BD18327EFV-M [ROHM]

BD18327EFV-M是一款适用于两轮机动车转向指示灯的50V耐压 1.5A 单通道LED驱动器。该产品采用内置CR定时器来控制LED闪烁,内置LED开路检测、短路保护、过电压保护等功能,因此具有高可靠性。当检测到LED开路时,其输出闪烁频率会加倍。在高输入电压条件下,为了控制IC的发热量并保护LED负载,IC的输出PWM占空比会降低。;
BD18327EFV-M
型号: BD18327EFV-M
厂家: ROHM    ROHM
描述:

BD18327EFV-M是一款适用于两轮机动车转向指示灯的50V耐压 1.5A 单通道LED驱动器。该产品采用内置CR定时器来控制LED闪烁,内置LED开路检测、短路保护、过电压保护等功能,因此具有高可靠性。当检测到LED开路时,其输出闪烁频率会加倍。在高输入电压条件下,为了控制IC的发热量并保护LED负载,IC的输出PWM占空比会降低。

驱动 驱动器
文件: 总31页 (文件大小:1277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Automotive LED Driver Series  
50 V 1.5 A 1ch LED Driver for 2 Wheeler Turn  
Indicator  
BD18327EFV-M  
General Description  
Key Specifications  
BD18327EFV-M is 50 V-withstanding 1.5 A 1ch LED Driver  
for 2 Wheeler Turn Indicator. It has built-in CR Timer for LED  
blinking control. The IC provides high reliability because it  
has LED open detection, short circuit protection, over  
voltage protection. In case of LED open detection, output  
blinking rate is doubled. Under high input voltage condition,  
output PWM ON Duty reduces to control heat dissipation  
across the IC and protect the LED load.  
Input Voltage Range:  
OUT Pin Maximum Output Current:  
OUT Pin ON Resistance for High Mode: 0.8 Ω (Max)  
Circuit Current at Power Saving Mode:  
100 μA (Max)  
6.0 V to 18.0 V  
1.5 A  
CR Timer Frequency Range:  
Operating Temperature Range:  
150 Hz to 1 kHz  
-40 °C to 125 °C  
Features  
Package  
HTSSOP-B20  
W (Typ) x D (Typ) x H (Max)  
6.5 mm x 6.4 mm x 1.0 mm  
AEC-Q100 Qualified(Note 1)  
Functional Safety Supportive Automotive Products  
Flasher SW Resistance Detection  
Power Saving Mode  
Built-in CR Timer  
LED Open Detection  
Disable LED Open Detection Function  
at Reduced-voltage  
Short Circuit Protection (SCP)  
Over Voltage Protection (OVP)  
Output PWM ON Duty Control  
during High Input Voltage  
(Note 1) Grade1  
Applications  
2 Wheeler Turn Indicator  
Typical Application Circuit  
Flasher SW  
RSE  
SOURCE  
SE  
OUT  
OUTS  
VREG  
RSSE  
VREG  
VIN  
SSE  
DIN  
CVREG  
VIN  
RCRT1  
Left  
Left  
Front  
Rear  
DISC  
CRT  
ZD  
CVIN  
RVDR1  
+B  
RCRT2  
BD18327EFV-M  
VDR  
ZD_OP  
VREG  
RVSCP1  
RVSCP2  
CCRT  
RVDR2  
RVOP1  
VSCP  
TEST  
VOP  
RVOP2  
Right  
Front  
Right  
Rear  
PSSW  
GND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
1/28  
BD18327EFV-M  
Pin Configuration  
HTSSOP-B20  
(TOP VIEW)  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SOURCE  
SE  
OUT  
OUTS  
3
N.C.  
N.C.  
4
SSE  
VREG  
5
N.C.  
N.C.  
EXP-PAD  
6
VIN  
DISC  
7
N.C.  
CRT  
8
VDR  
VOP  
PSSW  
VSCP  
TEST  
GND  
9
10  
Pin Description  
Pin No.  
Pin Name  
Function  
Power PMOS source pin  
1
2
SOURCE  
SE  
Output current sense input pin  
No internal connection(Note 1)  
3
N.C.  
SSE  
Output current sense input in Low Mode  
No internal connection(Note 1)  
Power supply input  
4
N.C.  
5
6
VIN  
7
N.C.  
No internal connection(Note 1)  
PWM ON Duty setting  
8
VDR  
Open detection threshold setting pin  
Programmable ground pin  
GND  
9
VOP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
-
PSSW  
GND  
TEST  
VSCP  
CRT  
The test pin connects to GND  
Short detection threshold setting pin  
CR timer setting1  
CR timer setting2  
DISC  
N.C.  
No internal connection(Note 1)  
Regulated voltage pin  
VREG  
N.C.  
No internal connection(Note 1)  
Output sense pin  
OUTS  
OUT  
Output pin  
EXP-PAD  
The EXP-PAD connect to GND.  
(Note 1) Leave this pin unconnected.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
2/28.  
BD18327EFV-M  
Block Diagram  
SOURCE  
SE  
SSE  
VIN  
OUT  
LED Open Det.  
