ISL28127FUBZ-T7 [RENESAS]

Precision Single and Dual Low Noise Operational Amplifiers; DFN8, MSOP8, SOIC8; Temp Range: -40° to 125°C;
ISL28127FUBZ-T7
型号: ISL28127FUBZ-T7
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Precision Single and Dual Low Noise Operational Amplifiers; DFN8, MSOP8, SOIC8; Temp Range: -40° to 125°C

放大器 光电二极管
文件: 总33页 (文件大小:2240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL28127, ISL28227, ISL28227SEH  
Precision Single and Dual Low Noise Operational Amplifiers  
FN6633  
Rev 8.00  
April 1, 2016  
The ISL28127, ISL28227 and ISL28227SEH are very high  
Features  
precision amplifiers featuring very low noise, low offset  
voltage, low input bias current and low temperature drift  
making them the ideal choice for applications requiring both  
high DC accuracy and AC performance. The combination of  
precision, low noise and small footprint provides the user with  
outstanding value and flexibility relative to similar competitive  
parts.  
• Low input offset voltage . . . . . . . . . . . . . . . . . . . . ±70µV, max  
ISL28227SEH ±75µV, max  
• Superb offset voltage TC. . . . . . . . . . . . . . . . . .0.5µV/°C,max  
ISL28227SEH 1µV/°C, max  
• Wide supply range . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 40V  
ISL28227SEH 4.5V to 36V  
Applications for these amplifiers include precision active  
filters, medical and analytical instrumentation, precision  
power supply controls and industrial controls.  
• Very low voltage noise. . . . . . . . . . . . . . . . . . . . . . . . .2.5nV/Hz  
• Input bias current. . . . . . . . . . . . . . . . . . . . . . . . . . ±10nA, max  
• Gain-bandwidth product . . . . . . . . . .10MHz Unity gain stable  
• No phase reversal  
The ISL28127 single and ISL28227 dual are available in 8 Ld  
SOIC, TDFN and MSOP packages. All devices are offered in  
standard pin configurations and operate over the extended  
temperature range to -40°C to +125°C.  
• Operating temperature range. . . . . . . . . . . .-40°C to +125°C  
ISL28227SEH -55°C to +125°C  
The ISL28227SEH is available in a 10 Ld hermetic ceramic  
Flatpack package. The device is offered in an industry  
standard pin configuration and operates over the extended  
temperature range from -55°C to +125°C.  
Applications  
• Precision instruments  
• Medical instrumentation  
• Industrial controls  
Related Literature  
AN1508, ISL281x7SOICEVAL1Z Evaluation Board User’s  
Guide  
• Active filter blocks  
• Data acquisition  
AN1509, ISL282x7SOICEVAL1Z Evaluation Board User’s  
Guide  
• Power supply control  
AN1556, Building an Accurate SPICE Model for Low Noise,  
Low Power Precision Amplifiers  
AN1690, Electronics Meets the Challenges of Patient  
Monitors  
C
100  
1
V
= ±19V  
= 1  
S
1.5nF  
A
V
V
+
-
10  
OUTPUT  
R
R
V
2
1
IN  
+
95.3  
232  
68.3nF  
C
2
V
-
1
0.1  
1
10  
100  
1k  
10k  
100k  
Sallen-Key Low Pass Filter (1MHz)  
FREQUENCY (Hz)  
FIGURE 1. TYPICAL APPLICATION  
FIGURE 2. INPUT NOISE VOLTAGE SPECTRAL DENSITY  
FN6633 Rev 8.00  
April 1, 2016  
Page 1 of 33  
 
ISL28127, ISL28227, ISL28227SEH  
Table of Contents  
Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications ISL28127, ISL28227 (VS ±15V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Specifications ISL28127, ISL28227 (VS ±5V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Specifications ISL28227SEH (VS ±15V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical Specifications ISL28227SEH (VS ±5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Operating Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Input ESD Diode Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Output Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Output Phase Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Unused Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
ISL28127, ISL28227 SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Characterization vs Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
M8.15E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
L8.3x3K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
M8.118B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
K10.A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FN6633 Rev 8.00  
April 1, 2016  
Page 2 of 33  
ISL28127, ISL28227, ISL28227SEH  
Ordering Information  
PART  
MARKING  
VOS (MAX)  
(µV)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
PART NUMBER  
ISL28127FBZ (No longer available,  
recommended replacement:  
ISL28127FRTZ-T13) (Notes 1, 4, 6)  
28127 FBZ  
70  
8 Ld SOIC  
M8.15E  
L8.3x3K  
ISL28127FRTBZ (No longer available,  
recommended replacement:  
8127  
75 (B Grade)  
8 Ld TDFN  
ISL28127FRTZ-T13) (Notes 1, 4, 6)  
ISL28127FRTZ (Notes 1, 4, 6)  
-C 8127  
8127Z  
150 (C Grade)  
70 (B Grade)  
8 Ld TDFN  
8 Ld MSOP  
L8.3x3K  
ISL28127FUBZ (No longer available,  
recommended replacement:  
M8.118B  
ISL28127FRTZ-T13) (Notes 1, 4, 6)  
ISL28127FUZ (No longer available,  
recommended replacement:  
8127Z -C  
150 (C Grade)  
8 Ld MSOP  
M8.118B  
ISL28127FRTZ-T13) (Notes 1, 4, 6)  
ISL28227FBZ (Notes 2, 4, 6)  
ISL28227FRTBZ (Notes 2, 4, 6)  
ISL28227FRTZ (Notes 1, 4, 6)  
ISL28227FUBZ (Notes 3, 4, 6)  
ISL28227FUZ (Notes 3, 4, 6)  
ISL28227SEHMF (Note 5)  
ISL28227SEHF/PROTO (Note 5)  
ISL28227SEHMX (Note 5)  
ISL28227SEHX/SAMPLE (Note 5)  
ISL28127SOICEVAL1Z  
28227 FBZ  
8227  
75  
8 Ld SOIC  
8 Ld TDFN  
8 Ld TDFN  
8 Ld MSOP  
8 Ld MSOP  
10 Ld FLATPACK  
10 Ld FLATPACK  
DIE  
M8.15E  
L8.3x3K  
L8.3x3K  
M8.118B  
M8.118B  
K10.A  
75 (B Grade)  
150 (C Grade)  
75 (B Grade)  
150 (C Grade)  
75 (B Grade)  
75 (B Grade)  
75 (B Grade)  
75 (B Grade)  
-C 8227  
8227Z  
8227Z -C  
ISL28227SEHMF  
ISL28227 SEHF/PROTO  
K10.A  
DIE  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
ISL28127MSOPEVAL1Z  
ISL28227SOICEVAL2Z  
ISL70227MHEVAL1Z  
1. Add “-T13” suffix for 6k unit, -T7” suffix for 1k,“-T7A” suffix for 250 unit Tape and Reel options. Please refer to TB347 for details on reel specifications.  
2. Add “-T13” suffix for 2.5k unit, -T7” suffix for 1k,“-T7A” suffix for 250 unit Tape and Reel options. Please refer to TB347 for details on reel specifications.  
3. Add “-T13” suffix for 2.5k unit, -T7” suffix for 1.5k,“-T7A” suffix for 250 unit Tape and Reel options. Please refer to TB347 for details on reel specifications.  
4. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate  
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products  
are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
5. These Intersil Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb  
and Pb-free soldering operations.  
6. For Moisture Sensitivity Level (MSL), please see device information page for ISL28127, ISL28227. For more information on MSL please see techbrief  
TB363.  
TABLE 1. KEY DIFFERENCES BETWEEN FAMILY OF PARTS  
PART NUMBER  
ISL28127  
NUMBER OF DEVICES  
OPERATING TEMPERATURE RANGE  
-40°C to +125°C  
1
2
2
ISL28227  
-40°C to +125°C  
ISL28227SEH  
-55°C to +125°C  
FN6633 Rev 8.00  
April 1, 2016  
Page 3 of 33  
 
 
 
 
 
 
 
