FAGD1654348BA [ROCHESTER]

CLOCK RECOVERY CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, HEAT SINK, PLASTIC, TQFP-48;
FAGD1654348BA
型号: FAGD1654348BA
厂家: Rochester Electronics    Rochester Electronics
描述:

CLOCK RECOVERY CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, HEAT SINK, PLASTIC, TQFP-48

ATM 异步传输模式 电信 电信集成电路
文件: 总10页 (文件大小:813K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 Gbit/s  
Clock and Data  
Recovery Circuit  
GD16543  
an Intel company  
Preliminary  
General Description  
Features  
l
The GD16543 is a high performance  
monolithic integrated Clock and Data Re-  
covery (CDR) device applicable for opti-  
cal communication systems including:  
The device meets all ITU-T jitter require-  
ments when used with the recommended  
loop filter (jitter tolerance, -transfer and  
-generation).  
Clock and Data Recovery covering  
2.3 Gbit/s to 2.7 Gbit/s.  
l
SDH STM-16, SONET OC-48  
compatible.  
u
SDH STM-16  
SONET OC-48  
u
The integrated 1:4 demultiplexer with dif-  
ferential ECL outputs ensures a simple  
and universal interface to the system  
CMOS ASICs.  
l
Differential Data inputs with 20 mV  
sensitivity.  
The CDR contains all circuits needed for  
reliable acquisition and lock of the VCO  
phase to the incoming data-stream.  
l
Differential ECL Data and Clock  
outputs.  
The 622 MHz output clock is maintained  
within 500 ppm tolerance even in ab-  
sence of data.  
The electrical input sensitivity is better  
than 20 mV. Optical receivers with sensi-  
tivity better than -34 dBm have been ob-  
tained without optical pre-amplifiers.  
l
Acquisition time: < 500 ms  
l
The GD16543 is available in a 40 lead  
ceramic LCC and in a 48 lead 7x7 mm  
TQFP power enhanced plastic package.  
Few external passive components  
needed.  
l
50 W Loop-Through data inputs for  
higher sensitivity.  
l
Single supply operation.  
l
Power dissipation: 1 W.  
Limiter  
DOUT0  
DOUN0  
SIPO  
l
Available in:  
D
Bang  
Bang  
SIPI  
SINI  
DOUT1  
DOUN1  
CK  
a 48 lead 7x7 mm TQFP plastic  
package  
a 40 lead ceramic LCC.  
De-  
MUX  
Phase  
Detector  
DOUT2  
DOUN2  
DO  
U
SINO  
D
DOUT3  
DOUN3  
R
V
CKOUT  
CKOUN  
U
D
REFXI  
Phase  
Frequency  
Detector  
Applications  
REFXO  
VDD  
Change  
Pump  
l
Clock and Data Recovery for optical  
communication systems including:  
VCO  
VEE  
VDDA  
VEEA  
SDH STM-16  
SONET OC-48  
Lock  
SEL1  
SEL2  
Detect  
RES  
LOCK  
CHPO  
VCTL  
Data Sheet Rev.: 07  
Functional Details  
The main application of the GD16543 is  
as a receiver for:  
Bang-Bang Phase Detector  
The negligible penalty paid is a static  
phase error on the sampling time in the  
decision gate. However, due to the na-  
ture of the phase detector the error will  
be small (few degrees), forcing the loop  
to be at one edge of the error-function  
shaped transfer characteristic of the de-  
tector.  
u
SDH STM-16  
SONET OC-48 optical communica-  
tion systems.  
The Bang-Bang phase detector is used  
in CDR mode as a true digital type de-  
tector, producing a binary output. It sam-  
ples the incoming data twice each bit  
period: once in the transition of the (pre-  
vious) bit period and once in the middle  
of the bit period. When a transition  
occurs between 2 consecutive bits - the  
value of the sample in the transition be-  
tween the bits will show whether the  
VCO clock leads or lags the data. Hence  
the PLL is controlled by the bit transition  
point, thereby ensuring that data is sam-  
pled in the middle of the eye, once the  
system is in CDR mode. The external  
loop filter components control the chara-  
cteristics of the PLL.  
u
It integrates:  
u
a Voltage Controlled Oscillator (VCO)  
a Lock Detect Circuit  
u
u
a Frequency Detector (PFD)  
a Bang-Bang Phase Detector  
u
Inputs  
into a Phase Locked Loop (PLL) - based  
clock and data recovery circuit followed  
by a 1:4 demultiplexer with differential  
ECL data and clock outputs.  
The input amplifier (pin SIPI / SINI) is de-  
signed as a limiting amplifier with a sen-  
sitivity better than 20 mV (differential).  
The inputs may be either AC or DC cou-  
pled. In both cases input termination is  
made through pins SIPO / SINO. If the  
inputs are AC coupled the amplifier fea-  
tures an internal offset cancelling DC  
