ISL71831SEHVF [RENESAS]

Single-Ended Multiplexer;
ISL71831SEHVF
型号: ISL71831SEHVF
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Single-Ended Multiplexer

文件: 总19页 (文件大小:849K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
3.3V Radiation Tolerant CAN Transceiver, with Listen  
Mode and Split Termination Output  
ISL72027SEH  
Features  
The Intersil ISL72027SEH is a 3.3V radiation tolerant CAN  
transceiver that is compatible with the ISO11898-2 standard  
for applications calling for Controller Area Network (CAN) serial  
communication in satellites and aerospace communications  
and telemetry data processing in harsh industrial  
environments.  
• DLA SMD 5962-15228  
• ESD Protection on all pins. . . . . . . . . . . . . . . . . . . . . .4kV HBM  
• Compatible with ISO11898-2  
• Operating supply range . . . . . . . . . . . . . . . . . . . . . 3.0V to 3.6V  
• Bus pin fault protection to ±20V  
The transceiver can transmit and receive at bus speeds up to  
5Mbps. It can drive a 40m cable at 1Mbps per the ISO11898-2  
specification. The device is designed to operate over a  
common-mode range of -7V to +12V with a maximum of 120  
nodes. The device has three discrete selectable driver rise/fall  
time options, a listen mode feature and a split termination  
output.  
• Undervoltage lockout  
• Cold spare: powered down devices/nodes will not affect  
active devices operating in parallel  
• Three selectable driver rise and fall times  
• Glitch free bus I/O during power-up and power-down  
• Full fail-safe (open, short, terminated/undriven) receiver  
• Hi Z input allows for 120 nodes on the bus  
• High data rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . up to 5Mbps  
• Quiescent supply current . . . . . . . . . . . . . . . . . . . . 7mA (max)  
• Listen mode supply current . . . . . . . . . . . . . . . . . . 2mA (max)  
• -7V to +12V common-mode input voltage range  
• 5V tolerant logic inputs  
Receiver (Rx) inputs feature a “full fail-safe” design, which  
ensures a logic high Rx output if the Rx inputs are floating,  
shorted, or terminated but undriven.  
The ISL72027SEH is available in an 8 Ld hermetic ceramic  
flatpack and die form that operate across the temperature  
range of the -55°C to +125°C. The logic inputs are tolerant  
with 5V systems.  
Other CAN transceivers available are the ISL72026SEH and  
ISL72028SEH. For a list of differences see Table 1 on page 2.  
• Thermal shutdown  
• Acceptance tested to 75krad(Si) (LDR) wafer-by-wafer  
Related Literature  
UG051, “ISL7202xSEHEVAL1Z Evaluation Board User Guide”  
• Radiation tolerance  
2
- SEL/B immune to LET 60MeV•cm /mg  
TR018, “SEE Testing of the ISL72027SEH CAN Transceiver”  
- Low dose rate (0.01rad(Si)/s) . . . . . . . . . . . . . . 75krad(Si)  
TR022, “Total Dose Testing of the ISL72026SEH,  
ISL72027SEH and ISL72028SEH CAN Transceivers”  
Applications  
• Satellites and aerospace communications  
• Telemetry data processing  
• High-end industrial environments  
• Harsh environments  
4
Tx DATA IN  
VCC  
D
RS  
D
1
2
3
4
8
7
6
5
0
4
CANH  
CANH  
CANL  
GND  
R
ISL72027SEH  
0
CANL  
VREF  
VCC  
0.1µF  
R
3
RS = GND, R  
DIFF  
= 60Ω  
2
1
0
CANH - CANL  
Rx DATA OUT  
TIME (1µs/DIV)  
FIGURE 1. TYPICAL APPLICATION  
FIGURE 2. FAST DRIVER AND RECEIVER WAVEFORMS  
August 16, 2016  
FN8763.3  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2015, 2016. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISL72027SEH  
Ordering Information  
ORDERING/SMD  
NUMBER (Note 1)  
PART NUMBER  
(Note 2)  
TEMP RANGE  
(°C)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
5962L1522802VXC  
ISL72027SEHVF  
-55 to +125  
-55 to +125  
8 Ld Ceramic Flatpack  
K8.A  
K8.A  
N/A  
ISL72027SEHF/PROTO  
ISL72027SEHVX  
8 Ld Ceramic Flatpack  
5962L1522802V9A  
-55 to +125  
Die  
Die  
N/A  
ISL72027SEHX/SAMPLE  
ISL72027SEHEVAL1Z  
-55 to +125  
N/A  
Evaluation Board  
NOTES:  
1. Specifications for Radiation Tolerant QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed  
in the Ordering Information must be used when ordering.  
2. These Intersil Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations.  
TABLE 1. ISL7202xSEH PRODUCT FAMILY FEATURE TABLE  
SPEC  
Loopback Feature  
ISL72026SEH  
Yes  
ISL72027SEH  
No  
ISL72028SEH  
No  
Yes  
VREF Output  
No  
Yes  
Listen Mode  
Yes  
Yes  
No  
Shutdown Mode  
VTHRLM  
No  
No  
Yes  
1150mV (Max)  
525mV (Min)  
50mV (Min)  
2mA (Max)  
N/A  
1150mV (Max)  
525mV (Min)  
50mV (Min)  
2mA (Max)  
N/A  
N/A  
VTHFLM  
N/A  
VHYSLM  
N/A  
Supply Current, Listen Mode  
Supply Current, Shutdown Mode  
VREF Leakage Current  