ISL28127, ISL28227, ISL28227SEH  
Pin Configurations  
ISL28127  
(8 LD SOIC, MSOP)  
TOP VIEW  
ISL28227  
(8 LD SOIC, MSOP)  
TOP VIEW  
NC  
-IN_A  
+IN_A  
V -  
1
2
3
8
7
6
5
NC  
V+  
V
A
1
2
3
4
8
7
6
5
V+  
OUT  
-IN_A  
+IN_A  
V -  
V
B
- +  
OUT  
-
V
A
-IN_B  
+IN_B  
OUT  
+ -  
NC  
ISL28127  
(8 LD TDFN)  
TOP VIEW  
ISL28227  
(8 LD TDFN)  
TOP VIEW  
V A  
OUT  
V+  
8
NC  
NC  
1
1
8
-IN_A  
+IN_A  
V-  
V
B
-IN  
+IN  
V-  
V+  
V
2
3
4
7
6
2
3
4
7
6
5
OUT  
- +  
- +  
-IN_B  
OUT  
+ -  
PD  
PD  
5 +IN_B  
NC  
ISL28227SEH  
(10 LD FLATPACK)  
TOP VIEW  
V
A
1
2
3
4
5
10  
9
V+  
OUT  
-IN A  
V
B
OUT  
- +  
8
+IN A  
NC  
-IN B  
-
+
7
+IN B  
NC  
V-  
6
Pin Descriptions  
ISL28127  
(8 Ld SOIC,  
8 Ld MSOP)  
ISL28227  
(NO LONGER  
AVAILABLE)  
ISL28127  
(8 Ld TDFN)  
(8 Ld SOIC,  
8 Ld MSOP)  
ISL28227  
(8 Ld TDFN) (10 Ld Flatpack)  
ISL28227SEH  
PIN  
NAME  
EQUIVALENT  
CIRCUIT  
DESCRIPTION  
Amplifier noninverting input  
Amplifier A noninverting input  
Negative power supply  
3
4
2
+IN  
+IN_A  
V-  
Circuit 1  
Circuit 1  
Circuit 3  
Circuit 1  
Circuit 1  
Circuit 1  
3
4
3
4
5
3
4
5
3
5
7
+IN_B  
-IN  
Amplifier B noninverting input  
Amplifier inverting input  
Amplifier B inverting input  
6
6
8
-IN_B  
FN6633 Rev 8.00  
April 1, 2016  
Page 4 of 33  
ISL28127, ISL28227, ISL28227SEH  
Pin Descriptions(Continued)  
ISL28127  
(8 Ld SOIC,  
8 Ld MSOP)  
(NO LONGER  
AVAILABLE)  
ISL28227  
(8 Ld SOIC,  
8 Ld MSOP)  
ISL28127  
(8 Ld TDFN)  
ISL28227  
(8 Ld TDFN) (10 Ld Flatpack)  
ISL28227SEH  
PIN  
NAME  
EQUIVALENT  
CIRCUIT  
DESCRIPTION  
Amplifier output  
6
7
VOUT  
Circuit 2  
Circuit 2  
Circuit 3  
Circuit 2  
Circuit 1  
-
7
8
1
2
7
8
1
2
9
10  
1
VOUTB  
Amplifier B output  
7
6
V+  
Positive power supply  
Amplifier A output  
VOUTA  
2
2
-IN_A  
NC  
Amplifier A inverting input  
1, 5, 8  
1, 5, 8  
PD  
4, 6  
Not Connected – This pin is not  
electrically connected internally.  
PD  
-
Thermal Pad. Pad should be  
connected to lowest potential  
source in the circuit.  
V+  
V-  
V+  
V+  
OUT  
V-  
CAPACITIVELY T  
RIGGERED ESD  
CLAMP  
IN-  
IN+  
V-  
CIRCUIT 1  
CIRCUIT 2  
CIRCUIT 3  
FN6633 Rev 8.00  
April 1, 2016  
Page 5 of 33  
ISL28127, ISL28227, ISL28227SEH  
Absolute Maximum Ratings  
Thermal Information  
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2V  
Maximum Supply Voltage ISL28227SEH (Note 12). . . . . . . . . . . . . . . . 36V  
Maximum Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
Maximum Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5V  
Min/Max Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V  
Max/Min Input Current for  
Thermal Resistance (Typical)  
8 Ld SOIC (Notes 8, 11)  
JA (°C/W)  
JC (°C/W)  
ISL28127. . . . . . . . . . . . . . . . . . . . . . . . . .  
ISL28227. . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld TDFN (Notes 7, 10)  
ISL28127. . . . . . . . . . . . . . . . . . . . . . . . . .  
ISL28227. . . . . . . . . . . . . . . . . . . . . . . . . .  
8 Ld MSOP (Notes 8, 11)  
120  
110  
60  
55  
48  
47  
7
6
Input Voltage >V+ or <V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20mA  
Output Short-Circuit Duration  
(1 Output at a Time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indefinite  
ESD Tolerance ISL28127, ISL28227  
Human Body Model (Tested per JESD22-A114F)  
ISL28127. . . . . . . . . . . . . . . . . . . . . . . . . .  
ISL28227. . . . . . . . . . . . . . . . . . . . . . . . . .  
10 Ld Ceramic Flatpack (Notes 9, 10). . . .  
155  
150  
130  
50  
45  
20  
ISL28127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5kV  
ISL28227. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.0kV  
Machine Model (Tested per EIA/JESD22-A115-A) . . . . . . . . . . . . . . 500V  
Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . .1.5kV  
ESD Tolerance ISL28227SEH  
Pb-Free Reflow Profile (None-Hermetic Packages Only) . . . . see TB493  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Recommended Operating Conditions  
Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 2kV  
Machine Model (Tested per EIA/JESD22-A115-A) . . . . . . . . . . . . . . 300V  
Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . . 750V  
Ambient Operating Temperature Range  
ISL28127, ISL28227 . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
ISL28227SEH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . .+150°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
7. JA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
Brief TB379.  
8. JA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
9. JA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
10. For JC, the “case temp” location is the center of the package underside.  
11. For JC, the “case temp” location is taken at the package top center.  
12. No destructive single-event effects at effective LET of 86.4MeV•cm2/mg up to a supply of ±18V. Reference manufacturers SEE report.  
Electrical Specifications ISL28127, ISL28227 (V ±15V) VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise  
S
noted. Boldface limits apply across the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
TEST CONDITIONS  
ISL28127  
(Note 13)  
TYP  
(Note 13)  
UNIT  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
Offset Voltage;  
SOIC Package  
-70  
-120  
-75  
10  
70  
120  
75  
-
ISL28227  
ISL28127  
ISL28127  
ISL28227  
10  
-150  
-70  
-
150  
70  
Offset Voltage;  
-10  
MSOP Grade B Package  
-150  
-75  
-
150  
75  
Offset Voltage;  
-10  
TDFN Grade B Package  
-160  
-75  
-
-10  
-
160  
75  
Offset Voltage;  
MSOP, TDFN Grade B Package  
-150  
-150  
-250  
150  
150  
250  
Offset Voltage;  
ISL28127  
ISL28227  
-10  
-
MSOP, TDFN Grade C Package  
FN6633 Rev 8.00  
April 1, 2016  
Page 6 of 33  
 
 
 
 
 
 
 
 
 
 
ISL28127, ISL28227, ISL28227SEH  
Electrical Specifications ISL28127, ISL28227 (V ±15V) VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise  
S
noted. Boldface limits apply across the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
TCVOS  
DESCRIPTION  
Offset Voltage Drift;  
TEST CONDITIONS  
ISL28127  
(Note 13)  
TYP  
0.1  
(Note 13)  
UNIT  
-0.5  
-0.75  
-0.80  
0.5  
µV/°C  
µV/°C  
µV/°C  
SOIC Package  
ISL28227  
ISL28127  
0.10  
0.10  
0.75  
0.80  
Offset Voltage Drift;  
MSOP, Grade B  
Offset Voltage Drift;  
TDFN, Grade B  
ISL28127  
ISL28227  
-0.90  
-0.75  
-1  
0.10  
0.10  
0.1  
0.90  
0.75  
1
µV/°C  
µV/°C  
µV/°C  
Offset Voltage Drift;  
MSOP, TDFN, Grade B  
Offset Voltage Drift;  
MSOP, TDFN, Grade C  
ISL28127  
ISL28227  
IOS  
Input Offset Current  
-10  
-12  
1
10  
nA  
nA  
nA  
nA  
V
-
12  
IB  
Input Bias Current  
-10  
1
10  
-12  
-
12  
VCM  
Input Voltage Range  
Guaranteed by CMRR  
-13  
-
13  
-12  
-
12  
V
CMRR  
PSRR  
Common-Mode Rejection Ratio  
V
CM = -13V to +13V  
CM = -12V to +12V  
115  
115  
115  
115  
110  
110  
1000  
120  
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
V/mV  
V
-
125  
-
Power Supply Rejection Ratio  
ISL28127  
VS = ±2.25V to ±20V  
VS = ±3V to ± 20V  
VS = ±2.25V to ±20V  
VS = ±3V to ± 20V  
Power Supply Rejection Ratio ISL28227  
117  
-
AVOL  
Open-Loop Gain  
VO = -13V to +13V  
1500  
RL = 10kΩ to ground  
VOH  
Output Voltage High  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
13.50  
13.65  
-
V
V
13.2  
-
-
-
13.4  
13.5  
V
13.1  
-
-
V
VOL  
Output Voltage Low  
-
-13.65  
-13.50  
-13.2  
-13.4  
-13.1  
2.8  
3.7  
-
V
-
-
V
-
-13.5  
V
-
-
V
IS  
Supply Current/Amplifier  
-
2.2  
mA  
mA  
mA  
V
-
-
±45  
-
ISC  
Short-Circuit  
RL = 0Ωto ground  
-
VSUPPLY  
Supply Voltage Range  
Guaranteed by PSRR  
±2.25  
±20  
FN6633 Rev 8.00  
April 1, 2016  
Page 7 of 33  
ISL28127, ISL28227, ISL28227SEH  
Electrical Specifications ISL28127, ISL28227 (V ±15V) VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise  
S
noted. Boldface limits apply across the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
(Note 13)  
TYP  
(Note 13)  
UNIT  
AC SPECIFICATIONS  
GBW  
enp-p  
en  
Gain Bandwidth Product  
-
-
-
-
-
-
-
-
10  
85  
-
-
-
-
-
-
-
-
MHz  
nVP-P  
Voltage Noise  
0.1Hz to 10Hz  
Voltage Noise Density  
f = 10Hz  
f = 100Hz  
f = 1kHz  
3
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
%
2.8  
2.5  
f = 10kHz  
f = 10kHz  
2.5  
in  
Current Noise Density  
0.4  
THD + N  
Total Harmonic Distortion + Noise  
1kHz, G = 1, VO = 3.5VRMS  
,
0.00022  
RL = 2kΩ  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 10, RL = 2kΩVO = 4VP-P  
AV = -1, VOUT = 100mVP-P  
-
-
±3.6  
36  
-
-
V/µs  
ns  
tr, tf, Small Signal Rise Time  
,
10% to 90% of VOUT  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
Fall Time  
90% to 10% of VOUT  
AV = -1, VOUT = 100mVP-P  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
,
-
-
-
-
38  
3.4  
3.8  
1.7  
-
-
-
-
ns  
µs  
µs  
µs  
ts  
Settling Time to 0.1%  
10V Step; 10% to VOUT  
AV = -1 VOUT = 10VP-P  
,
Rg = Rf =10k, RL = 2kΩ to VCM  
Settling Time to 0.01%  
10V Step; 10% to VOUT  
AV = -1, VOUT = 10VP-P  
,
RL = 2kΩ to VCM  
tOL  
Output Overload Recovery Time  
AV = 100, VIN = 0.2V  
RL = 2kΩ to VCM  
Electrical Specifications ISL28127, ISL28227 (V ±5V) VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted.  
S
Boldface limits apply across the operating temperature range, -40°C to +125°C.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
TEST CONDITIONS  
ISL28127  
(Note 13)  
TYP  
(Note 13)  
UNIT  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
Offset Voltage; SOIC Package  
-70  
-120  
-75  
10  
70  
120  
75  
-
ISL28227  
ISL28127  
ISL28127  
ISL28227  
10  
-150  
-70  
-
150  
70  
Offset Voltage;  
MSOP Grade B Package  
-10  
-150  
-75  
-
150  
75  
Offset Voltage;  
TDFN Grade B Package  
-10  
-160  
-75  
-
-10  
-
160  
75  
Offset Voltage;  
MSOP, TDFN Grade B Package  
-150  
-150  
-250  
150  
150  
250  
Offset Voltage;  
MSOP, TDFN Grade C Package  
ISL28127  
ISL28227  
-10  
-
FN6633 Rev 8.00  
April 1, 2016  
Page 8 of 33  
 
