ISL54004IRTZ [RENESAS]

Integrated Audio Amplifier Systems; TQFN20; Temp Range: -40° to 85°C;
ISL54004IRTZ
型号: ISL54004IRTZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Integrated Audio Amplifier Systems; TQFN20; Temp Range: -40° to 85°C

放大器 商用集成电路
文件: 总13页 (文件大小:595K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL54004  
Integrated Audio Amplifier Systems  
FN6513  
Rev 2.00  
October 30, 2007  
, 2007  
The Intersil ISL54004 device is an integrated audio power  
amplifier system that combines a mono BTL amplifier and  
stereo headphone amplifiers in a single device. It can operate  
from a single +2.7V to +5V power supply and is offered in a  
20 Ld 4x4 TQFN package. Targeted applications include  
handheld equipment such as cell-phones, MP3 players, and  
games/toys.  
Features  
• Class AB 94mW Headphone Amplifiers and 941mW Mono  
BTL Speaker Amplifier  
• THD+N at 1kHz, 800mW into 8BTL. . . . . . . . . . . . . . 0.4%  
• THD+N at 1kHz, 15mW into 32Headphone . . . . . . 0.07%  
• THD+N at 1kHz, 50mW into 32Headphone . . . . . . . 0.3%  
• Single Supply Operation. . . . . . . . . . . . . . . . . +2.7V to +5.5V  
• Headphone Sense Input and Low Power Shutdown  
• Thermal Shutdown Protection  
The ISL54004 part contains one class AB BTL type power  
amplifier for driving an 8mono speaker and two class AB  
headphone amplifiers for driving 16or 32headphone  
speakers.  
The BTL when using a 5V supply is capable of delivering  
800mW (typ) with 0.4% THD+N and 941mW (typ) with 1%  
THD+N of continuous average power into an 8BTL speaker  
load.  
• “Click and Pop” Suppression Circuitry  
• Selectable Gain Settings  
• TTL Logic-Compatible  
Each headphone amplifier when using a 5V supply is capable  
of delivering 50mW (typ) with 0.3% THD+N and 94mW (typ)  
with 1% THD+N of continuous average power into a 32  
headphone speaker.  
• Available in 20 Ld 4x4 TQFN  
• Pb-Free (RoHS Compliant)  
Applications  
When in Mono mode the part automatically mixes the left and  
right audio inputs and sends the combined signal to the BTL  
driver. In Headphone Mode, the active right channel input is  
sent to the right headphone speaker and the active left  
channel is sent to the left headphone speaker.  
• Battery-powered, Handheld, and Portable Equipment  
- Cellular/mobile Phones  
- PDA’s, MP3 Players, DVD Players, Cameras  
- Laptops, Notebooks, Palmtops  
- Handheld Games and Toys  
The ISL54004 has a four-level programmable gain stage to  
boost the audio signal. The part requires no external gain  
setting resistors.  
• Desktop Computers  
Simplified Block Diagram  
The ISL54004 part features headphone sense input circuitry  
that detects when a headphone jack has been inserted and  
automatically switches the audio inputs from the mono BTL  
output driver to the headphone drivers. The part also has a  
logic control pin that can override the headphone sense  
input circuitry.  
V
DD  
R
L
GAIN  
ROUTER/  
SWITCHER  
The part also features low power shutdown, thermal  
overload protection and click and pop suppression. The click  
and pop circuitry prevents click and pops at the speakers  
when transitioning in and out of shutdown.  
CLICK  
AND  
POP  
BIAS  
SD  
THERMAL  
SHUTDOWN  
GS0  
GS1  
HO  
LOGIC  
CONTROL  
ISL54004  
FN6513 Rev 2.00  
October 30, 2007  
Page 1 of 13  
ISL54004  
Pinout  
Pin Descriptions  
ISL54004  
(20 LD 4X4 TQFN)  
TOP VIEW  
PIN  
NAME  
VDD  
GND  
INL  
FUNCTION  
3, 6, 12  
System Power Supply  
4, 9, 20  
Ground Connection  
11  
17  
5
Left Channel Audio Input 1  
Right Channel Audio Input 1  
Headphone Right Ouput  
Headphone Left Ouput  
20 19  
18  
17  
16  
INR  
SPK-  
HO  
SD  
1
2
3
4
5
15  
14  
13  
12  
11  
HpR  
HpL  
SPK+  
VDD  
GND  
HpR  
7
NC  
2
SPK+ Positive Speaker Output  
SPK- Negative Speaker Output  
1
VDD  
INL  
14  
SD  
Shutdown, High to disable amplifiers, Low  
for normal operation.  
8
HD  
Headphone Detection, Internally pulled up to  
6
7
8
9
10  
V
Low in Mono Mode, High in  
DD,  
Headphone Mode if HO = Low  
15  
HO  
Headphone Override, High in Mono Mode,  
Low in Headphone Mode if HD = High  
Ordering Information  
16, 18  
10  
GS_  
REF  
Gain Select  
TEMP.  
Common-mode Bias Voltage, By-pass with a  
1µF capacitor to GND.  
PART  
NUMBER  
PART  
MARKING  
RANGE  
(°C)  
PKG.  
DWG. #  
PACKAGE  
13, 19  
NC  
No Connect  
ISL54004IRTZ* 540 04IRTZ -40 to +85 20 Ld 4x4 TQFN L20.4x4A  
(Note)  
Tape and Reel  
(Pb-free)  
ISL54004 Truth Table  
SD GS1 GS0 HD HO  
SPK+/SPK-  
HpR  
HpL  
*Add “-T” suffix for tape and reel. Please refer to TB347 for details on  
reel specifications.  
1
0
0
0
0
0
0
0
0
0
0
0
0
X
0
0
0
0
0
0
1
1
1
1
1
1
X
0
0
0
1
1
1
0
0
0
1
1
1
X
0
1
1
0
1
1
0
1
1
0
1
1
X
X
0
1
X
0
1
X
0
1
X
0
1
Disabled  
IN + IN  
Disabled Disabled  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets; molding compounds/die attach materials  
and 100% matte tin plate PLUS ANNEAL - e3 termination finish, which  
is RoHS compliant and compatible with both SnPb and Pb-free  
soldering operations. Intersil Pb-free products are MSL classified at  
Pb-free peak reflow temperatures that meet or exceed the Pb-free  
requirements of IPC/JEDEC J STD-020.  
-
IN  
-
-
IN  
-
R
L
-
R
L
IN + IN  
R
L
1.2 x (IN + IN )  
-
-
R
L
-
1.2 x IN 1.2 x IN  
R L  
1.2 x (IN + IN )  
-
-
R
L
2 x (IN + IN )  
-
-
R
L
-
2 x IN  
2 x IN  
R
R
L
2 x (IN + IN )  
-
-
R
L
4 x (IN + IN )  
-
4 x IN  
-
-
4 x IN  
-
R
L
-
L
4 x (IN + IN )  
R
L
FN6513 Rev 2.00  
October 30, 2007  
Page 2 of 13  
 