/ SCP  
High Mode  
DRV  
VIN  
Low Mode  
DRV  
VBG  
Bandgap  
Ref (BG)  
PSM  
VBG  
Flasher SW  
Monitor  
VREG  
VDR  
VREG  
OUTS  
PSSW  
VREG  
0.95 V  
/ 1.0 V  
PWM ONDuty  
Control  
VREG  
PSSW  
CRT  
LOGIC  
CR TIMER  
&
DIVIDER  
DISC  
VIN  
40 mV  
VOP  
VREG  
VBG  
VIN  
VSE  
UVLO  
TSD  
VSCP  
TEST  
VBG  
LED OPEN Det. / SCP  
GND  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
3/28.  
BD18327EFV-M  
Description of Blocks  
(Unless otherwise specified, Ta = 25 °C, VIN = 13 V, and numbers are “Typical” values.)  
1
Operation mode description  
1.1 Power Saving Mode (PS Mode)  
After power on, the IC starts up in power saving mode. The current consumption of the IC is limited to 100 μA or less,  
and it is possible to reduce the power consumption when the Flasher SW is off. In the PS mode, the MOSFET built into  
the PSSW pin can be turned off to shut off the current flowing to the external resistor. When the Power Saving Mode is  
released, the IC monitors the VIN pin voltage, and when the UVLO VIN Release Voltage (5.0 V (Typ)) is exceeded, the  
IC shifts to Flasher SW Monitor Mode. The release condition for the power saving mode is expressed by the following  
equation.  
푂푈푇_푃푆푀 × 푅푃푆푀 ×> 푃푆푀_ꢀ퐸퐿  
푎푛푑  
> 푈ꢂ퐿푂ꢀ  
ꢁ푁  
ꢃꢄ  
푂푈푇_푃푆푀  
=
ꢅꢆꢇ  
+ꢀ +ꢀ  
ꢆ푊 ꢈꢉ퐷  
where:  
푂푈푇_푃푆푀  
푃푆푀  
is the OUT pin current in Power Saving Mode.  
is the Power Saving Mode Internal Resistance.  
is the Power Saving Mode Release Threshold.  
is the VIN pin voltage.  
푃푆푀_ꢀ퐸퐿  
ꢁ푁  
푈ꢂ퐿푂ꢀ  
퐿퐸ꢊ  
푆ꢋ  
is the UVLO VIN Release Voltage.  
is the LED board resistance.  
is the Flasher SW resistance.  
Solving above equation for RSW  
ꢃꢄ  
푆ꢋ < 푅푃푆푀  
×
− 푅푃푆푀 − 푅퐿퐸ꢊ  
ꢅꢆꢇ_ꢌꢉꢈ  
VIN  
VIN  
VDR  
Flasher  
SW  
Left Side  
VIN  
RA  
RB  
OUT  
to Logic  
VOP  
RSW  
PSSW  
RF Lamp  
RR Lamp  
RLED  
RPSM = RA+RB  
PSSW  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
4/28.  
BD18327EFV-M  
1
Operation mode description – continued  
1.2 Flasher SW Monitor Mode  
When PS Mode is released, the IC shifts to Flasher SW Monitor Mode. When the IC shifts to Flasher SW monitor mode,  
the constant current source for SW resistance monitoring turns on and monitoring of the OUTS pin voltage starts.  
The constant current source turns ON only in the ON Duty section set by CR timer, and the judgment of the SW monitor  
also becomes only in this section. After switching from PS mode, if the OUTS pin voltage is VOUTS_ON (0.95 V (Typ)) or  
more within 8 CLK cycle, the IC returns to PS mode again.  
Condition for IC to go from Flasher SW Monitor Mode to Blinking High Mode:  
After switching from PS mode, if the OUTS pin voltage falls below VOUTS_ON (0.95 V (Typ)) within 8 CLK cycles, the IC  
shifts to the blinking High mode. The Blinking High Mode transition conditions are as follows.  
(
)
푂푈푇푆 = 퐼푂푈푇_푆ꢋ푀푂푁ꢁ × 푅푆ꢋ ꢍ 푅퐿퐸ꢊ < 푂푈푇푆_푂푁  
ꢆꢆꢉ_퐹퐵  
푂푈푇_푆ꢋ푀푂푁ꢁ  
=
ꢆꢆꢉ  
(
)
+ꢀ  
ꢈꢉ퐷  
ꢆ푊  
< 퐾ꢎ퐿푂푁  
ꢆꢆꢉ  
where:  
푂푈푇푆  
is the OUTS pin voltage.  
푂푈푇_푆ꢋ푀푂푁ꢁ  
is the OUT pin current in Flasher SW Monitor Mode.  
푆푆퐸_ꢏꢎ  
is the SSE pin Feedback Voltage.  
푆푆퐸  
푆ꢋ  
is the Constant Current Setting Resistor.  
is the Flasher SW resistance.  
퐿퐸ꢊ  
is the LED board resistance.  
푂푈푇푆_푂푁  
ꢎ퐿푂푁  
is the Blinking ON Threshold Voltage.  
is the Blinking ON Threshold Constant. ( KBLON = VOUTS_ON / VSSE_FB  
)
RSSE  
RSE  
+B  
VIN  
SSE  
SE  
Internal MOSFET  
for Blinking High Mode  
VSSE_FB  
: 0.95 V  
OFF  
Flasher  
Left Side  
SW  
Constant Current Source  
for Flasher SW Monitor  
OUT  
IOUT_SWMONI  
OUTS  
From Logic  
RSW  
RF Lamp  
RR Lamp  
RLED  
to Logic  
CR TIMER  
VOUTS_ON: 0.95 V  
/ VOUTS_OFF: 1.0 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
5/28.  