feedback. Notice that the offset cancella-  
tion will only work when the input is dif-  
ferential and AC-coupled as shown in the  
Figures at page 3.  
VCO  
The VCO is a low noise LC-type differen-  
tial oscillator with a tuning range from 2.2  
to 2.7 GHz. Tuning is done by applying a  
voltage to the VCTL pin.  
The binary output of either the PFD or  
the Bang-Bang phase detector (depend-  
ing of the mode of the lock-detection cir-  
cuit) is fed to a charge pump capable of  
sinking or sourcing current or tristating.  
The output of the charge pump is filtered  
through the loop filter and controls the  
tune-voltage of the VCO.  
Lock Detect Circuit  
The lock detect circuit continuously moni-  
tors the difference between the reference  
clock and the divided VCO clock. If the  
reference clock and the divided VCO fre-  
quency differs by more than 500 ppm (or  
2000 ppm, selectable), it switches the  
PFD into the PLL in order to pull the VCO  
back inside the lock-in range. This mode  
is called the acquisition mode.  
Following the CDR block the data is 1:4  
demultiplexed and output together with a  
622 MHz clock. The data and clock out-  
puts are differential ECL outputs that  
should be terminated via 50 W to -2 V.  
As a result of the continuous monitoring  
lock-detect circuit the VCO frequency  
never deviates more than 500 ppm  
(2000 ppm) from the reference clock be-  
fore the PLL is considered to be ’Out of  
Lock’. Hence the acquisition time is pre-  
dictable and short and the output clock  
CKOUT is always kept within the  
Package  
The GD16543 is provided in either a  
48 lead power enhanced TQFP or in a  
40 pin Multi Layer Ceramic package with  
internal 50 W transmission lines.  
The PFD is used to ensure predictable  
lock up conditions for the GD16543 by  
locking the VCO to an external reference  
clock source. It is only used during acqui-  
sition and pulls the VCO into the lock  
range where the Bang-Bang phase de-  
tector is capable of acquiring lock. The  
PFD is made with digital set/reset cells  
giving it a true phase and frequency  
characteristic.  
500 ppm (2000 ppm) limits, ensuring  
safe clocking of down stream circuitry.  
The LOCK Signal  
The status of the lock-detection circuit is  
given by the LOCK signal. In CDR mode  
LOCK is steady high. In acquisition mode  
LOCK is alternating indicating the con-  
tinuous shifts between the Bang-Bang  
Detector (high) and the PFD (low).  
Once the VCO is inside the lock-range  
the lock-detection circuit switches the  
Bang-Bang phase detector into the PLL  
in order to lock to the data signal. This  
mode is called CDR mode.  
The LOCK output may be used to gener-  
ate Loss Of Signal (LOS). The time for  
LOCK to assert is predictable and short,  
equal to the time to go into lock, but the  
time for LOCK to de-assert must be con-  
sidered. When the line is down (i.e. no in-  
formation received) the optical receiver  
circuit may produce random noise. It is  
possible that this random noise will keep  
the GD16543 within the 500 ppm  
(2000 ppm) range of the line frequency,  
hence LOCK will remain asserted for a  
non-deterministic time. This may be pre-  
vented by injecting a small current at the  
loop filter node, which actively pulls the  
PLL out of the lock range when the out-  
put of the phase detector acts randomly.  
For the purpose of stand alone applica-  
tions the GD16543 has been equipped  
with a crystal oscillator for a series reso-  
nance, fundamental mode crystal. A  
crystal for use at 2.488 GHz is also avail-  
able. When not used with a crystal, the  
REFXI input can be used as a standard  
ECL input.  
The reference clock input, REFXI, to the  
PFD is at 1/64 of the data rate.  
Data Sheet Rev.: 07  
GD16543  
Page 2 of 9  
SIPI  
From LINE  
8k  
REFXI  
SIPO  
SINO  
SINI  
50R  
50R  
+
50R  
VTH = -1.3V  
VTT  
VTT  
26dB  
REFXO  
-
8k  
From LINE  
Figure 1. DC Coupled Input (Ignoring internal offset com-  
pensation)  
Figure 4. External Reference Clock  
SIPI  
0V  
From LINE  
8k  
68k  
10pF  
REFXI  
SIPO  
50R  
+
300k  
-5V  
26dB  
38.88MHz  
10pF  
SINO  
SINI  
REFXO  
50R  
-
8k  
3k3  
-5V  
From LINE  
Figure 2. AC Coupled Input (Using internal offset compen-  
sation)  