ISL28127, ISL28227, ISL28227SEH  
Electrical Specifications ISL28127, ISL28227 (V ±5V) VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted.  
S
Boldface limits apply across the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
TCVOS  
DESCRIPTION  
Offset Voltage Drift;  
TEST CONDITIONS  
ISL28127  
(Note 13)  
TYP  
0.1  
0.1  
0.1  
(Note 13)  
UNIT  
-0.5  
-0.75  
-0.80  
0.5  
µV/°C  
µV/°C  
µV/°C  
SOIC Package  
ISL28227  
ISL28127  
0.75  
0.80  
Offset Voltage Drift;  
MSOP, Grade B  
Offset Voltage Drift;  
TDFN, Grade B  
ISL28127  
ISL28227  
-0.90  
-0.75  
-1  
0.1  
0.1  
0.1  
0.90  
0.75  
1
µV/°C  
µV/°C  
µV/°C  
Offset Voltage Drift;  
MSOP, TDFN, Grade B  
Offset Voltage Drift;  
MSOP, TDFN, Grade C  
ISL28127  
ISL28227  
IOS  
Input Offset Current  
-10  
-12  
10  
1
10  
nA  
nA  
nA  
nA  
V
-
12  
IB  
Input Bias Current  
1
10  
-12  
-3  
-
12  
VCM  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Guaranteed by CMRR  
-
3
2
-
-2  
-
120  
-
V
CMRR  
PSRR  
V
CM = -3V to +3V  
CM = -2V to +2V  
115  
115  
115  
115  
1000  
dB  
dB  
dB  
dB  
V/mV  
V
-
VS = ±2.25V to ±5V  
VS = ±3V to ±5V  
125  
-
-
-
AVOL  
Open-Loop Gain  
VO = -3V to +3V  
1500  
-
RL = 10kΩ to ground  
VOH  
Output Voltage High  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
3.50  
3.65  
-
-
V
V
3.2  
-
3.4  
3.5  
-
3.1  
-
-
V
V
V
VOL  
Output Voltage Low  
-
-
-
-
-
-
-
-3.65  
-3.50  
-3.2  
-3.4  
-3.1  
2.8  
3.7  
-
-
-3.5  
-
V
IS  
Supply Current/Amplifier  
Short-Circuit  
2.2  
-
mA  
mA  
mA  
ISC  
±45  
AC SPECIFICATIONS  
GBW  
Gain Bandwidth Product  
Total Harmonic Distortion + Noise  
-
-
10  
-
-
MHz  
%
THD + N  
1kHz, G = 1, Vo = 2.5VRMS  
,
0.0034  
RL = 2kΩ  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 10, RL = 2kΩ  
-
±3.6  
-
V/µs  
FN6633 Rev 8.00  
April 1, 2016  
Page 9 of 33  
ISL28127, ISL28227, ISL28227SEH  
Electrical Specifications ISL28127, ISL28227 (V ±5V) VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted.  
S
Boldface limits apply across the operating temperature range, -40°C to +125°C. (Continued)  
MIN  
MAX  
PARAMETER  
DESCRIPTION  
TEST CONDITIONS  
AV = -1, VOUT = 100mVP-P  
(Note 13)  
TYP  
36  
(Note 13)  
UNIT  
ns  
tr, tf, Small  
Signal  
Rise Time  
,
-
-
-
-
-
-
-
-
10% to 90% of VOUT  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
Fall Time  
AV = -1, VOUT = 100mVP-P  
,
38  
1.6  
4.2  
ns  
µs  
µs  
90% to 10% of VOUT  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
ts  
Settling Time to 0.1%  
Settling Time to 0.01%  
AV = -1, VOUT = 4VP-P  
,
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
AV = -1, VOUT = 4VP-P  
,
Rf = Rg = 2kΩ, RL = 2kΩto VCM  
Electrical Specifications ISL28227SEH (V ±15V) VCM = 0, VO = 0V, RL = Open, TA = +25°C, unless otherwise noted.  
S
Boldface limits apply across the -55°C to +125°C operating temperature range. The limits also define room temperature post-irradiation performance  
following 60Co irradiation at 0.01rad(Si)/s to a total dose of 50krad(Si) wafer-by-wafer acceptance.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
Offset Voltage  
TEST CONDITIONS  
(Note 13)  
TYP  
-10  
-
(Note 13)  
UNIT  
µV  
-75  
-100  
-1  
75  
100  
1
µV  
TCVOS  
IOS  
Offset Voltage Drift  
Input Offset Current  
0.1  
1
µV/°C  
nA  
TA = +25°C  
-10  
10  
12  
25  
10  
12  
25  
13  
12  
-
TA = -55°C, +125°C  
TA = +25°C, post radiation  
TA = +25°C  
-12  
-
nA  
-25  
nA  
IB  
Input Bias Current  
-10  
1
-
nA  
TA = -55°C, +125°C  
TA = +25°C, post radiation  
Guaranteed by CMRR  
-12  
nA  
-25  
nA  
VCM  
Input Voltage Range  
-13  
-
V
-12  
115  
115  
110  
110  
1000  
-
120  
-
V
CMRR  
PSRR  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
V
CM = -13V to +13V  
CM = -12V to +12V  
dB  
V
-
dB  
VS = ±2.25V to ±5V  
VS = ±3V to ±15V  
117  
-
-
dB  
-
dB  
AVOL  
Open-Loop Gain  
VO = -13V to +13V  
1500  
-
V/mV  
RL = 10kΩ to ground  
VOH  
Output Voltage High  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
13.5  
13.65  
-
V
V
13.2  
-
-
-
13.4  
13.5  
V
13.1  
-
-
V
VOL  
Output Voltage Low  
-
-
-
-
-
-
-
-13.65  
-13.5  
-13.2  
-13.4  
-13.1  
2.8  
3.7  
-
V
-
-13.5  
-
V
V
V
IS  
Supply Current/Amplifier  
Short-Circuit  
2.2  
-
mA  
mA  
mA  
ISC  
RL = 0Ωto ground  
±45  
FN6633 Rev 8.00  
April 1, 2016  
Page 10 of 33  
 
ISL28127, ISL28227, ISL28227SEH  
Electrical Specifications ISL28227SEH (V ±15V) VCM = 0, VO = 0V, RL = Open, TA = +25°C, unless otherwise noted.  
S
Boldface limits apply across the -55°C to +125°C operating temperature range. The limits also define room temperature post-irradiation performance  
following 60Co irradiation at 0.01rad(Si)/s to a total dose of 50krad(Si) wafer-by-wafer acceptance. (Continued)  
MIN  
MAX  
PARAMETER  
VSUPPLY  
DESCRIPTION  
Supply Voltage Range  
TEST CONDITIONS  
Guaranteed by PSRR  
(Note 13)  
TYP  
-
(Note 13)  
UNIT  
V
±2.25  
±15  
AC SPECIFICATIONS  
GBW  
enp-p  
en  
Gain Bandwidth Product  
Voltage Noise  
-
-
-
-
-
-
-
-
10  
85  
-
-
-
-
-
-
-
-
MHz  
nVP-P  
0.1Hz to 10Hz  
f = 10Hz  
Voltage Noise Density  
3
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
%
f = 100Hz  
f = 1kHz  
2.8  
2.5  
f = 10kHz  
f = 10kHz  
2.5  
in  
Current Noise Density  
0.4  
THD + N  
Total Harmonic Distortion + Noise  
1kHz, G = 1, VO = 3.5VRMS  
,
0.00022  
RL = 2kΩ  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 10, RL = 2kΩVO = 4VP-P  
AV = -1, VOUT = 100mVP-P  
-
-
±3.6  
36  
-
-
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
,
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
Fall Time  
90% to 10% of VOUT  
AV = -1, VOUT = 100mVP-P  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
,
-
-
-
-
38  
3.4  
3.8  
1.7  
-
-
-
-
ns  
µs  
µs  
µs  
ts  
Settling Time to 0.1%  
10V Step; 10% to VOUT  
AV = -1, VOUT = 10VP-P  
,
Rg = Rf = 10k, RL = 2kΩ to VCM  
Settling Time to 0.01%  
10V Step; 10% to VOUT  
AV = -1, VOUT = 10VP-P  
,
RL = 2kΩ to VCM  
tOL  
Output Overload Recovery Time  
AV = 100, VIN = 0.2V,  
RL = 2kΩ to VCM  
Electrical Specifications ISL28227SEH (V ±5V) VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits  
S
apply over the -55°C to +125°C operating temperature range. The limits also define room temperature post-irradiation performance following 60Co  
irradiation at 0.01rad(Si)/s to a total dose of 50krad(Si) wafer-by-wafer acceptance.  
MIN  
MAX  
PARAMETER  
VOS  
DESCRIPTION  
Offset Voltage  
TEST CONDITIONS  
(Note 13)  
TYP  
-10  
.1  
(Note 13)  
UNIT  
µV  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TCVOS  
IOS  
Offset Voltage Drift  
µV/°C  
nA  
Input Offset Current  
1
IB  
Input Bias Current  
1
nA  
CMRR  
PSRR  
AVOL  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Open-Loop Gain  
V
CM = -3V to +3V  
120  
125  
1500  
dB  
VS = ±2.25V to ±5V  
dB  
VO = -3V to +3V  
V/mV  
RL = 10kΩ to ground  
VOH  
VOL  
IS  
Output Voltage High  
Output Voltage Low  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
RL = 10kΩ to ground  
RL = 2kΩ to ground  
-
-
-
-
-
3.65  
3.5  
-
-
-
-
-
V
V
-3.65  
-3.5  
2.2  
Supply Current/Amplifier  
mA  
FN6633 Rev 8.00  
April 1, 2016  
Page 11 of 33  
ISL28127, ISL28227, ISL28227SEH  
Electrical Specifications ISL28227SEH (V ±5V) VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits  
S
apply over the -55°C to +125°C operating temperature range. The limits also define room temperature post-irradiation performance following 60Co  
irradiation at 0.01rad(Si)/s to a total dose of 50krad(Si) wafer-by-wafer acceptance. (Continued)  
MIN  
MAX  
PARAMETER  
ISC  
DESCRIPTION  
Short-Circuit  
TEST CONDITIONS  
(Note 13)  
TYP  
±45  
(Note 13)  
UNIT  
mA  
-
-
AC SPECIFICATIONS  
GBW  
Gain Bandwidth Product  
-
-
10  
-
-
MHz  
%
THD + N  
Total Harmonic Distortion + Noise  
1kHz, G = 1, Vo = 2.5VRMS  
,
0.0034  
RL = 2kΩ  
TRANSIENT RESPONSE  
SR  
Slew Rate  
AV = 10, RL = 2kΩ  
-
-
±3.6  
36  
-
-
V/µs  
ns  
tr, tf, Small  
Signal  
Rise Time  
10% to 90% of VOUT  
AV = -1, VOUT = 100mVP-P  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
,
Fall Time  
90% to 10% of VOUT  
AV = -1, VOUT = 100mVP-P  
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
,
-
-
-
38  
1.6  
4.2  
-
-
-
ns  
µs  
µs  
ts  
Settling Time to 0.1%  
AV = -1, VOUT = 4VP-P  
,
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
Settling Time to 0.01%  
AV = -1, VOUT = 4VP-P  
,
Rf = Rg = 2kΩ, RL = 2kΩ to VCM  
NOTE:  
13. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN6633 Rev 8.00  
April 1, 2016  
Page 12 of 33  
ISL28127, ISL28227, ISL28227SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified.  
100  
10  
1
100  
80  
V
= ±19V  
= 1  
S
A
V
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
V
= 38V  
= 10k  
= 3.5pF  
= 10, R = 100k  
= 10,000  
+
R
C
R
L
L
g
f
A
V
0
1
2
3
4
5
6
7
8
9
10  
0.1  
1
10  
100  
1k  
10k  
100k  
TIME (s)  
FREQUENCY (Hz)  
FIGURE 3. INPUT NOISE VOLTAGE 0.1Hz to 10Hz  
FIGURE 4. INPUT NOISE VOLTAGE SPECTRAL DENSITY  
100  
10  
1
130  
120  
110  
100  
90  
80  
70  
PSRR+ AND PSRR- V = ±5V  
V
A
= ±19V  
= 1  
S
S
V
R
C
= INF  
L
L
= 5.25pF  
= +1  
A
V
S
60  
50  
V
= 1V  
P-P  
40 PSRR+ AND PSRR- V = ±15V  
S
30  
20  
10  
0
-10  
0.1  
10M  
10  
100  
1k  
10k  
100k  
1M  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 5. INPUT NOISE CURRENT SPECTRAL DENSITY  
FIGURE 6. PSRR vs FREQUENCY, VS = ±5V, ±15V  
130  
100  
50  
V
= ±5V  
S
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.25V  
S
V
V
= ±5  
S
V
= ±15V  
S
0
= ±15  
S
R
C
= INF  
L
L
= 5.25pF  
= +1  
-50  
-100  
A
V
V
= 1V  
CM  
P-P  
-10  
10  
10M  
100  
1k  
10k  
100k  
1M  
-50  
0
50  
100  
150  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FIGURE 7. CMRR vs FREQUENCY, VS = ±2.25, ±5V, ±15V  
FIGURE 8. VOS vs TEMPERATURE vs VSUPPLY  
FN6633 Rev 8.00  
April 1, 2016  
Page 13 of 33  
 
