RT9610BZQW [RICHTEK]

High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer;
RT9610BZQW
型号: RT9610BZQW
厂家: RICHTEK TECHNOLOGY CORPORATION    RICHTEK TECHNOLOGY CORPORATION
描述:

High Voltage Synchronous Rectified Buck MOSFET Driver for Notebook Computer

文件: 总15页 (文件大小:176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
RT9610A/B  
High Voltage Synchronous Rectified Buck MOSFET Driver  
for Notebook Computer  
General Description  
Features  
Drives Two N-MOSFETs  
The RT9610A/B is a high frequency, dual MOSFET driver  
specifically designed to drive two power N-MOSFETS in  
a synchronous-rectified buck converter topology. It is  
especially suited for mobile computing applications that  
require high efficiency and excellent thermal performance.  
This driver, combined with Richtek's series of multi-phase  
Buck PWM controllers, provides a complete core voltage  
regulator solution for advanced microprocessors.  
Adaptive Shoot-Through Protection  
0.5Ω On-Resistance, 4A Sink Current Capability  
Supports High Switching Frequency  
Tri-State PWM Input for Power Stage Shutdown  
Output Disable Function  
Integrated Boost Switch  
Low Bias Supply Current  
VCC POR Feature Integrated  
The drivers are capable of driving a 3nF load with fast  
rising/falling time and fast propagation delay. This device  
implements bootstrapping on the upper gates with only a  
single external capacitor. This reduces implementation  
complexity and allows the use of higher performance, cost  
effective,N-MOSFETs.Adaptive shoot through protection  
is integrated to prevent both MOSFETs from conducting  
simultaneously.  
Small 8-Lead WQFN and WDFN Packages  
RoHS Compliant and Halogen Free  
Applications  
Core Voltage Supplies for Intel® / AMD® Mobile  
Microprocessors  
High Frequency Low ProfileDC/DC Converters  
High Current Low Output VoltageDC/DC Converters  
High Input VoltageDC/DC Converters  
The RT9610A/B is available in WQFN-8L 3x3 and  
WDFN-8L 2x2 Packages.  
Simplified Application Circuit  
V
IN  
RT9610A/B  
VCC  
V
UGATE  
BOOT  
CC  
PHASE  
V
Chip Enable  
PWM  
CORE  
EN  
PWM  
LGATE  
GND  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9610A/B-06 September 2015  
www.richtek.com  
1
RT9610A/B  
Ordering Information  
Pin Configurations  
RT9610A/B  
(TOP VIEW)  
Package Type  
QW : WQFN-8L 3x3 (W-Type)  
QW : WDFN-8L 2x2 (W-Type)  
8
7
Lead Plating System  
G : Green (Halogen Free and Pb Free)  
Z : ECO (Ecological Element with  
Halogen Free and Pb free)  
1
2
6
5
BOOT  
PWM  
EN  
GND  
VCC  
9
A : WQFN-8L 3x3  
B : WDFN-8L 2x2  
3
4
Note :  
WQFN-8L 3x3  
RT9610A  
Richtek products are :  
RoHS compliant and compatible with the current require-  
ments of IPC/JEDEC J-STD-020.  
1
2
3
4
8
7
6
5
EN  
VCC  
LGATE  
GND  
PWM  
Suitable for use in SnPb or Pb-free soldering processes.  
PHASE  
UGATE  
BOOT  
9
WDFN-8L 2x2  
RT9610B  
Marking Information  
RT9610AGQW  
RT9610BGQW  
20W  
26= : Product Code  
20 : Product Code  
YMDNN : Date Code  
26=YM  
W : Date Code  
DNN  
RT9610BZQW  
20W  
RT9610AZQW  
26 : Product Code  
20 : Product Code  
W : Date Code  
YMDNN : Date Code  
26 YM  
DNN  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
2
DS9610A/B-06 September 2015  
RT9610A/B  
Functional Pin Description  
Pin No.  
Pin Name  
Pin Function  
WQFN-8L 3x3  
WDFN 8L 2x2  
Floating Bootstrap Supply Pin for Upper Gate Drive. Connect  
the bootstrap capacitor between this pin and the PHASE pin.  
The bootstrap capacitor provides the charge to turn on the  
upper MOSFET.  
1
4
BOOT  
Control Input for Driver. The PWM signal can enter three  
distinct states during operation. Connect this pin to the PWM  
output of the controller.  
2
5
PWM  
3,  
6,  
Ground. The exposed pad must be soldered to a large PCB  
and connected to GND for maximum power dissipation.  
GND  
LGATE  
VCC  
EN  
9 (Exposed Pad) 9 (Exposed Pad)  
Lower Gate Drive Output. Connect to the gate of the low side  
power N-MOSFET.  
4
5
6
7
8
1
Input Supply Pin. Connect this pin to a 5V bias supply. Place a  
high quality bypass capacitor from this pin to GND.  
Enable Pin. When low, both UGATE and LGATE are driven low  
and the normal operation is disabled.  
Switch Node. Connect this pin to the source of the upper  
MOSFET and the drain of the lower MOSFET. This pin  
provides a return path for the upper gate driver.  
7
8
2
3
PHASE  
UGATE  
Upper Gate Drive Output. Connect to the gate of high side  
power N-MOSFET.  
Function Block Diagram  
VCC  
BOOT  
POR  
UGATE  
Control  
Logic  
Shoot-Through  
Protection  
PHASE  
EN  
VCC  
VCC  
LGATE  
GND  
R
Tri-State  
PWM  
Detect  
R
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9610A/B-06 September 2015  
www.richtek.com  
3
RT9610A/B  
Operation  
POR (Power On Reset)  
POR block detects the voltage at the VCC pin. When the  
VCC pin voltage is higher than POR rising threshold, the  
POR pin output voltage (POR output) is high. POR output  
is low when VCC is not higher than POR rising threshold.  
When the POR pin voltage is high, UGATE and LGATE  
can be controlled by PWM input voltage. If the POR pin  
voltage is low, both UGATE and LGATE will be pulled to  
low.  
Tri-State Detect  
When both POR output and EN pin voltages are high,  
UGATE and LGATE can be controlled by PWM input. There  
