 16 KB RAM  
– 80-bit unique identification (ID) number per chip  
• Clocks  
• Human-machine interface  
– Oscillator (OSC) - supports 32.768 kHz crystal or 4  
MHz to 24 MHz crystal or ceramic resonator; choice  
of low power or high gain oscillators  
– Up to 71 general-purpose input/output (GPIO)  
– Two 32-bit keyboard interrupt modules (KBI)  
– External interrupt (IRQ)  
– Internal clock source (ICS) - internal FLL with  
internal or external reference, 37.5 kHz pre-trimmed  
internal reference for 48 MHz system clock  
– Internal 1 kHz low-power oscillator (LPO)  
• Analog modules  
– One up to 16-channel 12-bit SAR ADC, operation in  
Stop mode, optional hardware trigger (ADC)  
– Two analog comparators containing a 6-bit DAC  
and programmable reference input (ACMP)  
Freescale reserves the right to change the detail specifications as may be  
required to permit improvements in the design of its products.  
© 2014 Freescale Semiconductor, Inc.  
• Timers  
– One 6-channel FlexTimer/PWM (FTM)  
– Two 2-channel FlexTimer/PWM (FTM)  
– One 2-channel periodic interrupt timer (PIT)  
– One pulse width timer (PWT)  
– One real-time clock (RTC)  
• Communication interfaces  
– Two SPI modules (SPI)  
– Up to three UART modules (UART)  
– Two I2C modules (I2C)  
– One MSCAN module (MSCAN)  
• Package options  
– 80-pin LQFP  
– 64-pin LQFP  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
2
Freescale Semiconductor, Inc.  
Table of Contents  
1 Ordering parts.......................................................................................4  
4.2.2 FTM module timing....................................................... 16  
4.3 Thermal specifications.................................................................17  
4.3.1 Thermal characteristics.................................................. 17  
5 Peripheral operating requirements and behaviors................................ 19  
5.1 Core modules............................................................................... 19  
5.1.1 SWD electricals .............................................................19  
5.2 External oscillator (OSC) and ICS characteristics.......................20  
5.3 NVM specifications..................................................................... 22  
5.4 Analog..........................................................................................23  
5.4.1 ADC characteristics....................................................... 23  
5.4.2 Analog comparator (ACMP) electricals.........................25  
5.5 Communication interfaces........................................................... 26  
5.5.1 SPI switching specifications.......................................... 26  
5.5.2 MSCAN......................................................................... 29  
6 Dimensions...........................................................................................29  
6.1 Obtaining package dimensions.................................................... 29  
7 Pinout................................................................................................... 30  
7.1 Signal multiplexing and pin assignments.................................... 30  
8 Revision History...................................................................................30  
1.1 Determining valid orderable parts............................................... 4  
2 Part identification................................................................................. 4  
2.1 Description...................................................................................4  
2.2 Format..........................................................................................4  
2.3 Fields............................................................................................4  
2.4 Example....................................................................................... 5  
3 Ratings..................................................................................................5  
3.1 Thermal handling ratings.............................................................5  
3.2 Moisture handling ratings............................................................ 5  
3.3 ESD handling ratings...................................................................6  
3.4 Voltage and current operating ratings..........................................6  
4 General................................................................................................. 7  
4.1 Nonswitching electrical specifications........................................ 7  
4.1.1 DC characteristics.......................................................... 7  
4.1.2 Supply current characteristics........................................ 13  
4.1.3 EMC performance..........................................................15  
