SAA7105H [NXP]

Digital video encoder; 数字视频编码器
SAA7105H
型号: SAA7105H
厂家: NXP    NXP
描述:

Digital video encoder
数字视频编码器

转换器 色度信号转换器 消费电路 商用集成电路 编码器
文件: 总71页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA7104H; SAA7105H  
Digital video encoder  
Product specification  
2004 Mar 04  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
CONTENTS  
8
BOUNDARY SCAN TEST  
8.1  
8.2  
Initialization of boundary scan circuit  
Device identification codes  
1
2
3
4
5
6
7
FEATURES  
GENERAL DESCRIPTION  
QUICK REFERENCE DATA  
ORDERING INFORMATION  
BLOCK DIAGRAM  
9
LIMITING VALUES  
10  
11  
11.1  
12  
THERMAL CHARACTERISTICS  
CHARACTERISTICS  
Teletext timing  
PINNING  
APPLICATION INFORMATION  
FUNCTIONAL DESCRIPTION  
12.1  
12.2  
12.3  
Reconstruction filter  
Analog output voltages  
Suggestions for a board layout  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
Reset conditions  
Input formatter  
RGB LUT  
Cursor insertion  
RGB Y-CB-CR matrix  
Horizontal scaler  
Vertical scaler and anti-flicker filter  
FIFO  
13  
PACKAGE OUTLINE  
SOLDERING  
14  
14.1  
Introduction to soldering surface mount  
packages  
Reflow soldering  
Wave soldering  
Manual soldering  
14.2  
14.3  
14.4  
14.5  
7.9  
Border generator  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
7.16  
7.17  
7.18  
7.19  
7.20  
7.21  
7.22  
7.23  
7.24  
7.25  
Oscillator and Discrete Time Oscillator (DTO)  
Low-pass Clock Generation Circuit (CGC)  
Encoder  
RGB processor  
Triple DAC  
HD data path  
Timing generator  
Pattern generator for HD sync pulses  
I2C-bus interface  
Power-down modes  
Programming the SAA7104H; SAA7105H  
Input levels and formats  
Bit allocation map  
I2C-bus format  
Slave receiver  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
15  
16  
17  
18  
DATA SHEET STATUS  
DEFINITIONS  
DISCLAIMERS  
PURCHASE OF PHILIPS I2C COMPONENTS  
Slave transmitter  
2004 Mar 04  
2
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
1
FEATURES  
Digital PAL/NTSC encoder with integrated high quality  
scaler and anti-flicker filter for TV output from a PC  
Supports Intel Digital Video Out (DVO) low voltage  
interfacing to graphics controller  
27 MHz crystal-stable subcarrier generation  
Programmable border colour of underscan area  
Programmable 5 line anti-flicker filter  
Maximum graphics pixel clock 85 MHz at double edged  
clocking, synthesized on-chip or from external source  
On-chip 27 MHz crystal oscillator (3rd-harmonic or  
Programmable assignment of clock edge to bytes (in  
fundamental 27 MHz crystal)  
double edged mode)  
Fast I2C-bus control port (400 kHz)  
Encoder can be master or slave  
Adjustable output levels for the DACs  
Synthesizable pixel clock (PIXCLK) with minimized  
output jitter, can be used as reference clock for the VGC,  
as well)  
Programmable horizontal and vertical input  
synchronization phase  
PIXCLK output and bi-phase PIXCLK input (VGC clock  
loop-through possible)  
Programmable horizontal sync output phase  
Internal Colour Bar Generator (CBG)  
Hot-plug detection through dedicated interrupt pin  
Supported VGA resolutions for PAL or NTSC legacy  
video output up to 1280 × 1024 graphics data at  
60 or 50 Hz frame rate  
Optional support of various Vertical Blanking Interval  
(VBI) data insertion  
Supported VGA resolutions for HDTV output up to  
1920 × 1080 interlaced graphics data at 60 or 50 Hz  
frame rate  
Macrovision (1) Pay-per-View copy protection system  
rev. 7.01, rev. 6.1 and rev. 1.03 (525p) as option; this  
applies to the SAA7104H only. The device is protected  
by USA patent numbers 4631603, 4577216 and  
4819098 and other intellectual property rights. Use of  
the Macrovision anti-copy process in the device is  
licensed for non-commercial home use only. Reverse  
engineering or disassembly is prohibited. Please  
contact your nearest Philips Semiconductors sales  
office for more information.  
Three Digital-to-Analog Converters (DACs) for CVBS  
(BLUE, CB), VBS (GREEN, CVBS) and C (RED, CR) at  
27 MHz sample rate (signals in parenthesis are  
optionally), all at 10-bit resolution  
Non-interlaced CB-Y-CR or RGB input at maximum  
4 : 4 : 4 sampling  
Downscaling and upscaling from 50 to 400%  
Optional cross-colour reduction for PAL and NTSC  
Optional interlaced CB-Y-CR input of Digital Versatile  
CVBS outputs  
Disk (DVD) signals  
Power-save modes  
Optional non-interlaced RGB output to drive second  
VGA monitor (bypass mode, maximum 85 MHz)  
Joint Test Action Group (JTAG) boundary scan test  
Monolithic CMOS 3.3 V device, 5 V tolerant I/Os  
QFP64 package.  
3 × 256 bytes RGB Look-Up Table (LUT)  
Support for hardware cursor  
HDTV up to 1920 × 1080 interlaced and 1280 × 720  
progressive, including 3-level sync pulses  
(1) Macrovision is a trademark of the Macrovision Corporation.  
2004 Mar 04  
3
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
2
GENERAL DESCRIPTION  
When the scaler/interlacer is bypassed, a second VGA  
monitor can be connected to the RGB outputs and  
separate H and V-syncs as well, thereby serving as an  
auxiliary monitor at maximum 1280 × 1024  
resolution/60 Hz (PIXCLK < 85 MHz). Alternatively this  
port can provide Y, PB and PR signals for HDTV monitors.  
The SAA7104H; SAA7105H is an advanced  
next-generation video encoder which converts PC  
graphics data at maximum 1280 × 1024 resolution  
(optionally 1920 × 1080 interlaced) to PAL (50 Hz) or  
NTSC (60 Hz) video signals. A programmable scaler and  
anti-flicker filter (maximum 5 lines) ensures properly sized  
and flicker-free TV display as CVBS or S-video output.  
The device includes a sync/clock generator and on-chip  
DACs.  
Alternatively, the three Digital-to-Analog Converters  
(DACs) can output RGB signals together with a TTL  
composite sync to feed SCART connectors.  
All inputs intended to interface to the host graphics  
controller are designed for low-voltage signals between  
down to 1.1 V and up to 3.6 V.  
3
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
MIN.  
3.15  
TYP.  
3.3  
MAX.  
3.45  
UNIT  
VDDA  
analog supply voltage  
V
V
VDDD  
IDDA  
IDDD  
Vi  
digital supply voltage  
analog supply current  
digital supply current  
input signal voltage levels  
3.15  
1
3.3  
3.45  
115  
200  
110  
175  
mA  
mA  
1
TTL compatible  
Vo(p-p)  
analog CVBS output signal voltage for a 100/100  
1.23  
V
colour bar at 75/2 load (peak-to-peak value)  
RL  
load resistance  
0
37.5  
ILElf(DAC)  
DLElf(DAC)  
Tamb  
low frequency integral linearity error of DACs  
low frequency differential linearity error of DACs  
ambient temperature  
±3  
±1  
70  
LSB  
LSB  
°C  
4
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
SAA7104H  
SAA7105H  
QFP64  
plastic quad flat package; 64 leads (lead length 1.6 mm);  
body 14 × 14 × 2.7 mm  
SOT393-1  
2004 Mar 04  
4
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDA1  
43  
DDA2  
DDA3  
DDA4  
SSA1  
SSA2  
DDD1  
DDD2  
DDD3  
DDD4  
SSD1  
SSD2  
SSD3  
SSD4  
57  
44  
52  
53  
48  
49  
6
12  
25  
58  
7
13  
26  
55  
47  
46  
56  
10  
9
TRST  
DUMP  
RSET  
TDI  
5 to 2,  
64 to 61,  
21 to 24  
LUT  
+
CURSOR  
FIFO  
+
UPSAMPLING  
PD11 to  
PD0  
INPUT  
FORMATTER  
RGB TO Y-C -C  
B
R
MATRIX  
TDO  
TMS  
TCK  
DECIMATOR  
4 : 4 : 4 to  
4 : 2 : 2  
HORIZONTAL  
SCALER  
VERTICAL  
SCALER  
VERTICAL  
FILTER  
11  
20  
19  
36  
38  
PIXCLKI  
PIXCLKI  
LLC  
45  
42  
41  
BLUE_CB_CVBS  
BORDER  
GENERATOR  
VIDEO  
ENCODER  
TRIPLE  
DAC  
FIFO  
GREEN_VBS_CVBS  
RED_CR_C_CVBS  
35  
HD  
OUTPUT  
OUT_EN  
SAA7104H  
SAA7105H  
SRES  
39  
40  
54  
VSM  
27  
2
PIXEL CLOCK  
SYNTHESIZER  
CRYSTAL  
OSCILLATOR  
TIMING  
GENERATOR  
HSM_CSYNC  
TVD  
I C-BUS  
PIXCLKO  
CONTROL  
1, 16, 30 to 34  
37  
51  
50  
XTALO  
60  
17 18 28 29  
59  
15  
14  
8
mhc683  
XTALI  
n.c.  
RTCI  
FSVGC CBO  
VSVGC HSVGC  
TTXRQ_XCLKO2 SDA  
SCL RESET  
27 MHz  
TTX_SRES  
Fig.1 Block diagram.  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
6
PINNING  
SYMBOL  
PIN TYPE(1)  
DESCRIPTION  
n.c.  
1
2
3
4
5
6
I
not connected  
PD8  
see Tables 8 to 13 for pin assignment  
see Tables 8 to 13 for pin assignment  
see Tables 8 to 13 for pin assignment  
see Tables 8 to 13 for pin assignment  
PD9  
I
PD10  
PD11  
VDDD1  
I
I
S
digital supply voltage 1 for pins PD11 to PD0, PIXCLKI, PIXCLKI, PIXCLKO,  
FSVGC, VSVGC, HSVGC, CBO and TVD  
VSSD1  
7
S
I
digital ground 1  
RESET  
TMS  
8
reset input; active LOW  
9
I/pu  
O
test mode select input for Boundary Scan Test (BST); note 2  
test data output for BST; note 2  
test clock input for BST; note 2  
digital supply voltage 2 (3.3 V for I/Os)  
digital ground 2  
I2C-bus serial clock input  
I2C-bus serial data input/output  
TDO  
10  
11  
12  
13  
14  
15  
16  
17  
TCK  
I/pu  
S
VDDD2  
VSSD2  
SCL  
S
I
SDA  
I/O  
n.c.  
not connected  
FSVGC  
I/O  
frame synchronization output to Video Graphics Controller (VGC)  
(optional input); note 3  
VSVGC  
PIXCLKI  
PIXCLKI  
PD3  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I
vertical synchronization output to VGC (optional input); note 3  
inverted pixel clock input  
I
pixel clock input (looped through)  
I
MSB 4 with CB-Y-CR 4 : 2 : 2; see Tables 8 to 13 for pin assignment  
MSB 5 with CB-Y-CR 4 : 2 : 2; see Tables 8 to 13 for pin assignment  
MSB 6 with CB-Y-CR 4 : 2 : 2; see Tables 8 to 13 for pin assignment  
MSB 7 with CB-Y-CR 4 : 2 : 2; see Tables 8 to 13 for pin assignment  
digital supply voltage 3 (3.3 V for core)  
digital ground 3  
PD2  
I
PD1  
I
PD0  
I
VDDD3  
VSSD3  
PIXCLKO  
CBO  
S
S
O
I/O  
I/O  
pixel clock output to VGC  
composite blanking output to VGC; active LOW; note 3  
horizontal synchronization output to VGC (optional input); note 3  
not connected  
HSVGC  
n.c.  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
n.c.  
not connected  
OUT_EN  
I/pu  
if HIGH (default by pull-up): LLC, RTCI and SRES are outputs;  
if LOW: LLC, RTCI and SRES are inputs  
LLC  
36  
37  
I/O  
I/O  
line-locked clock  
RTCI  
real-time control input  
2004 Mar 04  
6
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
SYMBOL  
PIN TYPE(1)  
DESCRIPTION  
SRES  
VSM  
38  
39  
40  
I/O  
O
sync reset input  
vertical synchronization output to monitor (non-interlaced auxiliary RGB)  
HSM_CSYNC  
O
horizontal synchronization output to monitor (non-interlaced auxiliary RGB) or  
composite sync for RGB-SCART  
RED_CR_C_CVBS  
41  
O
O
S
analog output of RED or CR or C or CVBS signal  
analog output of GREEN or VBS or CVBS signal  
analog supply voltage 1 (3.3 V for DACs)  
analog supply voltage 2 (3.3 V for DACs)  
analog output of BLUE or CB or CVBS signal  
GREEN_VBS_CVBS 42  
VDDA1  
43  
44  
45  
46  
VDDA2  
S
BLUE_CB_CVBS  
RSET  
O
O
DAC reference pin; connected via 1 kresistor to analog ground (do not use  
capacitor in parallel with 1 kresistor)  
DUMP  
VSSA1  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
O
S
S
O
I
DAC reference pin; connected via 12 resistor to analog ground  
analog ground 1  
VSSA2  
analog ground 2  
XTALO  
XTALI  
VDDA3  
VDDA4  
TVD  
crystal oscillator output  
crystal oscillator input  
S
S
O
I/pu  
I
analog supply voltage 3 (3.3 V for oscillator)  
analog supply voltage 4 (3.3 V)  
interrupt if TV is detected at DAC output  
test reset input for BST; active LOW; notes 2, 4 and 5  
test data input for BST; note 2  
TRST  
TDI  
VSSD4  
VDDD4  
TTXRQ_XCLKO2  
TTX_SRES  
PD4  
S
S
O
I
digital ground 4  
digital supply voltage 4 (3.3 V for core)  
teletext request output or 13.5 MHz clock output of the crystal oscillator; note 3  
teletext input or sync reset input  
I
MSB 3 with CB-Y-CR 4 : 2 : 2; see Tables 8 to 13 for pin assignment  
MSB 2 with CB-Y-CR 4 : 2 : 2; see Tables 8 to 13 for pin assignment  
MSB 1 with CB-Y-CR 4 : 2 : 2; see Tables 8 to 13 for pin assignment  
MSB with CB-Y-CR 4 : 2 : 2; see Tables 8 to 13 for pin assignment  
PD5  
I
PD6  
I
PD7  
I
Notes  
1. Pin type: I = input, O = output, S = supply, pu = pull-up.  
2. In accordance with the “IEEE1149.1” standard the pins TDI, TMS, TCK and TRST are input pins with an internal  
pull-up resistor and TDO is a 3-state output pin.  
3. The pins FSVGC, VSVGC, CBO, HSVGC and TTXRQ_XCLKO2 are used for bootstrapping; see Section 7.1.  
4. For board design without boundary scan implementation connect TRST to ground.  
5. This pin provides easy initialization of the Boundary Scan Test (BST) circuit. TRST can be used to force the Test  
Access Port (TAP) controller to the TEST_LOGIC_RESET state (normal operation) at once.  
2004 Mar 04  
7
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
n.c.  
PD8  
1
2
3
4
5
6
7
8
9
48  
V
SSA1  
47 DUMP  
PD9  
46 RSET  
PD10  
PD11  
45 BLUE_CB_CVBS  
44  
43  
V
V
DDA2  
DDA1  
V
DDD1  
V
42 GREEN_VBS_CVBS  
41 RED_CR_C_CVBS  
40 HSM_CSYNC  
39 VSM  
SSD1  
RESET  
TMS  
SAA7104H  
SAA7105H  
TDO 10  
TCK 11  
38 SRES  
V
12  
37 RTCI  
DDD2  
V
13  
36 LLC  
SSD2  
SCL 14  
SDA 15  
n.c. 16  
35 OUT_EN  
34 n.c.  
33 n.c.  
MHC684  
Fig.2 Pin configuration.  
2004 Mar 04  
8
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
7
FUNCTIONAL DESCRIPTION  
For ease of analog post filtering the signals are twice  
oversampled to 27 MHz before digital-to-analog  
conversion.  
The digital video encoder encodes digital luminance and  
colour difference signals (CB-Y-CR) or digital RGB signals  
into analog CVBS, S-video and, optionally, RGB or  
CR-Y-CB signals. NTSC M, PAL B/G and sub-standards  
are supported.  
The total filter transfer characteristics (scaler and  
anti-flicker filter are not taken into account) are illustrated  
in Figs 4 to 9. All three DACs are realized with full 10-bit  
resolution. The CR-Y-CB to RGB dematrix can be  
bypassed (optionally) in order to provide the upsampled  
CR-Y-CB input signals.  
The SAA7104H; SAA7105H can be directly connected to  
a PC video graphics controller with a maximum resolution  
of 1280 × 1024 (progressive) or 1920 × 1080 (interlaced)  
at a 50 or 60 Hz frame rate. A programmable scaler scales  
the computer graphics picture so that it will fit into a  
standard TV screen with an adjustable underscan area.  
Non-interlaced-to-interlaced conversion is optimized with  
an adjustable anti-flicker filter for a flicker-free display at a  
very high sharpness.  
The 8-bit multiplexed CB-Y-CR formats are “ITU-R BT.656”  
(D1 format) compatible, but the SAV and EAV codes can  
be decoded optionally, when the device is operated in  
slave mode. For assignment of the input data to the rising  
or falling clock edge see Tables 8 to 13.  
In order to display interlaced RGB signals through a  
euro-connector TV set, a separate digital composite sync  
signal (pin HSM_CSYNC) can be generated; it can be  
advanced up to 31 periods of the 27 MHz crystal clock in  
order to be adapted to the RGB processing of a TV set.  
Besides the most common 16-bit 4 : 2 : 2 CB-Y-CR input  
format (using 8 pins with double edge clocking), other  
CB-Y-CR and RGB formats are also supported; see  
Tables 8 to 13.  
A complete 3 × 256 bytes Look-Up Table (LUT), which can  
be used, for example, as a separate gamma corrector, is  
located in the RGB domain; it can be loaded either through  
the video input port PD (Pixel Data) or via the I2C-bus.  
The SAA7104H; SAA7105H synthesizes all necessary  
internal signals, colour subcarrier frequency and  
synchronization signals from that clock.  
It is also possible to connect a Philips digital video decoder  
(e.g. SAA7114H), using its line-locked clock for  
re-encoding. Information containing actual subcarrier,  
PAL-ID etc. is provided via pin RTCI which is connected to  
pin RTCO of the decoder.  
The SAA7104H; SAA7105H supports a 32 × 32 × 2-bit  
hardware cursor, the pattern of which can also be loaded  
through the video input port or via the I2C-bus.  
It is also possible to encode interlaced 4 : 2 : 2 video  
signals such as PC-DVD; for that the anti-flicker filter, and  
in most cases the scaler, will simply be bypassed.  
Wide screen signalling data can be loaded via the I2C-bus  
and is inserted into line 23 for standards using a 50 Hz  
field rate.  
Besides the applications for video output, the SAA7104H;  
SAA7105H can also be used for generating a kind of  
auxiliary VGA output, when the RGB non-interlaced input  
signal is fed to the DACs. This may be of interest for  
example, when the graphics controller provides a second  
graphics window at its video output port.  
VPS data for program dependent automatic start and stop  
of such featured VCRs is loadable via the I2C-bus.  
The IC also contains Closed Caption and extended data  
services encoding (line 21), and supports teletext insertion  
for the appropriate bit stream format at a 27 MHz clock rate  
(see Fig.15). It is also possible to load data for the copy  
generation management system into line 20 of every field  
(525/60 line counting).  
The basic encoder function consists of subcarrier  
generation, colour modulation and insertion of  
synchronization signals at a crystal-stable clock rate of  
13.5 MHz (independent of the actual pixel clock used at  
the input side), corresponding to an internal 4 : 2 : 2  
bandwidth in the luminance/colour difference domain.  
Luminance and chrominance signals are filtered in  
accordance with the standard requirements of “RS-170-A”  
and “ITU-R BT.470-3”.  
A number of possibilities are provided for setting different  
video parameters such as:  
Black and blanking level control  
Colour subcarrier frequency  
Variable burst amplitude etc.  
2004 Mar 04  
9
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
7.1  
Reset conditions  
If Y-CB-CR is being applied as a 27 Mbyte/s data stream,  
the output of the input formatter can be used directly to  
feed the video encoder block.  
To activate the reset a pulse at least of 2 crystal clocks  
duration is required.  
The horizontal upscaling is supported via the input  
formatter. According to the programming of the pixel clock  
dividers (see Section 7.10), it will sample up the data  
stream to 1 ×, 2 × or 4 × the input data rate. An optional  
interpolation filter is available. The clock domain transition  
is handled by a 4 entries wide FIFO which gets initialized  
every field or explicitly at request. A bypass for the FIFO is  
available, especially for high input data rates.  
During reset (RESET = LOW) plus an extra 32 crystal  
clock periods, FSVGC, VSVGC, CBO, HSVGC and  
TTX_SRES are set to input mode and HSM_CSYNC and  
VSM are set to 3-state. A reset also forces the I2C-bus  
interface to abort any running bus transfer and sets it into  
receive condition.  
After reset, the state of the I/Os and other functions is  
defined by the strapping pins until an I2C-bus access  
redefines the corresponding registers; see Table 1.  
7.3  
RGB LUT  
The three 256 byte RAMs of this block can be addressed  
by three 8-bit wide signals, thus it can be used to build any  
transformation, e.g. a gamma correction for RGB signals.  
In the event that the indexed colour data is applied, the  
RAMs are addressed in parallel.  
Table 1 Strapping pins  
PIN  
FSVGC  
TIED  
PRESET  
LOW NTSC M encoding, PIXCLK  
fits to 640 × 480 graphics  
input  
The LUTs can either be loaded by an I2C-bus write access  
or can be part of the pixel data input through the PD port.  
In the latter case, 256 × 3 bytes for the R, G and B LUT are  
expected at the beginning of the input video line, two lines  
before the line that has been defined as first active line,  
until the middle of the line immediately preceding the first  
