RT9246 [RICHTEK]

Multi-Phase PWM Controller for CPU Core Power Supply; 多相PWM控制器,用于CPU核心供电
RT9246
型号: RT9246
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

Multi-Phase PWM Controller for CPU Core Power Supply
多相PWM控制器,用于CPU核心供电

多相元件 控制器
文件: 总17页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RT9246  
Multi-Phase PWM Controller for CPU Core Power Supply  
General Description  
Features  
z Multi-Phase Power Conversion with Automatic  
The RT9246 is a multi-phase buck DC/DC controller  
integrated with all control functions for GHz CPU VRM.  
The RT9246 controls 2 or 3 buck switching stages  
operating in interleaved phase set automatically. The multi-  
phase architecture provides high output current while  
maintaining low power dissipation on power devices and  
low stress on input and output capacitors. The high  
equivalent operating frequency also reduces the  
component dimension and the output voltage ripple in load  
transient.  
Phase Selection  
z K8 DAC Output with Active Droop Compensation  
for Fast Load Transient  
z Smooth VCORE Transition at VID Jump  
z Power Stage Thermal Balance by RDS(ON) Current  
Sense  
z Hiccup Mode Over-Current Protection  
z Programmable Switching Frequency (50kHz to  
400kHz per Phase), Under-Voltage Lockout and  
Soft-Start  
RT9246 controls both voltage and current loops to achieve  
good regulation, response & power stage thermal balance.  
Precise current loop using RDS(ON) as sense component  
builds precise load line for strict VRM DC & transient  
specification and also ensures thermal balance of different  
power stages. The settings of current sense, droop tuning,  
VCORE initial offset and over current protection are  
independent to compensation circuit of voltage loop. The  
feature greatly facilitates the flexibility of CPU power supply  
design and tuning.  
z High Ripple Frequency Times Channel Number  
z RoHS Compliant and 100% Lead (Pb)-Free  
Applications  
z AMD® AthlonTM 64 and OpteronTM Processors Voltage  
Regulator  
z Low Output Voltage, High CurrentDC-DC Converters  
z Voltage Regulator Modules  
Pin Configurations  
TheDAC output of RT9246 supports K8 CPU by 5-bit VID  
input, precise initial value & smooth VCORE transient at  
VID jump. The IC monitors the VCORE voltage for PGOOD  
and over-voltage protection. Soft-start, over-current  
protection and programmable under-voltage lockout are  
also provided to assure the safety of microprocessor and  
power system.  
(TOP VIEW)  
VID4  
VID3  
VID2  
VID1  
VID0  
SS2  
VCC  
28  
27  
26  
25  
24  
23  
22  
21  
PWM1  
PWM2  
PWM3  
2
3
4
5
6
7
8
ISN1  
ISP1  
ISP2  
ISP3  
SGND  
FB  
COMP  
PGOOD  
DVD  
SS  
RT  
VOSS  
Ordering Information  
9
20  
19  
18  
17  
16  
15  
ISN23  
GND  
RT9246  
10  
11  
12  
13  
14  
ADJ  
Package Type  
C : TSSOP-28  
VDIF  
VSEN  
IMAX  
Operating Temperature Range  
P : Pb Free with Commercial Standard  
G : Green (Halogen Free with Commer-  
cial Standard)  
TSSOP-28  
Note :  
RichTek Pb-free and Green products are :  
`RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
`Suitable for use in SnPb or Pb-free soldering processes.  
`100% matte tin (Sn) plating.  
DS9246-06 March 2007  
www.richtek.com  
1
RT9246  
Typical Application Circuit  
www.richtek.com  
2
DS9246-06 March 2007  
RT9246  
Functional Pin Description  
VID4 (Pin 1), VID3 (Pin 2), VID2 (Pin 3), VID1 (Pin 4),  
VID0 (Pin 5)  
RT (Pin 13)  
Switching frequency setting. Connect this pin toGNDwith  
a resistor to set the frequency.  
DAC voltage identification inputs for K8. These pins are  
internally pulled to 2.4V if left open.  