4.2 Switching specifications.............................................................. 15  
4.2.1 Control timing................................................................ 15  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
3
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to freescale.com and perform a part number search for the  
following device numbers: KEAZ128.  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q B KEA A C FFF M T PP N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• S = Automotive qualified  
• P = Prequalification  
B
KEA  
A
Memory type  
Kinetis Auto family  
Key attribute  
• 9 = Flash  
• KEA  
• Z = M0+ core  
• F = M4 W/ DSP & FPU  
• C= M4 W/ AP + FPU  
C
CAN availability  
• N = CAN not available  
• (Blank) = CAN available  
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
4
Freescale Semiconductor, Inc.  
Ratings  
Field  
FFF  
M
Description  
Program flash memory size  
Maskset revision  
Values  
• 128 = 128 KB  
• A = 1st Fab version  
• B = Revision after 1st version  
T
Temperature range (°C)  
• C = –40 to 85  
• V= –40 to 105  
• M = –40 to 125  
PP  
N
Package identifier  
Packaging type  
• LH = 64 LQFP (10 mm x 10 mm)  
• LK = 80 LQFP (14 mm x 14 mm)  
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
S9KEAZ128AMLK  
3 Ratings  
3.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
3.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
5
Ratings  
3.3 ESD handling ratings  
Symbol  
VHBM  
VCDM  
ILAT  
Description  
Min.  
–6000  
–500  
–100  
Max.  
+6000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of °C  
1
2
3
V
+100  
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test. The test produced the following results:  
• Test was performed at 125 °C case temperature (Class II).  
• I/O pins pass +100/-100 mA I-test with IDD current limit at 400 mA (VDD collapsed during positive injection).  
• I/O pins pass +50/-100 mA I-test with IDD current limit at 1000 mA for VDD  
• Supply groups pass 1.5 Vccmax  
.
.
• RESET_B pin was only tested with negative I-test due to product conditioning requirement.  
3.4 Voltage and current operating ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the  
maxima is not guaranteed. Stress beyond the limits specified in the following table may  
affect device reliability or cause permanent damage to the device. For functional  
operating conditions, refer to the remaining tables in this document.  
This device contains circuitry protecting against damage due to high static voltage or  
electrical fields; however, it is advised that normal precautions be taken to avoid  
application of any voltages higher than maximum-rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate  
logic voltage level (for instance, either VSS or VDD) or the programmable pullup resistor  
associated with the pin is enabled.  
Table 1. Voltage and current operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
Unit  
V
Digital supply voltage  
6.0  
IDD  
Maximum current into VDD  
Input voltage except true open drain pins  
Input voltage of true open drain pins  
120  
VDD + 0.31  
mA  
V
VIN  
–0.3  
–0.3  
–25  
6
V
ID  
Instantaneous maximum current single pin limit (applies to all  
port pins)  
25  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
1. Maximum rating of VDD also applies to VIN.  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
6
Freescale Semiconductor, Inc.  
General  
4 General  
4.1 Nonswitching electrical specifications  
4.1.1 DC characteristics  
This section includes information about power supply requirements and I/O pin  
characteristics.  
Table 2. DC characteristics  
Symbol  
Descriptions  
Operating voltage  
Min  
2.7  
Typical1  
Max  
5.5  
Unit  
V
VOH  
Output  
high  
voltage  
All I/O pins, except PTA2  
and PTA3, standard-drive  
strength  
5 V, Iload = –5 mA  
3 V, Iload = –2.5 mA  
VDD – 0.8  
VDD – 0.8  
V
V
High current drive pins,  
high-drive strength2  
5 V, Iload = –20 mA  
VDD – 0.8  
VDD – 0.8  
V
V
3 V, Iload = –10 mA  
IOHT  
Output  
high  
Max total IOH for all ports  
5 V  
3 V  
–100  
–60  
mA  
current  
VOL  
Output All I/O pins, standard-drive  
5 V, Iload = 5 mA  
3 V, Iload = 2.5 mA  
5 V, Iload =20 mA  
3 V, Iload = 10 mA  
5 V  
0.8  
0.8  
0.8  
0.8  
100  
60  
V
V
low  
strength  
voltage  
High current drive pins,  
high-drive strength2  
V
V
IOLT  
Output  
low  
Max total IOL for all ports  
mA  
3 V  
current  
VIH  
VIL  
Input high  
voltage  
All digital inputs  
All digital inputs  
4.5≤VDD<5.5 V  
2.7≤VDD<4.5 V  
4.5≤VDD<5.5 V  
0.65 × VDD  
0.70 × VDD  
V
V
Input low  
voltage  
0.35 ×  
VDD  
2.7≤VDD<4.5 V  
0.06 × VDD  
0.30 ×  
VDD  
Vhys  
|IIn|  
Input  
hysteresis  
All digital inputs  
mV  
µA  
Input  