BD18327EFV-M  
1
Operation mode description – continued  
1.3 Blinking High Mode  
The Blinking High mode continues for 256 CLK cycles. During Blinking High Mode, the constant current source for  
Flasher SW monitoring and the comparator built into the OUTS Pin turn off. During this period, the IC performs LED  
Open Detection, SW Open Detection and Short Circuit Protection. After 256 CLK cycles, the IC shifts to Blinking Low  
Mode.  
RSSE  
RSE  
+B  
VIN  
SSE  
SE  
Internal MOSFET  
for Blinking High Mode  
VSSE_FB  
: 0.95 V  
Flasher  
Left Side  
SW  
OUT  
OFF  
From Logic  
RSW  
RF Lamp  
OUTS  
RR Lamp  
RLED  
to Logic  
OUTS_ON: 0.95 V  
V
/ VOUTS_OFF: 1.0 V  
OFF  
1.4 Blinking Low Mode  
When the IC enters Blinking Low Mode, the internal counter starts counting. After 256 CLK cycles, the IC shifts to  
Blinking High Mode. If the OUTS pin voltage reaches VOUTS_OFF (1.0 V (Typ)) or more before 256 CLK cycles elapse,  
the IC returns to Flasher SW Resistance Monitor Mode again. The Flasher Switch Monitor Mode transition conditions  
are as follows.  
푂푈푇푆 > 푂푈푇푆_푂ꢏꢏ  
(
)
+ꢀ  
ꢈꢉ퐷  
ꢆ푊  
> 퐾ꢎ퐿푂ꢏꢏ  
ꢆꢆꢉ  
where:  
푂푈푇푆_푂ꢏꢏ  
ꢎ퐿푂ꢏꢏ  
is the Blinking OFF Threshold Voltage.  
is the Blinking OFF Threshold Constant. ( KBLOFF = VOUTS_OFF / VSSE_FB  
)
RSSE  
RSE  
+B  
VIN  
SSE  
SE  
Internal MOSFET  
for Blinking High Mode  
VSSE_FB  
: 0.95 V  
OFF  
Flasher  
Left Side  
SW  
Constant Current Source  
for Flasher SW Monitor  
OUT  
IOUT_SWMONI  
OUTS  
From Logic  
RSW  
RF Lamp  
RR Lamp  
RLED  
to Logic  
CR TIMER  
VOUTS_ON: 0.95 V  
/ VOUTS_OFF: 1.0 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
6/28.  
BD18327EFV-M  
1
Operation mode description – continued  
1.5 Flasher SW Open Detection (SWOP)  
If voltage drop across external resistance RSE drops below a certain value, Flasher SW open is detected.  
When the Flasher SW open is detected, the IC shifts from Blinking High mode to Power Saving Mode.  
Flasher SW Open detection can only be detected in Blinking High Mode.  
The Flasher SW Open Detection condition can be calculated by the following formula.  
ꢁ푁_푆퐸  
> 푉  
푆ꢋ푂푃  
where:  
is the VIN to SE voltage.  
is the Flasher SW Open Detection Threshold.  
ꢁ푁_푆퐸  
푆ꢋ푂푃  
VIN  
RSE  
VIN  
SE  
SOURCE  
LOGIC  
VSWOP  
40 mV  
:
DRV  
OUT  
Hi-Z  
Hi-Z  
RSW < RPSM × VIN / VPSM_REL - RPSM - RLED  
RSW > RPSM × VIN / VPSM_DET - RPSM - RLED  
RSW  
RSW < KBL_ON×RSSE - RLE D  
RSW > KBL_OFF×RSSE - RLED  
VIN_SE  
ON : 256 CLK  
cycles  
OFF : 256 CLK  
cycles  
ON : 256 CLK  
cycles  
OFF  
VOUT < VIN - VPSM_REL (1.0 V)  
VIN  
VIN  
VOUT  
=
VOUT < VIN - VPSM_DET (0.9 V)  
VOUTS  
VOUTS < VOUTS_ON (0.95 V)  
VOUTS > VOUTS_OFF (1.0 V)  
8 CLK  
Cycles  
Flasher  
SW  
Monitor  
Mode  
Power  
Saving  
Mode  
Flasher SW  
Monitor  
Mode  
Power  
Saving  
Mode  
Blinking Mode  
(High / Low)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
7/28.  
BD18327EFV-M  
1.5 Flasher SW Open Detection (SWOP) – continued  
Hi-Z  
Hi-Z  
RSW > RPSM × VIN / VPSM_DET - RPSM - RLE D  
RSW < RPSM × VIN / VPSM_REL - RPSM - RLED  
RSW  
RSW < KBL_ON×RSSE - RLE D  
VIN_SE  
VIN_SE < 50 mV  
ON : 256 CLK  
cycles  
OFF : 256 CLK  
cycles  
ON : 256 CLK  
cycles  
OFF : 256 CLK  
cycles  
ON  
VOUT < VIN - VPSM_REL (1.0 V)  
VOUT < VIN - VPSM_DET (0.9 V)  
VIN  
VIN  
VOUT  
=
VOUTS  
VOUTS < VOUTS_ON (0.95 V)  
8 CLK  
Cycles  
Flasher  
SW  
Monitor  
Mode  
Power  
Saving  
Mode  
Flasher SW  
Monitor  
Mode  
Power  
Saving  
Mode  
Blinking Mode  
(High / Low)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
8/28.  