VOSS (Pin 14)  
SS2 (Pin 6)  
VCORE initial value offset. Connect this pin to GND with a  
resistor to set the offset value.  
DAC O/P ramping speed control for K8. Connect this pin  
to GND with a capacitor to set the rising/falling time at  
VID jump.  
IMAX (Pin 15)  
Over-Current protection set.  
SGND (Pin 7)  
VSEN (Pin 16)  
VCORE differential sense negative input.  
VCORE differential sense positive input.  
FB (Pin 8)  
VDIF (Pin 17)  
Inverting input of the internal error amplifier.  
VCORE differential sense output.  
COMP (Pin 9)  
ADJ (Pin 18)  
Output of the error amplifier and input of the PWM  
comparator.  
Current sense output for active droop adjust. Connect a  
resistor from this pin to GND to set the load droop.  
PGOOD (Pin 10)  
GND (Pin 19)  
Power good open-drain output.  
IC ground.  
DVD (Pin 11)  
ISN23 (Pin 20)  
Programmable power UVLO detection or converter enable  
input.  
RDS(ON) current sense inputs from converter 2nd & 3rd phase  
channel sense components'GNDnode.  
SS (Pin 12)  
ISP1 (Pin 23), ISP2 (Pin 22), ISP3 (Pin 21)  
Connect this SS pin to GND with a capacitor to set the  
soft-start time interval.  
RDS(ON) current sense inputs for individual converter  
channels. Tie this pin to the component's sense node.  
Frequency vs. RRT  
450  
ISN1 (Pin 24)  
400  
350  
300  
250  
200  
150  
100  
50  
RDS(ON) current sense inputs from converter 1st channel  
sense component'sGNDnode.  
PWM1 (Pin 27), PWM2 (Pin 26), PWM3 (Pin 25)  
PWM outputs for each driven channel. Connect these pins  
to the PWM input of the MOSFET driver. For systems  
which use 2 channels, connect PWM3 high.  
VCC (Pin 28)  
0
IC power supply. Connect this pin to a 5V supply.  
0
10  
20  
30  
40  
50  
60  
70  
RRT (k Ω)  
DS9246-06 March 2007  
www.richtek.com  
3
RT9246  
Function Block Diagram  
www.richtek.com  
4
DS9246-06 March 2007  
RT9246  
Table 1. Output Voltage Program  
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
VID2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
VID1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Nominal Output Voltage DACOUT  
1.550  
1.525  
1.500  
1.475  
1.450  
1.425  
1.400  
1.375  
1.350  
1.325  
1.200  
1.275  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
Shutdown  
Note: (1) 0 : Connected to GND  
(2) 1 : Open  
DS9246-06 March 2007  
www.richtek.com  
5
RT9246  
Absolute Maximum Ratings (Note 1)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------- 7V  
z Input, Output or I/O Voltage ---------------------------------------------------------------------------------- GND-0.3V to VCC+0.3V  
z Power Dissipation, PD @ TA = 25°C  
TSSOP-28 ------------------------------------------------------------------------------------------------------ 1W  
z Package Thermal Resistance (Note 4)  
TSSOP-28, θJA -------------------------------------------------------------------------------------------------- 100°C/W  
z Junction Temperature ------------------------------------------------------------------------------------------ 150°C  
z Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------- 260°C  
z Storage Temperature Range --------------------------------------------------------------------------------- 65°C to 150°C  