are three PWM input modes which are high, low, and  
shutdown state. If PWM input is within the shutdown  
window, both UGATE and LGATE outputs are low. When  
PWM input is higher than its rising threshold, UGATE is  
high and LGATE is low. When PWM input is lower than  
its falling threshold, UGATE is low and LGATE is high.  
Control Logic  
Control logic block detects whether high side MOSFET  
is turned off by monitoring (UGATE - PHASE) voltages  
below 1.1V or PHASE voltage below 2V. To prevent the  
overlap of the gate drives during the UGATE pulls low and  
the LGATE pulls high, low side MOSFET can be turned  
on only after high side MOSFET is effectively turned off.  
Shoot-Through Protection  
Shoot-through protection block implements the dead-time  
when both high side and low side MOSFETs are turned  
off. With shoot-through protection block, high side and  
low side MOSFETs are never turned on simultaneously.  
Thus, shoot-through between high side and low side  
MOSFETs is prevented.  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
4
DS9610A/B-06 September 2015  
RT9610A/B  
Absolute Maximum Ratings (Note 1)  
Supply Voltage, VCC ------------------------------------------------------------------------------------------------------- 0.3V to 6V  
BOOT to PHASE ------------------------------------------------------------------------------------------------------------ 0.3V to 6V  
PHASE to GND  
DC------------------------------------------------------------------------------------------------------------------------------- 0.3V to 32V  
< 20ns ------------------------------------------------------------------------------------------------------------------------- 8V to 38V  
UGATE to PHASE  
DC------------------------------------------------------------------------------------------------------------------------------- 0.3V to 6V  
< 20ns ------------------------------------------------------------------------------------------------------------------------- 5V to 7.5V  
LGATE toGND  
DC------------------------------------------------------------------------------------------------------------------------------- 0.3V to 6V  
< 20ns ------------------------------------------------------------------------------------------------------------------------- 2.5V to 7.5V  
PWM, EN to GND ---------------------------------------------------------------------------------------------------------- 0.3V to 6V  
PowerDissipation, PD @ TA = 25°C  
WQFN-8L 3x3 ---------------------------------------------------------------------------------------------------------------- 1.258W  
WDFN-8L 2x2 ---------------------------------------------------------------------------------------------------------------- 0.833W  
Package Thermal Resistance (Note 2)  
WQFN-8L 3x3, θJA ---------------------------------------------------------------------------------------------------------- 79.5°C/W  
WQFN-8L 3x3, θJC ---------------------------------------------------------------------------------------------------------- 8°C/W  
WDFN-8L 2x2, θJA ----------------------------------------------------------------------------------------------------------- 120°C/W  
WDFN-8L 2x2, θJC ---------------------------------------------------------------------------------------------------------- 8.2°C/W  
Junction Temperature ------------------------------------------------------------------------------------------------------- 150°C  
Lead Temperature (Soldering, 10 sec.)--------------------------------------------------------------------------------- 260°C  
Storage Temperature Range ---------------------------------------------------------------------------------------------- 65°C to 150°C  
ESD Susceptibility (Note 3)  
HBM (Human Body Model)------------------------------------------------------------------------------------------------ 2kV  
MM (Machine Model) ------------------------------------------------------------------------------------------------------- 200V  
Recommended Operating Conditions (Note 4)  
Input Voltage, VIN ----------------------------------------------------------------------------------------------------------- 4.5V to 26V  
Control Voltage, VCC------------------------------------------------------------------------------------------------------- 4.5V to 5.5V  
Ambient Temperature Range---------------------------------------------------------------------------------------------- 40°C to 85°C  
Junction Temperature Range---------------------------------------------------------------------------------------------- 40°C to 125°C  
Electrical Characteristics  
(VCC = 5V, TA = 25°C, unless otherwise specified)  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VCC Supply Current  
Quiescent Current  
Shutdown Current  
--  
--  
--  
80  
0
--  
5
I
I
PWM Pin Floating, V = 3.3V  
A  
A  
Q
EN  
V
= 0V, PWM = 0V, V = 5V  
CC  
SHDN  
EN  
4.2  
4.5  
VCC POR Rising  
VCC POR Falling  
Hysteresis  
V
V
V
V
V
PORH  
VCC Power On Reset (POR)  
3.5  
--  
3.84  
360  
--  
--  
PORL  
mV  
PORHYS  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9610A/B-06 September 2015  
www.richtek.com  
5
RT9610A/B  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Internal BOOT Switch  
Internal Boost Switch On  
Resistance  
--  
--  
80  
VCC to BOOT, 10mA  
  