ISL28127, ISL28227, ISL28227SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
5000  
4000  
3000  
2000  
1000  
0
5000  
4000  
3000  
2000  
1000  
0
V
= ±15  
= ±5  
S
V
= ±15  
S
-1000  
-2000  
-3000  
-4000  
-5000  
-1000  
-2000  
-3000  
-4000  
-5000  
V
S
V
= ±5  
S
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
0
50  
TEMPERATURE (°C)  
100  
150  
TEMPERATURE (°C)  
FIGURE 10. IB- vs TEMPERATURE vs SUPPLY VOLTAGE  
FIGURE 9. IB+ vs TEMPERATURE vs SUPPLY VOLTAGE  
5000  
60  
4000  
3000  
2000  
1000  
0
29 UNITS  
AVERAGE  
40  
20  
V
= ±15  
+25°C  
S
0
V
S
= ±5  
+125°C  
-1000  
-2000  
-3000  
-4000  
-5000  
-20  
-40  
-60  
-40°C  
-15  
-10  
-5  
0
5
10  
15  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
INPUT COMMON-MODE VOLTAGE  
TEMPERATURE (°C)  
FIGURE 11. IOS vs TEMPERATURE vs SUPPLY VOLTAGE  
FIGURE 12. INPUT OFFSET VOLTAGE vs INPUT COMMON-MODE  
VOLTAGE, VS = ±15V  
600  
600  
V
= ±15V  
S
V
= ±5V  
S
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
-70 -55 -40 -25 -10  
5
20  
35  
50  
65  
-70 -55 -40 -25 -10  
5
20  
35  
50  
65  
V
(µV)  
V
(µV)  
OS  
OS  
FIGURE 13. INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±15V  
FIGURE 14. INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±5V  
FN6633 Rev 8.00  
April 1, 2016  
Page 14 of 33  
ISL28127, ISL28227, ISL28227SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
Vs = ±5V  
Vs = ±15V  
10  
5
0
-0.7  
0
-0.7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0.7  
-0.5  
-0.3  
-0.1  
0.1  
0.3  
0.5  
0.7  
V
TC (µV/°C)  
V
TC (µV/°C)  
OS  
OS  
FIGURE 15. OFFSET VOLTAGE DRIFT DISTRIBUTION, VS = ±15V  
FIGURE 16. OFFSET VOLTAGE DRIFT DISTRIBUTION, VS = ±5V  
35  
40  
V
= ±5V  
V
= ±15V  
s
s
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-25 -20 -15 -10 -5  
I
0
5
10 15 20 25  
-22.5  
-15  
-7.5  
0
7.5  
15  
22.5  
TC (pA/°C)  
I
TC (pA/°C)  
B+  
B+  
FIGURE 17. IB+ INPUT BIAS CURRENT DRIFT DISTRIBUTION,  
FIGURE 18. IB+ INPUT BIAS CURRENT DRIFT DISTRIBUTION,  
S = ±5V  
V
S = ±15V  
V
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V
= ±15V  
V = ±5V  
s
s
0
0
-27  
-18  
-9  
0
9
18  
27  
-30 -24 -18 -12 -6  
0
6
12 18 24 30  
I
TC (pA/°C)  
I
TC (pA/°C)  
B-  
B-  
FIGURE 19. IB- INPUT BIAS CURRENT DRIFT DISTRIBUTION,  
S = ±15V  
FIGURE 20. IB- INPUT BIAS CURRENT DRIFT DISTRIBUTION,  
VS = ±5V  
V
FN6633 Rev 8.00  
April 1, 2016  
Page 15 of 33  
ISL28127, ISL28227, ISL28227SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
V
= ±5V  
V
= ±15V  
S
S
0
-30 -24 -18 -12 -6  
0
6
12 18 24 30  
-27  
-18  
-9  
0
9
18  
27  
I
TC (pA/°C)  
I
TC (pA/°C)  
OS  
OS  
FIGURE 21. INPUT OFFSET CURRENT DISTRIBUTION, VS = ±15V  
FIGURE 22. INPUT OFFSET CURRENT DISTRIBUTION, VS = ±5V  
-13.1  
14.2  
-13.2  
-13.3  
-13.4  
-13.5  
-13.6  
-13.7  
-13.8  
-13.9  
-14.0  
-14.1  
-14.2  
MEDIAN  
14.1  
50 UNITS  
MEDIAN  
50 UNITS  
14.0  
13.9  
13.8  
R
= 2k  
L
R
= 100k  
L
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
R
= 100k  
L
R
= 2k  
L
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 23. VOH vs TEMPERATURE, VS = ±15V  
FIGURE 24. VOL vs TEMPERATURE, VS = ±15V  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
PHASE  
PHASE  
60  
60  
40  
20  
40  
20  
GAIN  
GAIN  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
R
C
= 10k  
R
C
= 10k  
L
L
L
L
= 10pF  
= 100pF  
SIMULATION  
SIMULATION  
0.1m 1m 10m 100m  
1
10 100 1k 10k 100k 1M 10M 100M  
0.1m 1m 10m 100m 1 10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 25. OPEN-LOOP GAIN, PHASE vs FREQUENCY, RL = 10k  
FIGURE 26. OPEN-LOOP GAIN, PHASE vs FREQUENCY, RL = 10k  
CL = 10pF  
CL = 100pF  
FN6633 Rev 8.00  
April 1, 2016  
Page 16 of 33  
ISL28127, ISL28227, ISL28227SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
70  
60  
50  
40  
30  
20  
10  
0
15  
13  
11  
9
R = R = 100k  
A
= 1000  
= 100  
= 10  
f
g
V
R
= 100, R = 100k  
f
g
R = R = 10k  
f
g
R
= 1k, Rf = 100k  
g
R = R = 1k  
f
g
A
V
V
C
R
V
= ±15V  
= 3.5pF  
= INF  
S
7
L
L
5
= 100mV  
A
OUT  
P-P  
V
3
V
R
= ±15V  
= 10k  
S
R = R = 100  
f
g
L
L
R
= 10k, R = 100k  
f
1
g
C
= 3.5pF  
= +2  
-1  
-3  
-5  
A
= 1  
V
A
V
V
= 100mV  
OUT  
P-P  
R
= OPEN, R = 0  
f
g
-10  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 27. FREQUENCY RESPONSE vs CLOSED LOOP GAIN  
FIGURE 28. FREQUENCY RESPONSE vs FEEDBACK RESISTANCE  
Rf/Rg  
2
7
R
R
= 10k  
= 1k  
L
V
R
= ±15V  
= 10k  
= +1  
S
6
5
1
0
L
L
A
C
= 1000pF  
V
L
V
= 100mV  
P-P  
4
OUT  
C
= 220pF  
L
3
-1  
-2  
-3  
-4  
-5  
R
R
= 499  
= 100  
L
C
= 100pF  
L
2
L
C
= 25.5pF  
1
L
V
= ±15V  
= 3.5pF  
= +1  
S
0
R
= 49.9  
L
C
A
L
-1  
-2  
-3  
V
P-P  
C
= 3.5pF  
V
= 100mV  
L
OUT  
10k  
1k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 29. GAIN vs FREQUENCY vs RL  
FIGURE 30. GAIN vs FREQUENCY vs CL  
1
0
6
5
V
= ±2.25V  
S
4
V
C
= ±15V  
= 3.5pF  
= 1  
S
3
L
2
A
V
R = 0 R = inf  
1
f
g
V
= ±5V  
S
V
= 10V  
P-P  
-1  
0
OUT  
V
= ±15V  
S
1
R
L
= 2k  
-2  
-3  
-4  
-5  
-6  
C
R
= 3.5pF  
= 10k  
= +1  
L
L
L
-2  
-3  
R
= 10k  
A
V
V
= 100mV  
OUT  
P-P  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
0
5
10  
15  
TIME (µs)  
20  
25  
30  
FIGURE 32. LARGE SIGNAL 10V STEP RESPONSE, VS = ±15V  
FIGURE 31. GAIN vs FREQUENCY vs SUPPLY VOLTAGE  
FN6633 Rev 8.00  
April 1, 2016  
Page 17 of 33  
ISL28127, ISL28227, ISL28227SEH  
Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)  
80  
60  
40  
20  
0
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
V
= ±15V, R = 2k, 10k  
L
S
V
= ±5V, ±15V  
S
-0.4  
-0.8  
-1.2  
-1.6  
-2.0  
-2.4  
20  
40  
60  
80  
V
= ±5V, R = 2k, 10k  
L
S
R
C
= 2k  
= 3.5pF  
= 1  
L
L
C
A
= 3.5pF  
= 1  
L
A
V
OUT  
V
V
= 100mV  
P-P  
V
= 4V  
OUT  
P-P  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (ms)  
0
5
10  
15  
20  
25  
30  
35  
40  
TIME (µs)  
FIGURE 33. LARGE SIGNAL TRANSIENT RESPONSE vs RL VS = ±5V,  
±15V  
FIGURE 34. SMALL SIGNAL TRANSIENT RESPONSE, VS = ±5V,  
±15V  
0.06  
0.02  
15  
13  
11  
9
0.26  
2
0
OUTPUT  
0.22  
INPUT  
-0.02  
-0.06  
-0.10  
-0.14  
-0.18  
-0.20  
-0.26  
0.08  
0.04  
0.10  
0.06  
0.02  
-0.02  
-0.06  
-2  
V
= ±15V  
= 10k  
= 3.5pF  
= 100  
S
L
R
C
A
V
= ±15V  
= 10k  
= 3.5pF  
= 100  
-4  
S
L
L
R
C
V
R = 100k, R = 1k  
7
-6  
L
f
g
A
V
V
= 200mV  
P-P  
IN  
R = 100k, R = 1k  
5
-8  
f
g
V
= 200mV  
P-P  
IN  
3
-10  
-12  
-14  
INPUT  
1
OUTPUT  
25  
-1  
40  
0
5
10  
15  
20  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
40  
TIME (µs)  
TIME (µs)  
FIGURE 35. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,  
VS = ±15V  
FIGURE 36. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,  
VS = ±15V  
90  
80  
V
= ±15V  
= 10k  
L
= 1  
S
R
70  
60  
50  
40  
30  
20  
10  
0
A
V
V
= 100mV  
P-P  
OUT  
10  
100  
1000  
10000  
CAPACITANCE (pF)  
FIGURE 37. % OVERSHOOT vs LOAD CAPACITANCE, VS = ±15V  
FN6633 Rev 8.00  
April 1, 2016  
Page 18 of 33  
ISL28127, ISL28227, ISL28227SEH  
needed at each input terminal (see Figure 39 RIN+, RIN-) to limit  
current through the power supply ESD diodes to 20mA.  
Applications Information  
Functional Description  
The ISL28127, ISL28227 and ISL28227SEH are single and dual,  
low noise 10MHz BW precision op amps. All devices are  
fabricated in a new precision 40V complementary bipolar DI  
process. A super-beta NPN input stage with input bias current  
cancellation provides low input bias current (1nA typical), low  
input offset voltage (10µV typical), low input noise voltage  
(3nV/Hz) and low 1/f noise corner frequency (5Hz). These  
amplifiers also feature high open loop gain (1500V/mV) for  
excellent CMRR (120dB) and THD+N performance (0.0002% at  
3.5VRMS, 1kHz into 2kΩ). A complimentary bipolar output stage  
enables high capacitive load drive without external  
V+  
R
IN-  
-
V
V
IN-  
OUT  
R
IN+  
+
V
R
IN+  
L
V-  
FIGURE 39. INPUT ESD DIODE CURRENT LIMITING DIFFERENTIAL  
INPUT  
compensation.  
Output Current Limiting  
Operating Voltage Range  
The output current is internally limited to approximately ±45mA  
at +25°C and can withstand short-circuit to either rail as long as  
the power dissipation limits are not exceeded. This applies to  
only 1 amplifier at a time for the dual op amp. Continuous  
operation under these conditions may degrade long term  
reliability.  
The devices are designed to operate over the 4.5V (±2.25V) to  
40V (±20V) range and are fully characterized at 10V (±5V) and  
30V (±15V). Parameter variation with operating voltage is shown  
in the “Typical Performance Curves” beginning on page 13.  
Input ESD Diode Protection  
The input terminals (IN+ and IN-) have internal ESD protection  
diodes to the positive and negative supply rails and an additional  
anti-parallel diode pair across the inputs (see Figures 38 and 39).  
Output Phase Reversal  
Output phase reversal is a change of polarity in the amplifier  
transfer function when the input voltage exceeds the supply  
voltage. The ISL28127, ISL28227 and ISL28227SEH are  
immune to output phase reversal, even when the input voltage is  
1V beyond the supplies.  
V+  
-
V
OUT  
Unused Channels  
R
IN  
+
V
R
IN  
The user must configure unused channels to prevent them from  
oscillating. The unused channel(s) oscillates if the input and  
output pins are floating. This results in higher than expected  
supply currents and possible noise injection into the other  
channel(s) being used. The proper way to prevent this oscillation  
is to short the output to the inverting input and ground the  
positive input, as shown in Figure 40.  
L
V-  
FIGURE 38. INPUT ESD DIODE CURRENT LIMITING - UNITY GAIN  
For unity gain applications (see Figure 38) where the output is  
connected directly to the non-inverting input a current limiting  
resistor (RIN) will be needed under the following conditions to  
protect the anti-parallel differential input protection diodes.  
-
+
• The amplifier input is supplied from a low impedance source.  
• The input voltage rate-of-rise (dV/dt) exceeds the maximum  
slew rate of the amplifier (±3.6V/µs).  
FIGURE 40. PREVENTING OSCILLATIONS IN UNUSED CHANNELS  
If the output lags far enough behind the input, the anti-parallel  
input diodes can conduct. For example, if an input pulse ramps  
from 0V to +10V in 1µs, then the output of the amplifier will reach  
only +3.6V (slew rate = 3.6V/µs) while the input is at 10V, The  
input differential voltage of 6.4V will force input ESD diodes to  
conduct, dumping the input current directly into the output stage  
and the load. The resulting current flow can cause permanent  
damage to the ESD diodes. The ESD diodes are rated to 20mA and  
in the previous example, setting RIN to 1k resistor (see Figure 38)  
would limit the current to < 6.4mA and provide additional  
protection up to ±20V at the input.  
Power Dissipation  
It is possible to exceed the +150°C maximum junction  
temperatures under certain load and power supply conditions. It  
is therefore important to calculate the maximum junction  
temperature (TJMAX) for all applications to determine if power  
supply voltages, load conditions, or package type need to be  
modified to remain in the safe operating area. These parameters  
are related using Equation 1:  
(EQ. 1)  
T
= T  
+ xPD  
MAX JA MAXTOTAL  
JMAX  
In applications where one or both amplifier input terminals are at  
risk of exposure to high voltage, current limiting resistors may be  
FN6633 Rev 8.00  
April 1, 2016  
Page 19 of 33  
 