z ESD Susceptibility (Note 2)  
HBM (Human Body Mode) ----------------------------------------------------------------------------------- 2kV  
MM (Machine Mode) ------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 3)  
z Supply Voltage, VCC ------------------------------------------------------------------------------------------- 5V 10%  
z Ambient Temperature Range--------------------------------------------------------------------------------- 0°C to 70°C  
z Junction Temperature Range--------------------------------------------------------------------------------- 0°C to 125°C  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
VCC Supply Current  
Symbol  
Test Conditions  
PWM 1,2,3 Open  
VCC Rising  
Min  
Typ  
Max Units  
Nominal Supply Current  
Power-On Reset  
POR Threshold  
Hysteresis  
ICC  
--  
12  
--  
mA  
VCCRTH  
VCCHYS  
VDVDTP  
VDVDHYS  
4.0  
0.2  
0.79  
--  
4.2  
0.5  
4.5  
--  
V
V
Input High  
Input Low  
Enable  
0.85  
250  
0.91  
--  
V
VDVD Threshold  
mV  
Oscillator  
Free Running Frequency  
Frequency Adjustable Range  
Ramp Amplitude  
fOSC  
170  
50  
--  
200  
--  
230  
400  
--  
kHz  
kHz  
V
RRT = 12kΩ  
RRT = 12kΩ  
fOSC_ADJ  
ΔVOSC  
VRV  
1.9  
1.0  
66  
Ramp Valley  
--  
--  
V
Maximum On-Time of Each Channel  
RT Pin Voltage  
62  
0.55  
75  
%
VRT  
0.60  
0.65  
V
RRT = 12kΩ  
VDAC 1V  
Reference and DAC  
--  
--  
--  
--  
+1  
+10  
0.8  
--  
%
mV  
V
1  
10  
--  
DACOUT Voltage Accuracy  
ΔVDAC  
VDAC < 1V  
DAC (VID0-VID4) Input Low  
DAC (VID0-VID4) Input High  
ΔVILDAC  
ΔVIHDAC  
2
V
To be continued  
www.richtek.com  
6
DS9246-06 March 2007  
RT9246  
Parameter  
DAC (VID0-VID4) Pull-up Voltage  
DAC (VID0-VID4) Bias Current  
VOSS Pin Voltage  
Symbol  
Test Conditions  
Min  
2.2  
Typ  
2.4  
60  
Max Units  
2.6  
80  
V
μA  
V
IBIAS_DAC  
40  
VVOSS  
0.95  
1.0  
1.05  
R
VOSS = 100kΩ  
Error Amplifier  
DC Gain  
--  
--  
--  
85  
10  
3
--  
--  
--  
dB  
Gain-Bandwidth Product  
Slew Rate  
GBW  
SR  
MHz  
V/μs  
COMP = 10pF  
Differential Sense Amplifier  
Input Impedance  
ZIMP  
GBW  
SR  
--  
--  
--  
16  
10  
3
--  
--  
--  
kΩ  
Gain-Bandwidth Product  
Slew Rate  
MHz  
V/μs  
Current Sense GM Amplifier  
ISP 1,2,3 Full Scale Source Current  
ISP 1,2,3 Current for OCP  
Protection  
IISPFSS  
IISPOCP  
60  
90  
--  
--  
--  
--  
μA  
μA  
IMAX Voltage  
VIMAX  
ISS  
RIMAX = 10k  
VSS = 1V  
0.55  
--  
0.60  
13  
0.65  
--  
V
μA  
%
SS Current  
Over-Voltage Trip (VSEN/DACOUT)  
Power Good  
--  
140  
--  
ΔOVT  
Lower Threshold (VSEN/DACOUT)  
Output Low Voltage  
VSEN Rising  
IPGOOD = 4mA  
--  
--  
92  
--  
--  
%
V
VPGOOD  
VPGOODL  
0.2  
Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for  
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended  
periods may remain possibility to affect device reliability.  
Note 2. Devices are ESD sensitive. Handling precaution recommended.  
Note 3. The device is not guaranteed to function outside its operating conditions.  
Note 4. θJA is measured in the natural convection at TA = 25°C on a low effective thermal conductivity test board of  
JEDEC 51-3 thermal measurement standard.  