active line. The first 3 bytes represent the first RGB LUT  
data, and so on.  
HIGH PAL B/G encoding, PIXCLK  
fits to 640 × 480 graphics  
input  
VSVGC  
CBO  
LOW 4 : 2 : 2 Y-CB-CR graphics  
input (format 0)  
HIGH 4 : 4 : 4 RGB graphics input  
(format 3)  
LOW input demultiplex phase:  
LSB = LOW  
7.4  
Cursor insertion  
A 32 × 32 dots cursor can be overlaid as an option; the bit  
map of the cursor can be uploaded by an I2C-bus write  
access to specific registers or in the pixel data input  
through the PD port. In the latter case, the 256 bytes  
defining the cursor bit map (2 bits per pixel) are expected  
immediately following the last RGB LUT data in the line  
preceding the first active line.  
HIGH input demultiplex phase:  
LSB = HIGH  
HSVGC  
LOW input demultiplex phase:  
MSB = LOW  
HIGH input demultiplex phase:  
MSB = HIGH  
TTXRQ_XCLKO2 LOW slave (FSVGC, VSVGC and  
HSVGC are inputs, internal  
The cursor bit map is set up as follows: each pixel  
occupies 2 bits. The meaning of these bits depends on the  
CMODE I2C-bus register as described in Table 4.  
Transparent means that the input pixels are passed  
through, the ‘cursor colours’ can be programmed in  
separate registers.  
colour bar is active)  
HIGH master (FSVGC, VSVGC  
and HSVGC are outputs)  
7.2  
Input formatter  
The bit map is stored with 4 pixels per byte, aligned to the  
least significant bit. So the first pixel is in bits 0 and 1, the  
next pixel in bits 3 and 4 and so on. The first index is the  
column, followed by the row; index 0,0 is the upper left  
corner.  
The input formatter converts all accepted PD input data  
formats, either RGB or Y-CB-CR, to a common internal  
RGB or Y-CB-CR data stream.  
When double-edge clocking is used, the data is internally  
split into portions PPD1 and PPD2. The clock edge  
assignment must be set according to the I2C-bus control  
bits SLOT and EDGE for correct operation.  
2004 Mar 04  
10  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 2 Layout of a byte in the cursor bit map  
Table 4 Cursor modes  
D7  
pixel n + 3  
D1 D0  
D6  
D5  
pixel n + 2  
D1 D0  
D4  
D3  
pixel n + 1  
D1 D0  
D2  
D1  
D0  
CURSOR MODE  
CMODE = 0 CMODE = 1  
second cursor colour second cursor colour  
CURSOR  
PATTERN  
pixel n  
D1  
D0  
00  
01  
10  
11  
first cursor colour  
transparent  
first cursor colour  
transparent  
For each direction, there are 2 registers controlling the  
position of the cursor, one controls the position of the  
‘hot spot’, the other register controls the insertion position.  
The hot spot is the ‘tip’ of the pointer arrow. It can have any  
position in the bit map. The actual position registers  
describe the co-ordinates of the hot spot. Again 0,0 is the  
upper left corner. While it is not possible to move the  
hot spot beyond the left respectively upper screen border  
this is perfectly legal for the right respectively lower border.  
It should be noted that the cursor position is described  
relative to the input resolution.  
inverted input  
auxiliary cursor  
colour  
7.5  
RGB Y-CB-CR matrix  
RGB input signals to be encoded to PAL or NTSC are  
converted to the Y-CB-CR colour space in this block. The  
colour difference signals are fed through low-pass filters  
and formatted to a ITU-R BT.601 like 4 : 2 : 2 data stream  
for further processing.  
A gain adjust option corrects the level swing of the  
graphics world (black-to-white as 0 to 255) to the required  
range of 16 to 235.  
Table 3 Cursor bit map  
BYTE  
D7 D6 D5 D4 D3 D2 D1 D0  
row 0 row 0 row 0 row 0  
column 3 column 2 column 1 column 0  
row 0 row 0 row 0 row 0  
column 7 column 6 column 5 column 4  
0
1
2
The matrix and formatting blocks can be bypassed for  
Y-CB-CR graphics input.  
When the auxiliary VGA mode is selected, the output of the  
cursor insertion block is immediately directed to the triple  
DAC.  
row 0  
column  
11  
row 0  
column  
10  
row 0  
column 9 column 8  
row 0  
7.6  
Horizontal scaler  
...  
6
...  
...  
...  
...  
The high quality horizontal scaler operates on the 4 : 2 : 2  
data stream. Its control engines compensate the colour  
phase offset automatically.  
row 0  
column  
27  
row 0  
column  
26  
row 0  
column  
25  
row 0  
column  
24  
The scaler starts processing after a programmable  
horizontal offset and continues with a number of input  
pixels. Each input pixel is a programmable fraction of the  
current output pixel (XINC/4096). A special case is  
XINC = 0, this sets the scaling factor to 1.  
7
row 0  
column  
31  
row 0  
column  
30  
row 0  
column  
29  
row 0  
column  
28  
...  
...  
...  
...  
...  
254  
row 31  
column  
27  
row 31  
column  
26  
row 31  
column  
25  
row 31  
column  
24  
If the SAA7104H; SAA7105H input data is in accordance  
with “ITU-R BT.656”, the scaler enters another mode.  
In this event, XINC needs to be set to 2048 for a scaling  
factor of 1. With higher values, upscaling will occur.  
255  
row 31  
column  
31  
row 31  
column  
30  
row 31  
column  
29  
row 31  
column  
28  
The phase resolution of the circuit is 12 bits, giving a  
maximum offset of 0.2 after 800 input pixels. Small FIFOs  
rearrange a 4 : 2 : 2 data stream at the scaler output.  
2004 Mar 04  
11  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
7.7  
Vertical scaler and anti-flicker filter  
7.10 Oscillator and Discrete Time Oscillator (DTO)  
The functions scaling, Anti-Flicker Filter (AFF) and  
re-interlacing are implemented in the vertical scaler.  
The master clock generation is realized as a 27 MHz  
crystal oscillator, which can operate with either a  
fundamental wave crystal or a 3rd-harmonic crystal.  
Besides the entire input frame, it receives the first and last  
lines of the border to allow anti-flicker filtering.  
The crystal clock supplies the DTO of the pixel clock  
synthesizer, the video encoder and the I2C-bus control  
block. It also usually supplies the triple DAC, with the  
exception of the auxiliary VGA or HDTV mode, where the  
triple DAC is clocked by the pixel clock (PIXCLK).  
The circuit generates the interlaced output fields by scaling  
down the input frames with different offsets for odd and  
even fields. Increasing the YSKIP setting reduces the  
anti-flicker function. A YSKIP value of 4095 switches it off;  
see Table 85.  
The DTO can be programmed to synthesize all relevant  
pixel clock frequencies between circa 40 and 85 MHz.  
Two programmable dividers provide the actual clock to be  
used externally and internally. The dividers can be  
programmed to factors of 1, 2, 4 and 8. For the internal  
pixel clock, a divider ratio of 8 makes no sense and is thus  
forbidden.  
An additional, programmable vertical filter supports the  
anti-flicker function. This filter is not available at upscaling  
factors of more than 2.  
The programming is similar to the horizontal scaler. For the  
re-interlacing, the resolutions of the offset registers are not  
sufficient, so the weighting factors for the first lines can  
also be adjusted. YINC = 0 sets the scaling factor to 1;  
YIWGTO and YIWGTE must not be 0.  
The internal clock can be switched completely to the pixel  
clock input. In this event, the input FIFO is useless and will  
be bypassed.  
Due to the re-interlacing, the circuit can perform upscaling  
by a maximum factor of 2. The maximum factor depends  
on the setting of the anti-flicker function and can be derived  
from the formulae given in Section 7.20.  
The entire pixel clock generation can be locked to the  
vertical frequency. Both pixel clock dividers get  
re-initialized every field. Optionally, the DTO can be  
cleared with each V-sync. At proper programming, this will  
make the pixel clock frequency a precise multiple of the  
vertical and horizontal frequencies. This is required for  
some graphic controllers.  
An additional upscaling mode allows to increase the  
upscaling factor to maximum 4 as it is required for the old  
VGA modes like 320 × 240.  
7.8  
FIFO  
7.11 Low-pass Clock Generation Circuit (CGC)  
The FIFO acts as a buffer to translate from the PIXCLK  
clock domain to the XTAL clock domain. The write clock is  
PIXCLK and the read clock is XTAL. An underflow or  
overflow condition can be detected via the I2C-bus read  
access.  
This block reduces the phase jitter of the synthesized pixel  
clock. It works as a tracking filter for all relevant  
synthesized pixel clock frequencies.  
7.12 Encoder  
In order to avoid underflows and overflows, it is essential  
that the frequency of the synthesized PIXCLK matches to  
the input graphics resolution and the desired scaling  
factor.  
7.12.1 VIDEO PATH  
The encoder generates luminance and colour subcarrier  
output signals from the Y, CB and CR baseband signals,  
which are suitable for use as CVBS or separate Y and C  
signals.  
7.9  
Border generator  
Input to the encoder, at 27 MHz clock (e.g. DVD), is either  
originated from computer graphics at pixel clock, fed  
through the FIFO and border generator, or a ITU-R BT.656  
style signal.  
When the graphics picture is to be displayed as interlaced  
PAL, NTSC, S-video or RGB on a TV screen, it is desired  
in many cases not to lose picture information due to the  
inherent overscanning of a TV set. The desired amount of  
underscan area, which is achieved through appropriate  
scaling in the vertical and horizontal direction, can be filled  
in the border generator with an arbitrary true colour tint.  
2004 Mar 04  
12  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Luminance is modified in gain and in offset (the offset is  
programmable in a certain range to enable different black  
level set-ups). A blanking level can be set after insertion of  
a fixed synchronization pulse tip level, in accordance with  
standard composite synchronization schemes. Other  
manipulations used for the Macrovision anti-taping  
process, such as additional insertion of AGC super-white  
pulses (programmable in height), are supported by the  
SAA7104H only.  
for both fields. The internal insertion window for text is set  
to 360 (PAL WST), 296 (NTSC WST) or 288 (NABTS)  
teletext bits including clock run-in bits. The protocol and  
timing are illustrated in Fig.15.  
Alternatively, this pin can be provided with a buffered  
crystal clock (XCLK) of 13.5 MHz.  
7.12.3 VIDEO PROGRAMMING SYSTEM (VPS) ENCODING  
Five bytes of VPS information can be loaded via the  
I2C-bus and will be encoded in the appropriate format into  
line 16.  
To enable easy analog post filtering, luminance is  
interpolated from a 13.5 MHz data rate to a 27 MHz data  
rate, thereby providing luminance in a 10-bit resolution.  
The transfer characteristics of the luminance interpolation  
filter are illustrated in Figs 6 and 7. Appropriate transients  
at start/end of active video and for synchronization pulses  
are ensured.  
7.12.4 CLOSED CAPTION ENCODER  
Using this circuit, data in accordance with the specification  
of Closed Caption or extended data service, delivered by  
the control interface, can be encoded (line 21). Two  
dedicated pairs of bytes (two bytes per field), each pair  
preceded by run-in clocks and framing code, are possible.  
Chrominance is modified in gain (programmable  
separately for CB and CR), and a standard dependent  
burst is inserted, before baseband colour signals are  
interpolated from a 6.75 MHz data rate to a 27 MHz data  
rate. One of the interpolation stages can be bypassed,  
thus providing a higher colour bandwidth, which can be  
used for the Y and C output. The transfer characteristics of  
the chrominance interpolation filter are illustrated in  
Figs 4 and 5.  
The actual line number in which data is to be encoded, can  
be modified in a certain range.  
The data clock frequency is in accordance with the  
definition for NTSC M standard 32 times horizontal line  
frequency.  
Data LOW at the output of the DACs corresponds to 0 IRE,  
data HIGH at the output of the DACs corresponds to  
approximately 50 IRE.  
The amplitude (beginning and ending) of the inserted  
burst, is programmable in a certain range that is suitable  
for standard signals and for special effects. After the  
succeeding quadrature modulator, colour is provided on  
the subcarrier in 10-bit resolution.  
It is also possible to encode Closed Caption data for 50 Hz  
field frequencies at 32 times the horizontal line frequency.  
The numeric ratio between the Y and C outputs is in  
accordance with the standards.  
7.12.5 ANTI-TAPING (SAA7104H ONLY)  
For more information contact your nearest Philips  
Semiconductors sales office.  
7.12.2 TELETEXT INSERTION AND ENCODING (NOT  
SIMULTANEOUSLY WITH REAL-TIME CONTROL)  
7.13 RGB processor  
Pin TTX_SRES receives a WST or NABTS teletext  
bitstream sampled at the crystal clock. At each rising edge  
of the output signal (TTXRQ) a single teletext bit has to be  
provided after a programmable delay at input pin  
TTX_SRES.  
This block contains a dematrix in order to produce RED,  
GREEN and BLUE signals to be fed to a SCART plug.  
Before Y, CB and CR signals are de-matrixed, individual  
gain adjustment for Y and colour difference signals and  
2 times oversampling for luminance and 4 times  
oversampling for colour difference signals is performed.  
The transfer curves of luminance and colour difference  
components of RGB are illustrated in Figs 8 and 9.  
Phase variant interpolation is achieved on this bitstream in  
the internal teletext encoder, providing sufficient small  
phase jitter on the output text lines.  
TTXRQ_XCLKO2 provides a fully programmable request  
signal to the teletext source, indicating the insertion period  
of bitstream at lines which can be selected independently  
2004 Mar 04  
13  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
7.14 Triple DAC  
In slave mode, the circuit accepts sync pulses on the  
bidirectional FSVGC (frame sync), VSVGC (vertical sync)  
and HSVGC (horizontal sync) pins: the polarities of the  
signals can be programmed. The frame sync signal is only  
necessary when the input signal is interlaced, in other  
cases it may be omitted. If the frame sync signal is present,  
it is possible to derive the vertical and the horizontal phase  
from it by setting the HFS and VFS bits. HSVGC and  
VSVGC are not necessary in this case, so it is possible to  
switch the pins to output mode.  
Both Y and C signals are converted from digital-to-analog  
in a 10-bit resolution at the output of the video encoder.  
Y and C signals are also combined into a 10-bit CVBS  
signal.  
The CVBS output signal occurs with the same processing  
delay as the Y, C and optional RGB or CR-Y-CB outputs.  
Absolute amplitude at the input of the DAC for CVBS is  
reduced by 15  
16 with respect to Y and C DACs to make  
maximum use of the conversion ranges.  
Alternatively, the device can be triggered by auxiliary  
codes in a ITU-R BT.656 data stream via PD7 to PD0.  
RED, GREEN and BLUE signals are also converted from  
digital-to-analog, each providing a 10-bit resolution.  
Only vertical frequencies of 50 and 60 Hz are allowed with  
the SAA7104H; SAA7105H. In slave mode, it is not  
possible to lock the encoders colour carrier to the line  
frequency with the PHRES bits.  
The reference currents of all three DACs can be adjusted  
individually in order to adapt for different output signals.  
In addition, all reference currents can be adjusted  
commonly to compensate for small tolerances of the  
on-chip band gap reference voltage.  
In the (more common) master mode, the time base of the  
circuit is continuously free-running. The IC can output a  
frame sync at pin FSVGC, a vertical sync at pin VSVGC, a  
horizontal sync at pin HSVGC and a composite blanking  
signal at pin CBO. All of these signals are defined in the  
PIXCLK domain. The duration of HSVGC and VSVGC are  
fixed, they are 64 clocks for HSVGC and 1 line for VSVGC.  
The leading slopes are in phase and the polarities can be  
programmed.  
Alternatively, all currents can be switched off to reduce  
power dissipation.  
All three outputs can be used to sense for an external load  
(usually 75 ) during a pre-defined output. A flag in the  
I2C-bus status byte reflects whether a load is applied or  
not. In addition, an automatic sense mode can be  
activated which indicates a 75 load at any of the three  
outputs at the dedicated interrupt pin TVD.  
The input line length can be programmed. The field length  
is always derived from the field length of the encoder and  
the pixel clock frequency that is being used.  
If the SAA7104H; SAA7105H is required to drive a second  
(auxiliary) VGA monitor or an HDTV set, the DACs receive  
the signal coming from the HD data path. In this event, the  
DACs are clocked at the incoming PIXCLKI instead of the  
27 MHz crystal clock used in the video encoder.  
CBO acts as a data request signal. The circuit accepts  
input data at a programmable number of clocks after CBO  
goes active. This signal is programmable and it is possible  
to adjust the following (see Figs 13 and 14):  
7.15 HD data path  
The horizontal offset  
This data path allows the SAA7104H; SAA7105H to be  
used with VGA or HDTV monitors. It receives its data  
directly from the cursor generator and supports RGB and  
Y-PB-PR output formats (RGB not with Y-PB-PR input  
formats). No scaling is done in this mode.  
The length of the active part of the line  
The distance from active start to first expected data  
The vertical offset separately for odd and even fields  
The number of lines per input field.  
A gain adjustment either leads the full level swing to the  
digital-to-analog converters or reduces the amplitude by a  
factor of 0.69. This enables sync pulses to be added to the  
signal as it is required for display units expecting signals  
with sync pulses, either regular or 3-level syncs.  
In most cases, the vertical offsets for odd and even fields  
are equal. If they are not, then the even field will start later.  
The SAA7104H; SAA7105H will also request the first input  
lines in the even field, the total number of requested lines  
will increase by the difference of the offsets.  
As stated above, the circuit can be programmed to accept  
the look-up and cursor data in the first 2 lines of each field.  
The timing generator provides normal data request pulses  
for these lines; the duration is the same as for regular lines.  
7.16 Timing generator  
The synchronization of the SAA7104H; SAA7105H is able  
to operate in two modes; slave mode and master mode.  
2004 Mar 04  
14  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
The additional request pulses will be suppressed with  
LUTL set to logic 0; see Table 108. The other vertical  
timings do not change in this case, so the first active line  
can be number 2, counted from 0.  
image, the lines as well as fractions of lines. Figure 3  
illustrates the context between the various tables.  
The first table serves as an array to hold the correct  
sequence of lines that compose the synchronization  
raster; it can contain up to 16 entries. Each entry holds a  
4-bit index to the next table and a 10-bit counter value  
which specifies how often this particular line is invoked.  
If the necessary line count for a particular line exceeds the  
10 bits, it has to use two table entries.  
7.17 Pattern generator for HD sync pulses  
The pattern generator provides appropriate  
synchronization patterns for the video data path in  
auxiliary monitor or HDTV mode. It provides maximum  
flexibility in terms of raster generation for all interlaced and  