ISL54004  
Absolute Maximum Ratings  
Thermal Information  
VDD to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
Input Voltages  
Thermal Resistance (Typical, Note 1, 2)  
20 Ld 4x4 TQFN Package . . . . . . . . . .  
(°C/W)  
45  
(°C/W)  
6.5  
JA  
JC  
InR, InL, SD, HD, HO, GSO, GS1. . . . . . . -0.3V to (VDD + 0.3V)  
Output Voltages  
SPK+, SPK-, HpL, HpR . . . . . . . . . . . . . . -0.3V to (VDD + 0.3V)  
Continuous Current (VDD, SPK_, Hp_, GND) . . . . . . . . . . . 750mA  
ESD Rating  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . +150°C  
Maximum Storage Temperature Range . . . . . . . . . . . -65°C to +150°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >2kV  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >200kV  
Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >1kV  
Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
1. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See  
JA  
Tech Brief TB379.  
2. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications - 5V Supply  
Test Conditions: V  
= +5V, GND = 0V, V  
= 2.4V, V  
INL  
= 0.8V, SD = GSO = GS1 = V ,  
INL  
DD  
INH  
C
= 1µF, R is terminated between SPK+ and SPK- for BTL driver and between Hp_ and  
REF  
L
GND for SE drivers, Unless Otherwise Specified (Note 3).  
TEMP MIN  
MAX  
PARAMETER  
GENERAL  
TEST CONDITIONS  
(°C) (Notes 4, 5) TYP (Notes 4, 5) UNITS  
Power Supply Range, V  
Full  
25  
2.7  
-
5.5  
12  
-
V
DD  
Quiescent Supply Current, I  
HO = V  
coupled to GND (0.1µF)  
or V  
, HD = V , R = NoneInputs AC  
INL  
-
-
-
-
4.6  
5.5  
28  
31  
mA  
mA  
mA  
mA  
DD  
SD  
INL  
INH  
L
Full  
25  
Shutdown Supply Current, I  
SD = V  
INH  
, HO = V  
or V  
, HD = V , R = 8  
INH INL  
50  
-
INL  
L
BTLand R = 32SEInputs AC coupled to GND  
(0.1µF)  
L
Full  
Input Resistance, R  
INS = 0V or V  
25  
25  
-
100  
150  
10  
1
-
k  
°C  
°C  
ms  
dB  
IN  
DD  
Thermal Shutdown, T  
INS = MIX = 0V or V  
-
-
-
SD  
Thermal Shutdown Hysteresis  
DD  
25  
-
-
SD to Full Operation, t  
Gain Selection Range  
Full  
25  
-
SD(ON)  
Input referred minimum gain  
GS0 = GS1 = V = 32  
SE Amplifiers  
-0.4  
0
0.6  
R
HD = V  
HO = V  
INL,  
Input referred maximum gain  
GS0 = GS1 = V = 32  
L
INH  
INL  
25  
25  
25  
11.4  
5.2  
12  
6
12.6  
6.6  
dB  
dB  
dB  
R
INH,  
Input referred minimum gain  
GS0 = GS1 = V = 8  
L
BTL Amplifier  
R
HD = V  
HO = V  
INL,  
Input referred maximum gain  
GS0 = GS1 = V = 8  
L
INH  
INH  
17.2  
18  
18.6  
R
INH,  
L
BTL AMPLIFIER DRIVER, HD = V  
HO = V  
INH,  
UNLESS OTHERWISE SPECIFIED  
INH,  
Output Offset Voltage, V  
Measured between SPK+ and SPK-, Inputs AC  
coupled to GND (0.1µF)  
25  
Full  
25  
-
-
-
-
38  
49  
49  
47  
-
-
-
-
mV  
mV  
dB  
OS  
Power Supply Rejection Ratio, PSRR  
V
= 200MV  
,
F
F
= 217Hz  
= 1kHz  
RIPPLE  
P-P  
RIPPLE  
HD = V , RL = 8Inputs AC  
coupled to GND (0.1µF)  
INL  
25  
dB  
RIPPLE  
Output Power, P  
OUT  
R
R
= 8, THD+N = 1%, f = 1kHz  
25  
25  
-
-
941  
-
-
mW  
W
L
= 8, THD+N = 10%, f = 1kHz  
1.23  
L
FN6513 Rev 2.00  
October 30, 2007  
Page 3 of 13  
 