R
BOOT  
PWM Input  
--  
--  
174  
174  
3.8  
--  
--  
V
V
= 5V  
= 0V  
PWM  
A  
Input Current  
I
PWM  
PWM  
3.5  
0.7  
100  
4.1  
1.3  
250  
PWM Tri-State Rising Threshold  
PWM Tri-State Falling Threshold  
V
V
V
V
V
CC  
V
CC  
V
CC  
= 5V  
PWMH  
PWML  
1
= 5V  
175  
Tri-State Shutdown Hold-off Time  
ns  
t
= 5V  
SHD_Tri  
EN Input  
Logic-High  
EN Input Voltage  
V
V
V
V
= 5V  
= 5V  
2
--  
--  
--  
ENH  
ENL  
CC  
V
Logic-Low  
--  
0.48  
CC  
Switching Time  
--  
--  
--  
--  
8
8
8
4
--  
--  
--  
--  
UGATE Rise Time  
UGATE Fall Time  
LGATE Rise Time  
LGATE Fall Time  
UGATE Turn-Off Propagation  
Delay  
t
t
t
t
V
V
V
V
= 5V, 3nF Load  
= 5V, 3nF Load  
= 5V, 3nF Load  
= 5V, 3nF Load  
ns  
ns  
ns  
ns  
UGATEr  
UGATEf  
LGATEr  
LGATEf  
CC  
CC  
CC  
CC  
--  
--  
--  
--  
--  
35  
35  
20  
20  
35  
--  
--  
--  
--  
--  
t
t
t
t
t
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 5V, Outputs Unloaded  
= 5V, Outputs Unloaded  
= 5V, Outputs Unloaded  
= 5V, Outputs Unloaded  
= 5V, Outputs Unloaded  
ns  
ns  
ns  
ns  
ns  
PDLU  
PDLL  
PDHU  
PDHL  
PTS  
LGATE Turn-Off Propagation  
Delay  
UGATE Turn-On Propagation  
Delay  
LGATE Turn-On Propagation  
Delay  
UGATE/LGATE Tri-State  
Propagation Delay  
Output  
UGATE Driver Source  
Resistance  
R
I
100mA Source Current  
V = 2.5V  
--  
1
--  
UGATEsr  
UGATE Driver Source Current  
UGATE Driver Sink Resistance  
V
--  
--  
2
1
--  
--  
A
A
UGATEsr  
UGATE  
PHASE  
R
100mA Sink Current  
V = 2.5V  
UGATEsk  
UGATE Driver Sink Current  
LGATE Driver Source  
Resistance  
I
V
--  
--  
2
1
--  
--  
UGATEsk  
UGATE  
PHASE  
R
100mA Source Current  
= 2.5V  
LGATEsr  
LGATE Driver Source Current  
I
V
LGATE  
--  
--  
--  
2
0.5  
4
--  
--  
--  
A
A
LGATEsr  
LGATE Driver Sink Resistance  
LGATE Driver Sink Current  
R
100mA Sink Current  
= 2.5V  
LGATEsk  
I
V
LGATE  
LGATEsk  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
6
DS9610A/B-06 September 2015  
®
RT9610A/B  
Note 1. Stresses beyond those listed Absolute Maximum Ratingsmay cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in  
the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may  
affect device reliability.  
Note 2. θJA is measured at TA = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θJC is  
measured at the exposed pad of the package.  
Note 3. Devices are ESD sensitive. Handling precaution recommended. The human body mode is a 100pF capacitor is  
charged through a 1.5kΩ resistor into each pin.  
Note 4. The device is not guaranteed to function outside its operating conditions.  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9610A/B-06 September 2015  
www.richtek.com  
7
RT9610A/B  
Typical Application Circuit  
L1  
2.2µH  
V
IN  
V
BAT  
C12  
C8  
C9  
C10  
C11  
C13  
C14  
C2  
1µF  
R2  
BOOT  
R3  
R4  
R1  
VCC  
Q1  
Q2  
V
CC  
UGATE  
C1  
1µF  
L2  
RT9610A/B  
V
CORE  
1µH  
PHASE  
Chip Enable  
PWM  
C3  
EN  
3.3nF  
C4  
C5  
C6  
C7  
PWM  
LGATE  
R5  
2.2  
GND  
Timing Diagram  
PWM  
t
PDLL  
90%  
t
PDLU  
LGATE  
1.5V  
1.5V  
90%  
1.5V  
1.5V  
UGATE  
t
t
PDHL  
PDHU  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
8
DS9610A/B-06 September 2015  
®
RT9610A/B  
Typical Operating Characteristics  