non-interlaced computer graphics or ATSC formats. The  
sync engine is capable of providing a combination of  
event-value pairs which can be used to insert certain  
values in the outgoing data stream at specified times.  
It can also be used to generate digital signals associated  
with time events. These can be used as digital horizontal  
and vertical synchronization signals on pins HSM_CSYNC  
and VSM.  
The 4-bit index in the line count array points to the line type  
array. It holds up to 15 entries (index 0 is not used),  
index 1 points to the first entry, index 2 to the second entry  
of the line type array etc.  
Each entry of the line type array can hold up to 8 index  
pointers to another table. These indices point to portions of  
a line pulse pattern: A line could be split up e.g. into a sync,  
a blank, and an active portion followed by another blank  
portion, occupying four entries in one table line.  
The picture position is adjustable through the  
programmable relationship between the sync pulses and  
the video contents.  
Each index of this table points to a particular line of the  
next table in the linked list. This table is called the line  
pattern array and each of the up to seven entries stores up  
to four pairs of a duration in pixel clock cycles and an index  
to a value table. The table entries are used to define  
portions of a line representing a certain value for a certain  
number of clock cycles.  
The generation of embedded analog sync pulses is bound  
to a number of events which can be defined for a line.  
Several of these line timing definitions can exist in parallel.  
For the final sync raster composition a certain sequence of  
lines with different sync event properties has to be defined.  
The sequence specifies a series of line types and the  
number of occurrences of this specific line type. Once the  
sequence has been completed, it restarts from the  
beginning. All pulse shapes are filtered internally in order  
to avoid ringing after analog post filters.  
The value specified in this table is actually another 3-bit  
index into a value array which can hold up to eight 8-bit  
values. If bit 4 (MSB) of the index is logic 1, the value is  
inserted into the G or Y signal, only; if bit 4 = 0, the  
associated value is inserted into all three signals.  
The sequence of the generated pulse stream must fit  
precisely to the incoming data stream in terms of the total  
number of pixels per line and lines per frame.  
Two additional bits of the entries in the value array (LSBs  
of the second byte) determine if the associated events  
appear as a digital pulse on the HSM_CSYNC and/or VSM  
outputs.  
The sync engines flexibility is achieved by using a  
sequence of linked lists carrying the properties for the  
2004 Mar 04  
15  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
4-bit line type index  
10-bit line count  
line  
count  
pointer  
LINE COUNT ARRAY  
16 entries  
line type pointer  
3
3
3
3
3
3
3
3
3
3
3
3
pattern pointer  
LINE TYPE ARRAY  
15 entries  
3
3
3
3
event type pointer  
10-bit duration  
10-bit duration  
10-bit duration  
4-bit value index  
10-bit duration  
4-bit value index  
4-bit value index  
4-bit value index  
LINE PATTERN ARRAY  
7 entries  
8 + 2-bit value  
VALUE ARRAY  
8 entries  
line pattern pointer  
MHC573  
Fig.3 Context between the pattern generator tables for DH sync pulses.  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
To ease the trigger set-up for the sync generation module,  
a set of registers is provided to set up the screen raster  
which is defined as width and height. A trigger position can  
be specified as an x,y co-ordinate within the overall  
dimensions of the screen raster. If the x,y counter matches  
the specified co-ordinates, a trigger pulse is generated  
which pre-loads the tables with their initial values.  
Important note:  
Due to a problem in the programming interface, writing to  
the line pattern array (address D2) might destroy the data  
of the line type array (address D1). A work around is to  
write the line pattern array data before writing the line type  
array. Reading of the arrays is possible but all address  
pointers must be initialized before the next write operation.  
The listing in Table 5 outlines an example on how to set up  
the sync tables for a 1080i HD raster.  
Table 5 Example for set-up of the sync tables  
SEQUENCE  
COMMENT  
Write to subaddress D0H  
00  
points to first entry of line count array (index 0)  
05 20  
generate 5 lines of line type index 2 (this is the second entry of the line type array); will be  
the first vertical raster pulse  
01 40  
generate 1 line of line type index 4; will be sync-black-sync-black sequence after the first  
vertical pulse  
0E 60  
1C 12  
02 60  
01 50  
generate 14 lines of line type index 6; will be the following lines with sync-black sequence  
generate 540 lines of line type index 1; will be lines with sync and active video  
generate 2 lines of line type index 6; will be the following lines with sync-black sequence  
generate 1 line of line type index 5; will be the following line (line 563) with  
sync-black-sync-black-null sequence (null is equivalent to sync tip)  
04 20  
01 30  
generate 4 lines of line type index 2; will be the second vertical raster pulse  
generate 1 line of line type index 3; will be the following line with sync-null-sync-black  
sequence  
0F 60  
1C 12  
02 60  
generate 15 lines of line type index 6; will be the following lines with sync-black sequence  
generate 540 lines of line type index 1; will be lines with sync and active video  
generate 2 lines of line type index 6; will be the following lines with sync-black sequence;  
now, 1125 lines are defined  
Write to subaddress D2H (insertion is done into all three analog output signals)  
00 points to first entry of line pattern array (index 1)  
6F 33 2B 30 00 00 00 00 880 × value(3) + 44 × value(3); (subtract 1 from real duration)  
6F 43 2B 30 00 00 00 00 880 × value(4) + 44 × value(3)  
3B 30 BF 03 BF 03 2B 30 60 × value(3) + 960 × value(0) + 960 × value(0) + 44 × value(3)  
2B 10 2B 20 57 30 00 00 44 × value(1) + 44 × value(2) + 88 × value(3)  
3B 30 BF 33 BF 33 2B 30 60 × value(3) + 960 × value(3) + 960 × value(3) + 44 × value(3)  
Write to subaddress D1H  
00  
points to first entry of line type array (index 1)  
34 00 00 00  
24 24 00 00  
24 14 00 00  
14 14 00 00  
use pattern entries 4 and 3 in this sequence (for sync and active video)  
use pattern entries 4, 2, 4 and 2 in this sequence (for 2 × sync-black-null-black)  
use pattern entries 4, 2, 4 and 1 in this sequence (for sync-black-null-black-null)  
use pattern entries 4, 1, 4 and 1 in this sequence (for sync-black-sync-black)  
2004 Mar 04  
17  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
SEQUENCE  
COMMENT  
14 24 00 00  
54 00 00 00  
use pattern entries 4, 1, 4 and 2 in this sequence (for sync-black-sync-black-null)  
use pattern entries 4 and 5 in this sequence (for sync-black)  
Write to subaddress D3H (no signals are directed to pins HSM_CSYNC and VSM)  
00  
points to first entry of value array (index 0)  
black level, to be added during active video  
sync level LOW (minimum output voltage)  
sync level HIGH (3-level sync)  
CC 00  
80 00  
0A 00  
CC 00  
80 00  
black level (needed elsewhere)  
null (identical to sync level LOW)  
Write to subaddress DCH  
0B  
insertion is active, gain for signal is adapted accordingly  
7.18 I2C-bus interface  
Because the analog power-down mode turns off the pixel  
clock synthesizer, there are limitations in some  
applications. If there is no pixel clock, the IC is not able to  
set its outputs to LOW. So, in most cases, DOWNA and  
DOWND should be set to logic 1 simultaneously. If the  
EIDIV bit is logic 1, it should be set to logic 0 before  
power-down.  
The I2C-bus interface is a standard slave transceiver,  
supporting 7-bit slave addresses and 400 kbits/s  
guaranteed transfer rate. It uses 8-bit subaddressing with  
an auto-increment function. All registers are write and  
read, except two read only status bytes.  
The register bit map consists of an RGB Look-Up Table  
(LUT), a cursor bit map and control registers. The LUT  
contains three banks of 256 bytes, where each RGB triplet  
is assigned to one address. Thus a write access needs the  
LUT address and three data bytes following subaddress  
FFH. For further write access auto-incrementing of the  
LUT address is performed. The cursor bit map access is  
similar to the LUT access but contains only a single byte  
per address.  
7.20 Programming the SAA7104H; SAA7105H  
The SAA7104H; SAA7105H needs to provide a  
continuous data stream at its analog outputs as well as  
receive a continuous stream of data from its data source.  
Because there is no frame memory isolating the data  
streams, restrictions apply to the input frame timings.  
Input and output processing of the SAA7104H; SAA7105H  
are only coupled through the vertical frequencies. In  
master mode, the encoder provides a vertical sync and an  
odd/even pulse to the input processing. In slave mode, the  
encoder receives them.  
The I2C-bus slave address is defined as 88H.  
7.19 Power-down modes  
In order to reduce the power consumption, the SAA7104H;  
SAA7105H supports 2 power-down modes, accessible via  
the I2C-bus. The analog power-down mode (DOWNA = 1)  
turns off the digital-to-analog converters and the pixel  
clock synthesizer. The digital power-down mode turns off  
all internal clocks and sets the digital outputs to LOW  
except the I2C-bus interface. The IC keeps its  
programming and can still be accessed in this mode,  
however not all registers can be read or written to. Reading  
or writing to the look-up tables, the cursor and the HD sync  
generator require a valid pixel clock. The typical supply  
current in full power-down is approximately 5 mA.  
The parameters of the input field are mainly given by the  
memory capacity of the SAA7104H; SAA7105H. The rule  
is that the scaler and thus the input processing needs to  
provide the video data in the same time frames as the  
encoder reads them. Therefore, the vertical active video  
times (and the vertical frequencies) need to be the same.  
The second rule is that there has to be data in the buffer  
FIFO when the encoder enters the active video area.  
Therefore, the vertical offset in the input path needs to be  
a bit shorter than the offset of the encoder.  
2004 Mar 04  
18  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
The following Sections give the set of equations required  
to program the IC for the most common application: A post  
processor in master mode with non-interlaced video input  
data.  
The required pixel clock frequency can be determined in  
the following way: Due to the limited internal FIFO size, the  
input path has to provide all pixels in the same time frame  
as the encoders vertical active time. The scaler also has to  
process the first and last border lines for the anti-flicker  
function. Thus:  
Some variables are defined below:  
InPix: the number of active pixels per input line  
InPpl: the length of the entire input line in pixel clocks  
InLin: the number of active lines per input field/frame  
TPclk: the pixel clock period  
262.5 × 1716 × TXclk  
TPclk =  
(60 Hz)  
---------------------------------------------------------------------------------------  
InLin + 2  
InPpl × integer  
× 262.5  
----------------------  
OutLin  
312.5 × 1728 × TXclk  
TPclk =  
(50 Hz)  
---------------------------------------------------------------------------------------  
InLin + 2  
OutLin  
RiePclk: the ratio of internal to external pixel clock  
OutPix: the number of active pixels per output line  
OutLin: the number of active lines per output field  
TXclk: the encoder clock period (37.037 ns).  
InPpl × integer  
× 312.5  
----------------------  
and for the pixel clock generator  
TXclk  
PCL =  
× 220 + PCLE (all frequencies);  
--------------  
TPclk  
see Tables 67, 69 and 70. The divider PCLE should be set  
according to Table 69. PCLI may be set to a lower or the  
same value. Setting a lower value means that the internal  
pixel clock is higher and the data get sampled up. The  
difference may be 1 at 640 × 480 pixels resolution and 2 at  
resolutions with 320 pixels per line as a rule of thumb. This  
allows horizontal upscaling by a maximum factor of 2  
respectively 4 (this is the parameter RiePclk).  
7.20.1 TV DISPLAY WINDOW  
At 60 Hz, the first visible pixel has the index 256,  
710 pixels can be encoded; at 50 Hz, the index is 284,  
702 pixels can be visible.  
The output lines should be centred on the screen. It should  
be noted that the encoder has 2 clocks per pixel;  
see Table 58.  
logRiePclk  
ADWHS = 256 + 710 OutPix (60 Hz);  
ADWHS = 284 + 702 OutPix (50 Hz);  
ADWHE = ADWHS + OutPix × 2 (all frequencies)  
PCLI = PCLE –  
(all frequencies)  
----------------------------  
log2  
The equations ensure that the last line of the field has the  
full number of clock cycles. Many graphic controllers  
require this. Note that the bit PCLSY needs to be set to  
ensure that there is not even a fraction of a clock left at the  
end of the field.  
For vertical, the procedure is the same. At 60 Hz, the first  
line with video information is number 19, 240 lines can be  
active. For 50 Hz, the numbers are 23 and 287;  
see Table 64.  
240 OutLin  
7.20.3 HORIZONTAL SCALER  
FAL = 19 +  
FAL = 23 +  
(60 Hz);  
(50 Hz);  
---------------------------------  
2
XOFS can be chosen arbitrarily, the condition being that  
XOFS + XPIX HLEN is fulfilled. Values given by the  
VESA display timings are preferred.  
287 OutLin  
---------------------------------  
2
LAL = FAL + OutLin (all frequencies)  
HLEN = InPpl × RiePclk 1  
Most TV sets use overscan, and not all pixels respectively  
lines are visible. There is no standard for the factor, it is  
highly recommended to make the number of output pixels  
and lines adjustable. A reasonable underscan factor is  
10%, giving approximately 640 output pixels per line.  
InPix  
2
XPIX =  
XINC =  
× RiePclk  
------------  
OutPix  
4096  
×
----------------- -------------------  
InPix RiePclk  
XINC needs to be rounded up, it needs to be set to 0 for a  
scaling factor of 1.  
7.20.2 INPUT FRAME AND PIXEL CLOCK  
The total number of pixel clocks per line and the input  
horizontal offset need to be chosen next. The only  
constraint is that the horizontal blanking has at least  
10 clock pulses.  
2004 Mar 04  
19  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
7.20.4 VERTICAL SCALER  
Or the upscaling factor needs to be limited to 1.5 and the  
horizontal upscaling factor is also limited to less than  
1.5. In this case a normal blanking length is sufficient.  
The input vertical offset can be taken from the assumption  
that the scaler should just have finished writing the first line  
when the encoder starts reading it:  
7.21 Input levels and formats  
FAL × 1716 × TXclk  
YOFS =  
YOFS =  
2.5 (60 Hz)  
2.5 (50 Hz)  
----------------------------------------------------  
The SAA7104H; SAA7105H accepts digital Y, CB, CR or  
RGB data with levels (digital codes) in accordance with  
“ITU-R BT.601”. An optional gain adjustment also allows  
to accept data with the full level swing of 0 to 255.  
InPpl × TPclk  
FAL × 1728 × TXclk  
----------------------------------------------------  
InPpl × TPclk  
In most cases the vertical offsets will be the same for odd  
and even fields. The results should be rounded down.  
For C and CVBS outputs, deviating amplitudes of the  
colour difference signals can be compensated for by  
independent gain control setting, while gain for luminance  
is set to predefined values, distinguishable for 7.5 IRE  
set-up or without set-up.  
YPIX = InLin  
YSKIP defines the anti-flicker function. 0 means maximum  
flicker reduction but minimum vertical bandwidth, 4095  
gives no flicker reduction and maximum bandwidth. Note  
that the maximum value for YINC is 4095. It might be  
necessary to reduce the value of YSKIP to fulfil this  
requirement.  
The RGB, respectively CR-Y-CB path features an  
individual gain setting for luminance (GY) and colour  
difference signals (GCD). Reference levels are measured  
with a colour bar, 100% white, 100% amplitude and  
100% saturation.  
OutLin  
----------------------  
InLin + 2  
YSKIP  
-----------------  
4095  
YINC =  
× 1 +  
× 4096  
The SAA7104H; SAA7105H has special input cells for the  
VGC port. They operate at a wider supply voltage range  
and have a strict input threshold at 1/2VDDD. To achieve full  
speed of these cells, the EIDIV bit needs to be set to  
logic 1. Note that the impedance of these cells is  
approximately 6 k. This may cause trouble with the  
bootstrapping pins of some graphic chips. So the  
power-on reset forces the bit to logic 0, the input  
impedance is regular in this mode.  
YINC  
2
YIWGTO =  
YIWGTE =  
+ 2048  
-------------  
YINC YSKIP  
-------------------------------------  
2
When YINC = 0 it sets the scaler to scaling factor 1. The  
initial weighting factors must not be set to 0 in this case.  
YIWGTE may go negative. In this event, YINC should be  
added and YOFSE incremented. This can be repeated as  
often as necessary to make YIWGTE positive.  
Table 6 “ITU-R BT.601” signal component levels  
SIGNALS(1)  
COLOUR  
It should be noted that these equations assume that the  
input is non-interlaced but the output is interlaced. If the  
input is interlaced, the initial weighting factors need to be  
adapted to obtain the proper phase offsets in the output  
frame.  
Y
CB  
235 128 128 235 235 235  
210 16 146 235 235 16  
170 166 235 235  
145 54  
CR  
R
G
B
White  
Yellow  
Cyan  
16  
34  
16  
16  
If vertical upscaling beyond the upper capabilities is  
required, the parameter YUPSC may be set to logic 1. This  
extends the maximum vertical scaling factor by a factor  
of 2. Only the parameter YINC is affected, it needs to be  
divided by two to get the same effect.  
Green  
Magenta  
Red  
235  
16  
16  
16  
16  
16  
235  
16  
106 202 222 235  
81  
41  
16  
90  
240 235  
Blue  
240 110  
128 128  
16  
16  
235  
16  
There are restrictions in this mode:  
Black  
The vertical filter YFILT is not available in this mode; the  
circuit will ignore this value  
Note  
1. Transformation:  
a) R = Y + 1.3707 × (CR 128)  
The horizontal blanking needs to be long enough to  
transfer an output line between 2 memory locations.  
This is 710 internal pixel clocks.  
b) G = Y 0.3365 × (CB 128) 0.6982 × (CR 128)  
c) B = Y + 1.7324 × (CB 128).  
2004 Mar 04  
20  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 7 Usage of bits SLOTand EDGE  
Table 9 Pin assignment for input format 1  
5 + 5 + 5-BIT 4 : 4 : 4 NON-INTERLACED RGB  
DATA SLOT CONTROL  
(EXAMPLE FOR FORMAT 0)  
FALLING  
CLOCK EDGE  
RISING  
CLOCK EDGE  
PIN  
SLOT  
EDGE  
1ST DATA  
2ND DATA  
0
0
at rising edge  
G3/Y3  
at falling edge  
R7/CR7  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G2  
G1  
G0  
B4  
B3  
B2  
B1  
B0  
X
R4  
R3  
R2  
R1  
R0  
G4  
G3  
0
1
1
1
0
1
at falling edge  
G3/Y3  
at rising edge  
R7/CR7  
at rising edge  
R7/CR7  
at falling edge  
G3/Y3  
at falling edge  
R7/CR7  
at rising edge  
G3/Y3  
Table 8 Pin assignment for input format 0  
Table 10 Pin assignment for input format 2  
8 + 8 + 8-BIT 4 : 4 : 4 NON-INTERLACED  
RGB/CB-Y-CR  
5 + 6 + 5-BIT 4 : 4 : 4 NON-INTERLACED RGB  
FALLING  
CLOCK EDGE  
RISING  
CLOCK EDGE  
FALLING  
CLOCK EDGE  