DS9246-06 March 2007  
www.richtek.com  
7
RT9246  
Typical Operating Characteristics  
Current Balance  
Current Balance  
ILOAD = 30A  
ILOAD = 60A  
(5V/Div)  
PWM2  
PWM1  
PWM3  
(5V/Div)  
PWM2  
PWM1  
PWM3  
IPWM2  
IPWM2  
IPWM1  
IPWM3  
IPWM1  
IPWM3  
(5A/Div)  
(2.5A/Div)  
Time (1us/Div)  
Time (1us/Div)  
Current Balance @ Soft Start  
Current Balance @ Soft Start  
ILOAD = 0A  
ILOAD = 30A  
(5V/Div)  
SS  
(5V/Div)  
SS  
(0.5A/Div)  
(5A/Div)  
IPWM1  
IPWM3  
IPWM1  
IPWM2  
IPWM2  
IPWM3  
Time (10ms/Div)  
Time (10ms/Div)  
DVD Disable  
DVD Enable  
(200mV/Div)  
DVD  
VCORE  
SS  
(200mV/Div)  
VCORE  
(200mV/Div)  
DVD  
(1V/Div)  
(200mV/Div)  
PGOOD  
(500mV/Div)  
PGOOD  
SS  
(500mV/Div)  
(1V/Div)  
Time (4ms/Div)  
Time (2ms/Div)  
www.richtek.com  
8
DS9246-06 March 2007  
RT9246  
OCP Steady State  
OCP Power Up  
ILOAD = 30A to short  
ILOAD = short  
(5V/Div)  
(5V/Div)  
(5V/Div)  
SS  
SS  
(5V/Div)  
PWM  
PWM  
(10A/Div)  
(5A/Div)  
IPWM3  
IPWM3  
Time (40ms/Div)  
Time (20ms/Div)  
Soft Start  
Transient Response  
VCORE (200mV/Div)  
PWM1  
PWM2  
PWM3  
SS (1V/Div)  
VCORE  
PGOOD (1V/Div)  
Time (10ms/Div)  
Time (200us/Div)  
VID On Fly Falling  
VID On Fly Rising  
CSS2 = 0F  
CSS2 = 0F  
(5V/Div)  
(5V/Div)  
VID  
VCORE  
SS  
VID  
VCORE  
SS  
(500mV/Div)  
(500mV/Div)  
(500mV/Div)  
(500mV/Div)  
Time (200ns/Div)  
Time (200ns/Div)  
DS9246-06 March 2007  
www.richtek.com  
9
RT9246  
VID On Fly Falling  
VID On Fly Rising  
CSS2 = 1nF  
CSS2 = 1nF  
(5V/Div)  
(5V/Div)  
VID  
VCORE  
SS  
VID  
(500mV/Div)  
(500mV/Div)  
(500mV/Div)  
(500mV/Div)  
VCORE  
SS  
Time (200ns/Div)  
Time (200ns/Div)  
www.richtek.com  
10  
DS9246-06 March 2007  
RT9246  
Application Information  
Fault Detection  
RT9246 is a multi-phase DC/DC controller that precisely  
regulates CPU core voltage and balances the current of  
different power channels. The converter consisting of  
RT9246 and its companion MOSFET driver provides high  
quality CPU power and all protection functions to meet  
the requirement of modern VRM.  
The chip detects VCORE for over voltage and power good  
detection. The hiccup modeoperation of over-current  
protection is adopted to reduce the short circuit current.  
The inrush current at the start up is suppressed by the  
soft start circuit through clamping the pulse width and  
output voltage.  
Voltage Control  
Phase Setting and Converter Start Up  
RT9246 senses the CPU VCORE by an precise instrumental  
amplifier to minimize the voltage drop on PCB trace at  
heavy load. VSEN& SGNDare the differential inputs. VDIF  
is the output node of the differential voltage & the input for  
PGOOD & OVP sense. The internal high accuracy VID  
DAC provides the reference voltage for K8 compliance.  
Control loop consists of error amplifier, multi-phase pulse  
width modulator, driver and power components. Like  
conventional voltage mode PWM controller, the output  
voltage is locked at the VREF of error amplifier and the  
error signal is used as the control signal VC of pulse width  
modulator. The PWM signals of different channels are  
generated by comparison of EA output and split-phase  
sawtooth wave. Power stage transforms VIN to output by  
PWM signal on-time ratio.  