Driver Enable  
Driver Disable  
UGATE  
UGATE  
(20V/Div)  
(20V/Div)  
PHASE  
PHASE  
(20V/Div)  
(20V/Div)  
LGATE  
LGATE  
(5V/Div)  
(5V/Div)  
EN  
EN  
(5V/Div)  
(5V/Div)  
VIN = 19V, No Load  
VIN = 19V, No Load  
Time (1μs/Div)  
Time (1μs/Div)  
PWM Rising Edge  
PWM Falling Edge  
VIN = 19V, No Load  
UGATE  
(20V/Div)  
UGATE  
(20V/Div)  
PHASE  
(20V/Div)  
PHASE  
(20V/Div)  
LGATE  
(5V/Div)  
LGATE  
(5V/Div)  
PWM  
(5V/Div)  
PWM  
(5V/Div)  
VIN = 19V, No Load  
Time (20ns/Div)  
Time (20ns/Div)  
Dead Time  
Dead Time  
UGATE  
UGATE  
PHASE  
PHASE  
UGATE - PHASE  
UGATE - PHASE  
(5V/Div)  
(5V/Div)  
LGATE  
LGATE  
VIN = 19V, PWM Rising, No Load  
Time (20ns/Div)  
VIN = 19V, PWM Falling, No Load  
Time (20ns/Div)  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9610A/B-06 September 2015  
www.richtek.com  
9
RT9610A/B  
Dead Time  
Dead Time  
UGATE  
PHASE  
UGATE  
PHASE  
UGATE - PHASE  
UGATE - PHASE  
(5V/Div)  
(5V/Div)  
LGATE  
LGATE  
VIN = 19V, PWM Falling, Full Load  
VIN = 19V, PWM Rising, Full Load  
Time (20ns/Div)  
Time (20ns/Div)  
Short Pulse  
UGATE  
PHASE  
UGATE - PHASE  
(5V/Div)  
LGATE  
VIN = 19V, Start Up  
Time (20ns/Div)  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
10  
DS9610A/B-06 September 2015  
RT9610A/B  
Application Information  
Supply Voltage and Power On Reset  
voltages of the PHASE pin and high side gate drive to fall  
below their threshold, the non-overlap protection circuit  
ensures that UGATE is low before LGATE pulls high.  
The RT9610A/B is designed to drive both high side and  
low side N-MOSFETs through an externally input PWM  
control signal. Connect 5V to VCC to power on the  
RT9610A/B. A minimum 1μF ceramic capacitor is  
recommended to bypass the supply voltage. Place the  
bypassing capacitor physically near the IC. The power on  
reset (POR) circuit monitors the supply voltage at the  
VCC pin. If VCC exceeds the POR rising threshold voltage,  
the controller resets and prepares for operation. UGATE  
and LGATE are held low before VCC is above the POR  
rising threshold.  
Also to prevent the overlap of the gate drives during LGATE  
pull low and UGATE pull high, the non-overlap circuit  
monitors the LGATE voltage. When LGATE go below 1.1V,  
UGATE is allowed to go high.  
Driving Power MOSFETs  
The DC input impedance of the power MOSFET is  
extremely high. The gate draws the current only for few  
nano-amperes. Thus once the gate has been driven up to  
ONlevel, the current could be negligible.  
Enable and Disable  
However, the capacitance at the gate to source terminal  
should be considered. It requires relatively large currents  
to drive the gate up and down rapidly. It is also required to  
switch drain current on and off with the required speed.  
The required gate drive currents are calculated as follows.  
The RT9610A/B includes an ENpin for sequence control.  
When the EN pin rises above the VENH trip point, the  
RT9610A/B begins a new initialization and follows the  
PWM command to control the UGATE and LGATE. When  
the EN pin falls below the VENL trip point, the RT9610A/B  
shuts down and keeps UGATE and LGATE low.  
D1  
L
d1  
s1  
V
V
OUT  
IN  
Three State PWM Input  
Cgs1  
Cgd1  
After initialization, the PWM signal takes over the control.  