RISING  
CLOCK EDGE  
PIN  
PIN  
PD11  
PD10  
PD9  
PD8  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G3/Y3  
G2/Y2  
R7/CR7  
R6/CR6  
R5/CR5  
R4/CR4  
R3/CR3  
R2/CR2  
R1/CR1  
R0/CR0  
G7/Y7  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G2  
G1  
G0  
B4  
B3  
B2  
B1  
B0  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G1/Y1  
G0/Y0  
B7/CB7  
B6/CB6  
B5/CB5  
B4/CB4  
B3/CB3  
B2/CB2  
B1/CB1  
B0/CB0  
Table 11 Pin assignment for input format 3  
8 + 8 + 8-BIT 4 : 2 : 2 NON-INTERLACED CB-Y-CR  
FALLING RISING FALLING RISING  
G6/Y6  
G5/Y5  
G4/Y4  
CLOCK  
EDGE  
n
CLOCK  
EDGE  
n
CLOCK  
EDGE  
n + 1  
CLOCK  
EDGE  
n + 1  
PIN  
PD7  
CB7(0)  
CB6(0)  
CB5(0)  
CB4(0)  
CB3(0)  
CB2(0)  
CB1(0)  
CB0(0)  
Y7(0)  
Y6(0)  
Y5(0)  
Y4(0)  
Y3(0)  
Y2(0)  
Y1(0)  
Y0(0)  
CR7(0)  
CR6(0)  
CR5(0)  
CR4(0)  
CR3(0)  
CR2(0)  
CR1(0)  
CR0(0)  
Y7(1)  
Y6(1)  
Y5(1)  
Y4(1)  
Y3(1)  
Y2(1)  
Y1(1)  
Y0(1)  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
2004 Mar 04  
21  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 12 Pin assignment for input format 4  
Table 14 Pin assignment for input format 6  
8 + 8 + 8-BIT 4 : 2 : 2 INTERLACED CB-Y-CR  
(ITU-R BT.656, 27 MHz CLOCK)  
8 + 8 + 8-BIT 4 : 4 : 4 NON-INTERLACED  
RGB/CB-Y-CR  
RISING  
CLOCK  
EDGE  
n
RISING  
CLOCK  
EDGE  
n + 1  
RISING  
CLOCK  
EDGE  
n + 2  
RISING  
CLOCK  
EDGE  
n + 3  
FALLING  
CLOCK EDGE  
RISING  
CLOCK EDGE  
PIN  
PIN  
PD11  
PD10  
PD9  
PD8  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G4/Y4  
G3/Y3  
R7/CR7  
R6/CR6  
R5/CR5  
R4/CR4  
R3/CR3  
G7/Y7  
PD7  
CB7(0)  
CB6(0)  
CB5(0)  
CB4(0)  
CB3(0)  
CB2(0)  
CB1(0)  
CB0(0)  
Y7(0)  
Y6(0)  
Y5(0)  
Y4(0)  
Y3(0)  
Y2(0)  
Y1(0)  
Y0(0)  
CR7(0)  
CR6(0)  
CR5(0)  
CR4(0)  
CR3(0)  
CR2(0)  
CR1(0)  
CR0(0)  
Y7(1)  
Y6(1)  
Y5(1)  
Y4(1)  
Y3(1)  
Y2(1)  
Y1(1)  
Y0(1)  
G2/Y2  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
B7/CB7  
B6/CB6  
B5/CB5  
B4/CB4  
B3/CB3  
G0/Y0  
G6/Y6  
G5/Y5  
R2/CR2  
R1/CR1  
R0/CR0  
G1/Y1  
B2/CB2  
B1/CB1  
B0/CB0  
Table 13 Pin assignment for input format 5; note 1  
8-BIT NON-INTERLACED INDEX COLOUR  
FALLING  
CLOCK EDGE  
RISING  
CLOCK EDGE  
PIN  
PD11  
PD10  
PD9  
PD8  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INDEX7  
INDEX6  
INDEX5  
INDEX4  
INDEX3  
INDEX2  
INDEX1  
INDEX0  
Note  
1. X = don’t care.  
2004 Mar 04  
22  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
7.22 Bit allocation map  
Table 15 Slave receiver (slave address 88H)  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(1)  
(1)  
Status byte (read only)  
Null  
00  
01 to 15  
16  
VER2  
(1)  
VER1  
(1)  
VER0  
(1)  
CCRDO  
CCRDE  
FSEQ  
(1)  
O_E  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Common DAC adjust fine  
R DAC adjust coarse  
G DAC adjust coarse  
B DAC adjust coarse  
MSM threshold  
DACF3  
RDACC3  
GDACC3  
BDACC3  
DACF2  
RDACC2  
GDACC2  
BDACC2  
MSMT2  
RCOMP  
CID2  
DACF1  
RDACC1  
GDACC1  
BDACC1  
MSMT1  
GCOMP  
CID1  
DACF0  
RDACC0  
GDACC0  
BDACC0  
MSMT0  
BCOMP  
CID0  
17  
RDACC4  
GDACC4  
BDACC4  
18  
19  
1A  
MSMT7  
MSM  
MSMT6  
MSA  
MSMT5  
MSOE  
CID5  
MSMT4  
MSMT3  
(1)  
(1)  
Monitor sense mode  
Chip ID (02B or 03B, read only)  
Wide screen signal  
Wide screen signal  
Real-time control, burst start  
Sync reset enable, burst end  
Copy generation 0  
Copy generation 1  
CG enable, copy generation 2  
Output port control  
Null  
1B  
1C  
26  
CID7  
CID6  
CID4  
WSS4  
WSS12  
BS4  
CID3  
WSS3  
WSS11  
BS3  
WSS7  
WSS6  
(1)  
WSS5  
WSS13  
BS5  
WSS2  
WSS10  
BS2  
WSS1  
WSS9  
BS1  
WSS0  
WSS8  
BS0  
27  
WSSON  
(1)  
(1)  
(1)  
28  
29  
SRES  
CG07  
CG15  
CGEN  
BE5  
BE4  
BE3  
BE2  
BE1  
BE0  
2A  
CG06  
CG05  
CG04  
CG03  
CG11  
CG19  
CG02  
CG01  
CG00  
2B  
CG14  
(1)  
CG13  
(1)  
CG12  
(1)  
CG10  
CG09  
CG08  
2C  
2D  
2E to 36  
37  
CG18  
CG17  
CG16  
(1)  
VBSEN  
CVBSEN1 CVBSEN0  
CEN  
(1)  
ENCOFF  
CLK2EN  
CVBSEN2  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Input path control  
YUPSC  
YFIL1  
(1)  
YFIL0  
GY4  
CZOOM  
GY2  
IGAIN  
GY1  
XINT  
GY0  
(1)  
Gain luminance for RGB  
Gain colour difference for RGB  
Input port control 1  
VPS enable, input control 2  
VPS byte 5  
38  
GY3  
(1)  
(1)  
(1)  
(1)  
39  
GCD4  
GCD3  
GCD2  
GCD1  
GCD0  
3A  
CBENB  
VPSEN  
VPS57  
SYNTV  
GPVAL  
VPS55  
SYMP  
DEMOFF  
CSYNC  
Y2C  
UV2C  
(1)  
(1)  
54  
GPEN  
EDGE  
VPS51  
VPS111  
VPS121  
VPS131  
VPS141  
CHPS1  
SLOT  
55  
VPS56  
VPS116  
VPS126  
VPS136  
VPS146  
CHPS6  
VPS54  
VPS114  
VPS124  
VPS134  
VPS144  
CHPS4  
VPS53  
VPS113  
VPS123  
VPS133  
VPS143  
CHPS3  
VPS52  
VPS112  
VPS122  
VPS132  
VPS142  
CHPS2  
VPS50  
VPS110  
VPS120  
VPS130  
VPS140  
CHPS0  
VPS byte 11  
56  
VPS117  
VPS127  
VPS137  
VPS147  
CHPS7  
VPS115  
VPS125  
VPS135  
VPS145  
CHPS5  
VPS byte 12  
57  
VPS byte 13  
58  
VPS byte 14  
59  
Chrominance phase  
5A  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
Gain U  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
GAINU7  
GAINV7  
GAINU8  
GAINV8  
GAINU6  
GAINU5  
GAINV5  
BLCKL5  
BLNNL5  
GAINU4  
GAINV4  
BLCKL4  
BLNNL4  
GAINU3  
GAINV3  
BLCKL3  
BLNNL3  
GAINU2  
GAINV2  
BLCKL2  
BLNNL2  
GAINU1  
GAINV1  
BLCKL1  
BLNNL1  
GAINU0  
GAINV0  
BLCKL0  
BLNNL0  
Gain V  
GAINV6  
(1)  
Gain U MSB, black level  
Gain V MSB, blanking level  
CCR, blanking level VBI  
Null  
(1)  
CCRS1  
CCRS0  
BLNVB5  
BLNVB4  
BLNVB3  
BLNVB2  
BLNVB1  
BLNVB0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Standard control  
Burst amplitude  
Subcarrier 0  
DOWND  
RTCE  
DOWNA  
BSTA6  
FSC06  
FSC14  
FSC22  
FSC30  
L21O06  
L21O16  
L21E06  
INPI  
YGS  
SCBW  
BSTA2  
FSC02  
FSC10  
FSC18  
FSC26  
L21O02  
L21O12  
L21E02  
PAL  
FISE  
BSTA5  
FSC05  
FSC13  
FSC21  
FSC29  
L21O05  
L21O15  
L21E05  
BSTA4  
FSC04  
FSC12  
FSC20  
FSC28  
L21O04  
L21O14  
L21E04  
BSTA3  
FSC03  
FSC11  
FSC19  
FSC27  
L21O03  
L21O13  
L21E03  
BSTA1  
FSC01  
FSC09  
FSC17  
FSC25  
L21O01  
L21O11  
L21E01  
BSTA0  
FSC00  
FSC08  
FSC16  
FSC24  
L21O00  
L21O10  
L21E00  
FSC07  
FSC15  
FSC23  
FSC31  
L21O07  
L21O17  
L21E07  
Subcarrier 1  
Subcarrier 2  
Subcarrier 3  
Line 21 odd 0  
Line 21 odd 1  
Line 21 even 0  
Line 21 even 1  
Null  
L21E17  
L21E16  
L21E15  
L21E14  
L21E13  
L21E12  
L21E11  
L21E10  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Trigger control  
Trigger control  
Multi control  
HTRIG7  
HTRIG10  
NVTRIG  
CCEN1  
HTRIG6  
HTRIG9  
BLCKON  
CCEN0  
HTRIG5  
HTRIG8  
PHRES1  
TTXEN  
HTRIG4  
VTRIG4  
PHRES0  
SCCLN4  
HTRIG3  
VTRIG3  
LDEL1  
HTRIG2  
VTRIG2  
LDEL0  
HTRIG1  
VTRIG1  
FLC1  
HTRIG0  
VTRIG0  
FLC0  
Closed Caption, teletext enable  
SCCLN3  
ADWHS3  
SCCLN2  
ADWHS2  
SCCLN1  
SCCLN0  
Active display window horizontal  
start  
ADWHS7  
ADWHS6 ADWHS5 ADWHS4  
ADWHE6 ADWHE5 ADWHE4  
ADWHE10 ADWHE9 ADWHE8  
ADWHS1 ADWHS0  
Active display window horizontal  
end  
71  
ADWHE7  
ADWHE3  
ADWHE2  
ADWHE1 ADWHE0  
(1)  
(1)  
MSBs ADWH  
72  
73  
74  
75  
76  
77  
78  
ADWHS10 ADWHS9 ADWHS8  
TTX request horizontal start  
TTX request horizontal delay  
CSYNC advance  
TTXHS7  
TTXHS6  
TTXHS5  
TTXHS4  
TTXHS3  
TTXHD3  
TTXHS2  
TTXHS1  
TTXHS0  
(1)  
(1)  
(1)  
(1)  
TTXHD2  
TTXHD1  
TTXHD0  
(1)  
(1)  
(1)  
CSYNCA4 CSYNCA3 CSYNCA2 CSYNCA1 CSYNCA0  
TTX odd request vertical start  
TTX odd request vertical end  
TTX even request vertical start  
TTXOVS7 TTXOVS6 TTXOVS5 TTXOVS4 TTXOVS3 TTXOVS2 TTXOVS1 TTXOVS0  
TTXOVE7 TTXOVE6 TTXOVE5 TTXOVE4 TTXOVE3 TTXOVE2 TTXOVE1 TTXOVE0  
TTXEVS7 TTXEVS6 TTXEVS5 TTXEVS4 TTXEVS3 TTXEVS2 TTXEVS1 TTXEVS0  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TTX even request vertical end  
First active line  
Last active line  
TTX mode, MSB vertical  
Null  
79  
7A  
7B  
7C  
7D  
7E  
7F  
TTXEVE7 TTXEVE6 TTXEVE5 TTXEVE4 TTXEVE3 TTXEVE2 TTXEVE1 TTXEVE0  
FAL7  
LAL7  
FAL6  
LAL6  
FAL5  
LAL5  
FAL4  
LAL4  
FAL3  
LAL3  
FAL2  
LAL2  
FAL1  
LAL1  
FAL0  
LAL0  
TTX60  
LAL8  
TTXO  
FAL8  
TTXEVE8 TTXOVE8 TTXEVS8 TTXOVS8  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Disable TTX line  
Disable TTX line  
FIFO status (read only)  
Pixel clock 0  
LINE12  
LINE11  
LINE10  
LINE9  
LINE8  
LINE16  
IFERR  
PCL03  
PCL11  
PCL19  
PCLE1  
LINE7  
LINE15  
BFERR  
PCL02  
PCL10  
PCL18  
PCLE0  
LINE6  
LINE14  
OVFL  
LINE5  
LINE13  
UDFL  
LINE20  
LINE19  
LINE18  
LINE17  
(1)  
(1)  
(1)  
(1)  
80  
81  
PCL07  
PCL15  
PCL23  
DCLK  
PCL06  
PCL14  
PCL22  
PCL05  
PCL13  
PCL21  
PCL04  
PCL12  
PCL20  
PCL01  
PCL09  
PCL17  
PCLI1  
PCL00  
PCL08  
PCL16  
PCLI0  
Pixel clock 1  
82  
Pixel clock 2  
83  
Pixel clock control  
FIFO control  
84  
PCLSY  
IFRA  
IFBP  
(1)  
(1)  
(1)  
85  
EIDIV  
FILI3  
FILI2  
FILI1  
FILI0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Null  
86 to 8F  
90  
Horizontal offset  
Pixel number  
XOFS7  
XPIX7  
YOFSO7  
YOFSE7  
YOFSE9  
YPIX7  
EFS  
XOFS6  
XPIX6  
XOFS5  
XPIX5  
XOFS4  
XPIX4  
YOFSO4  
YOFSE4  
YOFSO8  
YPIX4  
ILC  
XOFS3  
XPIX3  
YOFSO3  
YOFSE3  
XPIX9  
YPIX3  
YFIL  
XOFS2  
XPIX2  
XOFS1  
XPIX1  
XOFS0  
XPIX0  
91  
Vertical offset odd  
Vertical offset even  
MSBs  
92  
YOFSO6  
YOFSE6  
YOFSE8  
YPIX6  
YOFSO5  
YOFSE5  
YOFSO9  
YPIX5  
YOFSO2  
YOFSE2  
XPIX8  
YOFSO1  
YOFSE1  
XOFS9  
YPIX1  
YOFSO0  
YOFSE0  
XOFS8  
YPIX0  
93  
94  
Line number  
95  
YPIX2  
(1)  
Scaler CTRL, MCB YPIX  
Sync control  
96  
PCBN  
SLAVE  
OFS  
YPIX9  
YPIX8  
97  
HFS  
VFS  
PFS  
OVS  
PVS  
OHS  
PHS  
Line length  
98  
HLEN7  
IDEL3  
HLEN6  
IDEL2  
HLEN5  
IDEL1  
HLEN4  
IDEL0  
XINC4  
YINC4  
YINC8  
HLEN3  
HLEN11  
XINC3  
YINC3  
XINC11  
HLEN2  
HLEN10  
XINC2  
YINC2  
XINC10  
HLEN1  
HLEN9  
XINC1  
YINC1  
XINC9  
HLEN0  
HLEN8  
XINC0  
YINC0  
XINC8  
Input delay, MSB line length  
Horizontal increment  
Vertical increment  
99  
9A  
9B  
9C  
XINC7  
YINC7  
YINC11  
XINC6  
YINC6  
YINC10  
XINC5  
YINC5  
YINC9  
MSBs vertical and horizontal  
increment  
Weighting factor odd  
Weighting factor even  
Weighting factor MSB  
Vertical line skip  
9D  
9E  
9F  
A0  
YIWGTO7 YIWGTO6 YIWGTO5 YIWGTO4 YIWGTO3 YIWGTO2 YIWGTO1 YIWGTO0  
YIWGTE7 YIWGTE6 YIWGTE5 YIWGTE4 YIWGTE3 YIWGTE2 YIWGTE1 YIWGTE0  
YIWGTE11 YIWGTE10 YIWGTE9 YIWGTE8 YIWGTO11 YIWGTO10 YIWGTO9 YIWGTO8  
YSKIP7  
YSKIP6  
YSKIP5  
YSKIP4  
YSKIP3  
YSKIP2  
YSKIP1  
YSKIP0  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(1)  
(1)  
(1)  
Blank enable for NI-bypass,  
vertical line skip MSB  
A1  
BLEN  
YSKIP11  
YSKIP10  
YSKIP9  
YSKIP8  
Border colour Y  
A2  
A3  
A4  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
BCY7  
BCU7  
BCV7  
BCY6  
BCU6  
BCV6  
BCY5  
BCU5  
BCV5  
BCY4  
BCU4  
BCV4  
BCY3  
BCU3  
BCV3  
BCY2  
BCU2  
BCV2  
BCY1  
BCU1  
BCV1  
BCY0  
BCU0  
BCV0  
Border colour U  
Border colour V  
HD sync line count array  
HD sync line type array  
HD sync line pattern array  
HD sync value array  
HD sync trigger state 1  
HD sync trigger state 2  
HD sync trigger state 3  
HD sync trigger state 4  
HD sync trigger phase x  
RAM address (see Table 88)  
RAM address (see Table 90)  
RAM address (see Table 92)  
RAM address (see Table 94)  
HLCT7  
HLCT6  
HLCPT2  
HDCT6  
HEPT2  
HLCT5  
HLCPT1  
HDCT5  
HEPT1  
HLCT4  
HLCPT0  
HDCT4  
HEPT0  
HLCT3  
HLCT2  
HLCT1  
HLCT9  
HDCT1  
HDCT9  
HTX1  
HLCT0  
HLCT8  
HDCT0  
HDCT8  
HTX0  
HLCPT3  
HLPPT1  
HLPPT0  
HDCT7  
HDCT3  
HDCT2  
(1)  
(1)  
(1)  
HTX7  
(1)  
HTX6  
(1)  
HTX5  
(1)  
HTX4  
(1)  
HTX3  
HTX2  
HTX11  
HTX10  
HTX9  
HTX8  
HD sync trigger phase y  
HTY7  
(1)  
HTY6  
(1)  
HTY5  
(1)  
HTY4  
(1)  
HTY3  
(1)  
HTY2  
(1)  
HTY1  
HTY0  
HTY9  
HTY8  
(1)  
(1)  
(1)  
(1)  
HD output control  
HDSYE  
CC1R3  
CC1G3  
CC1B3  
CC2R3  
CC2G3  
CC2B3  
AUXR3  
AUXG3  
AUXB3  
XCP3  
HDTC  
CC1R2  
CC1G2  
CC1B2  
CC2R2  
CC2G2  
CC2B2  
AUXR2  
AUXG2  
AUXB2  
XCP2  
HDGY  
CC1R1  
CC1G1  
CC1B1  
CC2R1  
CC2G1  
CC2B1  
AUXR1  
AUXG1  
AUXB1  
XCP1  
HDIP  
Cursor colour 1 R  
CC1R7  
CC1G7  
CC1B7  
CC2R7  
CC2G7  
CC2B7  
AUXR7  
AUXG7  
AUXB7  
XCP7  
CC1R6  
CC1G6  
CC1B6  
CC2R6  
CC2G6  
CC2B6  
AUXR6  
AUXG6  
AUXB6  
XCP6  
CC1R5  
CC1G5  
CC1B5  
CC2R5  
CC2G5  
CC2B5  
AUXR5  
AUXG5  
AUXB5  
XCP5  
CC1R4  
CC1G4  
CC1B4  
CC2R4  
CC2G4  
CC2B4  
AUXR4  
AUXG4  
AUXB4  
XCP4  
CC1R0  
CC1G0  
CC1B0  
CC2R0  
CC2G0  
CC2B0  
AUXR0  
AUXG0  
AUXB0  
XCP0  
Cursor colour 1 G  
Cursor colour 1 B  
Cursor colour 2 R  
Cursor colour 2 G  
Cursor colour 2 B  
Auxiliary cursor colour R  
Auxiliary cursor colour G  
Auxiliary cursor colour B  
Horizontal cursor position  
Horizontal hot spot, MSB XCP  
Vertical cursor position  
Vertical hot spot, MSB YCP  
XHS4  
XHS3  
XHS2  
XHS1  
XHS0  
XCP10  
XCP9  
XCP8  
YCP7  
YCP6  
YCP5  
YCP4  
YCP3  
YCP2  
(1)  
YCP1  
YCP0  
YHS4  
YHS3  
YHS2  
YHS1  
YHS0  
YCP9  
YCP8  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
Input path control  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FD  
FE  
FF  
LUTOFF  
CMODE  
LUTL  
IF2  
IF1  
IF0  
MATOFF  
DFOFF  
Cursor bit map  
RAM address (see Table 109)  
RAM address (see Table 110)  
Colour look-up table  
Note  
1. All unused control bits must be programmed with logic 0 to ensure compatibility to future enhancements.  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
7.23 I2C-bus format  
Table 16 I2C-bus write access to control registers; see Table 22  
S
1 0 0 0 1 0 0 0  
A
SUBADDRESS  
A
DATA 0  
A
--------  
DATA n  
A
P
Table 17 I2C-bus write access to the HD line count array (subaddress D0H); see Table 22  
1 0 0 0 1 0 0 0 D0H RAM ADDRESS DATA 00 DATA 01  
S
A
A
A
A
A
-------- DATA n  
A
P
Table 18 I2C-bus write access to cursor bit map (subaddress FEH); see Table 22  
1 0 0 0 1 0 0 0 FEH RAM ADDRESS DATA 0  
S
A
A
A
A
--------  
DATA n  
A
P
P
P
Table 19 I2C-bus write access to colour look-up table (subaddress FFH); see Table 22  
S
1 0 0 0 1 0 0 0  
A
FFH  
A
RAM ADDRESS  
A
DATA 0R  
A
A
DATA 0G  
A
DATA 0B  
A
--------  
Table 20 I2C-bus read access to control registers; see Table 22  
1 0 0 0 1 0 0 0 SUBADDRESS Sr 1 0 0 0 1 0 0 1  
S
A
A
DATA 0 Am -------- DATA n Am  
Table 21 I2C-bus read access to cursor bit map or colour LUT; see Table 22  
S 1 0 0 0 1 0 0 0 A FEH A RAM ADDRESS A Sr 1 0 0 0 1 0 0 1 A DATA 0 Am -------- DATA n Am P  
or  
FFH  
Table 22 Explanations of Tables 16 to 21  
CODE  
DESCRIPTION  
S
START condition  
Sr  
repeated START condition  
slave address  
1 0 0 0 1 0 0 X; note 1  
A
acknowledge generated by the slave  
Am  
acknowledge generated by the master  
subaddress byte  
SUBADDRESS; note 2  
DATA  
data byte  
--------  
continued data bytes and acknowledges  
STOP condition  
P
RAM ADDRESS  
start address for RAM access  
Notes  
1. X is the read/write control bit; X = logic 0 is order to write; X = logic 1 is order to read.  
2. If more than 1 byte of DATA is transmitted, then auto-increment of the subaddress is performed.  
2004 Mar 04  
28  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
7.24 Slave receiver  
Table 23 Subaddress 16H  
DATA BYTE  
DESCRIPTION  
DACF  
output level adjustment fine in 1% steps for all DACs; default after reset is 00H; see Table 24  
Table 24 Fine adjustment of DAC output voltage  
BINARY  
GAIN (%)  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
7
6
5
4
3
2
1
0
0
1  
2  
3  
4  
5  
6  
7  
Table 25 Subaddresses 17H to 19H  
DATA BYTE  
DESCRIPTION  
RDACC  
GDACC  
BDACC  
output level coarse adjustment for RED DAC; default after reset is 1BH for output of C signal  
00000b 0.585 V to 11111b 1.240 V at 37.5 nominal for full-scale conversion  
output level coarse adjustment for GREEN DAC; default after reset is 1BH for output of VBS signal  
00000b 0.585 V to 11111b 1.240 V at 37.5 nominal for full-scale conversion  
output level coarse adjustment for BLUE DAC; default after reset is 1FH for output of CVBS signal  
00000b 0.585 V to 11111b 1.240 V at 37.5 nominal for full-scale conversion  
Table 26 Subaddress 1AH  
DATA BYTE  
DESCRIPTION  
monitor sense mode threshold for DAC output voltage, should be set to 70  
MSMT  
2004 Mar 04  
29  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 27 Subaddress 1BH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
MSM  
MSA  
0
1
0
monitor sense mode off; RCOMP, GCOMP and BCOMP bits are not valid; default after reset  
monitor sense mode on  
automatic monitor sense mode off; RCOMP, GCOMP and BCOMP bits are not valid; default  
after reset  
1
0
1
0
1
0
1
0
1
automatic monitor sense mode on if MSM = 0  
MSOE  
pin TVD is active  
pin TVD is 3-state; default after reset  
RCOMP  
(read only)  
check comparator at DAC on pin RED_CR_C_CVBS is active, output is loaded  
check comparator at DAC on pin RED_CR_C_CVBS is inactive, output is not loaded  
check comparator at DAC on pin GREEN_VBS_CVBS is active, output is loaded  
check comparator at DAC on pin GREEN_VBS_CVBS is inactive, output is not loaded  
check comparator at DAC on pin BLUE_CB_CVBS is active, output is loaded  
check comparator at DAC on pin BLUE_CB_CVBS is inactive, output is not loaded  
GCOMP  
(read only)  
BCOMP  
(read only)  
Table 28 Subaddresses 26H and 27H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
WSS  
wide screen signalling bits  
3 to 0 = aspect ratio  
7 to 4 = enhanced services  
10 to 8 = subtitles  
13 to 11 = reserved  
WSSON  
0
1
wide screen signalling output is disabled; default after reset  
wide screen signalling output is enabled  
Table 29 Subaddress 28H  
LOGIC  
DATA BYTE  
DESCRIPTION  
REMARKS  
LEVEL  
BS  
starting point of burst in clock cycles  
PAL: BS = 33 (21H); default after reset if  
strapping pin FSVGC tied to HIGH  
NTSC: BS = 25 (19H); default after reset if  
strapping pin FSVGC tied to LOW  
2004 Mar 04  
30  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 30 Subaddress 29H  
LOGIC  
DATA BYTE  
DESCRIPTION  
REMARKS  
LEVEL  
SRES  
BE  
0
1
pin TTX_SRES accepts a teletext bit  
stream (TTX)  
default after reset  
pin TTX_SRES accepts a sync reset input a HIGH impulse resets synchronization of the  
(SRES)  
encoder (first field, first line)  
ending point of burst in clock cycles  
PAL: BE = 29 (1DH); default after reset if  
strapping pin FSVGC tied to HIGH  
NTSC: BE = 29 (1DH); default after reset if  
strapping pin FSVGC tied to LOW  
Table 31 Subaddresses 2AH to 2CH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
CG  
LSBs of the respective bytes are encoded immediately after run-in, the MSBs of the  
respective bytes have to carry the CRCC bits, in accordance with the definition of copy  
generation management system encoding format.  
CGEN  
0
1
copy generation data output is disabled; default after reset  
copy generation data output is enabled  
Table 32 Subaddress 2DH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
VBSEN  
0
pin GREEN_VBS_CVBS provides a component GREEN signal (CVBSEN1 = 0) or CVBS  
signal (CVBSEN1 = 1)  
1
0
pin GREEN_VBS_CVBS provides a luminance (VBS) signal; default after reset  
CVBSEN1  
pin GREEN_VBS_CVBS provides a component GREEN (G) or luminance (VBS) signal;  
default after reset  
1
0
1
0
1
pin GREEN_VBS_CVBS provides a CVBS signal  
CVBSEN0  
CEN  
pin BLUE_CB_CVBS provides a component BLUE (B) or colour difference BLUE (CB) signal  
pin BLUE_CB_CVBS provides a CVBS signal; default after reset  
pin RED_CR_C_CVBS provides a component RED (R) or colour difference RED (CR) signal  
pin RED_CR_C_CVBS provides a chrominance signal (C) as modulated subcarrier for  