 
 
 
ISL28127, ISL28227, ISL28227SEH  
Where:  
LICENSE STATEMENT  
The information in this SPICE model is protected under the  
United States copyright laws. Intersil Corporation hereby grants  
users of this macro-model hereto referred to as “Licensee”, a  
nonexclusive, nontransferable license to use this model as long  
as the Licensee abides by the terms of this agreement. Before  
using this macro-model, the Licensee should read this license. If  
the Licensee does not accept these terms, permission to use the  
model is not granted.  
• PDMAXTOTAL is the sum of the maximum power dissipation of  
each amplifier in the package (PDMAX  
)
• PDMAX for each amplifier can be calculated using Equation 2:  
V
OUTMAX  
----------------------------  
PD  
= V I  
+ V - V    
OUTMAX  
MAX  
S
qMAX  
S
(EQ. 2)  
R
L
Where:  
The Licensee may not sell, loan, rent, or license the  
macro-model, in whole, in part, or in modified form, to anyone  
outside the Licensee’s company. The Licensee may modify the  
macro-model to suit his/her specific applications and the  
Licensee may make copies of this macro-model for use within  
their company only.  
• TMAX = Maximum ambient temperature  
JA = Thermal resistance of the package  
• PDMAX = Maximum power dissipation of 1 amplifier  
• VS = Total supply voltage  
• IqMAX = Maximum quiescent supply current of 1 amplifier  
• VOUTMAX = Maximum output voltage swing of the application  
• RL = Load resistance  
This macro-model is provided “AS IS, WHERE IS AND WITH NO  
WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,  
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF  
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.”  
ISL28127, ISL28227 SPICE Model  
In no event will Intersil be liable for special, collateral, incidental, or  
consequential damages in connection with or arising out of the use  
of this macro-model. Intersil reserves the right to make changes to  
the product and the macro-model without prior notice.  
Figure 41 shows the SPICE model schematic and Figure 42 shows  
the net list for the ISL28127, ISL28227 SPICE model. The model is  
a simplified version of the actual device and simulates important  
AC and DC parameters. AC parameters incorporated into the  
model are: 1/f and flatband noise, slew rate, CMRR, gain and  
phase. The DC parameters are VOS, IOS, total supply current and  
output voltage swing. The model does not model input bias  
current. The model uses typical parameters given in the “Electrical  
Specifications” Table beginning on page 6. The AVOL is adjusted for  
128dB with the dominant pole at 5Hz. The CMRR is set higher  
than the “Electrical Specifications” table beginning on page 6 to  
better match design simulations (150dB, f = 50Hz). The input  
stage models the actual device to present an accurate AC  
representation. The model is configured for +25°C ambient  
temperature. The Spice model for the ISL28227SEH can be  
found here “ISL70227SEH SPICE MODEL.  
Figures 43 through 58 show the characterization vs simulation  
results for the noise voltage, closed loop gain vs frequency,  
closed loop gain vs Rf/Rg, closed loop gain vs RL, closed loop  
gain vs CL, large signal 10V step response, open loop gain phase  
and simulated CMRR vs frequency.  
FN6633 Rev 8.00  
April 1, 2016  
Page 20 of 33  
 