The rising PWM signal first forces the LGATE signal low  
and then allows the UGATE signal to go high right after a  
non-overlapping time to avoid shoot through current. In  
contrast, the falling PWM signal first forces UGATE to go  
low. When the UGATE or PHASE signal reach a  
predetermined low level, LGATE signal is then allowed to  
go high.  
Cgd2  
Cgs2  
d2  
Igs1  
Igd1  
Ig1  
Ig2 Igd2  
Igs2  
g1  
g2  
D2  
s2  
GND  
V
g1  
V
+5V  
PHASE  
Non-overlap Control  
To prevent the overlap of the gate drives during the UGATE  
pull low and the LGATE pull high, the non-overlap circuit  
monitors the voltages at the PHASE node and high side  
gate drive (UGATE-PHASE). When the PWM input signal  
goes low, UGATE begins to pull low (after propagation  
delay). Before LGATE can pull high, the non-overlap  
protection circuit ensures that the monitored (UGATE-  
PHASE) voltages have gone below 1.1V or phase voltage  
is below 2V. Once the monitored voltages fall below the  
threshold, LGATE begins to turn high. By waiting for the  
t
t
V
g2  
5V  
Figure1. Equivalent Circuit andAssociated Waveforms  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9610A/B-06 September 2015  
www.richtek.com  
11  
RT9610A/B  
380 x 10-12 x 5  
14 x 10-9  
In Figure 1, the current Ig1 and Ig2 are required to move the  
Igd1  
0.136 (A)  
(7)  
(8)  
gate up to 5V. The operation consists of charging Cgd1  
,
Cgd2 , Cgs1 and Cgs2. Cgs1 and Cgs2 are the capacitors from  
gate to source of the high side and the low side power  
MOSFETs, respectively. In general data sheets, the Cgs1  
and Cgs2 are referred as Cisswhich are the input  
capacitors. Cgd1 and Cgd2 are the capacitors from gate to  
drain of the high side and the low side power MOSFETs,  
respectively and referred to the data sheets as Crssthe  
reverse transfer capacitance. For example, tr1 and tr2 are  
the rising time of the high side and the low side power  
500 x 10-12 x 12+5  
Igd2  
0.283 (A)  
30 x 10-9  
the total current required from the gate driving source can  
be calculated as following equations :  
(9)  
Ig1 Igs1 Igd1 0.593 0.136 0.729 (A)  
(10)  
Ig2 Igs2 Igd2 0.367 0.283 0.65 (A)  
MOSFETs respectively, the required current Igs1 and Igs2  
,
By a similar calculation, we can also get the sink current  
required from the turned off MOSFET.  
are shown as below :  
dV  
C
x 5  
x 5  
g1  
gs1  
(1)  
(2)  
I
C  
gs1  
gs1  
Select the Bootstrap Capacitor  
dt  
dV  
t
r1  
Figure 2 shows part of the bootstrap circuit of the  
RT9610A/B. The VCB (the voltage difference between  
BOOT and PHASE on RT9610A/B) provides a voltage to  
the gate of the high side power MOSFET. This supply  
needs to be ensured that the MOSFET can be driven. For  
this, the capacitance CB has to be selected properly. It is  
determined by following constraints.  
C
g2  
gs1  
I
C  
gs2  
gs1  
dt  
t
r2  
Before driving the gate of the high side MOSFET up to  
5V, the low side MOSFET has to be off; and the high side  
MOSFET is turned off before the low side is turned on.  
From Figure 1, the body diode D2had been turned on  
before high side MOSFETs turned on.  
V
IN  
dV  
5
I
C  
C  
gd1  
(3)  
gd1  
gd1  
BOOT  
dt  
t
r1  
+
C
B
Before the low side MOSFET is turned on, the Cgd2 have  