S-video; default after reset  
ENCOFF  
CLK2EN  
0
1
0
1
encoder is active; default after reset  
encoder bypass, DACs are provided with RGB signal after cursor insertion block  
pin TTXRQ_XCLKO2 provides a teletext request signal (TTXRQ)  
pin TTXRQ_XCLKO2 provides the buffered crystal clock divided by two (13.5 MHz); default  
after reset  
CVBSEN2  
0
1
pin RED_CR_C_CVBS provides a signal according to CEN; default after reset  
pin RED_CR_C_CVBS provides a CVBS signal  
2004 Mar 04  
31  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 33 Subaddress 37H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
YUPSC  
0
1
normal operation of the vertical scaler; default after reset  
vertical upscaling is enabled  
YFIL  
controls the vertical interpolation filter, see Table 34; the filter is not available if  
YUPSC = 1  
CZOOM  
0
1
0
1
0
1
normal operation of the cursor generator; default after reset  
the cursor will be zoomed by a factor of 2 in both directions  
expected input level swing is 16 to 235 (8-bit RGB); default after reset  
expected input level swing is 0 to 255 (8-bit RGB)  
IGAIN  
XINT  
no horizontal interpolation filter; default after reset  
interpolation filter for horizontal upscaling is active  
Table 34 Logic levels and function of YFIL  
DATA BYTE  
DESCRIPTION  
YFIL1  
YFIL0  
0
0
1
1
0
1
0
1
no filter active; default after reset  
filter is inserted before vertical scaling  
filter is inserted after vertical scaling; YSKIP should be logic 0  
reserved  
Table 35 Subaddresses 38H and 39H  
DATA BYTE  
DESCRIPTION  
GY4 to GY0  
Gain luminance of RGB (CR, Yand CB) output, ranging from (1 1632) to (1 + 1532).  
Suggested nominal value = 0, depending on external application.  
GCD4 to GCD0  
Gain colour difference of RGB (CR, Yand CB) output, ranging from  
(1 1632) to (1 + 1532). Suggested nominal value = 0, depending on external  
application.  
2004 Mar 04  
32  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 36 Subaddress 3AH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
CBENB  
SYNTV  
0
1
0
data from input ports is encoded  
colour bar with fixed colours is encoded  
in slave mode, the encoder is only synchronized at the beginning of an odd field; default  
after reset  
1
0
in slave mode, the encoder receives a vertical sync signal  
SYMP  
horizontal and vertical trigger is taken from FSVGC or both VSVGC and HSVGC; default  
after reset  
1
0
1
0
horizontal and vertical trigger is decoded out of “ITU-R BT.656” compatible data at PD port  
Y-CB-CR to RGB dematrix is active; default after reset  
DEMOFF  
CSYNC  
Y-CB-CR to RGB dematrix is bypassed  
pin HSM_CSYNC provides a horizontal sync for non-interlaced VGA components output  
(at PIXCLK)  
1
pin HSM_CSYNC provides a composite sync for interlaced components output (at XTAL  
clock)  
Y2C  
0
1
0
1
input luminance data is twos complement from PD input port  
input luminance data is straight binary from PD input port; default after reset  
input colour difference data is twos complement from PD input port  
input colour difference data is straight binary from PD input port; default after reset  
UV2C  
Table 37 Subaddress 54H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
VPSEN  
GPVAL  
GPEN  
EDGE  
SLOT  
0
1
0
1
0
1
0
1
0
1
video programming system data insertion is disabled; default after reset  
video programming system data insertion in line 16 is enabled  
pin VSM provides a LOW level if GPEN = 1  
pin VSM provides a HIGH level if GPEN = 1  
pin VSM provides a vertical sync for a monitor; default after reset  
pin VSM provides a constant signal according to GPVAL  
input data is sampled with inverse clock edges  
input data is sampled with the clock edges specified in Tables 8 to 13; default after reset  
normal assignment of the input data to the clock edge; default after reset  
correct time misalignment due to inverted assignment of input data to the clock edge  
Table 38 Subaddresses 55H to 59H  
DATA BYTE  
DESCRIPTION  
REMARKS  
VPS5  
fifth byte of video programming system data  
eleventh byte of video programming system data  
twelfth byte of video programming system data  
thirteenth byte of video programming system data  
fourteenth byte of video programming system data  
in line 16; LSB first; all other bytes are not  
relevant for VPS  
VPS11  
VPS12  
VPS13  
VPS14  
2004 Mar 04  
33  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 39 Subaddress 5AH; note 1  
DATA BYTE  
DESCRIPTION  
VALUE  
6BH  
RESULT  
CHPS  
phase of encoded colour subcarrier  
(including burst) relative to horizontal  
sync; can be adjusted in steps of  
360/256 degrees  
PAL B/G and data from input ports in master mode  
PAL B/G and data from look-up table  
16H  
25H  
NTSC M and data from input ports in master mode  
NTSC M and data from look-up table  
46H  
Note  
1. The default after reset is 00H.  
Table 40 Subaddresses 5BH and 5DH  
DATA BYTE  
DESCRIPTION  
CONDITIONS  
REMARKS  
GAINU  
variable gain for  
CB signal; input  
representation in  
accordance with  
“ITU-R BT.601”  
white-to-black = 92.5 IRE GAINU = 2.17 × nominal to +2.16 × nominal  
GAINU = 0  
output subcarrier of U contribution = 0  
GAINU = 118 (76H)  
output subcarrier of U contribution = nominal  
white-to-black = 100 IRE GAINU = 2.05 × nominal to +2.04 × nominal  
GAINU = 0  
output subcarrier of U contribution = 0  
GAINU = 125 (7DH)  
output subcarrier of U contribution = nominal  
Table 41 Subaddresses 5CH and 5EH  
DATA BYTE  
DESCRIPTION  
CONDITIONS  
REMARKS  
GAINV  
variable gain for  
CR signal; input  
representation in  
accordance with  
“ITU-R BT.601”  
white-to-black = 92.5 IRE GAINV = 1.55 × nominal to +1.55 × nominal  
GAINV = 0  
output subcarrier of V contribution = 0  
GAINV = 165 (A5H)  
output subcarrier of V contribution = nominal  
white-to-black = 100 IRE GAINV = 1.46 × nominal to +1.46 × nominal  
GAINV = 0  
output subcarrier of V contribution = 0  
GAINV = 175 (AFH)  
output subcarrier of V contribution = nominal  
Table 42 Subaddress 5DH  
DATA BYTE  
DESCRIPTION  
variable black level;  
CONDITIONS  
REMARKS  
BLCKL  
white-to-sync = 140 IRE; recommended value: BLCKL = 58 (3AH)  
input representation note 1  
in accordance with  
BLCKL = 0; note 1  
output black level = 29 IRE  
“ITU-R BT.601”  
BLCKL = 63 (3FH); note 1 output black level = 49 IRE  
white-to-sync = 143 IRE; recommended value: BLCKL = 51 (33H)  
note 2  
BLCKL = 0; note 2  
output black level = 27 IRE  
BLCKL = 63 (3FH); note 2 output black level = 47 IRE  
Notes  
1. Output black level/IRE = BLCKL × 2/6.29 + 28.9.  
2. Output black level/IRE = BLCKL × 2/6.18 + 26.5.  
2004 Mar 04  
34  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 43 Subaddress 5EH  
DATA BYTE  
DESCRIPTION  
CONDITIONS  
REMARKS  
BLNNL  
variable blanking level  
white-to-sync = 140 IRE;  
note 1  
recommended value: BLNNL = 46 (2EH)  
BLNNL = 0; note 1  
output blanking level = 25 IRE  
BLNNL = 63 (3FH); note 1 output blanking level = 45 IRE  
white-to-sync = 143 IRE;  
note 2  
recommended value: BLNNL = 53 (35H)  
BLNNL = 0; note 2  
output blanking level = 26 IRE  
BLNNL = 63 (3FH); note 2 output blanking level = 46 IRE  
Notes  
1. Output black level/IRE = BLNNL × 2/6.29 + 25.4.  
2. Output black level/IRE = BLNNL × 2/6.18 + 25.9; default after reset: 35H.  
Table 44 Subaddress 5FH  
DATA BYTE  
CCRS  
DESCRIPTION  
select cross-colour reduction filter in luminance; see Table 45  
BLNVB  
variable blanking level during vertical blanking interval is typically identical to value of BLNNL  
Table 45 Logic levels and function of CCRS  
CCRS1  
CCRS0  
DESCRIPTION  
0
0
1
1
0
1
0
1
no cross-colour reduction; for overall transfer characteristic of luminance see Fig.6  
cross-colour reduction #1 active; for overall transfer characteristic see Fig.6  
cross-colour reduction #2 active; for overall transfer characteristic see Fig.6  
cross-colour reduction #3 active; for overall transfer characteristic see Fig.6  
2004 Mar 04  
35  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 46 Subaddress 61H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
DOWND  
DOWNA  
INPI  
0
1
0
1
0
1
0
1
0
digital core in normal operational mode; default after reset  
digital core in sleep mode and is reactivated with an I2C-bus address  
DACs in normal operational mode; default after reset  
DACs in power-down mode  
PAL switch phase is nominal; default after reset  
PAL switch is inverted compared to nominal if RTCE = 1  
luminance gain for white black 100 IRE  
YGS  
luminance gain for white black 92.5 IRE including 7.5 IRE set-up of black  
SCBW  
enlarged bandwidth for chrominance encoding (for overall transfer characteristic of  
chrominance in baseband representation see Figs 4 and 5)  
1
standard bandwidth for chrominance encoding (for overall transfer characteristic of  
chrominance in baseband representation see Figs 4 and 5); default after reset  
PAL  
0
1
0
1
NTSC encoding (non-alternating V component)  
PAL encoding (alternating V component)  
864 total pixel clocks per line  
FISE  
858 total pixel clocks per line  
Table 47 Subaddress 62H  
LOGIC  
DATA BYTE  
DESCRIPTION  
CONDITIONS  
REMARKS  
LEVEL  
RTCE  
BSTA  
0
1
no real-time control of generated subcarrier frequency; default after reset  
real-time control of generated subcarrier frequency through a Philips video decoder; for a  
specification of the RTC protocol see document “RTC Functional Description”, available on  
request  
amplitude of colour burst; input  
white-to-black = 92.5 IRE;  
recommended value:  
representation in accordance with burst = 40 IRE; NTSC encoding BSTA = 63 (3FH)  
“ITU-R BT.601”  
BSTA = 0 to 2.02 × nominal  
white-to-black = 92.5 IRE;  
burst = 40 IRE; PAL encoding  
recommended value:  
BSTA = 45 (2DH)  
BSTA = 0 to 2.82 × nominal  
white-to-black = 100 IRE;  
recommended value:  
burst = 43 IRE; NTSC encoding BSTA = 67 (43H)  
BSTA = 0 to 1.90 × nominal  
white-to-black = 100 IRE;  
burst = 43 IRE; PAL encoding  
recommended value:  
BSTA = 47 (2FH);  
default after reset  
BSTA = 0 to 3.02 × nominal  
2004 Mar 04  
36  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 48 Subaddresses 63H to 66H (four bytes to program subcarrier frequency)  
DATA BYTE  
DESCRIPTION  
CONDITIONS  
REMARKS  
FSC0 to FSC3 ffsc = subcarrier frequency (in multiples  
of line frequency); fllc = clock frequency  
(in multiples of line frequency)  
FSC3 = most significant byte;  
FSC0 = least significant byte  
f
FSC = round fsc × 232  
;
-------  
fllc  
note 1  
Note  
1. Examples:  
a) NTSC M: ffsc = 227.5, fllc = 1716 FSC = 569408543 (21F07C1FH).  
b) PAL B/G: ffsc = 283.7516, fllc = 1728 FSC = 705268427 (2A098ACBH).  
Table 49 Subaddresses 67H to 6AH  
DATA BYTE  
DESCRIPTION  
REMARKS  
L21O0  
L21O1  
L21E0  
L21E1  
first byte of captioning data, odd field  
second byte of captioning data, odd field  
first byte of extended data, even field  
second byte of extended data, even field  
LSBs of the respective bytes are encoded immediately  
after run-in and framing code, the MSBs of the respective  
bytes have to carry the parity bit, in accordance with the  
definition of line 21 encoding format.  
Table 50 Subaddresses 6CH and 6DH  
DATA BYTE  
DESCRIPTION  
HTRIG  
sets the horizontal trigger phase related to chip-internal horizontal input  
values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed; increasing HTRIG decreases  
delays of all internally generated timing signals; the default value is 0  
Table 51 Subaddress 6DH  
DATA BYTE  
DESCRIPTION  
VTRIG  
sets the vertical trigger phase related to chip-internal vertical input  
increasing VTRIG decreases delays of all internally generated timing signals, measured in half lines;  
variation range of VTRIG = 0 to 31 (1FH); the default value is 0  
Table 52 Subaddress 6EH  
LOGIC  
DATA BYTE  
DESCRIPTION  
values of the VTRIG register are positive  
LEVEL  
NVTRIG  
BLCKON  
0
1
0
1
values of the VTRIG register are negative  
encoder in normal operation mode; default after reset  
output signal is forced to blanking level  
PHRES  
LDEL  
FLC  
selects the phase reset mode of the colour subcarrier generator; see Table 53  
selects the delay on luminance path with reference to chrominance path; see Table 54  
field length control; see Table 55  
2004 Mar 04  
37  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 53 Logic levels and function of PHRES  
DATA BYTE  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
PHRES1  
PHRES0  
0
0
1
1
0
1
0
1
no subcarrier reset  
subcarrier reset every two lines  
subcarrier reset every eight fields  
subcarrier reset every four fields  
Table 54 Logic levels and function of LDEL  
DATA BYTE  
LDEL1  
LDEL0  
0
0
1
1
0
1
0
1
no luminance delay; default after reset  
1 LLC luminance delay  
2 LLC luminance delay  
3 LLC luminance delay  
Table 55 Logic levels and function of FLC  
DATA BYTE  
FLC1  
FLC0  
0
0
1
1
0
1
0
1
interlaced 312.5 lines/field at 50 Hz, 262.5 lines/field at 60 Hz; default after reset  
non-interlaced 312 lines/field at 50 Hz, 262 lines/field at 60 Hz  
non-interlaced 313 lines/field at 50 Hz, 263 lines/field at 60 Hz  
non-interlaced 313 lines/field at 50 Hz, 263 lines/field at 60 Hz  
Table 56 Subaddress 6FH  
DATA  
BYTE  
LOGIC  
LEVEL  
DESCRIPTION  
CCEN  
0
1
enables individual line 21 encoding; see Table 57  
disables teletext insertion; default after reset  
enables teletext insertion  
TTXEN  
SCCLN  
selects the actual line, where Closed Caption or extended data are encoded;  
line = (SCCLN + 4) for M-systems; line = (SCCLN + 1) for other systems  
Table 57 Logic levels and function of CCEN  
DATA BYTE  
DESCRIPTION  
CCEN1  
CCEN0  
0
0
1
1
0
1
0
1
line 21 encoding off; default after reset  
enables encoding in field 1 (odd)  
enables encoding in field 2 (even)  
enables encoding in both fields  
2004 Mar 04  
38  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 58 Subaddresses 70H to 72H  
DATA BYTE  
DESCRIPTION  
ADWHS  
active display window horizontal start; defines the start of the active TV display portion after the border  
colour  
values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed  
ADWHE  
active display window horizontal end; defines the end of the active TV display portion before the  
border colour  
values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed  
Table 59 Subaddress 73H  
DATA BYTE  
DESCRIPTION  
REMARKS  
TTXHS  
start of signal TTXRQ on pin TTXRQ_XCLKO2 (CLK2EN = 0);  
see Fig.15  
TTXHS = 42H; is default after  
reset if strapped to PAL  
TTXHS = 54H; is default after  
reset if strapped to NTSC  
Table 60 Subaddress 74H  
DATA BYTE  
DESCRIPTION  
indicates the delay in clock cycles between rising edge of TTXRQ  
REMARKS  
TTXHD  
minimum value: TTXHD = 2;  
output signal on pin TTXRQ_XCLKO2 (CLK2EN = 0) and valid data at is default after reset  
pin TTX_SRES  
Table 61 Subaddress 75H  
DATA BYTE  
DESCRIPTION  
advanced composite sync against RGB output from 0 XTAL clocks to 31 XTAL clocks  
CSYNCA  
Table 62 Subaddresses 76H, 77H and 7CH  
DATA BYTE  
DESCRIPTION  
REMARKS  
TTXOVS  
TTXOVE  
first line of occurrence of signal TTXRQ on pin TTXRQ_XCLKO2  
(CLK2EN = 0) in odd field  
TTXOVS = 05H; is default  
after reset if strapped to PAL  
TTXOVS = 06H; is default  
after reset if strapped to  
NTSC  
line = (TTXOVS + 4) for M-systems  
line = (TTXOVS + 1) for other systems  
last line of occurrence of signal TTXRQ on pin TTXRQ_XCLKO2  
(CLK2EN = 0) in odd field  
TTXOVE = 16H; is default  
after reset if strapped to PAL  
TTXOVE = 10H; is default  
after reset if strapped to  
NTSC  
line = (TTXOVE + 3) for M-systems  
line = TTXOVE for other systems  
2004 Mar 04  
39  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 63 Subaddresses 78H, 79H and 7CH  
DATA BYTE  
DESCRIPTION  
REMARKS  
TTXEVS  
TTXEVE  
first line of occurrence of signal TTXRQ on pin TTXRQ_XCLKO2  
(CLK2EN = 0) in even field  
TTXEVS = 04H; is default  
after reset if strapped to PAL  
TTXEVS = 05H; is default  
after reset if strapped to  
NTSC  
line = (TTXEVS + 4) for M-systems  
line = (TTXEVS + 1) for other systems  
last line of occurrence of signal TTXRQ on pin TTXRQ_XCLKO2  
(CLK2EN = 0) in even field  
TTXEVE = 16H; is default  
after reset if strapped to PAL  
TTXEVE = 10H; is default  
after reset if strapped to  
NTSC  
line = (TTXEVE + 3) for M-systems  
line = TTXEVE for other systems  
Table 64 Subaddresses 7AH to 7CH  
DATA BYTE  
DESCRIPTION  
FAL  
first active line = FAL + 4 for M-systems and FAL + 1 for other systems, measured in lines  
FAL = 0 coincides with the first field synchronization pulse  
LAL  
last active line = LAL + 3 for M-systems and LAL for other system, measured in lines  
LAL = 0 coincides with the first field synchronization pulse  
Table 65 Subaddress 7CH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
TTX60  
TTXO  
0
1
0
enables NABTS (FISE = 1) or European TTX (FISE = 0); default after reset  
enables world standard teletext 60 Hz (FISE = 1)  
new teletext protocol selected; at each rising edge of TTXRQ a single teletext bit is  
requested (see Fig.15); default after reset  
1
old teletext protocol selected; the encoder provides a window of TTXRQ going HIGH; the  
length of the window depends on the chosen teletext standard (see Fig.15)  
Table 66 Subaddresses 7EH and 7FH  
DATA BYTE  
DESCRIPTION  
LINE  
individual lines in both fields (PAL counting) can be disabled for insertion of teletext by the respective  
bits, disabled line = LINExx (50 Hz field rate)  
this bit mask is effective only if the lines are enabled by TTXOVS/TTXOVE and TTXEVS/TTXEVE  
Table 67 Subaddresses 81H to 83H  
DATA BYTE  
DESCRIPTION  
PCL  
defines the frequency of the synthesized pixel clock PIXCLKO;  
PCL  
fPIXCLK  
=
× f  
× 8 ; fXTAL = 27 MHz nominal, e.g. 640 × 480 to NTSC M: PCL = 20F63BH;  
XTAL  
-----------  
224  
640 × 480 to PAL B/G: PCL = 1B5A73H (as by strapping pins)  
2004 Mar 04  
40  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 68 Subaddress 84H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
DCLK  
0
pixel clock input is differential, pin PIXCLKI receives the inverted clock; default after  
reset  
1
0
1
0
1
0
1
pixel clock input is single ended, pin PIXCLKI has no function  
pixel clock generator runs free; default after reset  
pixel clock generator gets synchronized with the vertical sync  
input FIFO gets reset explicitly at falling edge  
PCLSY  
IFRA  
input FIFO gets reset every field; default after reset  
input FIFO is active  
IFBP  
input FIFO is bypassed; default after reset  
PCLE  
PCLI  
controls the divider for the external pixel clock; see Table 69  
controls the divider for the internal pixel clock; see Table 70  
Table 69 Logic levels and function of PCLE  
DATA BYTE  
DESCRIPTION  
PCLE1  
PCLE0  
0
0
1
1
0
1
0
1
divider ratio for PIXCLK output is 1  
divider ratio for PIXCLK output is 2; default after reset  
divider ratio for PIXCLK output is 4  
divider ratio for PIXCLK output is 8  
Table 70 Logic levels and function of PCLI  
DATA BYTE  
DESCRIPTION  
divider ratio for internal PIXCLK is 1  
PCLI1  
PCLI0  
0
0
1
1
0
1
0
1
divider ratio for internal PIXCLK is 2; default after reset  
divider ratio for internal PIXCLK is 4  
not allowed  
Table 71 Subaddress 85H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
EIDIV  
FILI  
0
1
set to logic 0 if DVO compliant signals are applied; default after reset  
set to logic 1 if non-DVO compliant signals are applied  
threshold for FIFO internal transfers; nominal value is 8; default after reset  
Table 72 Subaddresses 90H and 94H  
DATA BYTE  
DESCRIPTION  
XOFS  