RT9246 interfaces with companion MOSFET drivers (like  
RT9600, RT9602 or RT9603 series) for correct converter  
initialization. The tri-state PWM output (high, low and high  
impedance) pins sense the interface voltage at IC POR  
period (both VCC and DVD trip). The channel is enabled if  
the pin voltage is 1.2V less than VCC. Please tie the PWM  
output to VCC and the current sense pins to GND or left  
floating if the channel is unused. For 2-Channel application,  
connect PWM3 high.  
Current Sensing Setting  
RT9246 senses the current of low side MOSFET in each  
synchronous rectifier when it is conducting for channel  
current balance and droop tuning. The differential sensing  
GM amplifier converts the voltage on the sense component  
(can be a sense resistor or the RDS(ON) of the low side  
MOSFET) to current signal into internal circuit (see  
Figure 1). Be careful to chooseGNDsense input, ISN, of  
theGM amplifier for effective channel current balance.  
Current Balance  
RT9246 senses the current of low side MOSFET in each  
synchronous rectifier when it is conducting for channel  
current balance and droop tuning. The differential sensing  
GM amplifier converts the voltage on the sense component  
(can be a sense resistor or the RDS(ON) of the low side  
MOSFET) to current signal into internal balance circuit.  
The current balance circuit sums and averages the current  
signals then produces the balancing signals injected to  
pulse width modulator. If the current of some power  
channel is greater than average, the balancing signal  
reduces the output pulse width to keep the balance.  
IX1  
Current  
I
Balance  
X
X
X
IBP  
R
R
<
SP1  
ISP1  
ISN1  
Sample  
&
Hold  
-
2I  
I
Droop Tune  
R
<
<
GM  
IL  
S
+
IBN  
SN1  
Over-Current  
Detection  
IX2  
Current  
Balance  
I
2I  
I
X
X
X
IBP  
R
<
SP2  
ISP2  
Sample  
&
Hold  
-
Droop Tune  
<
<
GM  
+
R
Load Droop  
S
I
L
IBN  
Over-Current  
Detection  
R
SN23  
ISN23  
The sensed power channel current signals regulate the  
reference of DAC to form a output voltage droop  
proportional to the load current. The droop or so-called  
active voltage positioningcan reduce the output voltage  
ripple at load transient and the LC filter size.  
IBN  
Channel 2 & 3  
GND return  
Current  
Balance  
I
2I  
I
+
X
X
X
<
GM  
ISP3  
Sample  
&
Hold  
-
Droop Tune  
<
<
R
IBP  
SP3  
R
I
S
L
Over-Current  
Detection  
IX3  
Figure 1. Current Sense Circuit  
DS9246-06 March 2007  
www.richtek.com  
11  
RT9246  
IL ×RS  
RSP  
IX =  
The sensing circuit gets  
by local feedback.  
Protection and SS Function  
RSP = RSN for channel 1 & RSP = 2RSN for channel 2 & 3 (at  
3 phase operation) to cancel the voltage drop caused by  
GM amplifier input bias current. IX is sampled and held  
just before low side MOSFET turns off (See Figure 2).  
Therefore,  
For OVP, the RT9246 detects the VCORE by VDIF pin voltage  
of the differential amplifier output. Eliminate the delay due  
to compensation network (compared to sensing FB  
voltage) for fast and accurate detection. The trip point of  
OVP is 140% of normal output level. The PWM outputs  
are pulled low to turn on the low side MOSFET and turn  
off the high side MOSFET of the synchronous rectifier at  
OVP. The OVP latch can only be reset by VCC or DVD  
restart power on reset sequence. The PGOOD detection  
trip point of VCORE is 92% lower than the normal level.  
The PGOOD open drain output pulls low when VCORE is  
lower than the trip point. For VID jumping issue, only power  
fail conditions (VCC & DVD are lower than trip point or  
OVP) reset the output low.  