N/A: Not Applicable  
N/A  
50µA (Max)  
±25µA (Max)  
N/A  
±25µA (Max)  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
2
ISL72027SEH  
Pin Configuration  
ISL72027SEH  
(8 LD CERAMIC FLATPACK)  
TOP VIEW  
D
1
2
3
4
8
7
6
5
RS  
GND  
VCC  
R
CANH  
CANL  
VREF  
Note: The package lid is tied to ground.  
Pin Descriptions  
PIN  
PIN  
NUMBER  
NAME  
FUNCTION  
1
2
3
4
8
7
6
5
D
CAN driver digital input. The bus states are LOW = dominant and HIGH = recessive. Internally tied HIGH.  
Ground connection.  
GND  
VCC  
R
System power supply input (3.0V to 3.6V). The typical voltage for the device is 3.3V.  
CAN data receiver output. The bus states are LOW = dominant and HIGH = recessive.  
A resistor to GND from this pin controls the rise and fall time of the CAN output waveform. Drive RS HIGH to put into listen mode.  
CAN bus line for low level output.  
RS  
CANL  
CANH  
VREF  
CAN bus line for high level output.  
VCC/2 reference output for split mode termination.  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
3
ISL72027SEH  
Equivalent Input and Output Schematic Diagrams  
VCC  
VCC  
4k  
35k  
INPUT  
30V  
OUTPUT  
OUTPUT  
2k  
7k  
30V  
30V  
GND  
GND  
GND  
FIGURE 3. CANH AND CANL INPUTS  
FIGURE 4. CANH OUTPUT  
FIGURE 5. CANL OUTPUT  
VCC  
VCC  
COLD SPARE  
VCC  
VCC  
LO/LPSD  
330k  
5
5
200k  
OUTPUT  
INPUT  
INPUT  
+
10V  
-
10k  
10V  
10V  
GND  
GND  
GND  
FIGURE 6. D INPUT  
FIGURE 7. R OUTPUT  
FIGURE 8. RS INPUT  
VCC  
LO / LPSD  
36V  
1500  
OUTPUT  
1500  
36V  
30V  
LO / LPSD  
GND  
FIGURE 9. VREF  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
4
ISL72027SEH  
Absolute Maximum Ratings  
Thermal Information  
VCC to GND with/without Ion Beam. . . . . . . . . . . . . . . . . . . . . -0.3V to 5.5V  
CANH, CANL, VREF Under Ion Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18V  
CANH, CANL, VREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20V  
I/O Voltages  
Thermal Resistance (Typical)  
8 Ld FP Package (Notes 3, 4) Direct Attach .  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+175°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
(°C/W)  
39  
(°C/W)  
7
JA  
JC  
D, R, RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V  
Receiver Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10mA to 10mA  
Output Short-circuit Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
ESD Rating:  
Recommended Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Human Body Model (Tested per MIL-PRF-883 3015.7)  
V
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3V to 3.6V  
CC  
Voltage on CAN I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -7V to 12V  
CANH, CANL Bus Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4kV  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4kV  
Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . . . . 750V  
Machine Model (Tested per JESD22-A115-A) . . . . . . . . . . . . . . . . . . . . 200V  
V
V
D Logic Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 5.5V  
D Logic Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 0.8V  
IH  
IL  
IOH Driver (CANH - CANL = 1.5V, V = 3.3V) . . . . . . . . . . . . . . . . . . - 40mA  
CC  
IOH Receiver (V = 2.4V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -4mA  
OH  
IOL Driver (CANH - CANL = 1.5V, V = 3.3V) . . . . . . . . . . . . . . . . . . +40mA  
CC  
IOL Receiver (V = 0.4V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4mA  
OL  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
3. is measured with the component mounted on a high effective thermal conductivity test board (two buried 1oz copper planes) with “direct attach”  
JA  
features package base mounted to PCB thermal land with a 10 mil gap fill material having a k of 1W/m-K. See Tech Brief TB379.  
4. For , the “case temp” location is the center of the package underside.  
JC  
Electrical Specifications Test Conditions: V = 3V to 3.6V; Typicals are at T = +25°C (Note 7); unless otherwise specified (Note 5).  
CC  
A
Boldface limits apply across the operating temperature range, -55°C to +125°C or across a total ionizing dose of 75krad(Si) at +25°C with exposure at  
a low dose rate of <10mrad(Si)/s.  
TEMP  
(°C)  
MIN  
TYP  
MAX  
(Note 6)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6) (Note 7)  
UNIT  
DRIVER ELECTRICAL CHARACTERISTICS  
Dominant Bus Output Voltage  
Recessive Bus Output Voltage  
V
V
D = 0V, CANH, RS = 0V,  
Figures 10 and 11  
3V V 3.6V  
CC  
Full  
Full  
Full  
2.25  
0.10  
1.80  
2.85  
0.65  
2.30  
V
V
V
V
O(DOM)  
CC  
D = 0V, CANL, RS = 0V,  
Figures 10 and 11  
1.25  
2.70  
D = 3V, CANH, RS = 0V, 60Ω3V V 3.6V  