horizontal offset; defines the number of PIXCLKs from horizontal sync (HSVGC) output to composite  
blanking (CBO) output  
2004 Mar 04  
41  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 73 Subaddresses 91H and 94H  
DATA BYTE  
DESCRIPTION  
XPIX  
pixel in X direction; defines half the number of active pixels per input line (identical to the length of  
CBO pulses)  
Table 74 Subaddresses 92H and 94H  
DATA BYTE  
DESCRIPTION  
YOFSO  
vertical offset in odd field; defines (in the odd field) the number of lines from VSVGC to first line with  
active CBO; if no LUT data is requested, the first active CBO will be output at YOFSO + 2; usually,  
YOFSO = YOFSE with the exception of extreme vertical downscaling and interlacing  
Table 75 Subaddresses 93H and 94H  
DATA BYTE  
DESCRIPTION  
YOFSE  
vertical offset in even field; defines (in the even field) the number of lines from VSVGC to first line with  
active CBO; if no LUT data is requested, the first active CBO will be output at YOFSE + 2; usually,  
YOFSE = YOFSO with the exception of extreme vertical downscaling and interlacing  
Table 76 Subaddresses 95H and 96H  
DATA BYTE  
DESCRIPTION  
YPIX  
defines the number of requested input lines from the feeding device;  
number of requested lines = YPIX + YOFSE YOFSO  
Table 77 Subaddress 96H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
EFS  
0
1
0
1
0
1
0
1
0
1
frame sync signal at pin FSVGC ignored in slave mode  
frame sync signal at pin FSVGC accepted in slave mode  
normal polarity of CBO signal (HIGH during active video)  
inverted polarity of CBO signal (LOW during active video)  
the SAA7104H; SAA7105H is timing master to the graphics controller  
the SAA7104H; SAA7105H is timing slave to the graphics controller  
if hardware cursor insertion is active, set LOW for non-interlaced input signals  
if hardware cursor insertion is active, set HIGH for interlaced input signals  
luminance sharpness booster disabled  
PCBN  
SLAVE  
ILC  
YFIL  
luminance sharpness booster enabled  
2004 Mar 04  
42  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 78 Subaddress 97H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
HFS  
0
1
horizontal sync is directly derived from input signal (slave mode) at pin HSVGC  
horizontal sync is derived from a frame sync signal (slave mode) at pin FSVGC (only if  
EFS is set HIGH)  
VFS  
0
1
vertical sync (field sync) is directly derived from input signal (slave mode) at  
pin VSVGC  
vertical sync (field sync) is derived from a frame sync signal (slave mode) at  
pin FSVGC (only if EFS is set HIGH)  
OFS  
PFS  
0
1
0
pin FSVGC is switched to input  
pin FSVGC is switched to active output  
polarity of signal at pin FSVGC in output mode (master mode) is active HIGH; rising  
edge of the input signal is used in slave mode  
1
polarity of signal at pin FSVGC in output mode (master mode) is active LOW; falling  
edge of the input signal is used in slave mode  
OVS  
PVS  
0
1
0
pin VSVGC is switched to input  
pin VSVGC is switched to active output  
polarity of signal at pin VSVGC in output mode (master mode) is active HIGH; rising  
edge of the input signal is used in slave mode  
1
polarity of signal at pin VSVGC in output mode (master mode) is active LOW; falling  
edge of the input signal is used in slave mode  
OHS  
PHS  
0
1
0
pin HSVGC is switched to input  
pin HSVGC is switched to active output  
polarity of signal at pin HSVGC in output mode (master mode) is active HIGH; rising  
edge of the input signal is used in slave mode  
1
polarity of signal at pin HSVGC in output mode (master mode) is active LOW; falling  
edge of the input signal is used in slave mode  
Table 79 Subaddresses 98H and 99H  
DATA BYTE  
DESCRIPTION  
number of PIXCLKs  
HLEN  
horizontal length; HLEN =  
1  
----------------------------------------------------  
line  
Table 80 Subaddress 99H  
DATA BYTE  
DESCRIPTION  
IDEL  
input delay; defines the distance in PIXCLKs between the active edge of CBO and the first received  
valid pixel  
2004 Mar 04  
43  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 81 Subaddresses 9AH and 9CH  
DATA BYTE  
DESCRIPTION  
XINC  
number of output pixels  
--------------------------------------------------------------  
line  
incremental fraction of the horizontal scaling engine; XINC =  
× 4096  
--------------------------------------------------------------  
number of input pixels  
----------------------------------------------------------  
line  
Table 82 Subaddresses 9BH and 9CH  
DATA BYTE  
DESCRIPTION  
YINC  
number of active output lines  
----------------------------------------------------------------------------  
number of active input lines  
incremental fraction of the vertical scaling engine; YINC =  
× 4096  
Table 83 Subaddresses 9DH and 9FH  
DATA BYTE  
DESCRIPTION  
weighting factor for the first line of the odd field; YIWGTO =  
YIWGTO  
YINC  
2
+ 2048  
-------------  
Table 84 Subaddresses 9EH and 9FH  
DATA BYTE  
DESCRIPTION  
YIWGTE  
YINC YSKIP  
-------------------------------------  
2
weighting factor for the first line of the even field; YIWGTE =  
Table 85 Subaddresses A0H and A1H  
DATA BYTE  
DESCRIPTION  
YSKIP  
vertical line skip; defines the effectiveness of the anti-flicker filter; YSKIP = 0: most effective;  
YSKIP = 4095: anti-flicker filter switched off  
Table 86 Subaddress A1H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
BLEN  
0
1
no internal blanking for non-interlaced graphics in bypass mode; default after reset  
forced internal blanking for non-interlaced graphics in bypass mode  
Table 87 Subaddresses A2H to A4H  
DATA BYTE  
DESCRIPTION  
luminance and colour difference portion of border colour in underscan area  
BCY, BCU  
and BCV  
2004 Mar 04  
44  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 88 Subaddress D0H  
DATA BYTE  
DESCRIPTION  
HLCA  
RAM start address for the HD sync line count array; the byte following subaddress D0 points to the  
first cell to be loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing  
until stop condition. Each line count array entry consists of 2 bytes; see Table 89. The array has  
15 entries.  
HLC  
HLT  
HD line counter. The system will repeat the pattern described in ‘HLT’ HLC times and then start with  
the next entry in line count array.  
HD line type pointer. If not 0, the value points into the line type array, index HLT 1 with the  
description of the current line. 0 means the entry is not used.  
Table 89 Layout of the data bytes in the line count array  
BYTE  
DESCRIPTION  
HLC4 HLC3  
HLT0  
0
1
HLC7  
HLT3  
HLC6  
HLT2  
HLC5  
HLT1  
HLC2  
0
HLC1  
HLC9  
HLC0  
HLC8  
0
Table 90 Subaddress D1H  
DATA BYTE  
DESCRIPTION  
HLTA  
RAM start address for the HD sync line type array; the byte following subaddress D1 points to the first  
cell to be loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing  
until stop condition. Each line type array entry consists of 4 bytes; see Table 91. The array has  
15 entries.  
HLP  
HD line type; if not 0, the value points into the line pattern array. The index used is HLP 1. It consists  
of value-duration pairs. Each entry consists of 8 pointers, used from index 0 to 7. The value 0 means  
that the entry is not used.  
Table 91 Layout of the data bytes in the line type array  
BYTE  
DESCRIPTION  
0
1
2
3
0
0
0
0
HLP12  
HLP32  
HLP52  
HLP72  
HLP11  
HLP31  
HLP51  
HLP71  
HLP10  
0
0
0
0
HLP02  
HLP22  
HLP42  
HLP62  
HLP01  
HLP21  
HLP41  
HLP61  
HLP00  
HLP20  
HLP40  
HLP60  
HLP30  
HLP50  
HLP70  
Table 92 Subaddress D2H  
DATA BYTE  
DESCRIPTION  
HLPA  
RAM start address for the HD sync line pattern array; the byte following subaddress D2 points to the  
first cell to be loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing  
until stop condition. Each line pattern array entry consists of 4 value-duration pairs occupying 2 bytes;  
see Table 93. The array has 7 entries.  
HPD  
HPV  
HD pattern duration. The value defines the time in pixel clocks (HPD + 1) the corresponding value  
HPV is added to the HD output signal. If 0, this entry will be skipped.  
HD pattern value pointer. This gives the index in the HD value array containing the level to be inserted  
into the HD output path. If the MSB of HPV is logic 1, the value will only be inserted into the Y/GREEN  
channel of the HD data path, the other channels remain unchanged.  
2004 Mar 04  
45  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 93 Layout of the data bytes in the line pattern array  
BYTE  
DESCRIPTION  
HPD04 HPD03  
0
1
2
3
4
5
6
7
HPD07  
HPV03  
HPD17  
HPV13  
HPD27  
HPV23  
HPD37  
HPV33  
HPD06  
HPV02  
HPD16  
HPV12  
HPD26  
HPV22  
HPD36  
HPV32  
HPD05  
HPV01  
HPD14  
HPV11  
HPD25  
HPV21  
HPD35  
HPV31  
HPD02  
HPD01  
HPD09  
HPD11  
HPD19  
HPD21  
HPD29  
HPD31  
HPD39  
HPD00  
HPD08  
HPD10  
HPD18  
HPD20  
HPD28  
HPD30  
HPD38  
HPV00  
HPD14  
HPV10  
HPD24  
HPV20  
HPD34  
HPV30  
0
0
HPD13  
HPD12  
0
HPD23  
0
0
HPD22  
0
HPD33  
0
HPD32  
0
Table 94 Subaddress D3H  
DATA BYTE  
DESCRIPTION  
HPVA  
RAM start address for the HD sync value array; the byte following subaddress D3 points to the first  
cell to be loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing  
until stop condition. Each line pattern array entry consists of 2 bytes. The array has 8 entries.  
HPVE  
HHS  
HVS  
HD pattern value entry. The HD path will insert a level of (HPV + 52) × 0.66 IRE into the data path.  
The value is signed 8-bits wide; see Table 95.  
HD horizontal sync. If the HD engine is active, this value will be provided at pin HSM_CSYNC;  
see Table 95.  
HD vertical sync. If the HD engine is active, this value will be provided at pin VSM; see Table 95.  
Table 95 Layout of the data bytes in the value array  
BYTE  
DESCRIPTION  
HPVE4 HPVE3  
0
1
HPVE7  
0
HPVE6  
0
HPVE5  
0
HPVE2  
0
HPVE1  
HVS  
HPVE0  
HHS  
0
0
Table 96 Subaddresses D4H and D5H  
DATA BYTE  
DESCRIPTION  
HLCT  
state of the HD line counter after trigger, note that it counts backwards  
state of the HD line type pointer after trigger  
HLCPT  
HLPPT  
state of the HD pattern pointer after trigger  
Table 97 Subaddresses D6H and D7H  
DATA BYTE  
DESCRIPTION  
HDCT  
HEPT  
state of the HD duration counter after trigger, note that it counts backwards  
state of the HD event type pointer in the line type array after trigger  
Table 98 Subaddresses D8H and D9H  
DATA BYTE  
DESCRIPTION  
horizontal trigger phase for the HD sync engine in pixel clocks  
HTX  
2004 Mar 04  
46  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 99 Subaddresses DAH and DBH  
DATA BYTE  
DESCRIPTION  
vertical trigger phase for the HD sync engine in input lines  
HTY  
Table 100 Subaddress DCH  
LOGIC  
DATA BYTE  
DESCRIPTION  
the HD sync engine is off; default after reset  
LEVEL  
HDSYE  
HDTC  
HDGY  
0
1
0
1
0
the HD sync engine is active  
HD output path processes RGB; default after reset  
HD output path processes YUV  
gain in the HD output path is reduced, insertion of sync pulses is possible; default after  
reset  
1
0
1
full level swing at the input causes full level swing at the DACs in HD mode  
interpolator for the colour difference signal in the HD output path is active; default after reset  
interpolator for the colour difference signals in the HD output path is off  
HDIP  
Table 101 Subaddresses F0H to F2H  
DATA BYTE  
DESCRIPTION  
CC1R, CC1G RED, GREEN and BLUE portion of first cursor colour  
and CC1B  
Table 102 Subaddresses F3H to F5H  
DATA BYTE  
DESCRIPTION  
CC2R, CC2G RED, GREEN and BLUE portion of second cursor colour  
and CC2B  
Table 103 Subaddresses F6H to F8H  
DATA BYTE  
DESCRIPTION  
AUXR, AUXG RED, GREEN and BLUE portion of auxiliary cursor colour  
and AUXB  
Table 104 Subaddresses F9H and FAH  
DATA BYTE  
DESCRIPTION  
DESCRIPTION  
XCP  
horizontal cursor position  
Table 105 Subaddress FAH  
DATA BYTE  
XHS  
horizontal hot spot of cursor  
2004 Mar 04  
47  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Table 106 Subaddresses FBH and FCH  
DATA BYTE  
DESCRIPTION  
DESCRIPTION  
YCP  
vertical cursor position  
Table 107 Subaddress FCH  
DATA BYTE  
YHS  
vertical hot spot of cursor  
Table 108 Subaddress FDH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
LUTOFF  
CMODE  
LUTL  
0
1
0
1
0
1
0
1
2
3
4
colour look-up table is active  
colour look-up table is bypassed  
cursor mode; input colour will be inverted  
auxiliary cursor colour will be inserted  
LUT loading via input data stream is inactive  
colour and cursor LUTs are loaded via input data stream  
input format is 8 + 8 + 8-bit 4 : 4 : 4 non-interlaced RGB or CB-Y-CR  
input format is 5 + 5 + 5-bit 4 : 4 : 4 non-interlaced RGB  
input format is 5 + 6 + 5-bit 4 : 4 : 4 non-interlaced RGB  
input format is 8 + 8 + 8-bit 4 : 2 : 2 non-interlaced CB-Y-CR  
IF  
input format is 8 + 8 + 8-bit 4 : 2 : 2 interlaced CB-Y-CR (ITU-R BT.656, 27 MHz clock)  
(in subaddresses 91H and 94H set XPIX = number of active pixels/line)  
5
6
0
1
0
1
input format is 8-bit non-interlaced index colour  
input format is 8 + 8 + 8-bit 4 : 4 : 4 non-interlaced RGB or CB-Y-CR (special bit ordering)  
RGB to CR-Y-CB matrix is active  
MATOFF  
DFOFF  
RGB to CR-Y-CB matrix is bypassed  
down formatter (4 : 4 : 4 to 4 : 2 : 2) in input path is active  
down formatter is bypassed  
Table 109 Subaddress FEH  
DATA BYTE  
DESCRIPTION  
CURSA  
RAM start address for cursor bit map; the byte following subaddress FEH points to the first cell to be  
loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing until stop  
condition  
Table 110 Subaddress FFH  
DATA BYTE  
DESCRIPTION  
COLSA  
RAM start address for colour LUT; the byte following subaddress FFH points to the first cell to be  
loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing until stop  
condition  
In subaddresses 5BH, 5CH, 5DH, 5EH, 62H and D3H all IRE values are rounded up.  
2004 Mar 04 48  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
7.25 Slave transmitter  
Table 111 Slave transmitter (slave address 89H)  
DATA BYTE  
D4 D3  
VER0 CCRDO CCRDE  
REGISTER  
FUNCTION  
SUBADDRESS  
D7  
D6  
D5  
D2  
D1  
D0  
Status byte  
Chip ID  
00H  
1CH  
80H  
VER2  
CID7  
0
VER1  
CID6  
0
0
CID2  
0
FSEQ  
CID1  
O_E  
CID0  
UDFL  
CID5  
0
CID4  
0
CID3  
0
FIFO status  
OVFL  
Table 112 Subaddress 00H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
VER  
version identification of the device: it will be changed with all versions of the IC that have  
different programming models; current version is 101 binary  
CCRDO  
1
0
Closed Caption bytes of the odd field have been encoded  
the bit is reset after information has been written to the subaddresses 67H and 68H; it is  
set immediately after the data has been encoded  
CCRDE  
1
0
Closed Caption bytes of the even field have been encoded  
the bit is reset after information has been written to the subaddresses 69H and 6AH; it is  
set immediately after the data has been encoded  
FSEQ  
O_E  
1
0
1
0
during first field of a sequence (repetition rate: NTSC = 4 fields, PAL = 8 fields)  
not first field of a sequence  
during even field  
during odd field  
Table 113 Subaddress 1CH  
DATA BYTE  
DESCRIPTION  
CID  
chip ID of SAA7104H = 04H; chip ID of SAA7105H = 05H  
Table 114 Subaddress 80H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
IFERR  
BFERR  
OVFL  
0
1
0
1
0
1
0
1
normal FIFO state  
input FIFO overflow/underflow has occurred  
normal FIFO state  
buffer FIFO overflow, only if YUPSC = 1  
no FIFO overflow  
FIFO overflow has occurred; this bit is reset after this subaddress has been read  
no FIFO underflow  
UDFL  
FIFO underflow has occurred; this bit is reset after this subaddress has been read  
2004 Mar 04  
49  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
MBE737  
6
G
v
(dB)  
0
6  
12  
18  
24  
(1)  
(2)  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
(1) SCBW = 1.  
(2) SCBW = 0.  
Fig.4 Chrominance transfer characteristic 1.  
MBE735  
handbook, halfpage  
2
G
v
(dB)  
0
(1)  
(2)  
2  
4  
6  
0
0.4  
0.8  
1.2  
1.6  
f (MHz)  
(1) SCBW = 1.  
(2) SCBW = 0.  
Fig.5 Chrominance transfer characteristic 2.  
50  
2004 Mar 04  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
MGD672  
6
G
v
(dB)  
(4)  
0
(2)  
(3)  
6  
12  
18  
(1)  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
(1) CCRS1 = 0; CCRS) = 1.  
(2) CCRS1 = 1; CCRS) = 0.  
(3) CCRS1 = 1; CCRS) = 1.  
(4) CCRS1 = 0; CCRS) = 0.  
Fig.6 Luminance transfer characteristic 1 (excluding scaler).  
MBE736  
handbook, halfpage  
1
G
v
(dB)  
(1)  
0
1  
2  
3  
4  
5  
0
2
4
6
f (MHz)  
(1) CCRS1 = 0; CCRS0 = 0.  
Fig.7 Luminance transfer characteristic 2(excluding scaler).  
51  
2004 Mar 04  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
MGB708  
6
G
v
(dB)  
0
6  
12  
18  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig.8 Luminance transfer characteristic in RGB (excluding scaler).  
MGB706  
6
G
v
(dB)  
0
6  
12  
18  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig.9 Colour difference transfer characteristic in RGB (excluding scaler).  
52  
2004 Mar 04  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
8
BOUNDARY SCAN TEST  
The Boundary Scan Test (BST) functions BYPASS,  
EXTEST, INTEST, SAMPLE, CLAMP and IDCODE are all  
supported; see Table 115. Details about the  
JTAG BST-TEST can be found in the specification “IEEE  
Std. 1149.1”. A file containing the detailed Boundary Scan  
Description Language (BSDL) of the SAA7104H;  
SAA7105H is available on request.  
The SAA7104H; SAA7105H has built-in logic and  
5 dedicated pins to support boundary scan testing which  
allows board testing without special hardware (nails). The  
SAA7104H; SAA7105H follows the “IEEE Std. 1149.1 -  
Standard Test Access Port and Boundary-Scan  
Architecture” set by the Joint Test Action Group (JTAG)  
chaired by Philips.  
The 5 special pins are Test Mode Select (TMS), Test  
Clock (TCK), Test Reset (TRST), Test Data Input (TDI)  
and Test Data Output (TDO).  
Table 115 BST instructions supported by the SAA7104H; SAA7105H  
INSTRUCTION  
DESCRIPTION  
BYPASS  
This mandatory instruction provides a minimum length serial path (1 bit) between TDI and TDO  
when no test operation of the component is required.  
EXTEST  
SAMPLE  
This mandatory instruction allows testing of off-chip circuitry and board level interconnections.  
This mandatory instruction can be used to take a sample of the inputs during normal operation of  
the component. It can also be used to preload data values into the latched outputs of the  
boundary scan register.  
CLAMP  
This optional instruction is useful for testing when not all ICs have BST. This instruction addresses  
the bypass register while the boundary scan register is in external test mode.  
IDCODE  
This optional instruction will provide information on the components manufacturer, part number and  
version number.  
INTEST  
USER1  
This optional instruction allows testing of the internal logic (no support for customer available).  
This private instruction allows testing by the manufacturer (no support for customer available).  
8.1  
Initialization of boundary scan circuit  
When the IDCODE instruction is loaded into the BST  
instruction register, the identification register will be  
connected between TDI and TDO of the IC.  
The Test Access Port (TAP) controller of an IC should be  
in the reset state (TEST_LOGIC_RESET) when the IC is  
in functional mode. This reset state also forces the  
instruction register into a functional instruction such as  
IDCODE or BYPASS.  
The identification register will load a component specific  