Per pin (pins in high  
VIN = VDD or VSS  
0.1  
1
leakage  
current  
impedance input mode)  
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
7
Nonswitching electrical specifications  
Table 2. DC characteristics (continued)  
Symbol  
|IINTOT  
Descriptions  
Min  
Typical1  
Max  
Unit  
|
Total  
leakage  
combined  
for all port  
pins  
Pins in high impedance  
input mode  
VIN = VDD or VSS  
2
µA  
RPU  
Pullup  
All digital inputs, when  
30.0  
30.0  
50.0  
60.0  
kΩ  
resistors enabled (all I/O pins other  
than PTA2 and PTA3)  
3
RPU  
Pullup  
PTA2 and PTA3 pins  
kΩ  
resistors  
IIC  
DC  
Single pin limit  
VIN < VSS, VIN > VDD  
-2  
-5  
2
mA  
injection  
Total MCU limit, includes  
sum of all stressed pins  
25  
current4,  
5, 6  
CIn  
Input capacitance, all pins  
RAM retention voltage  
7
pF  
V
VRAM  
2.0  
1. Typical values are measured at 25 °C. Characterized, not tested.  
2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support high current output.  
3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured  
externally on the pin.  
4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to VSS and VDD. PTA2 and PTA3 are true  
open drain I/O pins that are internally clamped to VSS  
.
5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the larger value.  
6. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If the positive injection current (VIn > VDD) is higher than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure that external VDD load will shunt current higher than  
maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate  
is very low (which would reduce overall power consumption).  
Table 3. LVD and POR specification  
Symbol  
VPOR  
Description  
Min  
1.5  
4.2  
Typ  
1.75  
4.3  
Max  
2.0  
Unit  
V
POR re-arm voltage1  
VLVDH  
Falling low-voltage detect  
threshold—high range (LVDV =  
1)2  
4.4  
V
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
VHYSH  
Falling low-  
voltage warning  
threshold— high  
range  
Level 1 falling  
(LVWV = 00)  
4.3  
4.5  
4.6  
4.7  
4.4  
4.5  
4.6  
4.7  
100  
4.5  
4.6  
4.7  
4.8  
V
V
Level 2 falling  
(LVWV = 01)  
Level 3 falling  
(LVWV = 10)  
V
Level 4 falling  
(LVWV = 11)  
V
High range low-voltage detect/  
warning hysteresis  
mV  
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
8
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
Table 3. LVD and POR specification (continued)  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
VLVDL  
Falling low-voltage detect  
2.56  
2.61  
2.66  
V
threshold—low range (LVDV = 0)  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
VHYSDL  
VHYSWL  
VBG  
Falling low-  
voltage warning  
threshold—low  
range  
Level 1 falling  
(LVWV = 00)  
2.62  
2.72  
2.82  
2.92  
2.7  
2.8  
2.9  
3.0  
40  
2.78  
2.88  
2.98  
3.08  
V
V
Level 2 falling  
(LVWV = 01)  
Level 3 falling  
(LVWV = 10)  
V
Level 4 falling  
(LVWV = 11)  
V
Low range low-voltage detect  
hysteresis  
mV  
mV  
V
Low range low-voltage warning  
hysteresis  
Buffered bandgap output 3  
80  
1.14  
1.16  
1.18  
1. Maximum is highest voltage that POR is guaranteed.  
2. Rising thresholds are falling threshold + hysteresis.  
3. voltage Factory trimmed at VDD = 5.0 V, Temp = 125 °C  
VDD-VOH(V)  
IOH(mA)  
Figure 1. Typical VDD-VOH Vs. IOH (standard drive strength) (VDD = 5 V)  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
9
Nonswitching electrical specifications  
VDD-VOH(V)  
IOH(mA)  
Figure 2. Typical VDD-VOH Vs. IOH (standard drive strength) (VDD = 3 V)  
VDD-VOH(V)  
IOH(mA)  
Figure 3. Typical VDD-VOH Vs. IOH (high drive strength) (VDD = 5 V)  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
10  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
VDD-VOH(V)  
IOH(mA)  
Figure 4. Typical VDD-VOH Vs. IOH (high drive strength) (VDD = 3 V)  
VOL(V)  
IOL(mA)  
Figure 5. Typical VOL Vs. IOL (standard drive strength) (VDD = 5 V)  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
11  
Nonswitching electrical specifications  
VOL(V)  
IOL(mA)  
Figure 6. Typical VOL Vs. IOL (standard drive strength) (VDD = 3 V)  
VOL(V)  
IOL(mA)  
Figure 7. Typical VOL Vs. IOL (high drive strength) (VDD = 5 V)  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
12  
Freescale Semiconductor, Inc.  
Nonswitching electrical specifications  
VOL(V)  
IOL(mA)  
Figure 8. Typical VOL Vs. IOL (high drive strength) (VDD = 3 V)  
4.1.2 Supply current characteristics  
This section includes information about power supply current in various operating modes.  
Table 4. Supply current characteristics  
Parameter  
Symbol  
Core/Bus  
Freq  
VDD (V)  
Typical1  
Max  
Unit  
Temp  
Run supply current FEI  
mode, all modules clocks  
enabled; run from flash  
RIDD  
48/24 MHz  
24/24 MHz  
12/12 MHz  
1/1 MHz  