O(REC)  
CC  
and no load, Figures 10 and  
11  
D = 3V, CANL, RS = 0V, 60Ω  
and no load, Figures 10 and  
11  
Full  
1.80  
2.30  
2.80  
V
Dominant Output Differential  
Voltage  
V
V
D = 0V, RS = 0V, 3V V 3.6V, Figures 10 and 11 Full  
CC  
1.5  
1.2  
-120  
-500  
2.0  
0
2.2  
2.1  
0.2  
-34  
-
3.0  
3.0  
12  
V
V
OD(DOM)  
D = 0V, RS = 0V, 3V V 3.6V, Figures 11 and 12 Full  
CC  
Recessive Output Differential  
Voltage  
D = 3V, RS = 0V, 3VV 3.6V, Figures 10 and 11 Full  
CC  
mV  
mV  
V
OD(REC)  
D = 3V, RS = 0V, 3.0V V 3.6V, no load  
CC  
Full  
Full  
Full  
Full  
Full  
50  
Logic Input High Voltage (D)  
Logic Input Low Voltage (D)  
High Level Input Current (D)  
Low Level Input Current (D)  
V
V
3V V 3.6V, Note 8  
CC  
5.5  
0.8  
30  
IH  
3VV 3.6V, Note 8  
CC  
-
V
IL  
I
I
D = 2V, 3V V 3.6V  
CC  
-30  
-30  
-3  
µA  
µA  
V
IH  
D = 0.8V, 3V V 3.6V  
CC  
-7  
30  
IL  
RS Input Voltage for Listen  
Mode  
V
3V V 3.6V  
CC  
Full 0.75xVCC  
1.90  
5.5  
IN(RS)  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
5
ISL72027SEH  
Electrical Specifications Test Conditions: V = 3V to 3.6V; Typicals are at T = +25°C (Note 7); unless otherwise specified (Note 5).  
CC  
A
Boldface limits apply across the operating temperature range, -55°C to +125°C or across a total ionizing dose of 75krad(Si) at +25°C with exposure at  
a low dose rate of <10mrad(Si)/s. (Continued)  
TEMP  
(°C)  
MIN  
TYP  
MAX  
(Note 6)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
= -7V, CANL = OPEN, 3V V 3.6V,  
(Note 6) (Note 7)  
UNIT  
mA  
Output Short-Circuit Current  
I
V
Full  
Full  
Full  
Full  
-
-250  
-100  
0.4  
-
OSC  
CANH  
Figure 18  
CC  
V
= +12V, CANL = OPEN, 3V V 3.6V,  
CC  
Figure 18  
-
1.0  
mA  
mA  
mA  
°C  
CANH  
V
= -7V, CANH = OPEN, 3V V 3.6V,  
CC  
Figure 18  
-1.0  
-0.4  
100  
163  
12  
-
CANL  
V
= +12V, CANH = OPEN, 3V V 3.6V,  
CC  
Figure 18  
-
-
-
250  
CANL  
Thermal Shutdown  
Temperature  
T
T
3V < V < 3.6V  
IN  
-
-
SHDN  
HYS  
Thermal Shutdown Hysteresis  
3V < V < 3.6V  
IN  
-
°C  
RECEIVER ELECTRICAL CHARACTERISTICS  
Input Threshold Voltage (Rising) V  
RS = 0V, 10k, 50k, (recessive to dominant),  
Figures 14 and 15  
Full  
Full  
-
750  
650  
900  
mV  
mV  
THR  
Input Threshold Voltage (Falling) V  
RS = 0V, 10k, 50k, (dominant to recessive),  
Figures 14 and 15  
500  
-
THF  
Input Hysteresis  
V
V
(V  
- V  
THR THF  
), RS = 0V, 10k, 50k, Figures 14 and 15 Full  
40  
90  
-
mV  
mV  
HYS  
Listen Mode Input Threshold  
Voltage (Rising)  
RS = V , (recessive to dominant), Figure 14  
CC  
Full  
-
920  
1150  
THRLM  
Listen Mode Input Threshold  
Voltage (Falling)  
V
RS = V , (dominant to recessive), Figure 14  
CC  
Full  
525  
820  
-
mV  
THFLM  
Listen Mode Input Hysteresis  
Receiver Output High Voltage  
Receiver Output Low Voltage  
Input Current for CAN Bus  
V
V
V
(V  
- V  
), RS = V , Figure 14  
CC  
Full  
Full  
Full  
Full  
50  
100  
VCC - 0.2  
0.2  
-
mV  
V
HYSLM  
THR THF  
I
I
= -4mA  
2.4  
-
OH  
O
O
= +4mA  
-
-
0.4  
500  
V
OL  
I
CANH or CANL at 12V, D = 3V, other bus pin at 0V,  
RS = 0V  
420  
µA  
CAN  
CANH or CANL at 12V, D = 3V, V = 0V, other bus  
CC  
pin at 0V, RS = 0V  
Full  
Full  
-
150  
-300  
-85  
250  
µA  
µA  
µA  
pF  
CANH or CANL at -7V, D = 3V, other bus pin at 0V,  
RS = 0V  
-400  
-150  
-
-
-
-
CANH or CANL at -7V, D = 3V, V = 0V, other bus pin Full  
CC  
at 0V, RS = 0V  
Input Capacitance  
(CANH or CANL)  
C
C
Input to GND, D = 3V, RS = 0V  
25  
35  
IN  
Differential Input Capacitance  
Input to Input, D = 3V, RS = 0V  
Input to GND, D = 3V, RS = 0V  
25  
-
15  
40  
-
pF  
IND  
Input Resistance  
(CANH or CANL)  
R
Full  
20  
50  
kΩ  
IN  
Differential Input Resistance  
SUPPLY CURRENT  
R
Input to Input, D = 3V, RS = 0V  
Full  
40  
80  
100  
kΩ  
IND  
Supply Current, Listen Mode  
Supply Current, Dominant  
Supply Current, Recessive  
COLD SPARING BUS CURRENT  
CANH Leakage Current  
I
I
I
RS = D = V , 3V V 3.6V  
CC CC  
Full  
Full  
Full  
-
-
-
1
5
2
7
mA  
mA  
mA  
CC(L)  
D = RS = 0V, no load, 3V V 3.6V  
CC  
CC(DOM)  
CC(REC)  
D = V , RS = 0V, no load, 3V V 3.6V  
CC CC  
2.6  
5.0  
I
I
I
V
= 0.2V, CANH = -7V or 12V, CANL = float,  
Full  
Full  
Full  
-25  
-25  
-4  
-4  
25  
25  
µA  
µA  
µA  
L(CANH)  
L(CANL)  
L(VREF)  
CC  
D = V , RS = 0V  
CC  
= 0.2V, CANL = -7V or 12V, CANH = float,  
CANL Leakage Current  
VREF Leakage Current  
V
CC  
D = V , RS = 0V  
CC  
= 0.2V, V  
V
= -7V or 12V, D = V  
REF CC  
-25.00  
0.01  
25.00  
CC  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
6
ISL72027SEH  