code during the CAPTURE_DATA_REGISTER state of  
the TAP controller, this code can subsequently be shifted  
out. At board level this code can be used to verify  
component manufacturer, type and version number. The  
device identification register contains 32 bits, numbered  
31 to 0, where bit 31 is the most significant bit (nearest to  
TDI) and bit 0 is the least significant bit (nearest to TDO);  
see Fig.10.  
To solve the power-up reset, the standard specifies that  
the TAP controller will be forced asynchronously to the  
TEST_LOGIC_RESET state by setting the TRST pin  
LOW.  
8.2  
Device identification codes  
A device identification register is specified in “IEEE Std.  
1149.1b-1994”. It is a 32-bit register which contains fields  
for the specification of the IC manufacturer, the IC part  
number and the IC version number. Its biggest advantage  
is the possibility to check for the correct ICs mounted after  
production and to determine the version number of the ICs  
during field service.  
2004 Mar 04  
53  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
MSB  
31  
LSB  
28 27  
12 11  
1
0
TDI  
TDO  
0101  
1
0111000100000100  
16-bit part number  
00000010101  
4-bit  
version  
code  
11-bit manufacturer  
identification  
MHC568  
a. SAA7104H.  
MSB  
LSB  
31  
28 27  
12 11  
1
0
TDI  
TDO  
0101  
1
0111000100000101  
00000010101  
4-bit  
version  
code  
16-bit part number  
11-bit manufacturer  
identification  
MHC569  
b. SAA7105H.  
Fig.10 32 bits of identification code.  
9
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); all ground pins connected together and  
grounded (0 V); all supply pins connected together.  
SYMBOL  
VDDD  
VDDA  
Vi(A)  
PARAMETER  
digital supply voltage  
CONDITIONS  
MIN.  
0.5  
MAX.  
+4.6  
UNIT  
V
V
V
V
V
V
analog supply voltage  
0.5  
0.5  
0.5  
0.5  
0.5  
+4.6  
input voltage at analog inputs  
+4.6  
Vi(n)  
input voltage at pins XTALI, SDA and SCL  
input voltage at digital inputs or I/O pins  
VDDD + 0.5  
+4.6  
Vi(D)  
outputs in 3-state  
outputs in 3-state;  
note 1  
+5.5  
VSS  
Tstg  
voltage difference between VSSA(n) and VSSD(n)  
storage temperature  
100  
mV  
°C  
°C  
V
65  
0
+150  
70  
Tamb  
Vesd  
ambient temperature  
electrostatic discharge voltage  
human body model;  
note 2  
±2000  
machine model;  
note 3  
±200  
V
Notes  
1. Condition for maximum voltage at digital inputs or I/O pins: 3.0 V < VDDD < 3.6 V.  
2. Class 2 according to EIA/JESD22-114-B.  
3. Class B according to EIA/JESD22-115-A.  
2004 Mar 04  
54  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
10 THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
thermal resistance from junction to ambient  
CONDITIONS  
in free air  
VALUE  
UNIT  
Rth(j-a)  
44(1)  
K/W  
Note  
1. The overall Rth(j-a) value can vary depending on the board layout. To minimize the effective Rth(j-a) all power and  
ground pins must be connected to the power and ground layers directly. An ample copper area direct under the  
SAA7104H; SAA7105H with a number of through-hole plating, which connect to the ground layer (four-layer board:  
second layer), can also reduce the effective Rth(j-a). Please do not use any solder-stop varnish under the chip. In  
addition the usage of soldering glue with a high thermal conductance after curing is recommended.  
11 CHARACTERISTICS  
Tamb = 0 to 70 °C (typical values excluded); unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VDDA  
analog supply voltage  
digital supply voltage  
3.15  
3.3  
3.45  
V
VDDD2  
VDDD3  
VDDD4  
,
,
3.15  
3.3  
3.45  
V
VDDD1  
digital supply voltage (DVO)  
1.045  
1.425  
1.71  
2.375  
3.135  
1
1.1  
1.5  
1.8  
2.5  
3.3  
110  
175  
1.155  
1.575  
1.89  
V
V
V
2.625  
3.465  
115  
V
V
IDDA  
IDDD  
analog supply current  
digital supply current  
note 1  
note 2  
mA  
mA  
1
200  
Inputs  
VIL  
LOW-level input voltage  
VDDD1 = 1.1 V, 1.5 V, 1.8 V 0.1  
+0.2  
V
or 2.5 V; note 3  
VDDD1 = 3.3 V; note 3  
0.5  
0.5  
+0.8  
+0.8  
V
V
pins RESET, TMS, TCK,  
TRST and TDI  
VIH  
HIGH-level input voltage  
VDDD1 = 1.1 V, 1.5 V, 1.8 V  
or 2.5 V; note 3  
VDDD1 0.2 −  
VDDD1 + 0.1 V  
VDDD1 = 3.3 V; note 3  
2
2
VDDD1 + 0.3 V  
VDDD2 + 0.3 V  
pins RESET, TMS, TCK,  
TRST and TDI  
ILI  
Ci  
input leakage current  
input capacitance  
10  
10  
10  
10  
µA  
clocks  
pF  
pF  
pF  
data  
I/Os at high-impedance  
2004 Mar 04  
55  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Outputs  
VOL  
LOW-level output voltage  
VDDD1 = 1.1 V, 1.5 V, 1.8 V  
or 2.5 V; note 3  
0
0.1  
V
VDDD1 = 3.3 V; note 3  
0
0
0.4  
0.4  
V
V
pins TDO,  
TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
VOH  
HIGH-level output voltage  
VDDD1 = 1.1 V, 1.5 V, 1.8 V  
or 2.5 V; note 3  
VDDD1 0.1 −  
VDDD1  
V
VDDD1 = 3.3 V; note 3  
2.4  
2.4  
VDDD1  
VDDD2  
V
V
pins TDO,  
TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
I2C-bus; pins SDA and SCL  
VIL  
VIH  
Ii  
LOW-level input voltage  
0.5  
0.7VDDD2  
10  
0.3VDDD2  
V
HIGH-level input voltage  
input current  
VDDD2 + 0.3 V  
Vi = LOW or HIGH  
IOL = 3 mA  
+10  
0.4  
µA  
VOL  
LOW-level output voltage  
(pin SDA)  
V
Io  
output current  
during acknowledge  
3
mA  
Clock timing; pins PIXCLKI and PIXCLKO  
TPIXCLK  
td(CLKD)  
cycle time  
note 4  
note 5  
12  
ns  
ns  
delay from PIXCLKO to  
PIXCLKI  
δ
duty factor tHIGH/TPIXCLK  
duty factor tHIGH/TCLKO2  
rise time  
note 4  
output  
note 4  
note 4  
40  
40  
50  
50  
60  
%
%
ns  
ns  
60  
tr  
tf  
1.5  
1.5  
fall time  
Input timing  
tSU;DAT  
input data set-up time  
input data hold time  
input data set-up time  
input data hold time  
pins PD11 to PD0, RTCI  
and TTX_SRES  
2
ns  
ns  
ns  
ns  
tHD;DAT  
tSU;DAT  
tHD;DAT  
pins PD11 to PD0, RTCI  
and TTX_SRES  
1.5  
2
pins HSVGC, VSVGC  
and FSVGC; note 6  
pins HSVGC, VSVGC  
and FSVGC; note 6  
1.5  
Crystal oscillator  
fnom  
nominal frequency  
27  
MHz  
106  
f/fnom  
permissible deviation of  
nominal frequency  
note 7  
50  
+50  
2004 Mar 04  
56  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
CRYSTAL SPECIFICATION  
Tamb  
CL  
ambient temperature  
0
70  
°C  
pF  
load capacitance  
8
RS  
C1  
series resistance  
80  
1.8  
4.2  
motional capacitance (typical)  
parallel capacitance (typical)  
1.2  
2.8  
1.5  
3.5  
fF  
C0  
pF  
Data and reference signal output timing  
Co(L)  
output load capacitance  
8
40  
pF  
ns  
to(h)(gfx)  
output hold time to graphics  
controller  
pins HSVGC, VSVGC,  
FSVGC and CBO  
1.5  
to(d)(gfx)  
to(h)  
output delay time to graphics  
controller  
pins HSVGC, VSVGC,  
FSVGC and CBO  
10  
ns  
ns  
output hold time  
pins TDO,  
3
TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
to(d)  
output delay time  
pins TDO,  
25  
ns  
TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
CVBS and RGB outputs  
Vo(CVBS)(p-p) output voltage CVBS  
(peak-to-peak value)  
see Table 116  
1.23  
1
V
V
V
V
%
Vo(VBS)(p-p) output voltage VBS (S-video) see Table 116  
(peak-to-peak value)  
Vo(C)(p-p)  
output voltage C (S-video)  
(peak-to-peak value)  
see Table 116  
0.89  
0.7  
2
Vo(RGB)(p-p) output voltage R, G, B  
(peak-to-peak value)  
see Table 116  
Vo  
inequality of output signal  
voltages  
Ro(L)  
BDAC  
output load resistance  
37.5  
170  
output signal bandwidth of  
DACs  
3 dB; note 8  
MHz  
ILElf(DAC)  
low frequency integral linearity  
error of DACs  
±3  
±1  
LSB  
LSB  
DLElf(DAC)  
low frequency differential  
linearity error of DACs  
2004 Mar 04  
57  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
Notes  
1. Minimum value for I2C-bus bit DOWNA = 1.  
2. Minimum value for I2C-bus bit DOWND = 1.  
3. Levels refer to pins PD11 to PD0, PIXCLKI, FSVGC, PIXCLKI, VSVGC, PIXCLKO, CBO, TVD, and HSVGC, being  
inputs or outputs directly connected to a graphics controller.  
Input sensitivity is 1/2VDDD2 + 100 mV for HIGH and 1/2VDDD2 100 mV for LOW.  
The reference voltage 1/2VDDD2 is generated on chip.  
4. The data is for both input and output direction.  
5. This parameter is arbitrary, if PIXCLKI is looped through the VGC.  
6. Tested with programming IFBP = 1.  
7. If an internal oscillator is used, crystal deviation of nominal frequency is directly proportional to the deviation of  
subcarrier frequency and line/field frequency.  
1
8. B3 dB  
=
with RL = 37.5 and Cext = 20 pF (typical).  
------------------------------------------------  
2πRL(Cext + 5 pF)  
2004 Mar 04  
58  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
T
PIXCLK  
t
HIGH  
V
OH  
PIXCLKO  
0.5V  
DDD1  
V
OL  
t
t
r
t
f
d(CLKD)  
V
IH  
PIXCLKI  
0.5V  
DDD1  
V
IL  
t
t
HD;DAT  
HD;DAT  
t
t
SU;DAT  
SU;DAT  
V
V
IH  
IL  
PDn  
t
o(d)  
t
o(h)  
V
V
OH  
OL  
any output  
MHC567  
Fig.11 Input/output timing specification 1.  
V
IH  
LLC  
0.5V  
DDD1  
V
IL  
t
HD;DAT  
t
SU;DAT  
V
IH  
RTCI,  
TTX_SRES  
V
IL  
t
o(d)  
t
o(h)  
V
OH  
OL  
TTXRQ_XCLKO2  
V
MHC685  
Fig.12 Input/output timing specification 2.  
59  
2004 Mar 04  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
HSVGC  
CBO  
PD  
XOFS  
IDEL  
XPIX  
HLEN  
MHB905  
Fig.13 Horizontal input timing.  
HSVGC  
VSVGC  
CBO  
YOFS  
YPIX  
MHB906  
Fig.14 Vertical input timing.  
60  
2004 Mar 04  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
11.1 Teletext timing  
Time ti(TTXW) is the internally used insertion window for  
TTX data; it has a constant length that allows insertion of  
360 teletext bits at a text data rate of 6.9375 Mbits/s (PAL),  
296 teletext bits at a text data rate of 5.7272 Mbits/s (world  
standard TTX) or 288 teletext bits at a text data rate of  
5.7272 Mbits/s (NABTS). The insertion window is not  
opened if the control bit TTXEN is zero.  
Time tFD is the time needed to interpolate input data TTX  
and insert it into the CVBS and VBS output signal, such  
that it appears at tTTX = 9.78 µs (PAL) or tTTX = 10.5 µs  
(NTSC) after the leading edge of the horizontal  
synchronization pulse.  
Time tPD is the pipeline delay time introduced by the  
source that is gated by TTXRQ_XCLKO2 in order to  
deliver TTX data. This delay is programmable by register  
TTXHD. For every active HIGH state at output pin  
TTXRQ_XCLKO2, a new teletext bit must be provided by  
the source.  
Using appropriate programming, all suitable lines of the  
odd field (TTXOVS and TTXOVE) plus all suitable lines of  
the even field (TTXEVS and TTXEVE) can be used for  
teletext insertion.  
It is essential to note that the two pins used for teletext  
insertion must be configured for this purpose by the  
correct I2C-bus register settings.  
Since the beginning of the pulses representing the TTXRQ  
signal and the delay between the rising edge of TTXRQ  
and valid teletext input data are fully programmable  
(TTXHS and TTXHD), the TTX data is always inserted at  
the correct position after the leading edge of the outgoing  
horizontal synchronization pulse.  
CVBS/Y  
t
t
TTX  
i(TTXW)  
text bit #:  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
TTX_SRES  
t
t
FD  
PD  
TTXRQ_XCLKO2  
MHB891  
Fig.15 Teletext timing.  
2004 Mar 04  
61  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
12 APPLICATION INFORMATION  
DVO  
supply  
+3.3 V digital  
supply  
+3.3 V analog  
AGND  
supply  
0.1 µF  
0.1 µF  
1 nF  
0.1 µF  
DGND  
DGND  
AGND  
10 pF  
10 pF  
use one capacitor  
use one capacitor  
0.1 µH  
27 MHz  
for each V  
for each V  
DDD  
DDA  
V
V
to V  
V
to V  
DDA1 DDA3  
DDD1  
DDD2  
DDD4  
XTALI  
XTALO  
6
12, 25, 53  
51  
50  
43, 44, 52  
39, 40  
VSM, HSM_CSYNC  
GREEN_VBS_CVBS  
42  
FLTR0  
U
U
U
75 Ω  
75 Ω  
Y
AGND  
AGND  
AGND  
RED_CR_C_CVBS  
SAA7104H  
SAA7105H  
41  
digital  
inputs  
and  
FLTR1  
75 Ω  
75 Ω  
C
outputs  
AGND  
AGND  
AGND  
BLUE_CB_CVBS  
45  
FLTR2  
75 Ω  
75 Ω  
CVBS  
7, 13, 26, 57  
48  
46  
47  
AGND  
AGND  
AGND  
V
to V  
V
RSET  
DUMP  
SSD1  
SSD4  
SSA  
1 kΩ  
12 Ω  
AGND  
MHC686  
DGND  
AGND  
AGND  
Fig.16 Application circuit.  
62  
2004 Mar 04  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
C16  
handbook, halfpage  
120 pF  
L2  
L3  
2.7 µH  
2.7 µH  
C10  
C13  
390 pF  
560 pF  
AGND  
JP11  
JP12  
FIN  
FOUT  
FILTER 1  
= byp.  
ll act.  
MHB912  
Fig.17 FLTR0, FLTR1 and FLTR2 of Fig.16.  
2004 Mar 04  
63  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
SAA7104H  
SAA7105H  
SAA7104H  
SAA7105H  
51  
50  
XTALO  
51  
50  
XTALO  
XTALI  
XTALI  
27.00 MHz  
27.00 MHz  
4.7 µH  
1 nF  
18  
pF  
18  
pF  
39  
pF  
39  
pF  
MHC687  
(1a) With 3rd-harmonic quartz.  
Crystal load = 8 pF.  
(1b) With fundamental quartz.  
Crystal load = 20 pF.  
SAA7104H  
SAA7105H  
SAA7104H  
SAA7105H  
51  
50  
XTALO  
51  
50  
XTALO  
XTALI  
XTALI  
R
s
27.00 MHz  
n.c.  
clock  
MHC688  
(2a) With direct clock.  
(2b) With fundamental quartz and restricted drive level. When Pdrive of the internal oscillator  
is too high, a resistance Rs can be placed in series with the oscillator output XTALO.  
Note: The decreased crystal amplitude results in a lower drive level but on the other hand  
the jitter performance will decrease.  
Fig.18 Oscillator application.  
2004 Mar 04  
64  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
12.1 Reconstruction filter  
Tables 40 to 47 for example a standard PAL or NTSC  
signal) conditions occupy different conversion ranges, as  
Figure 17 shows a possible reconstruction filter for the  
digital-to-analog converters. Due to its cut-off frequency of  
6 MHz, it is not suitable for HDTV applications.  
indicated in Table 116 for a 100  
100 colour bar signal.  
By setting the reference currents of the DACs as shown in  
Table 116, standard compliant amplitudes can be  
12.2 Analog output voltages  
achieved for all signal combinations; it is assumed that in  
subaddress 16H, parameter DACF = 0000b, that means  
the fine adjustment for all DACs in common is set to 0%.  
The analog output voltages are dependent on the total  
load (typical value 37.5 ), the digital gain parameters and  
the I2C-bus settings of the DAC reference currents (analog  
settings).  
If S-video output is desired, the adjustment for the C  
(chrominance subcarrier) output should be identical to the  
one for VBS (luminance plus sync) output.  
The digital output signals in front of the DACs under  
nominal (nominal here stands for the settings given in  
Table 116 Digital output signals conversion range  
SET/OUT  
CVBS, SYNC TIP-TO-WHITE VBS, SYNC TIP-TO-WHITE  
RGB, BLACK-TO-WHITE  
Digital settings  
Digital output  
Analog settings  
Analog output  
see Tables 40 to 47  
1014  
see Tables 40 to 47  
see Table 35  
881  
876  
e.g. B DAC = 1FH  
1.23 V (p-p)  
e.g. G DAC = 1BH  
1.00 V (p-p)  
e.g. R DAC = G DAC = B DAC = 0BH  
0.70 V (p-p)  
12.3 Suggestions for a board layout  
Place the analog coupling (clamp) capacitors close to the  
analog input pins. Place the analog termination resistors  
close to the coupling capacitors.  
Use separate ground planes for analog and digital ground.  
Connect these planes only at one point directly under the  
device, by using a 0 resistor directly at the supply stage.  
Use separate supply lines for analog and digital supply.  
Place the supply decoupling capacitors close to the supply  
pins.  
Be careful of hidden layout capacitors around the crystal  
application.  
Use serial resistors in clock, sync and data lines, to avoid  
clock or data reflection effects and to soften data energy.  
Use Lbead (ferrite coil) in each digital supply line close to  
the decoupling capacitors to minimize radiation energy  
(EMC).  
2004 Mar 04  
65  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
13 PACKAGE OUTLINE  
QFP64: plastic quad flat package; 64 leads (lead length 1.6 mm); body 14 x 14 x 2.7 mm  
SOT393-1  
y
X
A
48  
33  
32  
49  
Z
E
e
A
2
H
A
E
(A )  
3
E
A
1
θ
w
p
M
pin 1 index  
L
p
b
L
17  
64  
detail X  
16  
1
w
M
v
M
A
b
p
Z
e
D
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.25 2.75  
0.10 2.55  
0.45 0.23 14.1 14.1  
0.30 0.13 13.9 13.9  
17.45 17.45  
16.95 16.95  
1.03  
0.73  
1.2  
0.8  
1.2  
0.8  
mm  
3
0.25  
0.8  
1.6  
0.16 0.16 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-20  
SOT393-1  
134E07  
MS-022  
2004 Mar 04  
66  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
14 SOLDERING  
To overcome these problems the double-wave soldering  
method was specifically developed.  
14.1 Introduction to soldering surface mount  
packages  
If wave soldering is used the following conditions must be  
observed for optimal results:  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
14.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Driven by legislation and environmental forces the  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 270 °C depending on solder paste material. The  
top-surface temperature of the packages should  
preferably be kept:  
Typical dwell time of the leads in the wave ranges from  
3 to 4 seconds at 250 °C or 265 °C, depending on solder  
material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
below 225 °C (SnPb process) or below 245 °C (Pb-free  
process)  
– for all BGA, HTSSON-T and SSOP-T packages  
14.4 Manual soldering  
– for packages with a thickness 2.5 mm  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
– for packages with a thickness < 2.5 mm and a  
volume 350 mm3 so called thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free  
process) for packages with a thickness < 2.5 mm and a  
volume < 350 mm3 so called small/thin packages.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Moisture sensitivity precautions, as indicated on packing,  
must be respected at all times.  
14.3 Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
2004 Mar 04  
67  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
14.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(2)  
not suitable suitable  
PACKAGE(1)  
BGA, HTSSON..T(3), LBGA, LFBGA, SQFP, SSOP..T(3), TFBGA,  
USON, VFBGA  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON,  
HTQFP, HTSSOP, HVQFN, HVSON, SMS  
not suitable(4)  
suitable  
PLCC(5), SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(5)(6) suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L(8), PMFP(9), WQCCN..L(8)  
not recommended(7)  
suitable  
not suitable  
not suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account  
be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature  
exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature  
must be kept as low as possible.  
4. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
5. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
6. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
7. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
8. Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted  
on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar  
soldering process. The appropriate soldering profile can be provided on request.  
9. Hot bar or manual soldering is suitable for PMFP packages.  
2004 Mar 04  
68  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
15 DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
16 DEFINITIONS  
17 DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2004 Mar 04  
69  
Philips Semiconductors  
Product specification  
Digital video encoder  
SAA7104H; SAA7105H  
18 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
2004 Mar 04  
70  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2004  
SCA76  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R21/01/pp71  
Date of release: 2004 Mar 04  
Document order number: 9397 750 11437  