been charged to VIN. Thus, as Cgd2 reverses its polarity  
and g2 is charged up to 5V, the required current is :  
UGATE  
PHASE  
V
CB  
-
V
CC  
dV  
dt  
Vi 5  
I
C  
C  
gd2  
(4)  
gd2  
gd2  
LGATE  
GND  
t
r2  
It is helpful to calculate these currents in a typical case.  
Assume a synchronous rectified buck converter, input  
voltage VIN = 12V, Vg1 = Vg2 = 5V. The high side MOSFET  
is PHB83N03LT whose Ciss = 1660pF, Crss = 380pF, and  
tr = 14ns. The low side MOSFET is PHB95N03LT whose  
Ciss = 2200pF, Crss = 500pF and tr = 30ns, from the  
equation (1) and (2) we can obtain :  
Figure 2. Part of Bootstrap Circuit of RT9610A/B  
In practice, a low value capacitor CB will lead to the over  
charging that could damage the IC. Therefore, to minimize  
the risk of overcharging and to reduce the ripple on VCB,  
the bootstrap capacitor should not be smaller than 0.1μF,  
and the larger the better. In general design, using 1μF can  
provide better performance.At least one low ESR capacitor  
should be used to provide good local de-coupling. It is  
recommended to adopt a ceramic or tantalum capacitor.  
-12  
1660 x 10 x 5  
(5)  
(6)  
I
0.593 (A)  
0.367 (A)  
gs1  
-9  
14 x 10  
-12  
2200 x 10 x 5  
I
gs2  
-9  
30 x 10  
from equation. (3) and (4)  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
12  
DS9610A/B-06 September 2015  
RT9610A/B  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Thermal Considerations  
Four-Layer PCB  
For continuous operation, do not exceed absolute  
maximum junction temperature. The maximum power  
dissipation depends on the thermal resistance of the IC  
package, PCB layout, rate of surrounding airflow, and  
difference between junction and ambient temperature. The  
maximum power dissipation can be calculated by the  
following formula :  
WQFN-8L 3x3  
WDFN-8L 2x2  
PD(MAX) = (TJ(MAX) TA) / θJA  
where TJ(MAX) is the maximum junction temperature, TAis  
the ambient temperature, and θJA is the junction to ambient  
thermal resistance.  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Figure 3. Derating Curve of Maximum PowerDissipation  
For recommended operating condition specifications, the  
maximum junction temperature is 125°C. The junction to  
ambient thermal resistance, θJA, is layout dependent. For  
WQFN-8L 3x3 packages, the thermal resistance, θJA, is  
79.5°C/W on a standard JEDEC 51-7 four-layer thermal  
test board. For WDFN-8L 2x2 packages, the thermal  
resistance, θJA, is 120°C/W on a standard JEDEC 51-7  
four-layer thermal test board. The maximum power  
dissipation at TA = 25°C can be calculated by the following  
formula :  
Layout Considerations  
Figure 4 shows the schematic circuit of a synchronous  
buck converter to implement the RT9610A/B.  
L1  
5V  
V
IN  
12V  
C2  
1
C1  
R1  
C4  
BOOT  
5
2
VCC  
CB  
RT9610A/B  
8
7
Q1  
UGATE  
PWM  
PWM  
5V  
L2  
PD(MAX) = (125°C 25°C) / (79.5°C/W) = 1.258W for  
WQFN-8L 3x3 package  
V
PHASE  
LGATE  
CORE  
6
3
PHB83N03LT  
PHB95N03LT  
EN  
C3  
GND  
4
PD(MAX) = (125°C 25°C) / (120°C/W) = 0.833W for  
Q2  
WDFN-8L 2X2 package  
The maximum power dissipation depends on the operating  
ambient temperature for fixed TJ(MAX) and thermal  
resistance, θJA. The derating curves in Figure 3 allow the  