ISL28127, ISL28227, ISL28227SEH  
.
V++  
V++  
R
R
4
IEE1  
3
4
5
96E-6  
4.45k  
4.45k  
4
5
CASCODE  
CASCODE  
Q4  
6
7
Q5  
3
D1  
DX  
C
2
4
2.5pF  
SUPERB  
SUPERB  
V
-
IN  
V
Q1 Q2  
IN-  
C
2.5pF  
5
V5  
R
1
8
5E11  
24  
25  
EOS  
C
2pF  
1
6
I
OS  
MIRROR  
Vc  
D12  
DN  
0.1V  
VCM  
+
-
+
Vmid  
Q3  
-
R
1E-9  
17  
9
IEE  
200E-6  
R
2
377.4  
In+  
+
V
5E11  
OS  
En  
10E-6  
-
V
IN+  
V--  
V
CM  
Voltage Noise  
Input Stage  
V++  
V++  
D2  
DX  
D4  
DX  
G1  
G3  
G5  
L
1
13  
10  
4
3.18E-3  
+
+
+
-
+
-
+
R
R
7
C
R
9
5
2
V1  
V3  
17  
1
-
55.55pF  
1
R
1
11  
1.86V  
1.86V  
572.9E6  
-
-
5
11  
Vc  
Vg  
Vmid  
Vg  
Vc  
R
1
12  
R
R
8
R
1
C
3
6
10  
Vmid  
V--  
G4  
G6  
G2  
1
572.9E6  
55.55pF  
18  
+
-
+
-
-
-
-
V4  
V2  
L
2
+
1.86V  
+
1.86V  
+
12  
14  
VCM  
3.18E-3  
D5  
DX  
D3  
DX  
V--  
V
CM  
ST Gain Stage  
2nd Gain Stage  
Mid Supply Ref  
Common-Mode Gain Stage  
1
V++  
D8  
DX  
D9  
DX  
G7  
V+  
V+  
+
-
+
E2  
R
15  
-
-
90  
22  
23  
V5  
+
DX  
DX  
D6  
D7  
20  
21  
ISY  
2.2mA  
V
OUT  
V
OUT  
1.12V  
1.12V  
G8  
Vg  
V6  
R
16  
V-  
90  
-
+
-
+
-
-
D10  
DY  
D11  
DY  
+
-
E3  
V-  
+
+
V--  
G9  
G10  
Supply Isolation Stage  
Output Stage  
FIGURE 41. SPICE SCHEMATIC  
FN6633 Rev 8.00  
April 1, 2016  
Page 21 of 33  
ISL28127, ISL28227, ISL28227SEH  
* source ISL28127_SPICEmodel  
R_R7  
R_R8  
C_C2  
C_C3  
D_D4  
D_D5  
V_V3  
V_V4  
*
VG V++ 572.958E6 TC=0,0  
V-- VG 572.958E6 TC=0,0  
VG V++ 55.55e-12 TC=0,0  
V-- VG 55.55e-12 TC=0,0  
13 V++ DX  
* Revision C, August 8th 2009 LaFontaine  
* Model for Noise, supply currents, 150dB f=50Hz  
CMRR, *128dB f=5Hz AOL  
*Copyright 2009 by Intersil Corporation  
*Refer to data sheet “LICENSE STATEMENT” Use of  
*this model indicates your acceptance with the  
*terms and provisions in the License Statement.  
* Connections: +input  
V-- 14 DX  
13 VG 1.86  
VG 14 1.86  
*
*
*
*
*
|
|
|
|
|
-input  
*Mid supply Ref  
|
|
|
|
+Vsupply  
R_R9  
R_R10  
I_ISY  
E_E2  
E_E3  
*
VMID V++ 1 TC=0,0  
V-- VMID 1 TC=0,0  
V+ V- DC 2.2E-3  
|
|
|
-Vsupply  
|
|
output  
|
V++ 0 V+ 0 1  
V-- 0 V- 0 1  
.subckt ISL28127subckt Vin+ Vin-V+ V- VOUT  
* source ISL28127_SPICEMODEL_0_0  
*
*Common Mode Gain Stage with Zero  
*Voltage Noise  
G_G5  
G_G6  
R_R11  
R_R12  
L_L1  
L_L2  
*
V++ VC VCM VMID 31.6228e-9  
V-- VC VCM VMID 31.6228e-9  
VC 17 1 TC=0,0  
E_En  
IN+ VIN+ 25 0 1  
25 0 377.4 TC=0,0  
24 25 DN  
R_R17  
D_D12  
V_V7  
18 VC 1 TC=0,0  
24 0 0.1  
17 V++ 3.183e-3  
*
18 V-- 3.183e-3  
*Input Stage  
I_IOS  
C_C6  
IN+ VIN- DC 1e-9  
IN+ VIN- 2E-12  
*Output Stage with Correction Current Sources  
G_G7  
G_G8  
G_G9  
G_G10  
D_D6  
D_D7  
D_D8  
D_D9  
D_D10  
D_D11  
V_V5  
V_V6  
R_R15  
R_R16  
*
VOUT V++ V++ VG 1.11e-2  
V-- VOUT VG V-- 1.11e-2  
22 V-- VOUT VG 1.11e-2  
23 V-- VG VOUT 1.11e-2  
VG 20 DX  
R_R1  
VCM VIN- 5e11 TC=0,0  
IN+ VCM 5e11 TC=0,0  
2 VIN- 1 SuperB  
3 8 1 SuperB  
R_R2  
Q_Q1  
Q_Q2  
Q_Q3  
V-- 1 7 Mirror  
21 VG DX  
Q_Q4  
4 6 2 Cascode  
V++ 22 DX  
Q_Q5  
5 6 3 Cascode  
V++ 23 DX  
R_R3  
4 V++ 4.45e3 TC=0,0  
5 V++ 4.45e3 TC=0,0  
V-- 22 DY  
R_R4  
V-- 23 DY  
C_C4 VIN- 0 2.5e-12  
C_C5 8 0 2.5e-12  
20 VOUT 1.12  
VOUT 21 1.12  
D_D1  
I_IEE  
I_IEE1  
V_VOS  
E_EOS  
*
6 7 DX  
VOUT V++ 9E1 TC=0,0  
V-- VOUT 9E1 TC=0,0  
1 V-- DC 200e-6  
V++ 6 DC 96e-6  
9 IN+ 10e-6  
8 9 VC VMID 1  
.model SuperB npn  
+ is=184E-15 bf=30e3 va=15 ik=70E-3 rb=50  
+ re=0.065 rc=35 cje=1.5E-12 cjc=2E-12  
+ kf=0 af=0  
*1st Gain Stage  
G_G1  
G_G2  
R_R5  
R_R6  
D_D2  
D_D3  
V_V1  
V_V2  
*
V++ 11 4 5 0.0487707  
.model Cascode npn  
V-- 11 4 5 0.0487707  
11 V++ 1 TC=0,0  
V-- 11 1 TC=0,0  
10 V++ DX  
+ is=502E-18 bf=150 va=300 ik=17E-3 rb=140  
+ re=0.011 rc=900 cje=0.2E-12 cjc=0.16E-12f  
+ kf=0 af=0  
.model Mirror pnp  
V-- 12 DX  
+ is=4E-15 bf=150 va=50 ik=138E-3 rb=185  
+ re=0.101 rc=180 cje=1.34E-12 cjc=0.44E-12  
+ kf=0 af=0  
10 11 1.86  
11 12 1.86  
.model DN D(KF=6.69e-9 AF=1)  
.MODEL DX D(IS=1E-12 Rs=0.1)  
*2nd Gain Stage  
G_G3  
G_G4  
V++ VG 11 VMID 4.60767E-3  
V-- VG 11 VMID 4.60767E-3  
.MODEL DY D(IS=1E-15 BV=50 Rs=1)  
.ends ISL28127subckt  
FIGURE 42. SPICE NET LIST  
FN6633 Rev 8.00  
April 1, 2016  
Page 22 of 33  
ISL28127, ISL28227, ISL28227SEH  
Characterization vs Simulation Results  
100  
10  
1
100  
V
= ±19V  
= 1  
S
A
V
10  
V(INOISE)  
1
1
0.1  
1
10  
100  
1k  
10k  
100k  
0.1  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 44. SIMULATED INPUT NOISE VOLTAGE  
FIGURE 43. CHARACTERIZED INPUT NOISE VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
A
= 1000  
= 100  
= 10  
A
= 1000  
= 100  
= 10  
R
= 100, R = 100k  
R = 100, R = 100k  
g f  
V
V
g
f
R
= 1k, R = 100k  
R = 1k, R = 100k  
g f  
g
f
A
A
V
V
V
= ±15V  
= 3.5pF  
= INF  
S
L
C
R
L
V
= 100mV  
OUT  
P-P  
A
A
V
V
R
= 10k, R = 100k  
R
= 10k, R = 100k  
g
f
g
f
A
= 1  
A
= 1  
V
V
R
= OPEN, R = 0  
R = OPEN, R = 0  
g f  
g
f
-10  
-10  
10k  
FREQUENCY (Hz)  
1k  
10k  
FREQUENCY (Hz)  
100  
1k  
100k  
1M  
10M  
100M  
100  
100k  
1M  
10M  
100M  
FIGURE 45. CHARACTERIZED CLOSED LOOP GAIN vs FREQUENCY  
FIGURE 46. SIMULATED CLOSED LOOP GAIN vs FREQUENCY  
15  
15  
R = R = 100k  
R = R = 100k  
f
g
f
g
13  
11  
9
13  
11  
9
R = R = 10k  
f
g
R = R = 10k  
f
g
R = R = 1k  
7
7
f
g
R = R = 1k  
f
g
5
5
3
V
= ±15V  
= 10k  
3
V
= ±15V  
= 10k  
S
S
R = R = 100  
R = R = 100  
f
g
f
g
R
C
A
R
C
A
L
L
L
L
1
1
= 3.5pF  
= +2  
= 3.5pF  
= +2  
-1  
-3  
-5  
-1  
-3  
-5  
V
V
V
= 100mV  
V
= 100mV  
OUT  
P-P  
OUT  
P-P  
10k  
1k  
100k  
1M  
10M  
100M  
10k  
1k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 47. CHARACTERIZED CLOSED LOOP GAIN vs Rf/Rg  
FIGURE 48. SIMULATED CLOSED LOOP GAIN vs Rf/Rg  
FN6633 Rev 8.00  
April 1, 2016  
Page 23 of 33  
ISL28127, ISL28227, ISL28227SEH  
Characterization vs Simulation Results(Continued)  
2
2
R
R
= 10k  
= 1k  
L
L
1
1
R
= 10k  
L
0
0
R
= 1k  
L
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
R
R
= 499  
= 100  
L
R
= 499  
L
L
R
= 100  
L
V
= ±15V  
= 3.5pF  
= +1  
V
= ±15V  
= 3.5pF  
= +1  
S
S
R
= 49.9  
L
C
A
C
A
L
L
V
V
R
= 49.9  
L
V
= 100mV  
V
= 100mV  
OUT  
P-P  
OUT  
P-P  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
FIGURE 49. CHARACTERIZED CLOSED LOOP GAIN vs RL  
FIGURE 50. SIMULATED CLOSED LOOP GAIN vs RL  
7
7
6
V
R
A
= ±15V  
= 10k  
= +1  
V
R
= ±15V  
= 10k  
= +1  
S
6
5
S
C
= 1000pF  
L
L
L
5
C
= 1000pF  
A
V
L
V
V
= 100mV  
P-P  
4
OUT  
V
= 100mV  
4
OUT P-P  
C
= 220pF  
L
C
= 220pF  
L
3
3
C
= 100pF  
L
2
2
C
= 100pF  
L
C
= 25.5pF  
1
L
1
0
0
C
= 25.5pF  
L
-1  
-2  
-3  
-1  
-2  
-3  
C
= 3.5pF  
L
C
= 3.5pF  
1M  
L
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
10k  
1k  
100k  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 51. CHARACTERIZED CLOSED LOOP GAIN vs CL  
FIGURE 52. SIMULATED CLOSED LOOP GAIN vs CL  
6
6
5
4
5
4
V
C
= ±15V  
= 3.5pF  
= 1  
S
L
3
V
= ±15V  
= 3.5pF  
= 1  
S
3
2
C
2
L
A
V
A
V
R = 0, R = INF  
1
f
g
1
R = 0, R = INF  
V
= 10V  
f
g
OUT  
P-P  
0
0
V
= 10V  
OUT  
P-P  
1
1
R
= 10k  
L
-2  
-3  
-4  
-5  
-6  
-2  
-3  
-4  
-5  
-6  
R
= 2k  
L
R
= 10k  
L
0
5
10  
15  
TIME (µs)  
20  
25  
30  
0
5
10  
15  
TIME (µs)  
20  
25  
30  
FIGURE 54. SIMULATED LARGE SIGNAL 10V STEP RESPONSE  
FIGURE 53. CHARACTERIZED LARGE SIGNAL 10V STEP  
RESPONSE  
FN6633 Rev 8.00  
April 1, 2016  
Page 24 of 33  
ISL28127, ISL28227, ISL28227SEH  
Characterization vs Simulation Results(Continued)  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
PHASE  
PHASE  
GAIN  
GAIN  
0
R
C
= 10k  
= 10pF  
-20  
-40  
-60  
-80  
-100  
L
L
R
C
= 10k  
L
L
-50  
-100  
= 10pF  
MODEL V SET TO ZERO  
OS  
SIMULATION  
FOR THIS TEST  
0.1Hz  
10Hz  
1.0k  
100k  
10M  
0.1m 1m 10m100m  
1
10 100 1k 10k 100k 1M 10M100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 56. SIMULATED OPEN-LOOP GAIN, PHASE vs FREQUENCY  
FIGURE 55. SIMULATED OPEN-LOOP GAIN, PHASE vs FREQUENCY  
150  
100  
50  
130  
V
= ±5V  
S
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±2.25V  
S
V
= ±15V  
S
R
C
A
= INF  
L
L
GENERATED USING FULL  
MODEL. CMRR DELTA INPUT  
0