Electrical Specifications Test Conditions: V = 3V to 3.6V; Typicals are at T = +25°C (Note 7); unless otherwise specified (Note 5).  
CC  
A
Boldface limits apply across the operating temperature range, -55°C to +125°C or across a total ionizing dose of 75krad(Si) at +25°C with exposure at  
a low dose rate of <10mrad(Si)/s. (Continued)  
TEMP  
(°C)  
MIN  
TYP  
MAX  
(Note 6)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 6) (Note 7)  
UNIT  
DRIVER SWITCHING CHARACTERISTICS  
Propagation Delay LOW to HIGH t  
Propagation Delay LOW to HIGH t  
Propagation Delay LOW to HIGH t  
Propagation Delay HIGH to LOW t  
Propagation Delay HIGH to LOW t  
Propagation Delay HIGH to LOW t  
RS = 0V, Figure 13  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
-
75  
520  
850  
80  
150  
850  
1400  
155  
800  
1300  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
PDLH1  
PDLH2  
PDLH3  
PDHL1  
PDHL2  
PDHL3  
SKEW1  
SKEW2  
SKEW3  
r1  
RS = 10kΩ, Figure 13  
RS = 50kΩ, Figure 13  
RS = 0V, Figure 13  
-
-
-
RS = 10kΩ, Figure 13  
RS = 50kΩ, Figure 13  
-
460  
725  
5
-
Output Skew  
t
t
t
t
t
t
t
t
t
t
RS = 0V, (|t  
- t  
|), Figure 13  
-
PHL PLH  
Output Skew  
RS = 10kΩ, (|t  
- t  
|), Figure 13  
|), Figure 13  
-
60  
510  
800  
100  
75  
PHL PLH  
Output Skew  
RS = 50kΩ, (|t - t  
PHL PLH  
-
110  
55  
Output Rise Time  
Output Fall Time  
Output Rise Time  
Output Fall Time  
Output Rise Time  
Output Fall Time  
RS = 0V, (fast speed)  
Figure 13  
20  
10  
25  
f1  
RS = 10kΩ, (medium speed - 250Kbps)  
Figure 13  
200  
400  
300  
700  
650  
115  
550  
850  
130  
500  
750  
5
780  
500  
1400  
1000  
210  
875  
1400  
270  
825  
1300  
15  
r2  
175  
f2  
RS = 50kΩ, (slow speed - 125Kbps)  
Figure 13  
400  
r3  
300  
f3  
Total Loop Delay, Driver Input to  
Receiver Output, Recessive to  
Dominant  
RS = 0V, Figure 16  
RS = 10kΩ, Figure 16  
RS = 50kΩ, Figure 16  
RS = 0V, Figure 16  
RS = 10kΩ, Figure 16  
RS = 50kΩ, Figure 16  
Figure 17  
-
-
-
-
-
-
-
(LOOP1)  
Total Loop Delay, Driver Input to  
Receiver Output, Dominant to  
Recessive  
t
(LOOP2)  
Listen to Valid Dominant Time  
t
L-DOM)  
RECEIVER SWITCHING CHARACTERISTICS  
Propagation Delay LOW to HIGH t  
Propagation Delay HIGH to LOW t  
Figure 14  
Figure 14  
Full  
Full  
Full  
Full  
Full  
-
-
-
-
-
50  
50  
2
110  
ns  
ns  
ns  
ns  
ns  
PLH  
110  
PHL  
Rx Skew  
t
t
t
|(t  
- t  
)|, Figure 14  
35  
SKEW1  
PHL PLH  
Rx Rise Time  
Figure 14  
Figure 14  
2
-
-
r
f
Rx Fall Time  
2
VREF/RS PIN CHARACTERISTICS  
VREF  
-5µA<IREF<5µA  
Full 0.45xV  
CC  
1.60  
1.6  
0.55xV  
CC  
V
V
VREF Pin Voltage  
-50µA<IREF<50µA  
Full  
Full  
Full  
0.4xV  
CC  
0.6xV  
CC  
I
I
RS = 0.75 x V  
CC  
-10.0  
-450  
-0.2  
-125  
-
µA  
µA  
RS(H)  
RS(L)  
RS Pin Input Current  
NOTES:  
V
= 0V  
0
RS  
5. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise  
specified.  
6. Parameters with MIN and/or MAX limits are 100% tested at -55°C, +25°C and +125°C, unless otherwise specified.  
7. Typical values are at 3.3V. Parameters with a single entry in the “TYP” column apply to 3.3V. Typical values shown are not guaranteed.  
8. Parameter included in functional testing.  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
7
ISL72027SEH  
Test Circuits and Waveforms  
DOMINANT  
V
O(CAN_H)  
3V  
D
CAN_H  
60Ω  
RECESSIVE  
V
CAN_L  
GND  
OD  
2.3V  
1V  
V
V
V
O(CAN_H)  
V
O(CAN_L)  
V
O(CAN_L)  
FIGURE 11. DRIVER BUS VOLTAGE DEFINITIONS  
FIGURE 10. DRIVER TEST CIRCUIT  
330Ω  
330Ω  
CAN_H  
D
60Ω  
CAN_L  
GND  
V
-7V < VCM < 12V  
FIGURE 12. DRIVER COMMON-MODE CIRCUIT  
t
t
f
r
CAN_H  
D
C
50pF  
±20%  
L
60Ω  
±1%  
V
V
V
V
O
IN  
DOM  
0.9V  
90%  
10%  
CAN_L  
GND  
0.5V  
V
O
V
V
REC  
CC  
t
t
PHL  
PLH  
SCOPE  
V
IN  
0.5 x V  
0V  
CC  
V
= 125kHz, 0V to V , Duty Cycle 50%, t = t ≤ 6ns, Z = 50Ω  
CC  
IN  
r
f
O
C
includes fixture and instrumentation capacitance.  
L
FIGURE 13B. DRIVER TIMING MEASUREMENT POINTS  
FIGURE 13. DRIVER TIMING  
FIGURE 13A. DRIVER TIMING TEST CIRCUIT  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
8
ISL72027SEH  
Test Circuits and Waveforms(Continued)  
CAN_H  
CAN_L  
R
15pF  
V
O
V
GND  
IN  
1.5V  
CAN_H  
CAN_L  
R
VDIFF  
V
C
= 125kHz, Duty Cycle 50%, t = t = 6ns, Z = 50Ω  
includes test setup capacitance  
V
IN  
r
f
O
O
VCANH  
L
GND  
FIGURE 14B. RECEIVER TEST CIRCUIT  
VCANL  
t
t
f
r
V
OH  
90%  
10%  
50%  
t
50%  
V
V
O
V
OL  
t
PLH  
PHL  
2.9V  
2.2V  
1.5V  
IN  
FIGURE 14A. RECEIVER VOLTAGE DEFINITIONS  
FIGURE 14C. RECEIVER TEST MEASUREMENT POINTS  
FIGURE 14. RECEIVER TEST  
INPUT  
OUTPUT  
MEASURED  
VDIFF  
900mV  