Figure 5. Crystal Oscillator  
CHPO  
33R 2.2mF  
VCTL  
Figure 3. Loop Filter  
Data Sheet Rev.: 07  
GD16543  
Page 3 of 9  
Pin List  
Mnemonic:  
SIPI, SIPO  
SINI, SINO  
Pin No.:  
40 LCC 48 TQFP  
Pin Type:  
Anl. IN  
Description:  
22, 21  
6, 7  
Loop-through terminated serial positive differential input.  
May be used as ECL compatible input.  
24, 25  
5, 4  
Anl. IN  
Loop-through terminated serial negative differential input.  
May be used as ECL compatible input.  
DOUT0, DOUN0  
DOUT1, DOUN1  
DOUT2, DOUN2  
DOUT3, DOUN3  
11, 10  
9, 8  
19,18  
17,16  
19, 20  
21, 22  
10, 11  
12, 13  
ECL OUT  
Re-timed differential data outputs. DOUT0 is the first bit received.  
Regenerated differential output clock, 622 MHz.  
CKOUT, CKOUN  
REFXI  
14, 13  
35  
16, 17  
38  
ECL OUT  
ECL IN  
38.88 MHz Reference clock input or X-tal input for Phase/ Freq.  
detect and Lock-detect.  
REFXO  
36  
37  
ECL OUT  
ECL IN  
38.88 MHz Reference clock output.  
SEL1, SEL2  
38, 39  
34, 33  
Single ended inputs, PLL set-up of Internal/ External switch mode  
and LOCK:  
SEL1 SEL2  
0
0
1
1
0
1
0
1
Auto lock, 500 ppm.  
Auto Lock, 2000 ppm.  
Manual, Phase/Freq. Detector, 500 ppm.  
Manual, Phase Detector, 2000 ppm.  
LOCK  
RES  
4
2
26  
29  
ECL OUT  
ECL IN  
Single ended CDR Lock alarm output. When low, the divided  
VCO freq. deviates more than 500/2000 ppm from REFXI.  
Global reset when high. For test purposes only. Connect to VEE  
for normal operation.  
VCTL  
CHPO  
VDD  
29  
33  
45  
41  
Anl. IN  
Anl. OUT  
PWR  
VCO control voltage input.  
Charge pump current output.  
0 V power for core and ECL I/O.  
1, 3, 6, 3, 9, 15,  
12, 23  
18, 24,  
25, 27,  
31, 32,  
36, 40,  
48  
VEE  
5, 7, 15, 1, 2, 8,  
PWR  
-5 V power for core and ECL I/O.  
20, 26,  
27, 30,  
34, 37,  
40  
14, 23,  
28, 30,  
35, 39,  
42, 47  
VDDA  
VEEA  
NC  
28  
43, 46  
44  
PWR  
PWR  
NC  
0 V power for VCO.  
-5 V power for VCO.  
Not Connected  
31, 32  
Heat sink  
Connected to VDD  
Data Sheet Rev.: 07  
GD16543  
Page 4 of 9  
Pin Outline  
6
7
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
VDD  
VEE  
REFXI  
VEE  
8
DOUN1  
DOUT1  
DOUN0  
DOUT0  
VDD  
CHPO  
NC  
9
10  
11  
12  
13  
14  
15  
NC  
VEE  
VCTL  
VDDA  
VEE  
CKOUN  
CKOUT  
VEE  
VEE  
Figure 6. 40 Lead LCC, Top View  
1
36  
VEE  
VDD  
VEE  
SEL1  
SEL2  
VDD  
VDD  
VEE  
RES  
VEE  
VDD  
LOCK  
VDD  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VEE  
3
VDD  
4
SINO  
5
SINI  
6
SIPI  
7
SIPO  
8
VEE  
9
VDD  
10  
DOUT2  
11  
DOUN2  
12  
DOUT3  
Figure 7. 48 Lead TQFP, Top View  
Data Sheet Rev.: 07  
GD16543  
Page 5 of 9  
Maximum Ratings  
These are the limits beyond which the component may be damaged.  
All voltages in the table are referred to VDD.  
All currents in the table are defined positive out of the pin.  
Symbol:  
VEE, VEEA  
V0 MAX  
I0 MAX, ECL  
I0 MAX, CHPO  
VI MAX  
II MAX  
Characteristic:  
Supply voltage  
Output voltage  
Output current  
Conditions:  
MIN.:  
-6  
TYP.:  
MAX.:  
0
UNIT.:  
V
VEE - 0.5  
0.5  
30  
V
mA  
mA  
V
Output current  
1
Input voltage  
VEE - 0.5  
-1.0  
0.5  
1.0  
125  
150  
Input current  
mA  
°C  
T0  
Operating temperature  
Storage temperature  
Junction  
-55  
TS  
-65  
°C  
DC Characteristics  
TCASE = 0 °C to 85 °C, VEE = -5.0 V  
All voltages in the table are referred to VDD.  
All input signal and power currents in the table are defined positive into the pin.  
All output signal currents are defined positive out of the pin.  
Symbol:  
VEE  
Characteristic:  
Conditions:  
MIN.:  
TYP.:  
-5.0  
180  
20  
MAX.:  
UNIT.:  
V
Supply voltage  
-5.40  
-4.5  
IEE  
Supply current  
Note 1  
Note 2  
Note 6  
mA  
mV  
mV  
V
VI SINX/SIPX  
Data input sensitivity, differential/single-ended  
25  
500  
-1  
VI MAX SINX/SIPX Maximum input voltage swing, differential  
VICM SINX/SIPX  
VIH ECL  
Data common mode  
ECL input high voltage  
ECL input low voltage  
ECL input high current  
ECL input low current  
VCO control voltage  
ECL output high voltage  
ECL output low voltage  
CHPO source current  
CHPO sink current  
-2  
-1.3  
Note 1  
Note 1  
-1.1  
VEE  
0
V
VIL ECL  
-1.5  
100  
100  
-1  
V
IIH ECL  
mA  
mA  
V
IIL ECL  
V1 VCTL  
VOH ECL  
VOL ECL  