BD18327EFV-M  
1
Operation mode description – continued  
1.6 LED Open Detection Mode (LEDOP)  
This LSI can detect LED open. In case of LED open inform the fault condition to user by double blinking. On detection  
of fault IC starts operating the outputs on almost 1/2 blinking period (double blink operation). If voltage drop across  
external resistance RSE drops below a certain value, LED open is detected. The LED open detection condition can be  
calculated by the following formula.  
ꢁ푁_푆퐸  
< 푂푃퐸푁 & 푉 > 푉  
ꢁ푁_푂푃푀  
ꢁ푁  
푂푃  
=
푂푃퐸푁  
10  
ꢐꢑꢅ2  
푂푃 = (푉 푍ꢊ_푂푃) ×  
ꢁ푁  
+ꢀ  
ꢐꢑꢅ2  
ꢐꢑꢅꢒ  
where:  
ꢁ푁_푆퐸  
is the VIN to SE voltage.  
푂푃퐸푁  
ꢁ푁  
is the LED Open Detection Threshold Voltage.  
is the VIN pin voltage.  
is the Disable LED Open Detection Function at Reduced-voltage.  
ꢁ푁_푂푃푀  
푂푃  
is the VOP pin voltage.  
푍ꢊ_푂푃  
ꢂ푂푃ꢓ  
ꢂ푂푃ꢔ  
is the characteristic Zener voltage of diode ZD_OP (chosen based on output voltage).  
is the LED Open Detection Threshold Setting Resistor 1.  
is the LED Open Detection Threshold Setting Resistor 2.  
VIN  
RSE  
VIN  
VIN  
SE  
SOURCE  
LOGIC  
VOPEN  
ZD_OP  
RVOP1  
RVOP2  
VOP  
DRV  
PSSW  
OUT  
Transition when  
< VOP/10  
Transition when  
VIN_SE > VOP/10  
V
IN_SE  
Normal Blinking  
LED Open  
Normal Blinking  
OFF:  
256 CLK cycles  
ON:  
256 CLK cycles  
OFF: 112  
ON: 112  
OFF: 112  
ON:  
256 CLK cycles  
OFF: 256  
CLK cycles  
ON:  
256 CLK cycles  
CLK cycles CLK cycles CLK cycles  
VIN_SE  
increases  
LED Open  
Detection Masked  
Masked  
Masked  
VIN_SE  
VOP/10  
LED Open Detection  
Threshold  
VIN_SE decreases  
CLK  
PWM  
VOUT  
Completes previous pattern of 256  
cycles, before double blinking  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
9/28.  
BD18327EFV-M  
1
Operation mode description – continued  
1.7 Short Circuit Protection Mode (SCP)  
When voltage drop across RSE rises above a certain value, short circuit is detected.  
When short circuit is detected, the MOSFET connected to the OUT pin is turned off to prevent overcurrent from flowing  
into the IC. The Short Circuit Protection condition can be calculated by the following formula.  
ꢁ푁_푆퐸  
> 푉  
푆퐻푂ꢀ푇  
ꢆ퐶ꢅ  
푆퐻푂ꢀ푇  
=
ꢐꢆ퐶ꢅ2  
푆ꢕ푃  
= ꢀ퐸퐺  
×
+ꢀ  
ꢐꢆ퐶ꢅ2  
ꢐꢆ퐶ꢅꢒ  
where:  
ꢁ푁_푆퐸  
is the VIN to SE voltage.  
푆ꢕ푃  
is the Short Circuit Protection Threshold Voltage .  
is the VSCP pin voltage.  
푆퐻푂ꢀ푇  
ꢂ푆ꢕ푃ꢓ  
ꢂ푆ꢕ푃ꢔ  
is the SCP Threshold Setting Resistor 1.  
is the SCP Threshold Setting Resistor 2.  
VIN  
RSE  
VIN  
SE  
SOURCE  
VSHORT  
LOGIC  
DRV  
VREG  
RVSCP1  
VSCP  
RVSCP2  
OUT  
Transition when  
Transition when  
VIN_SE > VSCP/2  
VIN_SE < VSCP/2  
Normal Blinking  
Short Circuit  
Normal Blinking  
ON:  
256 CLK cycles  
OFF:  
256 CLK cycles  
ON:  
256 CLK cycles  
OFF:  
256 CLK cycles  
ON:  
256 CLK cycles  
VIN_SE increases  
Short Circuit  
Protection Masked  
Short Circuit  
Protection Masked  
VSCP / 2  
Short Circuit  
VIN_SE  
Protection Threshold  
CLK  
PWM  
VOUT  
Short Circuit detected  
on rising edge of  
Blinking ON cycle  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
10/28.  