5
11.1  
8
mA  
-40 to 125 °C  
5
2.4  
11  
48/24 MHz  
24/24 MHz  
12/12 MHz  
1/1 MHz  
3
5
7.9  
4.9  
2.3  
7.8  
5.5  
3.8  
2.3  
Run supply current FEI  
mode, all modules clocks  
disabled and gated; run from  
flash  
RIDD  
48/24 MHz  
24/24 MHz  
12/12 MHz  
1/1 MHz  
mA  
-40 to 125 °C  
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
13  
Nonswitching electrical specifications  
Table 4. Supply current characteristics (continued)  
Parameter  
Symbol  
Core/Bus  
Freq  
VDD (V)  
Typical1  
Max  
Unit  
Temp  
48/24 MHz  
24/24 MHz  
12/12 MHz  
1/1 MHz  
3
7.7  
5.4  
3.7  
2.2  
14.7  
9.8  
6
Run supply current FBE  
mode, all modules clocks  
enabled; run from RAM  
RIDD  
48/24 MHz  
24/24 MHz  
12/12 MHz  
1/1 MHz  
5
3
5
3
5
3
14.92  
mA  
-40 to 125 °C  
2.4  
14.6  
9.6  
5.9  
2.3  
11.4  
7.7  
4.7  
2.3  
11.3  
7.6  
4.6  
2.2  
8.4  
6.5  
4.3  
2.4  
8.3  
6.4  
4.2  
2.3  
2
48/24 MHz  
24/24 MHz  
12/12 MHz  
1/1 MHz  
12.82  
Run supply current FBE  
mode, all modules clocks  
disabled and gated; run from  
RAM  
RIDD  
48/24 MHz  
24/24 MHz  
12/12 MHz  
1/1 MHz  
12.52  
mA  
-40 to 125 °C  
48/24 MHz  
24/24 MHz  
12/12 MHz  
1/1 MHz  
9.52  
Wait mode current FEI  
mode, all modules clocks  
enabled  
WIDD  
48/24 MHz  
24/24 MHz  
12/12 MHz  
1/1 MHz  
7.22  
mA  
-40 to 125 °C  
48/24 MHz  
24/24 MHz  
12/12 MHz  
1/1 MHz  
7.12  
Stop mode supply current no  
clocks active (except 1 kHz  
LPO clock)3  
SIDD  
5
3
1702  
1602  
µA  
µA  
-40 to 125 °C  
-40 to 125 °C  
1.9  
ADC adder to Stop  
ADLPC = 1  
5
3
86  
82  
-40 to 125 °C  
ADLSMP = 1  
ADCO = 1  
MODE = 10B  
ADICLK = 11B  
ACMP adder to Stop  
5
3
12  
12  
µA  
-40 to 125 °C  
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
14  
Freescale Semiconductor, Inc.  
Switching specifications  
Table 4. Supply current characteristics (continued)  
Parameter  
Symbol  
Core/Bus  
Freq  
VDD (V)  
Typical1  
Max  
Unit  
Temp  
LVD adder to Stop4  
5
3
130  
125  
µA  
-40 to 125 °C  
1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.  
2. The high current is observed at high temperature.  
3. RTC adder cause <1 µA IDD increase typically, RTC clock source is 1 kHz LPO clock.  
4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.  
4.1.3 EMC performance  
Electromagnetic compatibility (EMC) performance is highly dependent on the  
environment in which the MCU resides. Board design and layout, circuit topology  
choices, location and characteristics of external components as well as MCU software  
operation play a significant role in EMC performance. The system designer must consult  
the following Freescale applications notes, available on freescale.com for advice and  
guidance specifically targeted at optimizing EMC performance.  
• AN2321: Designing for Board Level Electromagnetic Compatibility  
• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS  
Microcontrollers  
• AN1263: Designing for Electromagnetic Compatibility with Single-Chip  
Microcontrollers  
• AN2764: Improving the Transient Immunity Performance of Microcontroller-Based  
Applications  
• AN1259: System Design and Layout Techniques for Noise Reduction in MCU-  
Based Systems  
4.2 Switching specifications  
4.2.1 Control timing  
Table 5. Control timing  
Num  
Rating  
System and core clock  
Bus frequency (tcyc = 1/fBus  
Symbol  
fSys  
Min  
DC  
Typical1  
Max  
48  
Unit  
MHz  
MHz  
KHz  
ns  
1
2
3
4
)
fBus  
DC  
24  
Internal low power oscillator frequency  
External reset pulse width2  
fLPO  
0.67  
1.5 ×  
tcyc  
1.0  
1.25  
textrst  
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
15  
Switching specifications  
Num  
Table 5. Control timing (continued)  
Rating  
Symbol  
trstdrv  
tILIH  
Min  
34 × tcyc  
100  
Typical1  
Max  
Unit  
ns  
5
6
Reset low drive  
IRQ pulse width  
Asynchronous path2  
Synchronous path3  
Asynchronous path2  
Synchronous path  
ns  
tIHIL  
1.5 × tcyc  
100  
ns  
7
8
Keyboard interrupt pulse  
width  
tILIH  
ns  
tIHIL  
1.5 × tcyc  
ns  
Port rise and fall time -  
Normal drive strength (load  
= 50 pF)4  
tRise  
tFall  
10.2  
9.5  
ns  
ns  
Port rise and fall time - high  
drive strength (load = 50  
pF)4  
tRise  
tFall  
5.4  
4.6  
ns  
ns  
1. Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.  
2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.  
3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.  
4. Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range -40 °C to 125 °C.  
textrst  
RESET_b pin  
Figure 9. Reset timing  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 10. KBIPx timing  
4.2.2 FTM module timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the  
fastest clock that can be used as the optional external source to the timer counter. These  