ISL54004  
Electrical Specifications - 5V Supply  
Test Conditions: V  
= +5V, GND = 0V, V  
= 2.4V, V  
= 0.8V, SD = GSO = GS1 = V  
,
INL  
DD  
INH  
INL  
C
= 1µF, R is terminated between SPK+ and SPK- for BTL driver and between Hp_ and  
REF  
L
GND for SE drivers, Unless Otherwise Specified (Note 3). (Continued)  
TEMP MIN  
MAX  
PARAMETER  
TEST CONDITIONS  
(°C) (Notes 4, 5) TYP (Notes 4, 5) UNITS  
Total Harmonic Distortion + Noise,  
THD+N  
R
R
R
R
= 8, P  
= 8, P  
= 8, V  
= 8 P  
= 800mW, f = 1kHz  
25  
25  
25  
25  
25  
25  
-
0.4  
0.7  
7.7  
85  
-
-
-
-
-
-
%
%
L
L
L
L
OUT  
= 800mW, f = 20Hz to 20kHz  
-
OUT  
Max Output Voltage Swing, V  
Signal to Noise Ratio, SNR  
= 5V , f = 1kHz  
P-P  
7.2  
V
P-P  
OUT  
SIGNAL  
= 900mW, f = 1kHz  
-
-
-
dB  
mV  
OUT  
Output Noise, N  
Crosstalk  
A - Weight filter, BW = 22Hz to 22kHz  
140  
80  
OUT  
RMS  
R
= 8P = 800mW, f = 1kHz, Signal coupled  
dB  
L
OUT  
R
to L , L  
CH CH  
to R  
CH  
from the input of active amplifier to the output of an  
CH  
adjacent amplifier with its input AC coupled to GND.  
Off-Isolation  
SD = V  
P
= 800mW, f = 10kHz, Signal  
25  
-
130  
-
dB  
DD, OUT  
coupled from input to output of a disabled amplifier.  
SINGLE ENDED AMPLIFIER DRIVERS, HD = V HO = V UNLESS OTHERWISE SPECIFIED  
INH,  
INL,  
Power Supply Rejection Ratio, PSRR  
V
= 200MV  
,
F
F
= 217Hz  
= 1kHz  
25  
25  
-
-
48  
47  
-
-
dB  
dB  
RIPPLE  
P-P  
RIPPLE  
RIPPLE  
HD = 0V, R = 32Input AC  
coupled to GND (0.1µF)  
L
Output Power, P  
OUT  
R
R
R
R
R
R
R
R
R
R
= 16, THD+N = 1%, f = 1kHz  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
170  
94  
-
-
-
-
-
-
-
-
-
-
mW  
mW  
mW  
mW  
%
L
L
L
L
L
L
L
L
L
L
= 32, THD+N = 1%, f = 1kHz  
= 16, THD+N = 10%, f = 1kHz  
= 32, THD+N = 10%, f = 1kHz  
-
-
215  
116  
0.07  
0.09  
0.3  
-
Total Harmonic Distortion + Noise,  
THD+N  
= 32, P  
= 32, P  
= 32, P  
= 32, P  
= 32, V  
= 32, P  
= 15mW, f = 1kHz  
-
OUT  
= 15mW, f = 20Hz to 20kHz  
= 50mW, f = 1kHz  
-
%
OUT  
-
-
%
OUT  
= 50mW, f = 20Hz to 20kHz  
0.4  
%
OUT  
Max Output Voltage Swing, V  
Crosstalk  
= 5V , f = 1kHz  
P-P  
3.6  
-
4.7  
V
OUT  
SIGNAL  
P-P  
= 15mW, f = 1kHz  
75  
dB  
OUT  
R
to L , L  
CH CH  
to R  
CH  
CH  
Off-Isolation  
SD = V  
R
= 32W, P  
= 15mW, f = 10kHz  
25  
25  
25  
-
-
-
120  
83  
-
-
-
dB  
dB  
dB  
DD,  
L
OUT  
Signal to Noise Ratio, SNR  
Channel Gain Matching  
R
R
= 32, P  
= 50mW, f = 1kHz  
L
L
OUT  
= 32, VINR = VINL = 1.3V  
(Connect to the  
(Connect to the  
±0.2  
RMS  
R
to L  
CH  
same source)  
CH  
Channel Phase Matching  
to L  
R
= 32, VINR = VINL = 1.3V  
25  
-
1.3  
-
°
L
RMS  
R
same source)  
CH  
CH  
LOGIC INPUT  
Input Leakage Current, I , I  
,
V
= 5V, SD = 0V, INS = 0V, GSx = 0V, HD = 0V,  
25  
Full  
25  
-3  
-
1.9  
1.9  
0.02  
0.02  
-
3
-
µA  
µA  
µA  
µA  
V
SD HD  
DD  
HO = 0V  
I
I
GSx, HO  
Input Leakage Current, I , I  
,
V
= 5V, SD = V , INS = V , GSx = V  
DD DD  
,
DD  
-1  
-
1
SD GSx  
DD  
I
, I  
HD HO  
HD = V , HO = V  
DD DD  
Full  
Full  
Full  
-
V
V
2.4  
-
-
INH  
INL  
-
0.8  
V
FN6513 Rev 2.00  
October 30, 2007  
Page 4 of 13  
ISL54004  
Electrical Specifications - 3.6V Supply Test Conditions: V = +3.6V, GND = 0V, V  
= 1.4V. V  
INL  
= 0.4V, SD = GSO = GS1 = V ,  
INL  
DD  
INH  
C
= 1µF, R is terminated between SPK+ and SPK- for BTL driver and between Hp_ and  
REF  
GND for SE drivers, Unless Otherwise Specified (Note 3)  
L
TEMP MIN  
(°C) (Notes 4, 5)  
MAX  
(Notes 4, 5) UNITS  
PARAMETER  
GENERAL  
Quiescent Supply Current, I  
TEST CONDITIONS  
TYP  
HO = V  
or V  
, HD = V , RL = NoneInput AC  
INH INL  
25  
Full  
25  
-
-
-
-
2.7  
3
12  
-
mA  
mA  
mA  
mA  
DD  
INL  
coupled to GND (0.1µF)  
Shutdown Supply Current, I  
SD = V  
, HO = V  
INH  
or V  
, HD = V , R = 8  
INH INL  
13  
15  
50  
-
SD  
INL  
L
BTLand R = 32SEInput AC coupled to GND  
L
Full  
(0.1µF)  
BTL AMPLIFIER DRIVER, HD = V  
HO = V  
UNLESS OTHERWISE SPECIFIED  
INH,  
INH,  
Output Offset Voltage, V  
Measured between SPK+ and SPK-, Input AC  
coupled to GND (0.1µF)  
25  
Full  
25  
-
-
-
-
25  
40  
49  
47  
-
-
-
-
mV  
mV  
dB  
OS  
Power Supply Rejection Ratio, PSRR  
V
= 200mV  
F
F
= 217Hz  
= 1kHz  
RIPPLE  
P-P  
RIPPLE  
HD = 0V, R = 8Input AC  
coupled to GND (0.1µF)  
L
25  
dB  
RIPPLE  
Output Power, P  
OUT  
R
R
R
R
R
= 8, THD+N = 1%, f = 1kHz  
= 8, THD+N =10%, f = 1kHz  
25  
25  
25  
25  
25  
-
-
-
-
-
310  
528  
0.4  
0.4  
5.8  
-
-
-
-
-
mW  
mW  
%
L
L
L
L
L
Total Harmonic Distortion + Noise,  
THD+N  
= 8, P  
= 8, P  
= 8, V  
= 200mW, f = 1kHz  
OUT  
= 200mW, f = 20Hz to 20kHz  
%
OUT  
Max Output Voltage Swing, V  
OUT  
= 3.6V , f = 1kHz  
P-P  
V
P-P  
SIGNAL  
SINGLE ENDED AMPLIFIER DRIVERS, HD = V  
HO = V UNLESS OTHERWISE SPECIFIED  
INL,  
INH,  
Power Supply Rejection Ratio, PSRR  
V
= 200MV  
,
F
= 217Hz  
= 1kHz  
25  
25  
-
-
48  
47  
-
-
dB  
dB  
RIPPLE  
P-P  
RIPPLE  
RIPPLE  
HD = 0V, R = 32Input AC  
coupled to GND (0.1µF)  
L
F
Output Power, P  
OUT  
R
R
R
R
R
R
R
= 16, THD+N =1%, f = 1kHz  
= 32, THD+N =1%, f = 1kHz  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
80  
47  
-
-
-
-
-
-
-
mW  
mW  
mW  
mW  
%
L
L
L
L
L
L
L
= 16, THD+N = 10%, f = 1kHz  
= 32, THD+N = 10%, f =1kHz  
107  
58  
Total Harmonic Distortion + Noise,  
THD+N  
= 32, P  
= 32, P  
= 32, V  
= 15mW, f = 1kHz  
0.15  
0.15  
3.2  
OUT  
= 15mW, f = 20Hz to 20kHz  
%
OUT  
Max Output Voltage Swing, V  
= 3.6V , f = 1kHz  
P-P  
V
P-P  
OUT  
SIGNAL  
LOGIC INPUT  
Input Leakage Current, I , I  
,
,
V
V
= 3.6V, SD = 0V, GSx = 0V, HD = 0V , HO = 0V,  
25  
Full  
25  
-
1.9  
1.9  
0.02  
0.02  
-
-
µA  
µA  
µA  
µA  
V
SD GSx  
DD  
I
, I  
HD HO  
-
-
Input Leakage Current, I , I  
SD GSx  
= 3.6V, SD = V , GSx = V , HD = V  
DD DD  
,
-
-
-
-
DD  
DD  
I
, I  
HO = V  
HD HO  
DD  
Full  
Full  
Full  
V
V
1.4  
-
-
INH  
INL  
-
0.4  
V
NOTES:  
3. V = input voltage to perform proper function.  
IN  
4. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.  
5. Parts are 100% tested at +25°C. Over-temperature limits established by characterization and are not production tested  
FN6513 Rev 2.00  
October 30, 2007  
Page 5 of 13  
 