BD18327EFV-M  
Description of Blocks – continued  
2
State Transition Diagram  
Power Saving Mode  
(IVIN_PS < 100 μA)  
VOUTS < VIN - VPSM_REL (1.0 V)  
Under Voltage  
Lock out (UVLO)  
VIN > VUVLOR (5.0 V)  
VIN < VUVLOD (4.5 V)  
Yes  
Flasher  
SW Monitor  
Mode  
check if  
VOUTS > VIN - VPSM_DET (0.9 V)  
8 Counts starts  
No  
check if  
VOUTS < VOUTS_ON (0.95 V)  
in every CLK ON cycle  
Monitor RSW  
1 Count starts  
No  
Yes  
LED Open  
Detection Mode  
Flasher SW  
Open Detection  
VIN_SE > VOP / 10  
Double Blink High Mode:  
112 ON cycles  
VIN_SE < VSWOP (40 mV)  
112 cycles  
over  
112 cycles  
over  
112 OFF cycles  
112 cycles  
over  
Double Blink Low Mode:  
112 OFF cycles  
each  
"ON"  
cycles  
Blinking High Mode  
: 256 ON cycles  
VIN_SE < VOP / 10 and 256 cycles over  
VIN_SE > VSCP / 2  
VOUTS > VOUTS_OFF (1.0 V)  
256  
cycles  
over  
256  
cycles  
over  
Blinking High Mode:SCP  
(Internal MOSFET OFF)  
each  
"OFF"  
cycles  
Blinking Low Mode  
: 256 OFF cycles  
256 OFF cycles  
256 cycles  
over  
Short Circuit  
Protection Mode  
OVP/TSD  
Release  
OVP/TSD  
Detect  
OVP/TSD: Driver Shutdown  
(Internal MOSFET OFF)  
State transitions uninterrupted  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
11/28.  
BD18327EFV-M  
Description of Blocks – continued  
3
CR Timer  
This IC determines the flasher cycle from the internal clock generated by CR timer. The CR timer period, ON Duty, can be  
set by the external resistor RCRT1, RCRT2 and the capacitance CCRT  
.
(1) CRT ramp up Time t1 and CRT ramp down Time t2  
CRT ramp up Time t1 and CRT ramp down Time t2 can be defined from the following equations.  
Make sure that t2 is set PWM Minimum Pulse Width tMIN (100 μs) or more.  
(
)
×ꢕ  
+ꢀ  
퐶ꢌꢖꢒ  
퐶ꢌꢖ2  
퐶ꢌꢖ  
=  
=  
[s]  
퐶ꢗ퐴  
(
)
+ꢀ ×ꢕ  
퐶ꢌꢖ2  
퐶ꢌꢖ  
[s]  
퐷ꢃꢆ  
When RCRT2 >> RD  
×ꢕ  
퐶ꢌꢖ2  
퐶ꢌꢖ  
=  
[s]  
퐷ꢃꢆ  
where:  
ꢕꢀ푇ꢓ  
ꢕꢀ푇ꢔ  
ꢊ  
is the CR Timer Time Setting Resistor 1.  
is the CR Timer Time Setting Resistor 1.  
is the DISC Pin ON Resistance.  
ꢕꢀ푇  
ꢕ퐻ꢚ  
ꢊꢁ푆  
is the CR Timer Time Setting Capacitor.  
is the CR Timer Charge Constant.  
is the CR Timer Discharge Constant.  
(2) Internal clock frequency fCLK and ON Duty DON  
Internal clock frequency and internal clock ON Duty is defined by t1 and t2.  
=
=
[Hz]  
[%]  
ꢕ퐿ꢛ  
ꢜ +ꢜ  
2
2
푂푁  
ꢜ +ꢜ  
2
CRT voltage ramp down  
CRT voltage ramp up  
VCRT_DIS = 1.75 V (Typ)  
VREG  
RCRT1  
CRT pin  
waveform  
VCRT  
DISC  
CRT  
to Logic  
RCRT2  
VCRT_CHA = 0.95 V (Typ)  
t2  
t1  
CCRT  
Internal  
Clock  
0.95 V /  
1.75 V  
Waveform  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
12/28.  
BD18327EFV-M  
Description of Blocks – continued  
4
Output PWM ON Duty Control during high input voltage  
This IC has built in Output PWM ON Duty Control during high input voltage which protects the output LEDs.  
VDR pin voltage which is generated externally by dividing VIN pin voltage is compared with CRT pin voltage to generate  
PWM signal. When VDR > VCRT, the internal MOSFET for Blinking High Mode is turned off and the increase in average  
current flowing to the LED can be reduced.  
Output PWM ON Duty DON_PWM is represented by following expression.  
ꢞꢂ  
퐷ꢌ  
퐶ꢌꢖ_퐷ꢃꢆ  
푂푁  
=
[%]  
ꢞꢂ  
퐶ꢌꢖ_퐷ꢃꢆ  
퐶ꢌꢖ_퐶ꢗ퐴  
ꢐ퐷ꢌ2  
ꢊꢀ = 푉  
×
[%]  
ꢁ푁  
+ꢀ  
ꢐ퐷ꢌꢒ  
ꢐ퐷ꢌ2  
where:  
is the CRT Pin Discharge Voltage.  
is the CRT Pin Charge Voltage.  
is the VDR pin voltage.  
ꢕꢀ푇_ꢊꢁ푆  
ꢕꢀ푇_ꢕ퐻ꢚ  
ꢊꢀ  
ꢁ푁  
is the VIN pin voltage.  
ꢂꢊꢀꢓ  
ꢂꢊꢀꢔ  
is the Output ON Duty Setting Resistor 1.  
is the Output ON Duty Setting Resistor 2.  
However,  
VDR ≤ VCRT_CHA : ON Duty = 100 %  
VDR ≥ VCRT_DIS : ON Duty = 0 %  
Make sure to connect resistors for voltage division of VIN to fix the voltage on the VDR pin as shown in figure.  
Example-  
For RVDR1 = 47 kΩ and RVDR2 = 3.4 kΩ  
When VIN = 14 V,  
When VIN = 18 V,  
VDR = 0.944 V & ON Duty = 100 %  
VDR = 1.214 V & ON Duty = 66 %  
So as VIN increases the PWM duty cycle decreases.  