synchronizers operate from the current bus rate clock.  
Table 6. FTM input timing  
Function  
Symbol  
fTimer  
Min  
fBus  
0
Max  
fSys  
Unit  
Hz  
Timer clock frequency  
External clock  
frequency  
fTCLK  
fTimer/4  
Hz  
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
16  
Freescale Semiconductor, Inc.  
Thermal specifications  
Table 6. FTM input timing (continued)  
Function  
Symbol  
tTCLK  
tclkh  
Min  
4
Max  
Unit  
tcyc  
tcyc  
tcyc  
tcyc  
External clock period  
External clock high time  
External clock low time  
1.5  
1.5  
1.5  
tclkl  
Input capture pulse  
width  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 11. Timer external clock  
tICPW  
FTMCHn  
FTMCHn  
tICPW  
Figure 12. Timer input capture pulse  
4.3 Thermal specifications  
4.3.1 Thermal characteristics  
This section provides information about operating temperature range, power dissipation,  
and package thermal resistance. Power dissipation on I/O pins is usually small compared  
to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-  
determined rather than being controlled by the MCU design. To take PI/O into account in  
power calculations, determine the difference between actual pin voltage and VSS or VDD  
and multiply by the pin current for each I/O pin. Except in cases of unusually high pin  
current (heavy loads), the difference between pin voltage and VSS or VDD will be very  
small.  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
17  
Thermal specifications  
Table 7. Thermal attributes  
Board type  
Symbol  
Description  
64 LQFP  
80 LQFP  
Unit  
Notes  
Single-layer (1S)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
71  
53  
59  
46  
35  
57  
°C/W  
1, 2  
Four-layer (2s2p)  
Single-layer (1S)  
Four-layer (2s2p)  
RθJA  
RθJMA  
RθJMA  
RθJB  
Thermal resistance, junction to  
ambient (natural convection)  
44  
47  
38  
28  
°C/W  
°C/W  
°C/W  
°C/W  
1, 3  
1, 3  
1, 3  
4
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Thermal resistance, junction to  
board  
RθJC  
Thermal resistance, junction to case  
20  
5
15  
3
°C/W  
°C/W  
5
6
ΨJT  
Thermal characterization parameter,  
junction to package top outside  
center (natural convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.  
3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.  
The average chip-junction temperature (TJ) in °C can be obtained from:  
TJ = TA + (PD × θJA)  
Where:  
TA = Ambient temperature, °C  
θJA = Package thermal resistance, junction-to-ambient, °C/W  
PD = Pint + PI/O  
Pint = IDD × VDD, Watts - chip internal power  
PI/O = Power dissipation on input and output pins - user determined  
For most applications, PI/O << Pint and can be neglected. An approximate relationship  
between PD and TJ (if PI/O is neglected) is:  
PD = K ÷ (TJ + 273 °C)  
Solving the equations above for K gives:  
K = PD × (TA + 273 °C) + θJA × (PD)2  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
18  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
where K is a constant pertaining to the particular part. K can be determined by measuring  
PD (at equilibrium) for an known TA. Using this value of K, the values of PD and TJ can  
be obtained by solving the above equations iteratively for any value of TA.  
5 Peripheral operating requirements and behaviors  
5.1 Core modules  
5.1.1 SWD electricals  
Table 8. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
5.5  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
24  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
3
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
35  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 13. Serial wire clock input timing  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
19  
Peripheral operating requirements and behaviors  
SWD_CLK  
J9  
J10  
Input data valid  
SWD_DIO  
J11  
Output data valid  
SWD_DIO  
J12  
SWD_DIO  
J11  
Output data valid  
SWD_DIO  
Figure 14. Serial wire data timing  
5.2 External oscillator (OSC) and ICS characteristics  
Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient)  
Num  
Characteristic  
Low range (RANGE = 0)  
High range (RANGE = 1)  
Symbol  
Min  
31.25  
4
Typical1  
32.768  
Max  
39.0625  
24  
Unit  
kHz  
1
Crystal or  
resonator  
frequency  
flo  
fhi  
MHz  
2
3
Load capacitors  
C1, C2  
RF  
See Note2  
Feedback  
resistor  
Low Frequency, Low-Power  
Mode3  
MΩ  
MΩ  
MΩ  
MΩ  
Low Frequency, High-Gain  
Mode  
10  
1
High Frequency, Low-Power  
Mode  
High Frequency, High-Gain  
Mode  
1
4
5
Series resistor -  
Low Frequency  
Low-Power Mode 3  
High-Gain Mode  
Low-Power Mode3  
RS  
RS  
0
200  
0
kΩ  
kΩ  
kΩ  
Series resistor -  
High Frequency  
Series resistor -  
High Frequency,  
High-Gain Mode  
4 MHz  
8 MHz  
0
0
kΩ  
kΩ  
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