 
ISL54004  
ISL54004 Typical Application Circuit and Block Diagram  
0.1µF  
V
DD  
SPK+  
SPK-  
HpR  
0.22µF  
0.22µF  
IN  
IN  
R
L
BTL  
RIGHT AUDIO  
LEFT AUDIO  
100k  
GAIN  
ROUTER/  
SWITCHER  
SE  
SE  
HD  
HpL  
HEADPHONE JACK  
V
DD  
10k  
BIAS  
CLICK  
AND  
POP  
THERMAL  
PROTECTION  
C
REF  
REF  
SD  
1µF  
HO  
MICRO  
CONTROLLER  
LOGIC CONTROL  
GSO  
GS1  
GND  
signal to the BTL driver. In Headphone Mode the right channel  
input is sent to the right headphone speaker and the left  
channel is sent to the left headphone speaker.  
Detailed Description  
The Intersil ISL54004 device is an integrated audio power  
amplifier system designed to provide quality audio, while  
requiring minimal external components. Low 0.4% THD+N  
ensures clean, low distortion amplification of the audio  
signals. It is designed to operate from a single +2.7V to +5V  
power supply. It is offered in a 20 Ld 4x4 TQFN package.  
Targeted applications include battery powered equipment  
such as cell-phones, MP3 players, and games/toys.  
The ISL54004 features headphone sense input circuitry that  
detects when a headphone jack has been inserted and  
automatically switches the audio inputs from the mono BTL  
output driver to the headphone drivers. It also has a logic  
control pin (HO) that can override the sense input circuitry.  
The ISL54004 has a four-level programmable gain stage to  
boost the audio signal. The part requires no external gain  
setting resistors. When GSO = GS1 = Low a driver will have a  
gain of 1V/V (0dB). When GSO = High, GS1 = Low a driver  
will have a gain of 1.2V/V (1.5dB). When GSO = Low,  
GS1 = High a driver will have a gain of 2V/V (6dB). When  
GSO = High, GS1 = High a driver will have a gain of 4V/V  
(12dB). When the speaker is connected across the SPK+  
terminal and SPK- terminal of the mono BTL driver you get an  
additional gain of 2V/V (6dB) due to the BTL configuration.  
The overall gain will be 2 times the values discussed above.  
For example with GS1 = GS0 = High the overall gain will be  
2 x 4 = 8V/V (18dB).  
The ISL54004 part contains one class AB BTL type power  
amplifier for driving an 8mono speaker and two class AB  
single-ended (SE) type amplifiers for driving 16or 32  
headphones.  
The BTL when using a 5V supply is capable of delivering  
800mW (typ) with 0.4% THD+N and 941mW (typ) with 1%  
THD+N of continuous average power into a stereo 8BTL  
speaker load. When the speaker load is connected across  
the positive and negative terminals of the BTL driver the  
voltage is doubled across the load and the power is  
quadrupled.  
Each SE amplifier when using a 5V supply is capable of  
delivering 15mW (typ) with 0.07% THD+N and 50mW (typ)  
with 0.3% THD+N of continuous average power into a 32  
headphone speaker.  
The part features low power shutdown, thermal overload  
protection and click and pop suppression. The click and pop  
circuitry prevents click and pops at the speakers when  
transitioning in and out of shutdown.  
When in Mono Mode (BTL driver active) the part automatically  
mixes the left and right audio inputs and sends the combined  
FN6513 Rev 2.00  
October 30, 2007  
Page 6 of 13  
 