900mV  
6V  
VCANH  
–6.1V  
12V  
VCANL  
R
L
–7V  
11.1V  
–7V  
L
–1V  
L
12V  
6V  
L
6V  
–6.5V  
12V  
–7V  
H
H
H
500mV  
500mV  
6V  
11.5V  
–1V  
–7V  
FIGURE 15. DIFFERENTIAL INPUT VOLTAGE THRESHOLD TEST  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
9
ISL72027SEH  
Test Circuits and Waveforms(Continued)  
0Ω,10kΩ,50kΩ  
RS  
VREF  
D
V
CAN H  
CAN L  
CC  
60Ω  
±1%  
50%  
50%  
FLOAT  
V
IN  
0V  
V
t
t
(LOOP2)  
(LOOP1)  
50%  
R
OH  
GND  
V
IN  
50%  
V
15pF ±20%  
O
V
O
V
OL  
V
= 125kHz, Duty Cycle 50%, t = t ≤ 6ns  
r f  
IN  
FIGURE 16B. TOTAL LOOP DELAY MEASUREMENT POINTS  
FIGURE 16. TOTAL LOOP DELAY  
FIGURE 16A. TOTAL LOOP DELAY TEST CIRCUIT  
V
CC  
RS  
CAN_H  
50%  
FLOAT  
VREF  
V
V
60Ω  
±1%  
OD  
IN  
0V  
V
IN  
CAN_L  
GND  
D
R
V
OH  
OL  
50%  
VO  
V
V
O
15pF ±20%  
t L - DOM  
V
= 125kHz, 0V to V , Duty Cycle 50%, t = t ≤ 6ns  
CC  
IN  
r
f
FIGURE 17A. LISTEN TO VALID DOMINANT TIME CIRCUIT  
FIGURE 17B. LISTEN TO VALID DOMINANT TIME MEASUREMENT  
POINTS  
FIGURE 17. LISTEN TO VALID DOMINANT TIME  
|I  
|
O(SRT)  
I
)
O(SRT  
GND  
CANH  
0A  
D
12V  
-7V  
CANL  
GND  
V
IN  
IN  
I
+
O(SRT)  
V
= -7V  
10ms  
-
IN  
OR 12V  
0V  
V
FIGURE 18B. OUTPUT SHORT-CIRCUIT CURRENT WAVEFORMS  
FIGURE 18. OUTPUT SHORT-CIRCUIT  
FIGURE 18A. OUTPUT SHORT-CIRCUIT CURRENT CIRCUIT  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
10  
ISL72027SEH  
Listen Mode  
Functional Description  
When a high level is applied to the RS pin, the device enters a low  
power listen mode. The driver of the transceiver is switched off to  
conserve power while the receiver remains active. In listen mode  
the transceiver draws 2mA (max) of current.  
Overview  
The Intersil ISL72027SEH is a 3.3V radiation tolerant CAN  
transceiver that is compatible with the ISO11898-2 standard for  
use in CAN (Controller Area Network) serial communication  
systems.  
A low level on the RS pin brings the device back to normal  
operation.  
The device performs transmit and receive functions between the  
CAN controller and the CAN differential bus. It can transmit and  
receive at bus speeds of up to 5Mbps. It is designed to operate  
over a common-mode range of -7V to +12V with a maximum of  
120 nodes. The device is capable of withstanding ±20V on the  
CANH and CANL bus pins outside of ion beam and ±16V under  
ion beam.  
Using 3.3V Devices in 5V Systems  
Looking at the differential voltage of both the 3.3V and 5V  
devices, the differential voltage is the same, the recessive  
common-mode output is the same. The dominant  
common-mode output voltage is slightly lower than the 5V  
counterparts. The receiver specs are also the same. Though the  
electrical parameters appear compatible, it is advised that  
necessary system testing be performed to verify interchangeable  
operation.  
Slope Adjustment  
The output driver rise and fall time has three distinct selections  
that may be chosen by using a resistor from the RS pin to GND.  
Connecting the RS pin directly to GND results in output switching  
times that are the fastest, limited only by the drive capability of  
the output stage. RS = 10kΩ provides for a typical slew rate of  
8V/µs and RS = 50kΩ provides for a typical slew rate of 4V/µs.  
Split Mode Termination  
The VREF pin provides a V /2 output voltage for split mode  
CC  
termination. The VREF pin has the same ESD protection,  
short-circuit protection, and common-mode operating range as  
the bus pins.  
Putting a high logic level to the RS pin places the device in a low  
current listen mode. The protocol controller uses this mode to  
switch between low power listen mode and a normal transmit  
mode.  
The split mode termination technique is shown in Figure 19.  
VREF  
VREF  
NODE  
#1  
NODE  
#2  
NODE  
#n  
Cable Length  
The device can work per ISO11898 specification with a 40m  
cable and stub length of 0.3m and 60 nodes at 1Mbps. This is  
greater than the ISO requirement of 30 nodes. The cable type  
specified is a twisted pair (shielded or unshielded) with a  
characteristic impedance of 120Ω. Resistors equal to this are to  
be terminated at both ends of the cable. Stubs should be kept as  
short as possible to prevent reflections.  
CANH  
60Ω  
60Ω  
C
C
L
L
60Ω  
60Ω  
CANL  
FIGURE 19. SPLIT TERMINATION  
Cold Spare  
High reliability system designers implementing data  
It is used to stabilize the bus voltage at V /2 and prevent it from  
CC  
drifting to a high common-mode voltage during periods of  
inactivity. The technique improves the electromagnetic  
compatibility of a network. The split mode termination is put at  
each end of the bus.  