20  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)  
Num  
Characteristic  
16 MHz  
Symbol  
Min  
Typical1  
Max  
Unit  
kΩ  
0
1000  
800  
3
6
Crystal start-up  
time low range =  
32.768 kHz  
crystal; High  
range = 20 MHz  
crystal4,5  
Low range, low power  
Low range, high gain  
High range, low power  
High range, high gain  
tCSTL  
ms  
ms  
ms  
ms  
tCSTH  
1.5  
7
8
Internal reference start-up time  
tIRST  
fint_t  
20  
50  
µs  
Internal reference clock (IRC) frequency trim  
range  
31.25  
39.0625  
kHz  
9
Internal  
T = 125 °C, VDD = 5 V  
fint_ft  
37.5  
kHz  
reference clock  
frequency,  
factory trimmed,  
10  
11  
DCO output  
frequency range  
FLL reference = fint_t, flo, or  
fhi/RDIV  
fdco  
40  
50  
MHz  
%
Factory trimmed  
internal oscillator  
accuracy  
T = 125 °C, VDD = 5 V  
Δfint_ft  
-0.8  
0.8  
12  
13  
Deviation of IRC Over temperature range from  
Δfint_t  
-1  
0.8  
0.8  
%
%
over temperature  
when trimmed at  
-40 °C to 125°C  
T = 25 °C, VDD  
5 V  
=
Frequency  
accuracy of DCO  
output using  
Over temperature range from  
-40 °C to 125°C  
Δfdco_ft  
-2.3  
factory trim value  
14  
15  
FLL acquisition time4,6  
tAcquire  
CJitter  
2
ms  
Long term jitter of DCO output clock (averaged  
over 2 ms interval)7  
0.02  
0.2  
%fdco  
1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.  
2. See crystal or resonator manufacturer's recommendation.  
3. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO =  
0.  
4. This parameter is characterized and not tested on each device.  
5. Proper PC board layout procedures must be followed to achieve specifications.  
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or  
changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as  
the reference, this specification assumes it is already running.  
7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage  
for a given interval.  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
21  
Peripheral operating requirements and behaviors  
OSC  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 15. Typical crystal or resonator circuit  
5.3 NVM specifications  
This section provides details about program/erase times and program/erase endurance for  
the flash memories.  
Table 10. Flash characteristics  
Characteristic  
Symbol  
Min1  
Typical2  
Max3  
Unit4  
Supply voltage for program/erase –40 °C  
to 125 °C  
Vprog/erase  
2.7  
5.5  
V
Supply voltage for read operation  
NVM Bus frequency  
NVM Operating frequency  
Erase Verify All Blocks  
Erase Verify Flash Block  
Erase Verify Flash Section  
Read Once  
VRead  
fNVMBUS  
fNVMOP  
tVFYALL  
tRD1BLK  
tRD1SEC  
tRDONCE  
tPGM2  
2.7  
1
5.5  
24  
V
MHz  
MHz  
tcyc  
0.8  
1
1.05  
2605  
2579  
485  
tcyc  
tcyc  
464  
tcyc  
Program Flash (2 word)  
Program Flash (4 word)  
Program Once  
0.12  
0.21  
0.20  
95.42  
95.42  
19.10  
95.42  
0.13  
0.21  
0.21  
100.18  
100.18  
20.05  
100.19  
0.31  
0.49  
0.21  
100.30  
100.30  
20.09  
100.31  
482  
ms  
tPGM4  
ms  
tPGMONCE  
tERSALL  
tERSBLK  
tERSPG  
tUNSECU  
tVFYKEY  
tMLOADU  
nFLPE  
ms  
Erase All Blocks  
ms  
Erase Flash Block  
ms  
Erase Flash Sector  
ms  
Unsecure Flash  
ms  
Verify Backdoor Access Key  
Set User Margin Level  
tcyc  
415  
tcyc  
FLASH Program/erase endurance TL to TH  
= -40 °C to 125 °C  
10 k  
100 k  
Cycles  
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
22  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 10. Flash characteristics (continued)  
Characteristic  
Symbol  
Min1  
Typical2  
Max3  
Unit4  
Data retention at an average junction  
temperature of TJavg = 85°C after up to  
10,000 program/erase cycles  
tD_ret  
15  
100  
years  
1. Minimum times are based on maximum fNVMOP and maximum fNVMBUS  
2. Typical times are based on typical fNVMOP and maximum fNVMBUS  
3. Maximum times are based on typical fNVMOP and typical fNVMBUS plus aging  
4. tcyc = 1 / fNVMBUS  
Program and erase operations do not require any special power sources other than the  
normal VDD supply. For more detailed information about program/erase operations, see  
the Flash Memory Module section in the reference manual.  
5.4 Analog  
5.4.1 ADC characteristics  
Table 11. 5 V 12-bit ADC operating conditions  
Characteri  
stic  
Conditions  
Symbol  
Min  
Typ1  
Max  
Unit  
Comment  
Reference  
potential  
• Low  
• High  
VREFL  
VREFH  
VDDA  
VSSA  
VDDA/2  
2.7  
0
VDDA/2  
VDDA  
5.5  
V
Supply  
voltage  
Absolute  
V
mV  
V
Delta to VDD (VDD-VDDA  
)
ΔVDDA  
VADIN  
-100  
+100  
VREFH  
Input  
VREFL  
voltage  
Input  
capacitance  
CADIN  
RADIN  
RAS  
4.5  
3
5.5  
5
pF  
kΩ  
kΩ  
Input  
resistance  
Analog  
source  
resistance  
12-bit mode  
fADCK > 4 MHz  
fADCK < 4 MHz  
External to  