ISL54004  
The “Typical Application Circuit and Block Diagram” for this  
device is provided on page 6. The “Truth Table” for the device  
is provided on page 2.  
its differential connection, a capacitor is required at the output  
of each SE drivers to remove this DC voltage from the  
headphone load.  
This coupling capacitor along with the resistance of the  
speaker load creates a high pass filter that sets the amplifier’s  
lower bandpass frequency limit. The value of this AC coupling  
capacitor depends on the low frequency range required for the  
application. The formula required to calculate the capacitor  
value is shown in Equation 2:  
DC Bias Voltage  
The ISL54004 has internal DC bias circuitry which DC offsets  
the incoming audio signal at V /2. When using a 5V supply,  
the DC offset will be 2.5V. When using a 3.6V supply the DC  
offset will be 1.8V.  
DD  
1
Since the signal gets biased internally at V /2 the audio  
DD  
--------------------------------------------------------------  
(EQ. 2)  
C   
6.28fRspeaker  
signals need to be AC coupled to the inputs of the device. The  
value of the AC coupling capacitor depends on the low  
frequency range required for the application. A capacitor of  
0.22µF will pass a signal as low as 7.2Hz. The formula  
required to calculate the capacitor value is shown in Equation  
1:  
For an application driving a 32headphone with a lower  
frequency requirement of 150Hz the required capacitor value is  
shown in Equation 3:  
1
------------------------------------------------  
(EQ. 3)  
C   
= 33F  
6.2815032  
1
----------------------------------------------  
(EQ. 1)  
C   
6.28f100k  
Use the closest standard value.  
The 100kis the impedance looking into the input of the  
ISL54004 device.  
Headphone Sense Function  
With a logic “1” at the HP control pin while the HO control pin is  
low will activate the headphone drivers and disable the BTL  
driver.  
BTL Speaker Amplifier  
The ISL54004 contains one bridge-tied load (BTL) amplifier  
designed to drive an 8speaker load differentially. The output  
to the BTL amplifier are SPK+ and SPK-. The speaker load  
gets connected across these terminals.  
The “ISL54004 Typical Application Circuit and Block Diagram”  
on page 6 shows the implementation of the headphone control  
function using a common headphone jack.  
The HP pin gets connected to the mechanical wiper blade of  
the headphone jack. Two external resistors are required for  
proper operation. A 100kpull-up resistor from the HP pin to  
VDD and a 10kpull-down resistor from the jack’s audio signal  
pin to GND of the jack signal pin to which the wiper is  
connected. See “ISL54004 Typical Application Circuit and  
Block Diagram” on page 6.  
A single BTL driver consists of an inverting and non-inverting  
power op amps. The AC signal out of each op amp are equal in  
magnitude but 180° out-of-phase, so the AC signal at SPK+  
and SPK- have the same amplitude but are 180° out-of-phase.  
Driving the load differentially using a BTL configuration  
doubles the output voltage across the speaker load and  
quadruples the power to the load. In effect you get a gain of  
two due to this configuration at the load as compared to driving  
the load with a single-ended amplifier with its load connected  
between a single amplifier’s output and GND.  
When no headphone plug is inserted into the jack the voltage  
at the HP pin gets set at a low voltage level due to the 10k  
resistor and 100kresistor divider network connection to V  
.
DD  
When a headphone is inserted into the jack the 10kresistor  
The outputs of the BTL are biased at V /2. When the load  
DD  
gets disconnected from the HP control pin and the HP pin gets  
gets connected across the + and - terminal of the BTL the mid  
supply DC bias voltage at each output gets cancelled out  
eliminating the need for large bulky output coupling capacitors.  
pulled up to V . Since the HP pin is now high the headphone  
DD  
drivers are activated.  
A microprocessor or a switch can be used to drive the HP pin  
rather than using the headphone jack contact pin.  
Headphone (Single-Ended) Amplifiers  
The ISL54004 contains two single-ended (SE) headphone  
amplifiers for driving the left and right channels of a 32or  
16headphone speakers.  
Note: With a logic “1” at the HO pin the BTL driver remains  
active regardless of the voltage level at the HD pin. This allows  
a headphone to be plugged into the headphone jack without  
activating the HP drivers. Music will continue to play through  
the internal 8speaker rather than the headphones.  
One SE amplifier drives the right speaker of the headphone  
and other SE amplifier drives the left speaker of the  
headphone. The speaker load gets connected between the  
output of the amplifier and ground.  
Low Power Shutdown  
With a logic “1” at the SD control pin the device enters the low  
power shutdown state. When in shutdown the BTL and  
The audio signal at the output of each SE driver is biased at  
V
/2 and unlike the BTL driver that cancels this offset due to  
DD  
FN6513 Rev 2.00  
October 30, 2007  
Page 7 of 13  
 