communications have to be sensitive to the potential for single  
point failures. To mitigate the risk of a failure they will use  
redundant bus transceivers in parallel. Space systems call for  
high reliability in data communications that are resistant to  
single point failures. This is achieved by using a redundant bus  
transceiver in parallel. In this arrangement, both active and  
quiescent devices can be present simultaneously on the bus. The  
quiescent devices are powered down for cold spare and do not  
affect the communication of the other active nodes.  
The C capacitor between the two 60Ω resistors filters unwanted  
L
high frequency noise to ground. The resistors should have a  
tolerance of 1% or better and the two resistors should be  
carefully matched to provide the most effective EMI immunity. A  
typical value of C for a high speed CAN network is 4.7nF, which  
L
generates a 3dB point at 1.1Mbps. The capacitance value used is  
dependent on the signaling rate of the network.  
To achieve this, a powered down transceiver (V < 200mV) has  
CC  
a resistance between the VREF pin or the CANH pin or CANL pin  
and the V supply rail of >480kΩ (max) with a typical resistance  
CC  
>2MΩ. The resistance between CANH and CANL of a powered  
down transceiver has a typical resistance of 80kΩ.  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
11  
ISL72027SEH  
Typical Performance Curves  
V
= 3.3V, C = 15pF, T = +25°C; unless otherwise specified.  
CC L A  
25  
25  
20  
15  
10  
5
20  
-55 °C  
+25 °C  
+125 °C  
15  
10  
5
+125 °C  
+25 °C  
-55 °C  
RS = GND, R  
DIFF  
= 60Ω  
RS = 10kΩ, R  
= 60Ω  
DIFF  
0
0
100  
100  
200  
300  
400  
500  
600  
700  
800  
900 1000  
200  
300  
400  
500  
600  
700  
800 900 100  
DATA RATE (kbps)  
DATA RATE (kbps)  
FIGURE 20. SUPPLY CURRENT vs FAST DATA RATE vs  
TEMPERATURE  
FIGURE 21. SUPPLY CURRENT vs MEDIUM DATA RATE vs  
TEMPERATURE  
200  
25  
V
= RS = GND, D = 3V, OTHER BUS PIN = GND  
CC  
150  
100  
50  
20  
15  
10  
5
+25 °C  
+25 °C  
+125 °C  
+125 °C  
0
-55 °C  
-50  
-100  
RS = 50kΩ, R  
= 60Ω  
DIFF  
-55 °C  
0
100  
200  
300  
400  
500  
600  
700  
800 900 1000  
-8  
-4  
0
4
8
12  
DATA RATE (kbps)  
BUS VOLTAGE (V)  
FIGURE 23. BUS PIN LEAKAGE vs VCM AT V = 0V  
CC  
FIGURE 22. SUPPLY CURRENT vs SLOW DATA RATE vs  
TEMPERATURE  
15  
10  
5
600  
V
= 3V OR 3.6V, RS = GND, D = V , OTHER BUS PIN = GND  
CC  
CC  
V
= 3V OR 3.6V, RS = GND, D = V , OTHER BUS PIN = GND  
CC  
CC  
400  
200  
0
-55 °C  
+125 °C  
0
+125 °C  
-55 °C  
-200  
-400  
-600  
-5  
+25 °C  
-10  
-15  
+25 °C  
-12  
-9  
-6  
-3  
0
3
6
9
12  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
BUS VOLTAGE (V)  
BUS VOLTAGE (V)  
FIGURE 24. BUS PIN LEAKAGE vs ±12V VCM  
FIGURE 25. BUS PIN LEAKAGE vs ±35V VCM  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
12  
ISL72027SEH  
Typical Performance Curves  
V
= 3.3V, C = 15pF, T = +25°C; unless otherwise specified. (Continued)  
CC  
L
A
120  
100  
80  
60  
40  
20  
0
3
RS = GND, R  
= 60Ω  
100kΩ ON R TO V , RS = D = GND, R  
CC  
= OPEN  
DIFF  
DIFF  
H TO L, V  
CC  
= 3V  
2.5  
2
L TO H, V  
CC  
= 3V  
L TO H, V  
= 3.6V  
= 3V  
CC  
1.5  
1
DOWN  
H TO L, V  
= 3.6V  
CC  
SKEW, V  
UP  
3.0  
CC  
SKEW, V  
CC  
= 3.6V  
0.5  
0
-55  
-35  
-15  
5.0  
25  
45  
65  
85  
105 125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.5  
4.0  
4.5  
5.0  
V
SWEEP (V)  
TEMPERATURE (°C)  
CC  
FIGURE 27. TRANSMITTER PROPAGATION DELAY AND SKEW vs  
TEMPERATURE AT FAST SPEED  
FIGURE 26. V UNDERVOLTAGE LOCKOUT  
CC  
800  
700  
600  
500  
400  
300  
200  
100  
0
1200  
RS = 10kΩ, R  
DIFF  
= 60Ω  
RS = 10kΩ, R  
= 60Ω  
DIFF  
L TO H, V  
= 3V  
CC  
L TO H, V = 3V  
CC  
1000  
800  
600  
400  
200  
0
H TO L, V  
= 3.6V  
CC  
H TO L, V  
= 3.6V  
CC  
L TO H, V  
CC  
= 3.6V  
H TO L, V  
CC  
= 3V  
L TO H, V  
= 3.6V  
CC  
H TO L, V  
= 3V  
CC  
SKEW, V  
= 3V  
SKEW, V  
= 3V  
CC  
CC  
SKEW, V  
CC  
= 3.6V  
SKEW, V  
= 3.6V  
-15  
CC  
-55  
-35  
5.0  
25  
45  
65  
85  
105  
125  
-55  
-35  
-15  
5.0  
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 28. TRANSMITTER PROPAGATION DELAY AND SKEW vs  
TEMPERATURE AT MEDIUM SPEED  
FIGURE 29. TRANSMITTER PROPAGATION DELAY AND SKEW vs  
TEMPERATURE AT SLOW SPEED  
60  
600  
RS = 10kΩ, R  
DIFF  
= 60Ω  
RS = GND, R  
DIFF  
= 60Ω  
= 3V  
55  
50  
45  
40  
35  
30  
25  
20  
RISE, V  
CC  
= 3V  
500  
400  
300  
200  
100  
0
RISE, V  
CC  
= 3.6V  
RISE, V  
CC  
FALL, V  
= 3V  
CC  
RISE, V  
CC  
= 3.6V  
FALL, V  
= 3V  
CC  
FALL, V  
= 3.6V  
CC  