MCU  
2
5
10-bit mode  
fADCK > 4 MHz  
fADCK < 4 MHz  
5
10  
10  
8-bit mode  
(all valid fADCK  
)
ADC  
conversion  
clock  
High speed (ADLPC=0)  
Low power (ADLPC=1)  
fADCK  
0.4  
0.4  
8.0  
4.0  
MHz  
frequency  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
23  
Peripheral operating requirements and behaviors  
1. Typical values assume VDDA = 5.0 V, Temp = 25°C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
z ADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
R AS  
R ADIN  
protection  
v ADIN  
C AS  
v AS  
R ADIN  
R ADIN  
R ADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
C ADIN  
Figure 16. ADC input impedance equivalency diagram  
Table 12. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Characteristic  
Supply current  
ADLPC = 1  
Conditions  
Symbol  
Min  
Typ1  
Max  
Unit  
IDDA  
133  
µA  
ADLSMP = 1  
ADCO = 1  
Supply current  
ADLPC = 1  
IDDA  
IDDA  
IDDA  
IDDA  
218  
327  
µA  
µA  
µA  
µA  
ADLSMP = 0  
ADCO = 1  
Supply current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
Supply current  
ADLPC = 0  
582  
990  
ADLSMP = 0  
ADCO = 1  
Supply current  
Stop, reset, module off  
0.011  
1
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
24  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 12. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Characteristic  
Conditions  
Symbol  
Min  
Typ1  
Max  
Unit  
ADC asynchronous  
clock source  
High speed (ADLPC =  
0)  
fADACK  
2
3.3  
5
MHz  
Low power (ADLPC =  
1)  
1.25  
2
20  
3.3  
Conversion time  
Short sample  
(including sample time) (ADLSMP = 0)  
tADC  
ADCK cycles  
ADCK cycles  
Long sample  
(ADLSMP = 1)  
40  
Sample time  
Short sample  
(ADLSMP = 0)  
tADS  
3.5  
23.5  
Long sample  
(ADLSMP = 1)  
Total unadjusted Error2 12-bit mode  
ETUE  
DNL  
INL  
5.0  
1.5  
0.5  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
10-bit mode  
8-bit mode  
0.8  
Differential Non-  
Liniarity  
12-bit mode  
10-bit mode  
8-bit mode  
1.5  
0.4  
0.15  
1.5  
Integral Non-Linearity 12-bit mode  
10-bit mode  
0.4  
8-bit mode  
0.15  
1.0  
Zero-scale error4  
Full-scale error5  
12-bit mode  
10-bit mode  
8-bit mode  
12-bit mode  
10-bit mode  
8-bit mode  
≤12 bit modes  
all modes  
EZS  
0.2  
0.35  
2.5  
EFS  
0.3  
0.25  
Quantization error  
Input leakage error6  
Temp sensor slope  
EQ  
EIL  
m
LSB3  
mV  
IIn x RAS  
3.266  
3.638  
1.396  
-40 °C–25 °C  
25 °C–125 °C  
25 °C  
mV/°C  
Temp sensor voltage  
VTEMP25  
V
1. Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. Includes quantization  
3. 1 LSB = (VREFH - VREFL)/2N  
4. VADIN = VSSA  
5. VADIN = VDDA  
6. IIn = leakage current (refer to DC characteristics)  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
25  
Peripheral operating requirements and behaviors  
5.4.2 Analog comparator (ACMP) electricals  
Table 13. Comparator electrical specifications  
Characteristic  
Supply voltage  
Symbol  
VDDA  
IDDA  
Min  
2.7  
Typical  
Max  
5.5  
Unit  
V
Supply current (Operation mode)  
Analog input voltage  
10  
20  
µA  
V
VAIN  
VSS - 0.3  
VDDA  
40  
Analog input offset voltage  
VAIO  
VH  
mV  
mV  
Analog comparator hysteresis  
(HYST=0)  
15  
20  
Analog comparator hysteresis  
(HYST=1)  
VH  
20  
30  
mV  
Supply current (Off mode)  
Propagation Delay  
IDDAOFF  
tD  
60  
1
nA  
µs  
0.4  
5.5 Communication interfaces  
5.5.1 SPI switching specifications  
The serial peripheral interface (SPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables  
provide timing characteristics for classic SPI timing modes. See the SPI chapter of the  
chip's reference manual for information about the modified transfer formats used for  
communicating with slower peripheral devices. All timing is shown with respect to 20%  
VDD and 80% VDD, unless noted, and 25 pF load on all SPI pins. All timing assumes slew  
rate control is disabled and high-drive strength is enabled for SPI output pins.  
Table 14. SPI master mode timing  
Nu  
m.  
Symbol Description  
Min.  
Max.  
Unit  
Comment  
1
fop  
Frequency of operation  
fBus/2048  
fBus/2  
Hz  
fBus is the bus  
clock  
2
3
4
5
6
7
8
9
tSPSCK  
tLead  
tLag  
SPSCK period  
Enable lead time  
Enable lag time  
2 x tBus  
2048 x tBus  
ns  
tSPSCK  
tSPSCK  
ns  
tBus = 1/fBus  
1/2  
1/2  
tWSPSCK Clock (SPSCK) high or low time  
tBus – 30  
1024 x tBus  
tSU  
tHI  
tv  
Data setup time (inputs)  
Data hold time (inputs)  
8
8
25  
ns  
ns  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
20  
ns  
tHO  
ns  
Table continues on the next page...  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
26  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 14. SPI master mode timing (continued)  
Nu  
m.  
Symbol Description  
Min.  
Max.  
Unit  
Comment  
10  