VIN  
VDR  
VCRT  
VCRT & VDR  
VIN  
RVDR1  
VDR  
PWM  
Signal  
to Logic  
RVDR2  
Internal Clock  
(CLK) Signal  
VREG  
RCRT1  
RCRT2  
CCRT  
1 CLK Cycle  
DISC  
CRT  
to Logic  
Blinking Cycle  
256 CLK Cycles  
256 CLK Cycles  
One Blinking Cycle = 512 CLK cycles  
LED  
Current  
0.95 V /  
1.75 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
13/28.  
BD18327EFV-M  
Description of Blocks – continued  
5
Reference Voltage (VREG)  
Reference voltage VREG 5.0 V (Typ) is generated from VIN input voltage. This voltage is used as power source for the  
internal circuit, and also used to fix the voltage of pins outside LSI to HIGH side. The VREG pin must be connected with CVREG  
= 1.0 μF to 10 μF to ensure capacity for the phase compensation. If CVREG is not connected, the circuit behavior would become  
extraordinarily unstable, for example with the oscillation of the reference voltage.  
The VREG pin voltage must not be used as power source for other devices than this LSI.  
VREG circuit has a built-in UVLO function. The IC is activated when the VREG pin voltage rises to 3.5 V (Typ) or higher, and  
shuts down when the VREG pin voltage drops to 2.0 V (Typ) or lower.  
6
7
Under Voltage Lock-Out (UVLO)  
This IC has built-in under voltage lock-out function (UVLO).  
For VIN ramp-up UVLO is active till VIN = 5.0 V (Typ). For VIN ramp down UVLO gets active when VIN = 4.5 V (Typ).  
UVLO shuts down all circuit blocks other than regulator (VREG) block.  
UVLO is also dependent on VREG voltage. At ramp-up UVLO is released when VREG > 3.5 V and at ramp down UVLO is  
enabled when VREG = 2.0 V.  
Over Voltage protection (OVP)  
This LSI has a function to turn off output and prevent deterioration of load when VIN Pin voltage exceeds 25.5 V (Typ).  
When OVP is detected, after the supply voltage drops more than hysteresis width of 500 mV (Typ) below OVP, it returns to  
normal state.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
14/28.  
BD18327EFV-M  
Timing Chart  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
15/28.  
BD18327EFV-M  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
VIN  
Rating  
Unit  
V
VIN Voltage  
-0.3 to +50.0  
SOURCE, SE, SSE, OUT, OUTS,  
PSSW, VDR, VOP Voltage  
VSOURCE, VSE, VSSE, VOUT, VOUTS  
,
-0.3 to +VIN+0.3 V  
V
VPSSW, VDR, VOP  
VIN_SOURCE  
VIN_SE  
VIN_SSE  
,
VIN to SOURCE, VIN to SE,  
VIN to SSE Voltage  
,
-0.3 to +5.0  
V
VREG Voltage  
VREG  
-0.3 to +7.0  
-0.3 to VREG+0.3 V  
-55 to +150  
150  
V
V
DISC, CRT, VSCP, TEST  
Voltage  
VDISC, VCRT, VSCP, VTEST  
Storage Temperature Range  
Tstg  
°C  
°C  
Maximum Junction Temperature  
Tjmax  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
HTSSOP-B20  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
103.50  
10.00  
31.40  
4.00  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air), using a BD18327 Chip.  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top centre of the outside surface  
of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Thermal Via(Note 5)  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
16/28.  
BD18327EFV-M  
Recommended Operating Conditions  
Parameter  
Symbol  
VIN  
Min  
6.0  
Typ  
Max  
18.0  
Unit  
V
Supply Voltage(Note 1)  
13.0  
OUT Pin Maximum Output Current  
PWM Minimum Pulse Width  
PWM Frequency  
IOUT_MAX  
tMIN  
-
-
-
-
-
1.5  
-
A
100  
150  
-40  
µs  
Hz  
°C  
fPWM  
1000  
+125  
Operating Temperature  
Topr  
(Note 1) ASO should not be exceeded.  
Recommended Setting Parts Range  
Parameter  
Symbol  
CVIN  
Min  
1.0  
Max  
10.0  
10.0  
10  
Unit  
μF  
μF  
kΩ  
Ω
Power Supply Input Capacitor  
Reference Voltage Output Pin Capacitor  
Constant Current Setting Resistor  
Output Current Sense Resistor  
CR Timer Time Setting Resistor 1  
CR Timer Time Setting Resistor 2  
CR Timer Time Setting Capacitor  
SCP Threshold Setting Resistor 1  
SCP Threshold Setting Resistor 2  
CVREG  
RSSE  
1.0  
0.04  
0.065  
1.0  
RSE  
10  
RCRT1  
RCRT2  
CCRT  
100  
100  
1.00  
100  
100  
100  
100  
100  
100  
kΩ  
kΩ  
μF  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
1.0  
0.01  
10  
RVSCP1  
RVSCP2  
RVOP1  
RVOP2  
RVDR1  
RVDR2  
4.7  
LED Open Detection Threshold Setting  
Resistor 1  
LED Open Detection Threshold Setting  
Resistor 2  
10  
4.7  
Output PWM ON Duty Setting Resistor 1  
Output PWM ON Duty Setting Resistor 2  
4.7  
4.7  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
17/28.  