IOH CHPO  
IOL CHPO  
IVCTL <30 mA  
Note 3, 4  
Note 3, 4  
Note 5  
VEE  
-1.0  
VTT  
-0.5  
-1.6  
V
V
400  
400  
mA  
mA  
Note 5  
Note 1: VEE = -5.0 V  
Note 2: AC-coupled, p-p voltage for differential coupling, BER 10 –12. Data eye diagram in accordance with ITU G.957,  
223 - 1 PRBS, terminated via loop through 50 W.  
Note 3: VTT = -2.0 V 5 %  
Note 4: RL = 50 W to VTT  
Note 5: Output terminated to -2.5 V during test.  
Note 6: AC coupled input, p-p voltage.  
Data Sheet Rev.: 07  
GD16543  
Page 6 of 9  
AC Characteristics  
TCASE = 0 °C to 85 °C, VEE = -5.0 V  
DOUT  
CKOUT  
Td  
Symbol:  
Characteristic:  
Conditions:  
MIN.:  
TYP.:  
MAX.:  
UNIT.:  
J TOL  
Jitter tolerance  
2 Hz < f < 100 kHz  
1 MHz < f < 5 MHz  
1.5  
>2  
UI 16, p-p  
Note 2  
Note 1. See Figure 8.  
0.15  
>0.35  
J TRF  
Jitter transfer  
12 kHz < f < 2 MHz  
0.08  
0.1  
dB  
Note 1. See Figure 9.  
J OUT  
Output clock intrinsic jitter  
Note 1  
5 kHz < f < 1 MHz  
0.125  
0.05  
UI 4, p-p  
UI 4, p-p  
Note 2  
1 MHz < f < 20 MHz  
TA  
Acquisition time  
223 – 1 PRBS  
50  
500  
ms  
LCID  
Consecutive identical bits  
# of bits with  
no transition  
400  
1000  
bits  
DC  
Input data / REFXI frequency deviation  
REFXI clock duty cycle  
Note 3  
-200  
40  
200  
60  
ppm  
%
CDUTY, REFXI  
FVCO  
Vthr = -1.3 V  
VCO centre frequency  
2.5  
GHz  
%
CDUTY, CKOUT  
Output clock duty cycle  
Vthr = -1.3 V,  
45  
55  
50 W to -2.0 V  
TRISE, ECL  
TFALL, ECL  
TD, DOUXX  
ECL output rise time  
ECL output fall time  
20 - 80%,  
350  
350  
275  
700  
700  
ps  
ps  
ps  
50 W to -2.0 V  
80 - 20%,  
50 W to -2.0 V  
Data output from CKOUT  
See figure above  
Note 1: Jitter parameters acquired at VEE = 5.0 V ±5 %, R = 33 W, and C = 2.2 mF. When shifting the VEE range and tolerance,  
R and C values should be changed to accommodate changed loop gain parameters.  
Note 2: 1 UI 16, p-p = 402 ps. 1 UI 4, p-p = 1.608 ns.  
Note 3: Maximum allowable deviation between reference clock and divided VCO clock when locked to data.  
UI  
UI  
ITU-T Specs.  
ITU-T Specs.  
1.5  
0.1  
0.0  
20dB/dec.  
0.35  
0.15  
F
F
Figure 8. Jitter Tolerance, Typical  
Figure 9. Jitter Transfer, Transfer  
Data Sheet Rev.: 07  
GD16543  
Page 7 of 9  
Package Outline  
0.105" +- 0.011  
0.100" +- 0.02  
0.040" +- 0.006  
Pin 1  
Max 0.008"  
0.680" +- 0.006  
Bottom View  
Top View  
0.015" +- 0.003"  
0.020"  
Side View  
0.480" +- 0.006  
Note 1: Leads are hot dip soldered before cutting  
Note 2: Coplanarity of leads > 0.008"  
Figure 10. 40 Lead LCC, Leaded (All Dimensions are in inch)  
Figure 11. 48 Lead TQFP, Power Enchanced (All Dimensions are in mm)  
Data Sheet Rev.: 07  
GD16543  
Page 8 of 9  
External References  
ITU-T G.825 (03/93) Control of Jitter and Wander within digital networks based on SDH  
ITU-T G.957 (07/95) Optical interfaces for equip. and systems relating to SDH  
ITU-T G.958 (11/94) Digital line systems based on SDH for use on optical fibre cables  
Device Marking  
GD16543  
<Mask ID> <Lot ID>  
<WW YY>  
Figure 12. Device Marking, (Top - 48 pin and Bottom - 40 pin)  
Ordering Information  
To order, please specify as shown below:  
Product Name:  
Intel Order Number:  
Package Type:  
Case Temperature Range:  
GD16543-40AC  
GD16543-40AB  
GD16543-48BA  
40 lead Ceramic LCC  
0..85 °C  
40 lead Ceramic LCC, leaded 0..85 °C  
48 lead TQFP, EDQUAD 0..85 °C  
FAGD1654348BA  
MM#: 836065  
GD16543, Data Sheet Rev.: 07 - Date: 30 July 2001  
an Intel company  
Mileparken 22, DK-2740 Skovlunde  
Denmark  
Phone : +45 7010 1062  
Distributor:  
The information herein is assumed to be  
reliable. GIGA assumes no responsibility  
for the use of this information, and all such  
information shall be at the users own risk.  
Prices and specifications are subject to  
change without notice. No patent rights or  
licenses to any of the circuits described  
herein are implied or granted to any third  
party. GIGA does not authorise or warrant  
any GIGA Product for use in life support  
devices and/or systems.  
Fax : +45 7010 1063  
E-mail : sales@giga.dk  
Web site : http://www.intel.com/ixa  
Copyright © 2001 GIGA ApS  
An Intel company  
All rights reserved  
Please check our Internet web site  
for latest version of this data sheet.  