 
 
ISL54004  
headphone amplifiers go into an high impedance state and I  
supply current is reduced to 26µA (typ).  
Best thermal performance is achieved with the largest practical  
copper ground plane area.  
DD  
In shutdown mode before the amplifiers enter the high  
impedance/low current drive state, the bias voltage of V /2  
remains connected at the output of the amplifiers through a  
PCB Layout Considerations and Power  
Supply Bypassing  
DD  
To maintain the highest load dissipation and widest output  
voltage swing the power supply PCB traces and the traces that  
connect the output of the drivers to the speaker loads should  
be made as wide as possible to minimize losses due to  
parasitic trace resistance.  
100kresistor.  
This resistor is not present during active operation of the  
drivers but gets switched in when the SD pin goes high. It gets  
removed when the SD pin goes low.  
Leaving the DC bias voltage connected through a 100k  
resistor while going into and out of shutdown reduces the  
transient at the speakers to a small level preventing clicking or  
popping in the speakers.  
Proper supply bypassing is necessary for high power supply  
rejection and low noise performance. A filter network  
consisting of a 10µF capacitor in parallel with a 0.1µF capacitor  
is recommended at the voltage regulator that is providing the  
power to the ISL54004 IC.  
Note: When the SD pin is High it overrides all other logic pins.  
Local bypass capacitors of 0.1µF should be put at each V  
DD  
QFN Die Attach Paddle Considerations  
pin of the ISL54004 device. They should be located as close  
as possible to the pin, keeping the length of leads and traces  
as short as possible.  
The QFN package features an exposed thermal pad on its  
underside. This pad lowers the package’s thermal resistance  
by providing a direct heat conduction path from the die to the  
PCB. Connect the exposed thermal pad to GND by using a  
large copper pad and multiple vias to the GND plane. The vias  
should be plugged and tented with plating and solder mask to  
ensure good thermal conductivity.  
A 1µF capacitor from the REF pin (pin 10) to GND is needed  
for optimum PSRR and internal bias voltage stability.  
Typical Performance Curves T = +25°C, Unless Otherwise Specified  
A
1.0  
0.9  
0.8  
1.0  
0.9  
0.8  
0.7  
0.6  
V
= 5V  
V
= 3.6V  
DD  
BTL  
DD  
BTL  
0.7  
0.6  
R
= 8  
= 200mW  
L
R
= 8  
= 800mW  
L
P
O
P
O
0.5  
0.4  
0.5  
0.4  
0.3  
0.2  
0.3  
0.2  
0.1  
20  
0.1  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
20  
50  
100 200  
500 1k  
2k  
5k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 2. THD+N vs FREQUENCY  
FIGURE 1. THD+N vs FREQUENCY  
FN6513 Rev 2.00  
October 30, 2007  
Page 8 of 13  
ISL54004  
Typical Performance Curves T = +25°C, Unless Otherwise Specified (Continued)  
A
10.0  
10.0  
V
= 5V  
V
= 3.6V  
DD  
BTL  
= 8  
DD  
BTL  
= 8  
5.00  
5.00  
R
R
L
L
f = 1kHz  
f = 1kHz  
2.00  
1.00  
0.50  
2.00  
1.00  
0.50  
0.20  
0.10  
0.05  
0.20  
0.10  
0.05  
0.02  
0.01  
0.02  
0.01  
10m  
20m  
50m  
100m  
200m  
500m  
1
10m  
20m  
40m  
70m  
100m  
200m  
600m  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
FIGURE 3. THD+N vs OUTPUT POWER  
FIGURE 4. THD+N vs OUTPUT POWER  
0.40  
0.30  
0.20  
V
= 3.6V  
DD  
SE  
V
= 5V  
DD  
SE  
R
= 32  
L
R
= 32  
L
0.20  
P
= 15mW  
O
P
= 15mW  
0.10  
0.09  
0.08  
O
0.07  
0.06  
0.10  
0.05  
0.04  
0.05  
0.04  
0.03  
0.02  
0.03  
0.02  
0.01  
0.01  
20  
50  
100 200  
500 1k  
2k  
5k  
10k 20k  
20  
50  
100 200  
500 1k  
2k  
5k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 6. THD+N vs FREQUENCY  
FIGURE 5. THD+N vs FREQUENCY  
1.0  
0.9  
0.8  
1.0  
0.9  
0.8  
V
= 5V  
V
= 5V  
DD  
DD  
SE  
L
SE  
R
0.7  
0.7  
R
= 32  
= 16  
L
0.6  
0.6  
P
= 50mW  
O
P
= 50mW  
O
0.5  
0.4  
0.5  
0.4  
0.3  
0.2  
0.3  
0.2  
0.1  
0.1  
20  
50  
100 200  
500 1k  
2k  
5k  
10k 20k  
20  
50  
100 200  
500 1k  
2k  
5k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 7. THD+N vs FREQUENCY  
FIGURE 8. THD+N vs FREQUENCY  
FN6513 Rev 2.00  
October 30, 2007  
Page 9 of 13  
ISL54004  
Typical Performance Curves T = +25°C, Unless Otherwise Specified (Continued)  
A
1.00  
1.00  
V
= 3.6V  
DD  
SE  
V
= 3.6V  
DD  
SE  
0.50  
0.50  
R
= 32  
L
R
= 16  
L
P
= 30mW  
O
P
= 60mW  
O
0.20  
0.10  
0.05  
0.20  
0.10  
0.05  
0.02  
0.01  
0.02  
0.01  
20  
50  
100 200  
500 1k  
2k  
5k  
10k 20k  
20  
50  
100 200 500  
1k  
2k  
5k  
10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 9. THD+N vs FREQUENCY  
FIGURE 10. THD+N vs FREQUENCY  
0.20  
0.10  
0.09  
0.08  
V
= 5V  
DD  
SE  
0.07  
0.06  
R
= 32  
L