FALL, V  
= 3.6V  
105  
CC  
-55  
-35  
-15  
5.0  
25  
45  
65  
85  
105  
125  
-55  
-35  
-15  
5.0  
25  
45  
65  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 31. TRANSMITTER RISE AND FALL TIMES vs TEMPERATURE  
AT MEDIUM SPEED  
FIGURE 30. TRANSMITTER RISE AND FALL TIMES vs TEMPERATURE  
AT FAST SPEED  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
13  
ISL72027SEH  
Typical Performance Curves  
V
= 3.3V, C = 15pF, T = +25°C; unless otherwise specified. (Continued)  
CC L A  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1200  
+25 °C  
R = 30Ω  
D
R
= 20Ω  
RS = 50kΩ, R  
= 60Ω  
D
DIFF  
1000  
800  
600  
400  
200  
0
RISE, V  
= 3V  
CC  
+85 °C  
RISE, V  
= 3.6V  
CC  
R
= 60Ω  
D
+125 °C  
FALL, V  
CC  
= 3V  
FALL, V  
= 3.6V  
CC  
R
= 120Ω  
D
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.3  
-55  
-35  
-15  
5.0  
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
FIGURE 32. TRANSMITTER RISE AND FALL TIMES vs TEMPERATURE  
AT SLOW SPEED  
FIGURE 33. DRIVER OUTPUT CURRENT vs DIFFERENTIAL OUTPUT  
VOLTAGE  
150  
150  
V
= 3.6V, D = GND  
CC  
V
= 3V, D = GND  
-55 °C  
CC  
100  
50  
100  
50  
+25 °C  
-55 °C  
CANL  
+25 °C  
+125 °C  
CANL  
+125 °C  
0
0
-50  
-100  
-150  
-200  
-50  
-100  
-150  
CANH  
-5.0  
+125 °C  
+125 °C  
+25 °C  
CANH  
-5.0  
+25 °C  
C  
-55 °C  
-55 °C  
-20  
-15  
-10  
0
5.0  
10  
15  
20  
-20  
-15  
-10  
0
5.0  
10  
15  
20  
BUS VOLTAGE (V)  
BUS VOLTAGE (V)  
FIGURE 34. DRIVER OUTPUT CURRENT vs SHORT-CIRCUIT VOLTAGE  
vs TEMPERATURE  
FIGURE 35. DRIVER OUTPUT CURRENT vs SHORT-CIRCUIT VOLTAGE  
vs TEMPERATURE  
50  
80  
-55 °C  
V
= 3V  
CC  
V
= 3.6V  
CC  
-55 °C  
40  
30  
60  
40  
20  
+25 °C  
V
+125 °C  
OL  
+25 °C  
20  
V
+125 °C  
10  
OL  
0
0
+125 °C  
+125 °C  
+25 °C  
+25 °C  
-10  
-20  
-30  
-40  
-55 °C  
-55 °C  
V
V
OH  
OH  
-20  
-40  
-60  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
RECEIVER OUTPUT VOLTAGE (V)  
RECEIVER OUTPUT VOLTAGE (V)  
FIGURE 36. RECEIVER OUTPUT CURRENT vs RECEIVER OUTPUT  
VOLTAGE AT VCC = 3V  
FIGURE 37. RECEIVER OUTPUT CURRENT vs RECEIVER OUTPUT  
VOLTAGE AT VCC = 3.6V  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
14  
ISL72027SEH  
Typical Performance Curves  
V
= 3.3V, C = 15pF, T = +25°C; unless otherwise specified. (Continued)  
CC L A  
80  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
L TO H, V  
= 3V  
CC  
70  
60  
50  
40  
30  
20  
10  
0
FALL, V  
= 3V  
CC  
H TO L, V  
= 3V  
CC  
FALL, V  
CC  
= 3.6V  
H TO L, V  
CC  
= 3.6V  
RISE, V  
CC  
= 3.6V  
L TO H, V  
CC  
= 3.6V  
RISE, V  
CC  
= 3V  
SKEW, V  
= 3.6V  
CC  
SKEW, V  
CC  
= 3V  
-55  
-35  
-15  
5.0  
25  
45  
65  
85  
105  
125  
-55  
-35  
-15  
5.0  
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 38. RECEIVER PROPAGATION DELAY AND SKEW vs  
TEMPERATURE  
FIGURE 39. RECEIVER RISE AND FALL TIMES vs TEMPERATURE  
70  
60  
4
D
0
50  
4
-55 °C  
R
40  
30  
20  
0
3
RS = GND, R  
= 60Ω  
DIFF  
+25 °C  
2
1
0
+125 °C  
CANH - CANL  
10  
0
0
1
2
3
4
5
6
V
(V)  
TIME (1µs/DIV)  
CC  
FIGURE 40. SUPPLY CURRENT vs SUPPLY VOLTAGE vs  
TEMPERATURE  
FIGURE 41. FAST DRIVER AND RECEIVER WAVEFORMS  
4
0
4
0
D
D
4
0
4
0
R
R
3
3
2
1
0
RS = 10kΩ, R  
DIFF  
= 60Ω  
RS = 50kΩ, R  
DIFF  
= 60Ω  
2
1
0
CANH - CANL  
CANH - CANL  
TIME (1µs/DIV)  
TIME (1µs/DIV)  
FIGURE 42. MEDIUM DRIVER AND RECEIVER WAVEFORMS  
FIGURE 43. SLOW DRIVER AND RECEIVER WAVEFORMS  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
15  
ISL72027SEH  
Assembly Related Information  
Die Characteristics  
SUBSTRATE POTENTIAL  
Die Dimensions  
Floating  
2413µm x 3322µm (95 mils x 130.79 mils)  
Thickness: 305µm ±25µm (12 mils ±1 mil)  
Additional Information  
Interface Materials  
WORST CASE CURRENT DENSITY  
5
2
GLASSIVATION  
1.6 x 10 A/cm  
Type: 12kÅ Silicon Nitride on 3kÅ Oxide  
TRANSISTOR COUNT  
TOP METALLIZATION  
4055  
Type: 300Å TiN on 2.8µm AlCu  
In Bondpads, TiN has been removed.  
Weight of Packaged Device  
0.31 grams  
BACKSIDE FINISH  
Lid Characteristics  
Silicon  
Finish: Gold  
Potential: Grounded, tied to package pin 2  
PROCESS  
P6SOI  
Metalization Mask Layout  
8
7
6
5
4
3
2
1
RS  
26  
D
9
10  
11  
12  
NC  
GND  
25  
24  
CANH  
CANL  
GND_ESD  
VCC  
13  
14  
VCC_VREF  
23  
VREF  
NC  
22  
15  
R
16  
17  
18 19  
20  
21  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
16  
ISL72027SEH  
TABLE 2. ISL72027SEH DIE LAYOUT X-Y COORDINATES  
X
Y
PAD NUMBER  
PAD NAME  
NC  
(µm)  
(µm)  
X
Y
1
90.0  
90.0  
90.0  
90.0  
901.4  
767.4  
1365.6  
1365.6  
1365.6  
1365.6  
1365.6  
1365.6  
1365.6  
1365.6  