相关型号:

FAGD1657132BA

ATM/SONET/SDH SUPPORT CIRCUIT, PQFP32, 5 X 5 MM, 1.40 MM HEIGHT, HEAT SINK, PLASTIC, TQFP-32
ROCHESTER

FAGD16575A32BA

ATM/SONET/SDH SUPPORT CIRCUIT, PQFP32, 5 X 5 MM, 1.40 MM HEIGHT, HEAT SINK, PLASTIC, TQFP-32
ROCHESTER

FAGD16575A32BA

Support Circuit, 1-Func, Bipolar, PQFP32, 5 X 5 MM, 1.40 MM HEIGHT, HEAT SINK, PLASTIC, TQFP-32
INTEL

FAGD1657832BA

Interface Circuit, PQFP32, 5 X 5 MM, 1.40 MM HEIGHT, HEAT SINK, PLASTIC, TQFP-32
INTEL

FAGD1659048BA

Support Circuit, 1-Func, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, HEAT SINK, PLASTIC, TQFP-48
INTEL

FAGORF2406APZA

16-BIT, 20MHz, OTHER DSP, PQFP100, PLASTIC, LQFP-100
TI

FAH4820

Direct Driver for DC Motors (ERMs)
FAIRCHILD

FAH4820MPX

Direct Driver for DC Motors (ERMs)
FAIRCHILD

FAH4830

Haptic Driver for DC Motors (ERMs) and Linear Resonant Actuators (LRAs)
FAIRCHILD

FAH4830MPX

Haptic Driver for DC Motors (ERMs) and Linear Resonant Actuators (LRAs)
FAIRCHILD

FAH4840-269128

FAH4840 Haptic Driver for Linear Resonant Actuators (LRAs)
ETC

FAH4840L8X

FAH4840 Haptic Driver for Linear Resonant Actuators (LRAs)
ETC