f = 1kHz  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
V
= 5V  
DD  
SE  
L
R
= 16  
0.05  
f = 1kHz  
0.03  
0.02  
0.04  
0.03  
0.02  
0.01  
0.01  
2
3
4
5
6
7
8
9 10  
20  
2
3
4
5
6
7
8
9 10  
20  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
FIGURE 11. THD+N vs OUTPUT POWER  
FIGURE 12. THD+N vs OUTPUT POWER  
0.30  
0.20  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.10  
0.09  
0.08  
0.07  
0.06  
V
= 3.6V  
DD  
SE  
L
R
= 32  
f = 1kHz  
V
SE  
R
= 3.6V  
DD  
0.05  
0.04  
= 16  
L
f = 1kHz  
0.03  
0.02  
0.01  
2
3
4
5
6
7
8
9 10  
20  
2
3
4
5
6
7
8
9
10  
20  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
FIGURE 13. THD+N vs OUTPUT POWER  
FIGURE 14. THD+N vs OUTPUT POWER  
FN6513 Rev 2.00  
October 30, 2007  
Page 10 of 13  
ISL54004  
Typical Performance Curves T = +25°C, Unless Otherwise Specified (Continued)  
A
10.0  
10.0  
V
SE  
= 5V  
V
SE  
= 5V  
DD  
DD  
5.00  
5.00  
R
= 32  
R
= 16  
L
L
2.00  
1.00  
0.50  
2.00  
1.00  
0.50  
f = 1kHz  
f = 1kHz  
0.20  
0.10  
0.05  
0.20  
0.10  
0.05  
0.02  
0.01  
0.02  
0.01  
10m  
20m  
30m  
50m 70m 100m  
200m  
10m  
20m  
30m  
40m  
50m  
70m  
100m  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
FIGURE 15. THD+N vs OUTPUT POWER  
FIGURE 16. THD+N vs OUTPUT POWER  
10.0  
5.00  
10.0  
V
SE  
R = 16  
f = 1kHz  
= 3.6V  
DD  
V
= 3.6V  
DD  
SE  
5.00  
R
= 32  
L
L
2.00  
1.00  
0.50  
2.00  
1.00  
0.50  
f = 1kHz  
0.20  
0.10  
0.05  
0.20  
0.10  
0.05  
0.02  
0.01  
0.02  
0.01  
10m  
20m  
30m 40m 50m  
70m  
100m  
10m 12m 15m  
20m 25m  
35m  
45m 55m  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
FIGURE 18. THD+N vs OUTPUT POWER  
FIGURE 17. THD+N vs OUTPUT POWER  
-50  
-55  
-80  
V
P
= 5V  
= 15mW  
-85  
-90  
DD  
O
-60  
-95  
-65  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
INxR TO HPL  
INxL TO HPR  
-70  
-75  
-80  
-85  
HPR AND HPL  
BTL  
-90  
-95  
-100  
-105  
-110  
20  
50 100 200  
500 1k  
2k  
5k 10k 20k  
20  
50 100 200  
FREQUENCY (Hz)  
FIGURE 20. OFF ISOLATION vs FREQUENCY  
500 1k  
2k  
5k 10k 20k  
FREQUENCY (Hz)  
FIGURE 19. CROSSTALK vs FREQUENCY  
FN6513 Rev 2.00  
October 30, 2007  
Page 11 of 13  
ISL54004  
Typical Performance Curves T = +25°C, Unless Otherwise Specified (Continued)  
A
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-36  
-38  
-40  
-42  
-44  
-46  
-48  
-50  
-52  
-54  
-56  
-58  
-60  
-62  
-64  
-66  
-68  
-70  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
V
= 5V  
V
BTL  
V
= 5V  
DD  
DD  
SE  
V
= 200mV  
= 200MV  
RIPPLE  
P-P  
RIPPLE  
P-P  
HPR  
HPL  
10 20  
50 100 200 500 1k 2k  
FREQUENCY (Hz)  
5k 10k 20k  
10 20  
50 100 200  
500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FIGURE 21. PSRR vs FREQUENCY  
FIGURE 22. PSRR vs FREQUENCY  
700  
600  
500  
400  
300  
200  
100  
0
400  
350  
V
BTL  
R
= 5V  
DD  
V
= 3.6V  
DD  
BTL  
= 8  
= 8  
L
R
L
300  
250  
200  
150  
100  
50  
0
0
100  
200  
300  
(mW)  
400  
500  
0
250  
500  
(mW)  
750  
1000  
P
P
OUT  
OUT  
FIGURE 23. POWER DISSIPATION vs OUTPUT POWER  
FIGURE 24. POWER DISSIPATION vs OUTPUT POWER  
Die Characteristics  
SUBSTRATE POTENTIAL (POWERED UP):  
GND  
PROCESS:  
Submicron CMOS  
© Copyright Intersil Americas LLC 2007. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6513 Rev 2.00  
October 30, 2007  
Page 12 of 13  
ISL54004  
Thin Quad Flat No-Lead Plastic Package  
(TQFN)  
Thin Micro Lead FramePlastic Package  
(TMLFP)  
L20.4x4A  
20 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
(COMPLIANT TO JEDEC MO-220WGGD-1 ISSUE I)  
MILLIMETERS  
SYMBOL  
MIN  
NOMINAL  
MAX  
0.80  
0.05  
0.80  
NOTES  
A
A1  
A2  
A3  
b
0.70  
0.75  
-
-
-
0.02  
-
0.55  
9
0.20 REF  
9
0.18  
1.95  
1.95  
0.25  
0.30  
2.25  
2.25  
5, 8  
D
4.00 BSC  
-
D1  
D2  
E
3.75 BSC  
9
2.10  
7, 8  
4.00 BSC  
-
E1  
E2  
e
3.75 BSC  
9
2.10  
7, 8  
0.50 BSC  
-
k
0.20  
0.35  
-
0.60  
20  
5
-
-
L
0.75  
8
N
2
Nd  
Ne  
P
3
5
3
-
-
-
0.60  
12  
9
-
9
Rev. 0 11/04  
NOTES:  
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.  
2. N is the number of terminals.  
3. Nd and Ne refer to the number of terminals on each D and E.  
4. All dimensions are in millimeters. Angles are in degrees.  
5. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
7. Dimensions D2 and E2 are for the exposed pads which provide  
improved electrical and thermal performance.  
8. Nominal dimensionsare providedtoassist with PCB LandPattern  
Design efforts, see Intersil Technical Brief TB389.  
9. Features and dimensions A2, A3, D1, E1, P & are present when  
Anvil singulation method is used and not present for saw  
singulation.  
FN6513 Rev 2.00  
October 30, 2007  
Page 13 of 13  