901.85  
563.25  
342.25  
119.42  
-115.05  
-371.08  
-1350.0  
-1394.95  
-1394.95  
-1394.95  
-1394.95  
-1394.95  
-1394.95  
-1307.3  
-1072.3  
2.15  
2
NC  
3
NC  
90.0  
90.0  
-183.23  
-333.25  
-483.25  
-633.25  
-783.25  
-933.25  
-931.1  
-931.1  
-931.1  
-931.1  
-931.1  
-931.1  
-931.1  
-711.1  
-561.1  
-411.1  
-261.1  
-111.1  
38.9  
4
NC  
90.0  
90.0  
5
NC  
90.0  
90.0  
6
NC  
90.0  
90.0  
7
NC  
90.0  
90.0  
8
NC  
90.0  
90.0  
9
D
110.0  
110.0  
110.0  
110.0  
110.0  
110.0  
110.0  
90.0  
110.0  
110.0  
180.0  
110.05  
180.0  
180.05  
180.0  
90.0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
NC  
GND  
GND_ESD  
VCC  
VCC_VREF  
R
NC  
NC  
90.0  
90.0  
NC  
90.0  
90.0  
NC  
90.0  
90.0  
NC  
90.0  
90.0  
NC  
90.0  
90.0  
NC  
110.0  
110.0  
110.0  
110.0  
110.0  
110.0  
180.0  
180.0  
180.05  
180.0  
756.9  
775.3  
772.1  
VREF  
CANL  
CANH  
RS  
772.1  
848.1  
343.33  
1140.6  
NOTE: Origin of coordinates is the center of the die. NC - No Connect  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
17  
ISL72027SEH  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please go to the web to make sure that you have the latest revision.  
DATE  
REVISION  
CHANGE  
August 16, 2016  
FN8763.3 “Absolute Maximum Ratings” on page 5 changed voltage value in VCC to GND With/Without Ion Beam  
From: -0.3V to 4.5V To: -0.3V to 5.5V.  
April 29, 2016  
FN8763.2 - Updated title.  
- Updated the test condition for Output Rise Time on page 7.  
- Changed maximum data rate from 1Mbps to 5Mbps in the following locations:  
- Second paragraph and “Features” section on page 1.  
- In “Overview” on page 11.  
November 9, 2015  
October 26, 2015  
FN8763.1 Absolute Maximum Ratings table on page 5: changed the value for “CANH, CANL, VREF Under Ion Beam” from  
±16V to ±18V.  
FN8763.0 Initial Release  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
18  
ISL72027SEH  
Package Outline Drawing  
K8.A  
8 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE  
Rev 4, 12/14  
PIN NO. 1  
ID OPTIONAL  
0.015 (0.38)  
0.008 (0.20)  
1
2
0.050 (1.27 BSC)  
0.005 (0.13)  
0.265 (6.73)  
0.245 (6.22)  
MIN  
4
PIN NO. 1  
ID AREA  
0.022 (0.56)  
0.015 (0.38)  
TOP VIEW  
0.110 (2.79)  
0.036 (0.92)  
0.087 (2.21)  
0.009 (0.23)  
0.004 (0.10)  
6
0.026 (0.66)  
0.265 (6.75)  
0.245 (6.22)  
-D-  
-H-  
-C-  
0.180 (4.57)  
0.170 (4.32)  
0.370 (9.40)  
0.325 (8.26)  
SEATING AND  
BASE PLANE  
0.03 (0.76) MIN  
SIDE VIEW  
NOTES:  
0.007 (0.18)  
0.004 (0.10)  
LEAD FINISH  
Index area: A notch or a pin one identification mark shall be located  
adjacent to pin one and shall be located within the shaded area shown.  
The manufacturer’s identification shall not be used as a pin one  
identification mark. Alternately, a tab may be used to identify pin one.  
1.  
0.009 (0.23)  
0.004 (0.10)  
BASE  
METAL  
2. If a pin one identification mark is used in addition to or instead of a tab,  
the limits of the tab dimension do not apply.  
0.019 (0.48)  
0.015 (0.38)  
3. The maximum limits of lead dimensions (section A-A) shall be  
measured at the centroid of the finished lead surfaces, when solder  
dip or tin plate lead finish is applied.  
0.0015 (0.04)  
MAX  
0.022 (0.56)  
0.015 (0.38)  
4. Measure dimension at all four corners.  
3
5. For bottom-brazed lead packages, no organic or polymeric materials  
shall be molded to the bottom of the package to cover the leads.  
SECTION A-A  
6. Dimension shall be measured at the point of exit (beyond the  
meniscus) of the lead from the body. Dimension minimum shall  
be reduced by 0.0015 inch (0.038mm) maximum when solder dip  
lead finish is applied.  
7. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
8. Controlling dimension: INCH.  
FN8763.3  
August 16, 2016  
Submit Document Feedback  
19  

相关型号:

ISL71831SEHVX

Radiation Hardened 5V 32-Channel Analog Multiplexer
INTERSIL

ISL71831SEHX

Radiation Hardened 5V 32-Channel Analog Multiplexer
INTERSIL

ISL71831SEHX/SAMPLE

Single-Ended Multiplexer
RENESAS

ISL71840SEH

Radiation Hardened 30V 16-Channel Analog
INTERSIL

ISL71840SEHEV1Z

Radiation Hardened 30V 16-Channel Analog
INTERSIL

ISL71840SEHF

Radiation Hardened 30V 16-Channel Analog
INTERSIL

ISL71840SEHVF

Radiation Hardened 30V 16-Channel Analog
INTERSIL

ISL71840SEHVX

Radiation Hardened 30V 16-Channel Analog
INTERSIL

ISL71840SEHX

Radiation Hardened 30V 16-Channel Analog
INTERSIL

ISL71841SEH

Radiation Hardened 30V 32-Channel Analog
INTERSIL

ISL71841SEHEV1Z

Radiation Hardened 30V 32-Channel Analog
INTERSIL

ISL71841SEHF

Radiation Hardened 30V 32-Channel Analog
INTERSIL