tRI  
tFI  
Rise time input  
Fall time input  
Rise time output  
Fall time output  
tBus – 25  
ns  
11  
tRO  
tFO  
25  
ns  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 17. SPI master mode timing (CPHA=0)  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 18. SPI master mode timing (CPHA=1)  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
27  
Peripheral operating requirements and behaviors  
Table 15. SPI slave mode timing  
Nu  
m.  
Symbol  
Description  
Min.  
Max.  
Unit  
Comment  
1
fop  
Frequency of operation  
0
fBus/4  
Hz  
fBus is the bus clock as  
defined in Control timing.  
2
3
4
5
6
7
8
tSPSCK  
tLead  
tLag  
SPSCK period  
Enable lead time  
Enable lag time  
4 x tBus  
ns  
tBus  
tBus  
ns  
tBus = 1/fBus  
1
1
tWSPSCK Clock (SPSCK) high or low time  
tBus - 30  
15  
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
ns  
25  
ns  
tBus  
ns  
Time to data active from  
high-impedance state  
9
tdis  
Slave MISO disable time  
tBus  
ns  
Hold time to high-  
impedance state  
10  
11  
12  
tv  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
0
25  
ns  
ns  
ns  
tHO  
tRI  
tBus - 25  
tFI  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
SS  
(INPUT)  
2
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
12  
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 19. SPI slave mode timing (CPHA = 0)  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
28  
Freescale Semiconductor, Inc.  
Dimensions  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 20. SPI slave mode timing (CPHA=1)  
5.5.2 MSCAN  
Table 16. MSCAN wake-up pulse characteristics  
Parameter  
Symbol  
tWUP  
Min  
Typ  
Max  
1.5  
-
Unit  
µs  
MSCAN wakeup dominant pulse filtered  
MSCAN wakeup dominant pulse pass  
-
-
-
tWUP  
5
µs  
6 Dimensions  
6.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to freescale.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
64-pin LQFP  
Then use this document number  
98ASS23234W  
80-pin LQFP  
98ASS23237W  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
Freescale Semiconductor, Inc.  
29  
Pinout  
7 Pinout  
7.1 Signal multiplexing and pin assignments  
For the pin muxing details see section Signal Multiplexing and Signal Descriptions of  
KEA128 Reference Manual.  
8 Revision History  
The following table provides a revision history for this document.  
Table 17. Revision History  
Rev. No.  
Date  
Substantial Changes  
Initial Release  
Rev. 1  
Rev. 2  
11 March 2014  
18 June 2014  
• Parameter Classification section is  
removed.  
• Classification column is removed  
from all the tables in the  
document.  
• New section added - Supply  
current characteristics.  
Rev. 3  
Rev. 4  
18 July 2014  
• Added supported part numbers.  
ESD handling ratings section is  
updated.  
• Figures in DC characteristics  
section are updated.  
• Specs updated in following tables:  
Table 9.  
03 Sept 2014  
• Data Sheet type changed to  
"Technical Data".  
KEA128 Sub-Family Data Sheet, Rev4, 09/2014.  
30  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and  
software implementers to use Freescale products. There are no express  
or implied copyright licenses granted hereunder to design or fabricate  
any integrated circuits based on the information in this document.  
Freescale reserves the right to make changes without further notice to  
any products herein.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale makes no warranty, representation, or guarantee regarding  
the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale data sheets  
and/or specifications can and do vary in different applications, and  
actual performance may vary over time. All operating parameters,  
including “typicals,” must be validated for each customer application by  
customer's technical experts. Freescale does not convey any license  
under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found  
at the following address: freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, and Kinetis are trademarks of Freescale  
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or  
service names are the property of their respective owners. ARM and  
Cortex-M0+ are the registered trademarks of ARM Limited.  
©2014 Freescale Semiconductor, Inc.  
Document Number S9KEA128P80M48SF0  
Revision 4, 09/2014  

相关型号:

935312743574

RISC Microcontroller
NXP

935312744557

Multifunction Peripheral
NXP

935312823518

RISC Microprocessor
NXP

935312838518

RISC Microcontroller
NXP

935312883528

Interface Circuit
NXP

935312883557

Interface Circuit
NXP

935312895147

Telecom Circuit
NXP

935312939557

RISC Microprocessor
NXP

935312967557

Microprocessor
NXP

935313007528

Interface Circuit
NXP

935313028518

RISC Microcontroller
NXP

935313038557

RISC Microcontroller
NXP