相关型号:

ISL54004IRTZ-T

Integrated Audio Amplifier Systems; TQFN20; Temp Range: -40° to 85°C
RENESAS

ISL54005

Integrated Audio Amplifier Systems
INTERSIL

ISL54005

Integrated Audio Amplifier Systems
RENESAS

ISL54005IRTZ

Integrated Audio Amplifier Systems
RENESAS

ISL54006

Integrated Audio Amplifier Systems
INTERSIL

ISL54006

Integrated Audio Amplifier Systems
RENESAS

ISL54006IR

1.23W, 2 CHANNEL, AUDIO AMPLIFIER, PQCC20, 4 X 4 MM, PLASTIC, MO-220WGGD-1, TQFN-20
RENESAS

ISL54006IRTZ

Integrated Audio Amplifier Systems; TQFN20; Temp Range: -40° to 85°C
RENESAS

ISL54047

Ultra Low ON-Resistance, High Off- Isolation, Single Supply, Diff SPST Analog Switch
INTERSIL

ISL54047IRUZ-T

Ultra Low ON-Resistance, High Off- Isolation, Single Supply, Diff SPST Analog Switch
INTERSIL

ISL54048

Ultra Low ON-Resistance, +1.65V to +4.5V, Single Supply, Dual SPST Analog Switch
INTERSIL

ISL54048IRUZ-T

Ultra Low ON-Resistance, +1.65V to +4.5V, Single Supply, Dual SPST Analog Switch
INTERSIL