I
L (S/H) × R  
V
O
T
OFF  
I
X (S/H)  
=
S , IL (S/H) = IL (AVG)  
×
,
R
SP  
L
2
V
IN V  
O
T
OFF  
=
× 5uS for fosc = 200kHz  
V
IN  
V
IN V  
O
V
O
× 5uS  
R
S
V
IN  
I
X (S/H) = IL(AVG)  
×
2L  
R
SP  
Falling Slope = Vo/L  
Inductor Current  
IL  
Soft-start circuit generates a ramp voltage by charging  
external capacitor with 13μA current after IC POR acts.  
The PWM pulse width and VCORE are clamped by the  
rising ramp to reduce the inrush current and protect the  
power devices.  
IL(AVG)  
IL(S/H)  
PWM Signal & High Side MOSFET Gate Signal  
Over-current protection trip point is set by the resistor  
RIMAX connected to IMAX pin. OCP is triggered if one  
channel  
0.6V  
Low Side MOSFET Gate Signal  
S/H current signal I >  
×1.4. Controller forces  
X
R
IMAX  
Figure 2. Inductor Current and PWM Signal  
PWM output latched at high impedance to turn off both  
high and low side MOSFETs in the power stage and initial  
the hiccup mode protection. The SS pin voltage is pulled  
low with a 13μAcurrent after it is less than 90% VCC. The  
converter restarts after SS pin voltage < 0.2V. Three times  
of OCP disable the converter and only release the latch  
by POR acts (see Figure 4).  
DAC Offset Voltage & Droop Tuning  
The DAC offset voltage is set by compensation network  
1V  
Rf1  
×
& VOSS pin external resistors by  
.
RVOSS  
4
The S/H current signals from power channels are injected  
to ADJ pin to create droop voltage.VADJ = RADJ× 2IX  
CCOoUuNntT==22 CCOoUuNntT==33  
Count =1
The DAC output voltage decreases by VADJ to form the  
VCORE load droop (see Figure 3).  
S.S  
V
DAC  
+
VCORE  
2I  
V
X1  
X2  
X3  
ADJ  
-
0V  
COMP  
+
-
2I  
2I  
Overload  
Applied  
EA  
Current  
Source  
>
IVOSS  
1
4
ILOAD  
0A  
1V  
IVOSS =  
RVOSS  
+
-
FB  
R
ADJ  
V
OSS  
R
R
ADJ  
VOSS  
F1  
T3,T4  
T0,T1  
T2  
TIME  
V
CORE  
Figure 4.  
Figure 3. DAC Offset Voltage & Droop Tune Circuit  
www.richtek.com  
12  
DS9246-06 March 2007  
RT9246  
3-Phase Converter and Components Function Grouping  
12V  
VCC  
BST  
DRVH  
SW  
RT9603  
IN  
DRVL  
PGND  
SGND  
VSEN  
VDIF  
PWM1  
VID  
12V  
ISP1  
ISN1  
PGOOD  
VCC  
BST  
DRVH  
RT9246  
Compensation  
& Offset  
V
SW  
CORE  
COMP  
FB  
RT9603  
PWM2  
IN  
DRVL  
PGND  
ADJ  
Droop Setting  
ISP2  
ISN23  
12V  
DVD  
12V  
Driver Power  
UVLO  
VOSS  
SS, SS2  
ISP3  
VCC  
BST  
DAC Offset  
Voltage Setting  
SS2  
DRVH  
PWM3  
SW  
IMAX  
GND  
RT9603  
IN  
DRVL  
PGND  
OCP Setting  
Current Sense  
Components  
Design Procedure Suggestion  
VRM Load Line Setting  
Voltage Loop Setting  
a. Droop amplitude (ADJ pin resistor).  
a. Output filter pole and zero (Inductor, output capacitor  
value & ESR).  
b. No load offset (additional resistor in compensation  
network).  
b. Error amplifier compensation & sawtooth wave amp-  
litude (compensation network).  
c. DAC offset voltage setting (VOSS pin & compen sation  
network resistor).  
c. Kelvin sense for VCORE  
.