= 5.25pF  
= +1  
BASE VOLTAGE/V  
V
CM  
V
= 1V  
INPUT VOLTAGE  
-50  
10m  
CM  
P-P  
-10  
10M  
1.0Hz 100Hz 10k  
1.0M  
100M 10G 1.0T  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 57. CHARACTERIZED CMRR vs FREQUENCY  
FIGURE 58. SIMULATED CMRR vs FREQUENCY  
FN6633 Rev 8.00  
April 1, 2016  
Page 25 of 33  
ISL28127, ISL28227, ISL28227SEH  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
REVISION  
DATE  
CHANGE  
April 1, 2016  
FN6633.8 -Added the ISL28227SEH throughout the datasheet.  
-Updated ordering information on page 3 by changing in Pkg Dwg. # column L8.3x3A to L8.3x3K and M8.118 to  
M8.118B.  
-Updated Tjc Note 10 by removing words "the exposed metal pad on" from the sentence to cover both TDFN and  
Flatpack packages.  
-Added ISL70227HMEVAL1Z to ordering information table on page 3 and added hermetic package note.  
- Absolute Maximum Ratings table on page 6 as follow:  
Updated HBM for ISL28127 from 4.0kV to 4.5kV.  
Added ESD Tolerance for ISL28227SEH.  
-Updated Electrical Spec Table page 10: ISL28227SEH (±15V) for IOS and IB as follows:  
Added ±25 Post Rad  
Added ±25 Post Rad  
Added TA = -55°C, +125°C  
Added the rad level is implied by the tighter BOLD Temp Spec.  
-Added ISL28227SEH values.  
-Updated POD from: L8.3x3A to: L8.3x3k.  
-Updated POD from: M8.118 to: M8.118B.  
September 10, 2015 FN6633.7 -Updated About Intersil Verbiage.  
-Updated POD L8.3X3A to most current version change is as follows:  
From: Tiebar shown (if present) is a non-functional feature.  
To: Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).  
-Updated POD M8.118 to most current version change is as follows:  
Corrected lead width dimension in side view 1 from "0.25 - 0.036" to "0.25 - 0.36"  
December 13, 2010 FN6633.6 Page 3: The ISL28227 8 LD TDFN Pin configuration: Vout_A and Vout_B labels on pins 1 and 7 changed to VoutA  
and VoutB  
Figure 8: labeled red curve Vs = ±5V and blue curve Vs = ±15V.  
-Converted to New Intersil Template  
-Added AN1509 in Related Literature on page 1  
-Removed Titles from Graphics on page 1 and replaced with Figure names  
-Changed copyright to legal's suggested verbiage on page 1  
-Updated Ordering Information table on page 2. Removed Coming Soon for ISL28127FRTBZ and ISL28127FUBZ  
parts. Added in the Vos (MAX) numbers in those rows (75 and 70 respectively).  
-Changed Tape and Reel Note in ordering information to "Add T*…" to include all Tape and Reel additions  
-Updated Electrical Spec Table page 5 and page 6 for Vos and TCVos  
oAdded data row for Offset Voltage; MSOP Grade B Package; ISL28127  
oAdded data row for Offset Voltage; TDFN Grade B Package; ISL28127  
oAdded data row for Offset Voltage Drift; MSOP Grade B Package; ISL28127  
oAdded data row for Offset Voltage Drift; TDFN Grade B Package; ISL28127  
oRemoved - Temperature data established by characterization from conditions (New standard note covers this  
verbiage)  
oChanged Note: "Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified.  
Temperature limits established by characterization and are not production tested". TO: Compliance to datasheet  
limits is assured by one or more methods: production test, characterization and/or design.  
-Updated Typical Performance Curves  
oUpdated typical plot of Vos vs Temp for Figure 8.  
oAdded: IB+ vs Temp vs Vsupply plot; IB- vs Temp vs Vsupply plot; Ios vs Temp vs Vsupply plot; Figures 9, 10, 11  
Added: Vos distribution Vs=15V plot; Vos distribution Vs=5V plot; TCVos distribution Vs=15V plot; TCVos distribution  
Vs=5V plot; TCIB+ distribution Vs=15V plot; TCIB+ distribution Vs=5V plot; TCIB- distribution Vs=15V plot; TCIB-  
distribution Vs=5V plot; TCIos distribution Vs=15V plot; TCIos distribution Vs=5V plot (Figures 13 thru 22)  
September 10, 2010 FN6633.5 - Updated ordering information by removing Note 2, which referenced “-T13” tape and reel option and revised Note  
1 to include ”-T7A” tape and reel option. Removed Note reference next to part numbers and placed under part  
number in table head indicating that it references all parts. Change shows that all parts now have -T7, -T7A and -  
T13 tape and reel options.  
FN6633 Rev 8.00  
April 1, 2016  
Page 26 of 33  
ISL28127, ISL28227, ISL28227SEH  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev. (Continued)  
REVISION  
DATE  
CHANGE  
July 2, 2010  
FN6633.4 In “Ordering Information” on page 2:  
Removed “Coming Soon” from ISL28127FRTZ, ISL28227FRTBZ, ISL28227FRTZ, ISL28227FUBZ & ISL28227FUZ.  
Updated the part marking for ISL28127FRTBZ from “127Z” to “8127”  
Updated the part marking for ISL28127FRTZ from “-C 127Z” to “-C 8127”  
Updated the part marking for ISL28227FRTBZ from “227Z” to “8227”  
Updated the part marking for ISL28227FRTZ from “-C 227Z” to “-C 8227”  
Added VOS of 75µV for ISL28227FRTBZ  
Added VOS of 75µV for ISL28227FUBZ  
Added Evaluation Boards ISL28127MSOPEVAL1Z and ISL28227SOICEVAL2Z  
In Thermal Information table on page 5, for 8 Ld TDFN, corrected Theta JA note from Note 8 to Note 7.  
In VS ±15V “Electrical Specifications” table on page 5, added VOS specs for ISL28227 MSOP, TDFN Grade B  
Packages. Added TCVOS specs for ISL28227 MSOP, TDFN Grade B Packages  
Changed TYP for “Offset Voltage; MSOP, TDFN Grade C Package” from 10µV to -10µV  
In VS ±5V “Electrical Specifications” table on page 7 added VOS specs for SOIC ISL28227. Added VOS specs for  
MSOP, TDFN Grade B and C Packages. Added TCVOS specs for SOIC ISL28227. Added TCVOS specs for MSOP, TDFN  
Grade B and C Packages  
March 11, 2010  
FN6633.3 PODs M8.118 and L8.3x3A - Updated to new intersil format by adding land pattern and moving dimensions from  
table onto drawing.  
On page 2:  
Under "Ordering Information”  
ISL28227FBZ: Changed Vos max from 80µV to 75µV  
On page 5:  
Changed:  
1. ISL28227 SOIC Room Temp limit for Vos from 80µV (MAX) and -80µV (MIN) to 75µV (MAX) and -75µV (MIN).  
2. ISL28227 SOIC Full Temp limit for Vos from 160µV (MAX) and -160µV (MIN) to 150µV (MAX) and -150µV (MIN)  
3. ISL28227 SOIC limit for TCVos from 0.8µV (MAX) and -0.8µV (MIN) to 0.75µV (MAX) and -0.75µV (MIN)  
FN6633 Rev 8.00  
April 1, 2016  
Page 27 of 33  
ISL28127, ISL28227, ISL28227SEH  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev. (Continued)  
REVISION  
DATE  
CHANGE  
March 11, 2010  
(Continued)  
FN6633.3 In “Absolute Maximum Ratings” on page 6, HBM for ISL28227 changed from “4kV” to “6kV”  
(Continued) In “Thermal Information” on page 6, Tjc values for ISL28227 changed:  
For MSOP from “50” to “45”  
For SOIC from “60” to “55”  
In the “Ordering Information” (page 2):  
Part Number  
Part Marking  
Vos (Max) (uV)  
ISL28127FRTBZ  
ISL28127FRTZ  
ISL28127FUBZ  
ISL28127FUZ  
TBD instead of 70  
-C 127Z instead of 127Z C  
TBD instead of 70  
150 instead of 70  
8127Z -C instead of 8127Z  
Removed “Coming Soon) for ISL28127FUZ package  
ISL28227FBZ  
Removed “Coming Soon) for ISL28227FBZ package  
ISL28227FRTBZ  
80 instead of 70  
TBD instead of 70  
150 instead of 70  
ISL28227FRTZ  
ISL28227FUZ  
-C 227Z instead of 227Z C  
8227Z -C instead of 8227Z  
Added the following row of data  
ISL28227FUBZ 8227Z  
TBD  
In the “Electrical specifications” on page 6 and page 8 the following changes were made. The change applies to  
the same spec found on page 4 and page 6.  
VOS Offset Voltage; SOIC Package, ISL28127: Added -70 to MIN across room temp and -120 MIN across full temp  
VOS Offset Voltage; SOIC Package, ISL28227: Added -80 to MIN across room temp and -160 MIN across full temp  
VOS Offset Voltage; MSOP and TDFN Package Grade C, ISL28127/ISL28227: Added -150 to MIN across room temp  
and -250 MIN across full temp  
TCVOS Offset Voltage Drift; SOIC Package, ISL28127: Added -0.5 to MIN across full temp  
TCVOS Offset Voltage Drift; SOIC Package, ISL28227: Added -0.8 to MIN across full temp  
TCVOS Offset Voltage Drift; MSOP and TDFN Package Grade C, ISL28127/ISL28227: Added -1 to MIN across full  
temp  
IOS Input Offset Current: Added -10 to MIN across room temp and -12 to MIN across full temp  
IB Input Bias Current:Added -10 to MIN across room temp and -12 to MIN across full temp  