相关型号:

SAA7105H/V1

IC,TV/VIDEO CIRCUIT,VIDEO ENCODER,CMOS,QFP,64PIN,PLASTIC
NXP

SAA7105H/V1,518

IC COLOR SIGNAL ENCODER, PQFP64, 14 X 14 MM, 2.70 MM HEIGHT, PLASTIC, MS-022, SOT-393-1, QFP-64, Color Signal Converter
NXP

SAA7105H/V1,557

IC COLOR SIGNAL ENCODER, PQFP64, 14 X 14 MM, 2.70 MM HEIGHT, PLASTIC, MS-022, SOT-393-1, QFP-64, Color Signal Converter
NXP

SAA7105HBG

IC COLOR SIGNAL ENCODER, PQFP64, 14 X 14 MM, 2.70 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MS-022, SOT-393-1, QFP-64, Color Signal Converter
NXP

SAA7108

PC-CODEC
NXP

SAA7108AE

HD-CODEC
NXP

SAA7108E

PC-CODEC
NXP

SAA7108EEB

IC SPECIALTY CONSUMER CIRCUIT, PBGA156, 15 X 15 MM, 1.15 MM HEIGHT, PLASTIC, SOT-472-1, BGA-156, Consumer IC:Other
NXP

SAA7109

PC-CODEC
NXP

SAA7109A

HD-CODEC
NXP

SAA7109AE

HD-CODEC
NXP

SAA7109AE/V1/G,518

IC SPECIALTY CONSUMER CIRCUIT, PBGA156, 15 X 15 MM, 1.05 MM HEIGHT, PLASTIC, MO-192, SOT-700-1, BGA-156, Consumer IC:Other
NXP