Power Sequence & SS  
Current Loop Setting  
DVD pin external resistor and SS pin capacitor.  
a. GM amplifier S/H current (current sense component  
RDS(ON), ISPx & ISNx pin external resistor value, keep  
ISPx current < 60μA at full load condition for better  
load line linearity).  
PCB Layout  
a. Kelvin sense for current sense GM amplifier input.  
b. Refer to layout guide for other item.  
b. Over-current protection trip point (IMAX pin resistor,  
keep ISPx current < 90μA at OCP condition for  
precision issue).  
DS9246-06 March 2007  
www.richtek.com  
13  
RT9246  
Design Example  
Given:  
Asymptotic Bode Plot of PWM Loop Gain  
100  
80  
60  
40  
20  
0
Apply for three phase converter  
VIN = 12V  
Uncompensated EA Gain  
VCORE = 1.5V  
I
LOAD (max) = 60A  
VDROOP = 120mV at full load  
Compensated EA Gain  
PWM Loop Gain  
-20  
-40  
-60  
OCP trip point set at 30A for each channel (S/H)  
RDS(ON) = 6mΩ of low side MOSFET at 27°C  
L = 2μH  
Modulator Gain  
10  
100  
1K  
10K  
100K 1M 10M  
COUT = 9,000μF with 2mΩ ESR.  
Frequency (Hz)  
Figure 6.  
1. Compensation Setting  
2. Droop & DAC Offset Setting  
a. Modulator Gain, Pole and Zero :  
For each channel the load current is 60A / 3 = 20A  
From the following formula :  
and the ripple current, ΔIL, is given as :  
V
IN  
12V  
Modulator Gain =  
=
= 4.2 (12.46dB)  
3
2
V
RAMP  
1.5V  
2uH  
1.5V  
12V  
1.9V×  
5us x  
x 1−  
= 3.28A  
where VRAMP : ramp amplitude of sawtooth wave  
1
ΔIL  
The load current, I , at S/H is  
.
20A −  
= 18.36A  
L
LC Filter Pole =  
= 1.2kHz and  
2
2π x LC  
Using the following formula to select the appropriate  
IX (MAX) for the S/H of GM amplifier :  
1
ESR Zero =  
= 8.8kHz  
R
DS(ON) × 18.36A  
xESR x COUT  
I
X (MAX)  
=
R
SP  
b. EA Compensation Network :  
The suggested IX is in the order of 40 to 50μA, select  
RSP = RSN = 2.4kΩ, then IX (MAX) will be 45.9μA.  
Select R1 = 2.4kΩ, R2 = 24kΩ, C1 = 6.6nF,  
C2 = 33pF and use the type 2 compensation  
scheme shown in Figure 5.  
VDROOP = 120mV = 45.9μA × 2 × 3 (phase no.) × RADJ  
therefore RADJ will be 435Ω.  
,
C1  
C3  
R2  
C2  
R3  
The R  
of MOSFET varies with temperature rise.  
DS(ON)  
When the low side MOSFET working at 70°C and  
5000ppm/°C temperature coefficient of RDS(ON), the  
RDS(ON) at 70°C is given as :  
6mΩ × {1+ (70°C 27°C) × 5000ppm/°C} = 7.3mΩ.  
RADJ at 70°C is given as :  
R1  
VDIF  
>
COMP  
FB  
R3,C3 are used in type  
-
+
3 compensation scheme  
(left NC in type 2)  
DACOUT  
RADJ_27°C × (RDS(ON)_27°C / RDS(ON)_70°C) = 358Ω  
3. Over-Current Protection Setting  
Figure 5.  
OCP trip point set at 30A for each channel,  
From the following formulas :  
1
R
DS(ON) ×30A  
0.6V  
1
I
X
=
=1.4 ×  
F
Z
=
, F  
P
=
, RIMAX = 11.2kΩ  
RSP  
RIMAX  
C
1
1
×C  
+ C  
2
2
2π x R  
2
x C  
1
2π x R x  
2
R
R
2
C
Take the temperature rise into account, the RIMAX at  
70°C will be :  
RIMAX_27°C × (RDS(ON)_27°C / RDS(ON)_70°C) = 9.2kΩ  
Middle Band Gain =  
1
By calculation, the FZ = 1kHz, F = 200kHz and  
P
Middle Band Gain is 10 (i.e 20dB).  