designer to see the effect of rising ambient temperature  
on the maximum power dissipation.  
Figure 4. Synchronous Buck Converter Circuit  
When layout the PCB, it should be very careful. The power  
circuit section is the most critical one. If not configured  
properly, it will generate a large amount of EMI. The  
junction of Q1, Q2, L2 should be very close.  
Next, the trace from UGATE, and LGATE should also be  
short to decrease the noise of the driver output signals.  
PHASE signals from the junction of the power MOSFET,  
carrying the large gate drive current pulses, should be as  
heavy as the gate drive trace. The bypass capacitor C4  
should be connected to GND directly. Furthermore, the  
bootstrap capacitors (CB) should always be placed as close  
to the pins of the IC as possible.  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
DS9610A/B-06 September 2015  
www.richtek.com  
13  
RT9610A/B  
Outline Dimension  
1
2
1
2
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
0.800  
0.050  
0.250  
0.300  
3.100  
1.150  
3.100  
1.150  
Min  
Max  
0.031  
0.002  
0.010  
0.012  
0.122  
0.045  
0.122  
0.045  
0.700  
0.000  
0.175  
0.200  
2.900  
1.050  
2.900  
1.050  
0.028  
0.000  
0.007  
0.008  
0.114  
0.041  
0.114  
0.041  
A
A1  
A3  
b
D
D2  
E
E2  
e
0.650  
0.026  
0.550  
0.650  
0.022  
0.026  
L
W-Type 8L QFN 3x3 Package  
Copyright 2015 Richtek Technology Corporation. All rights reserved.  
©
is a registered trademark of Richtek Technology Corporation.  
www.richtek.com  
14  
DS9610A/B-06 September 2015  
RT9610A/B  
D2  
D
L
E
E2  
SEE DETAIL A  
1
e
b
2
1
2
1
A
A3  
DETAILA  
Pin #1 ID and Tie Bar Mark Options  
A1  
Note : The configuration of the Pin #1 identifier is optional,  
but must be located within the zone indicated.  
Dimensions In Millimeters  
Dimensions In Inches  
Symbol  
Min  
Max  
0.800  
0.050  
0.250  
0.300  
2.050  
1.250  
2.050  
0.650  
Min  
Max  
0.031  
0.002  
0.010  
0.012  
0.081  
0.049  
0.081  
0.026  
A
A1  
A3  
b
0.700  
0.000  
0.175  
0.200  
1.950  
1.000  
1.950  
0.400  
0.028  
0.000  
0.007  
0.008  
0.077  
0.039  
0.077  
0.016  
D
D2  
E
E2  
e
0.500  
0.020  
L
0.300  
0.400  
0.012  
0.016  
W-Type 8L DFN 2x2 Package  
Richtek Technology Corporation  
14F, No. 8, Tai Yuen 1st Street, Chupei City  
Hsinchu, Taiwan, R.O.C.  
Tel: (8863)5526789  
Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should  
obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot  
assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be  
accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.  
DS9610A/B-06 September 2015  
www.richtek.com  
15  

相关型号:

RT9610C

暂无描述
RICHTEK

RT9611A

Synchronous Rectified Buck MOSFET Drivers
RICHTEK

RT9611AGQW

Synchronous Rectified Buck MOSFET Drivers
RICHTEK

RT9611B

Synchronous Rectified Buck MOSFET Drivers
RICHTEK

RT9612A

Synchronous-Rectified Buck MOSFET Driver
RICHTEK

RT9612B

Synchronous-Rectified Buck MOSFET Driver
RICHTEK

RT9614A

暂无描述
RICHTEK

RT9618

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9618A

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9618AGS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9618APS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK

RT9618GS

Synchronous-Rectified Buck MOSFET Drivers
RICHTEK