In the “Ordering Information” (page 3), added differentiated part numbers for B-grade and C-grade for TDFN and  
MSOP.  
In “Absolute Maximum Ratings” on page 6, added ESD and latch-up information.  
In “Thermal Information” on page 6, broke out Theta JA to list the single and dual and added Theta JC.  
© Copyright Intersil Americas LLC 2009-2016. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6633 Rev 8.00  
April 1, 2016  
Page 28 of 33  
ISL28127, ISL28227, ISL28227SEH  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev. (Continued)  
REVISION  
DATE  
CHANGE  
January 29, 2010  
FN6633.2 Added license statement for P-Spice Model.  
Updated Spice Schematic by adding capacitors  
C4, C5 and C6  
Updated Spice Net List as follows:  
From:  
Revision B, July 23 2009  
To:  
Revision C, August 8th 2009 LaFontaine  
From:  
source ISL28127_SPICEMODEL_7_9  
To:  
source ISL28127_SPICEMODEL_0_0  
Added after I_IOS:  
C_C6  
IN+ VIN- 2E-12  
Added after R_R4:  
C_C4 VIN- 0 2.5e-12  
C_C5 8 0 2.5e-12  
From:  
.ends ISL28127  
To:  
.ends ISL28127subckt  
Replaced POD MDP0027 with M8.15E to match ASYD in Intrepid (no dimension changes; the PODs are the same.  
The change was to update to the Intersil format, moving dimensions from table onto drawing and adding land  
pattern)  
September 14, 2009 FN6633.1 Functional Description on page 17. Corrected low 1/f noise corner frequency from 3Hz to 5Hz to match Figure 2  
on page 1. Corrected high open loop gain from 1400V/mV to 1500V/mV to match “Open-Loop Gain on page 6  
spec table.  
Operating Voltage Range on page 17. Removed following 2 sentences since there are no graphs illustrating  
common mode voltage sensitivity vs temperature or VOS as a function of supply voltage and temperature:  
“The input common mode voltage sensitivity to temperature is shown in Figure 3 (±15V). Figure 20 shows VOS as  
a function of supply voltage and temperature with the common mode voltage at 0V for split supply operation.”  
Added Theta JC in Thermal Information on page 5 for TDFN package.  
Updated Features to show only key features and updated applications section. Added Typical Application Circuit  
and performance graph, Updated Ordering Information to match Intrepid and added POD's L8.3x3A and M8.118,  
also added MSL level as part of new format. Added TDFN pinouts, updated pin descriptions to include TDFN  
pinouts, Added Theta Ja in Thermal information for TDFN and MSOP packages. Added Revision History and  
Products Text with device info links. Added SPICE Model with referencing text and Net List.  
May 28, 2009  
FN6633.0 Techdocs Issued File Number FN6633. Initial release of Datasheet with file number FN6633 making this a Rev 0.  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
FN6633 Rev 8.00  
April 1, 2016  
Page 29 of 33  
ISL28127, ISL28227, ISL28227SEH  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6633 Rev 8.00  
April 1, 2016  
Page 30 of 33  
ISL28127, ISL28227, ISL28227SEH  
Package Outline Drawing  
L8.3x3K  
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 2, 5/15  
2X 1.95  
3.00  
A
6X 0.65  
B
1
PIN #1  
INDEX AREA  
6
6
1.50 ±0.10  
PIN 1  
INDEX AREA  
(4X)  
0.15  
8
4
TOP VIEW  
8X 0.25 ±0.05  
0.10 M C A  
0.40 ± 0.05  
B
2.30 ±0.10  
BOTTOM VIEW  
SEE DETAIL "X"  
0.10 C  
5
C
0 . 203 REF  
C
0.75 ±0.05  
0 . 02 NOM.  
0 . 05 MAX.  
0.08 C  
SIDE VIEW  
DETAIL "X"  
( 2.30)  
( 1.95)  
NOTES:  
( 8X 0.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
(1.50)  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
( 2.90 )  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.20mm from the terminal tip.  
PIN 1  
Tiebar shown (if present) is a non-functional feature and may be  
located on any of the 4 sides (or ends).  
5.  
6.  
(6x 0.65)  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
( 8 X 0.25)  
TYPICAL RECOMMENDED LAND PATTERN  
Compliant to JEDEC MO-229 WEEC-2 except for the foot length.  
7.  
FN6633 Rev 8.00  
April 1, 2016  
Page 31 of 33  
ISL28127, ISL28227, ISL28227SEH  
Package Outline Drawing  
M8.118B  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE  
Rev 1, 3/12  
5
3.0±0.10mm  
A
D
8
4.9±0.20mm  
DETAIL "X"  
3.0±0.10mm  
5
1.10 MAX  
0.15±0.05mm  
PIN# 1 ID  
SIDE VIEW 2  
1
2
B
0.65mm BSC  
TOP VIEW  
0.95 REF  
0.86±0.05mm  
H
GAUGE  
PLANE  
C
0.25  
SEATING PLANE  
0.10 ± 0.05mm  
0.23 - 0.36mm  
3°±3°  
0.10 C  
0.08  
C A-B D  
M
0.53 ± 0.10mm  
DETAIL "X"  
SIDE VIEW 1  
(5.80)  
NOTES:  
1. Dimensions are in millimeters.  
(4.40)  
(3.00)  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSEY14.5m-1994.  
3. Plastic or metal protrusions of 0.15mm max per side are not  
included.  
(0.65)  
4. Plastic interlead protrusions of 0.15mm max per side are not  
included.  
(0.40)  
5. Dimensions are measured at Datum Plane "H".  
6. Dimensions in ( ) are for reference only.  
(1.40)  
TYPICAL RECOMMENDED LAND PATTERN  
FN6633 Rev 8.00  
April 1, 2016  
Page 32 of 33  
ISL28127, ISL28227, ISL28227SEH  
Ceramic Metal Seal Flatpack Packages (Flatpack)  
K10.A  
MIL-STD-1835 CDFP3-F10 (F-4A, CONFIGURATION B)  
e
A
A
10 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE  
INCHES MILLIMETERS  
MIN  
D
-A-  
-B-  
PIN NO. 1  
ID AREA  
SYMBOL  
MAX  
0.115  
0.022  
0.019  
0.009  
0.006  
0.290  
0.260  
0.280  
-
MIN  
1.14  
0.38  
0.38  
0.10  
0.10  
-
MAX  
2.92  
0.56  
0.48  
0.23  
0.15  
7.37  
6.60  
7.11  
-
NOTES  
b
A
b
0.045  
0.015  
0.015  
0.004  
0.004  
-
-
E1  
S1  
-
0.004  
H
A - B  
D
0.036  
H
A - B  
D
S
M
S
S
M
S
b1  
c
-
-
c1  
D
-
3
C
Q
E
-D-  
E
0.240  
-
6.10  
-
-
A
E1  
E2  
E3  
e
3
-H-  
-C-  
L
E2  
L
0.125  
0.030  
3.18  
0.76  
-
E3  
E3  
-
-
7
SEATING AND  
BASE PLANE  
c1  
LEAD FINISH  
0.050 BSC  
1.27 BSC  
-
k
0.008  
0.250  
0.026  
0.005  
-
0.015  
0.370  
0.045  
-
0.20  
6.35  
0.66  
0.13  
-
0.38  
9.40  
1.14  
-
2
BASE  
METAL  
L
-
(c)  
Q
S1  
M
N
8
b1  
6
M
M
(b)  
0.0015  
0.04  
-
SECTION A-A  
10  
10  
-
NOTES:  
Rev. 0 3/07  
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark. Alternately, a tab (dimension k)  
may be used to identify pin one.  
2. If a pin one identification mark is used in addition to a tab, the lim-  
its of dimension k do not apply.  
3. This dimension allows for off-center lid, meniscus, and glass  
overrun.  
4. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness. The maximum lim-  
its of lead dimensions b and c or M shall be measured at the cen-  
troid of the finished lead surfaces, when solder dip or tin plate  
lead finish is applied.  
5. N is the maximum number of terminal positions.  
6. Measure dimension S1 at all four corners.  
7. For bottom-brazed lead packages, no organic or polymeric mate-  
rials shall be molded to the bottom of the package to cover the  
leads.  
8. Dimension Q shall be measured at the point of exit (beyond the  
meniscus) of the lead from the body. Dimension Q minimum  
shall be reduced by 0.0015 inch (0.038mm) maximum when sol-  
der dip lead finish is applied.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling dimension: INCH.  
FN6633 Rev 8.00  
April 1, 2016  
Page 33 of 33  

相关型号:

ISL28127FUBZ-T7A

Precision Single and Dual Low Noise Operational Amplifiers; DFN8, MSOP8, SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL28127FUZ

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127FUZ

Precision Single and Dual Low Noise Operational Amplifiers; DFN8, MSOP8, SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL28127FUZ-T13

Precision Single and Dual Low Noise Operational Amplifiers; DFN8, MSOP8, SOIC8; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL28127FUZ-T7

IC OPAMP GP 10MHZ LN 8MSOP
RENESAS

ISL28127FUZ-T7A

IC OPAMP GP 10MHZ LN 8MSOP
RENESAS

ISL28127MSOPEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127MSOPEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
RENESAS

ISL28127SOICEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127SOICEVAL1Z

Precision Single and Dual Low Noise Operational Amplifiers
RENESAS

ISL28127_10

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL

ISL28127_1012

Precision Single and Dual Low Noise Operational Amplifiers
INTERSIL