The asymptotic bode plot of EA compensation and  
PWM loop gain is shown as Figure 6.  
4. Soft-Start Capacitor Selection  
CSS = 0.1μF is the suitable value for most application.  
www.richtek.com  
14  
DS9246-06 March 2007  
RT9246  
Layout Guide  
Place the high-power switching components first, and separate them from sensitive nodes.  
1. Most critical path: the current sense circuit is the most sensitive part of the converter. The current sense  
resistors tied to ISP1,2,3 and ISN1,ISN23 should be located not more than 0.5 inch from the IC and away  
from the noise switching nodes. The PCB trace of sense nodes should be parallel and as short as possible.  
Kelvin connection of the sense component (additional sense resistor or MOSFET RDS(ON)) ensures the accurate  
stable current sensing.  
Keep well Kelvin sense to ensure the stable operation!  
2. Switching ripple current path:  
a. Input capacitor to high side MOSFET.  
b. Low side MOSFET to output capacitor.  
c. The return path of input and output capacitor.  
d. Separate the power and signalGND.  
e. The switching nodes (the connection node of high/low side MOSFET and inductor) is the most noisy points.  
Keep them away from sensitive small-signal node.  
f. Reduce parasitic R, L by minimum length, enough copper thickness and avoiding of via.  
3. MOSFET driver should be closed to MOSFET.  
4. The compensation, bypass and other function setting components should be near the IC and away from the noisy  
power path.  
L1  
SW1  
VOUT  
VIN  
RIN  
COUT  
RL  
CIN  
V
L2  
SW2  
Figure 7. Power Stage Ripple Current Path  
DS9246-06 March 2007  
www.richtek.com  
15  
RT9246  
Next to IC  
+12V  
CBP  
+12V or +5V  
PWM  
+5VIN  
VCC  
CBP  
IMAX  
CBOOT  
VCC  
IN  
BST  
VOSS  
Next to IC  
COMP  
DRVH  
LO1  
COUT  
VCORE  
CC  
RC  
SW  
RT9246  
CIN  
RT9603  
DRVL  
Kelvin  
Sense  
Locate next  
to FB Pin  
RSP  
FB  
PGND  
ISPx  
ISNx  
RFB  
RSN  
Locate near MOSFETs  
VSEN  
ADJ  
GND  
For Thermal Couple  
Figure 8. Layout Consideration  
www.richtek.com  
16  
DS9246-06 March 2007  
RT9246  
Outline Dimension  
D
L
E
E1  
e
A2  
A
A1  
b
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
0.850  
0.050  
0.800  
0.178  
9.601  
1.200  
0.152  
1.050  
0.305  
9.804  
0.033  
0.002  
0.031  
0.007  
0.378  
0.047  
0.006  
0.041  
0.012  
0.386  
D
e
0.650  
0.026  
E
6.300  
4.293  
0.450  
6.500  
4.496  
0.762  
0.248  
0.169  
0.018  
0.256  
0.177  
0.030  
E1  
L
28-Lead TSSOP Plastic Package  
Richtek Technology Corporation  
Headquarter  
Richtek Technology Corporation  
Taipei Office (Marketing)  
5F, No. 20, Taiyuen Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
8F, No. 137, Lane 235, Paochiao Road, Hsintien City  
Taipei County, Taiwan, R.O.C.  
Tel: (8863)5526789 Fax: (8863)5526611  
Tel: (8862)89191466 Fax: (8862)89191465  
Email: marketing@richtek.com  
DS9246-06 March 2007  
www.richtek.com  
17  

相关型号:

RT9246A

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246AGC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246APC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9246PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247GC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9247PC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248A

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248AGC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK

RT9248APC

Multi-Phase PWM Controller for CPU Core Power Supply
RICHTEK