BD18327EFV-M  
Electrical Characteristics  
(Unless otherwise specified VIN = 13 V Ta = -40 °C to + 125 °C, CVREG = 4.7 µF)  
Parameter  
Symbol  
IVIN_NOM  
IVIN_PS  
Min  
Typ  
Max  
Unit  
mA  
μA  
Condition  
Circuit Current  
at Normal Mode  
Circuit Current  
at Power Saving Mode  
-
-
-
-
10  
100  
OUT: OPEN  
IL = 2 mA  
[VREG]  
Reference Voltage  
VREG  
4.750  
-
5.000  
0.95  
5.250  
-
V
V
[Current Driver for Low Mode]  
SSE Pin Feedback Voltage  
VSSE_FB  
[Flasher SW Resistance Monitor Mode]  
Blinking ON Threshold  
Voltage  
VOUTS_ON  
VOUTS_OFF  
KBLON  
-
0.95  
1.00  
1.00  
1.05  
-
V
V
-
VOUTS = Sweep down  
VOUTS = Sweep up  
Blinking OFF Threshold  
Voltage  
-
-
Blinking ON Threshold  
Constant  
0.95  
1.00  
1.05  
1.11  
KBLON = VOUTS_ON / VSSE_FB  
KBLOFF = VOUTS_OFF / VSSE_FB  
Blinking OFF Threshold  
Constant  
KBLOFF  
-
[Power Saving Mode]  
Power Saving Mode  
Release Threshold  
VPSM_REL  
VPSM_DET  
RPSM  
0.5  
0.4  
8
1.0  
0.9  
15  
1.5  
1.4  
21  
V
V
VOUT = Sweep down  
VOUT = Sweep up  
Power Saving Mode  
Detect Threshold  
Power Saving Mode  
Internal Resistance  
kΩ  
[Output Section]  
OUT Pin ON Resistance  
for High Mode  
RON_OUT  
RLON_OUT  
ILEAK_OUT  
-
-
-
0.4  
10  
-
0.8  
-
Ω
Ω
IOUT = 0.5 A  
IOUT = 20 mA  
VOUT = 13 V  
OUT Pin ON Resistance  
for Low Mode  
OUT Pin Leakage Current  
[CR Timer Section]  
10  
µA  
VREG  
0.18  
x
VREG  
0.19  
x
VREG  
0.20  
x
CRT Pin Charge Voltage  
VCRT_CHA  
VCRT_DIS  
RD  
V
V
Ω
-
VCRT = Sweep down  
VCRT = Sweep up  
IL = 10 mA  
VREG  
0.33  
x
VREG  
0.35  
x
VREG  
0.37  
x
CRT Pin Discharge Voltage  
DISC Pin ON Resistance  
CR Timer Charge Constant  
-
10  
20  
NCHA  
4.31  
1.55  
4.54  
1.64  
4.77  
1.73  
CR Timer Discharge Constant  
[COUNTER Section]  
NDIS  
-
Flasher SW Resistance  
Detection Circuit Count Number  
NCOUNT  
TBL_NOM  
TBL_LEDOP  
DON  
7
-
10  
-
s
Blinking Cycle Time  
at Normal Mode  
1 / fCLK  
x 511  
1 / fCLK  
x 512  
1 / fCLK  
x 513  
Blinking Cycle Time  
at LED Open Detection  
1 / fCLK  
x 223  
1 / fCLK  
x 224  
1 / fCLK  
x 225  
s
Blinking ON Duty  
49  
50  
51  
%
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
18/28.  
BD18327EFV-M  
Electrical Characteristics - continued  
(Unless otherwise specified VIN = 13 V Ta = -40 °C to + 125 °C, CVREG = 4.7 µF)  
Parameter  
[PSSW Section]  
PSSW ON Resistance  
Symbol  
Min  
Typ  
Max  
Unit  
Ω
Condition  
RPSSW  
-
4
10  
IPSSW = 30 mA  
[LED Open Detection/ Short Circuit Protection]  
VIN = Sweep down  
Detect  
7.85  
8.00  
-
8.25  
8.45  
0.20  
-
8.65  
8.90  
-
V
V
Disable LED Open Detection  
VIN_OPM  
VIN = Sweep up  
Release  
Function at Reduced-voltage  
VIN  
Hysteresis  
V
1.0  
1.0  
1.0  
VIN – 4.0  
10.0  
2.5  
V
VIN < 14 V  
VIN > 14 V  
VOP Pin  
VOP  
Input Voltage Range  
_RANGE  
-
V
VSCP Pin  
VSCP  
-
V
Input Voltage Range  
_RANGE  
LED Open Detection  
Threshold Voltage 1  
(VOP /10)  
- 5  
(VOP /10)  
+ 5  
VIN_SE = Sweep down  
VOP ≤ 2.5 V  
VOPEN1  
VOPEN2  
VSWOP  
VSHORT  
VOP /10  
VOP /10  
40  
mV  
mV  
LED Open Detection  
Threshold Voltage 2  
(VOP /10)  
- 6.5  
(VOP /10)  
+ 6.5  
VIN_SE = Sweep down  
VOP > 2.5 V  
Flasher SW Open Detection  
Threshold Voltage  
27  
53  
mV VIN_SE = Sweep down  
Short Circuit Protection  
Threshold Voltage  
VSCP/2  
-0.065  
VSCP/2  
+0.065  
VSCP/2  
V
VIN_SE = Sweep up  
[VIN UVLO]  
UVLO VIN  
Detect Voltage  
VUVLOD  
VUVLOR  
4.0  
4.5  
4.5  
5.0  
5.0  
5.5  
V
V
VIN = Sweep down  
UVLO VIN  
Release Voltage  
VIN = Sweep up,  
VREG > 3.5 V  
[Overvoltage Protection]  
Over Voltage Protection  
Threshold Voltage  
VOVP  
22.95  
250  
25.50  
500  
28.05  
750  
V
VIN = Sweep up  
Over Voltage Protection  
Hysteresis Voltage  
VOVPHYS  
mV  
VIN = Sweep down  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
19/28.  
BD18327EFV-M  
Typical Performance Curve  
(Unless otherwise specified VIN = 13 V Ta = -40 °C to + 125 °C, CVREG = 4.7 µF)  
1.10  
1.00  
0.90  
0.80  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
VIN = 6 V  
VIN = 12 V  
VIN = 24 V  
VIN = 12 V  
VIN = 24 V  
-50 -25  
0
25 50 75 100 125  
-50 -25  
0
25 50 75 100 125  
Temperature [°C]  
Temperature [°C]  
Figure 1. Reference Voltage vs Temperature  
Figure 2. CRT Pin Charge Voltage vs Temperature  
0.8  
0.6  
0.4  
1.90  
1.80  
1.70  
1.60  
1.50  
VIN = 4 V  
VIN = 12 V  
VIN = 24 V  
VIN = 12 V  
VIN = 24 V  
0.2  
0.0  
-50 -25  
0
25 50 75 100 125  
-50 -25  
0
25 50 75 100 125 150  
Temepature [°C]  
Temperature [°C]  
Figure 3. CRT Pin Discharge Voltage vs Temperature  
Figure 4. Out Pin ON Resistance for High Mode  
vs Temperature  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
20/28.  
BD18327EFV-M  
Typical Performance Curve - continued  
(Unless otherwise specified VIN = 13 V Ta = -40 °C to + 125 °C, CVREG = 4.7 µF)  
155.0  
153.0  
151.0  
149.0  
147.0  
145.0  
105.0  
103.0  
101.0  
99.0  
VIN = 9 V  
VIN = 12 V  
VIN = 24 V  
VIN = 9 V  
VIN = 12 V  
VIN = 24 V  
97.0  
95.0  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 5. LED Open Detection Threshold Voltage  
at VOP = 1.5 V, VOPEN = 150 mV  
vs Temperature  
Figure 6. LED Open Detection Threshold Voltage  
at VOP = 1.0 V, VOPEN = 100 mV  
vs Temperature  
0.600  
0.550  
0.500  
1.350  
1.300  
1.250  
VIN = 6 V  
VIN = 12 V  
VIN = 24 V  
VIN = 6 V  
VIN = 12 V  
VIN = 24 V  
1.200  
1.150  
0.450  
0.400  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 7. Short Circuit Protection Threshold Voltage  
at VSCP = 1.0 V, VSHORT = 0.500 V  
vs Temperature  
Figure 8. Short Circuit Protection Threshold Voltage  
at VSCP = 2.5 V, VSHORT = 1.250 V  
vs Temperature  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
21/28.  
BD18327EFV-M  
Application Example  
VIN = 13 V, CLK frequency 763 Hz (duty = 100 %), Blinking frequency: 1.49 Hz, IOUT = 687 mA  
Flasher SW  
RSE  
SOURCE  
SE  
OUT  
OUTS  
VREG  
RSSE  
VREG  
VIN  
SSE  
DIN  
VIN  
CVREG  
Left  
Front  
Left  
Rear  
RCRT1  
DISC  
CRT  
ZDIN  
CVIN  
RVDR1  
+B  
RCRT2  
CCRT  
BD18327EFV-M  
VDR  
ZD_OP  
RVDR2  
VREG  
RVSCP1  
RVSCP2  
RVOP1  
VSCP  
TEST  
VOP  
RVOP2  
Right  
Front  
Right  
Rear  
PSSW  
GND  
Recommended Parts List:  
Parts  
IC  
No  
Parts Name  
Value  
UNIT Product Maker  
U1  
BD18327EFV-M  
RFN2LAM6STFTR  
-
-
ROHM  
DIN  
-
-
ROHM  
Diode  
ZDIN  
TND12H-220KB00AAA0  
EDZVFH3.6B  
43  
3.6  
0.51  
360  
68  
5.1  
47  
3.3  
30  
10  
24  
10  
4.7  
2.2  
0.1  
V
NIPPON CHEMICON  
ROHM  
ZD_OP  
RSE  
V
LTR100JZPFLR510  
Ω
Ω
kΩ  
kΩ  
kΩ  
ROHM  
RSSE  
RVDR1  
RVDR2  
RCRT1  
RCRT2  
RVSCP1  
RVSCP2  
RVOP1  
RVOP2  
CVIN  
MCR03EZPFX3600  
MCR03EZPFX6802  
ROHM  
ROHM  
MCR03EZPFX5101  
MCR03EZPFX4702  
MCR03EZPFX3301  
MCR03EZPFX3002  
MCR03EZPFX1002  
MCR03EZPFX2402  
MCR03EZPFX1002  
ROHM  
ROHM  
Resistor  
kΩ  
kΩ  
ROHM  
ROHM  
kΩ  
ROHM  
kΩ  
kΩ  
μF  
μF  
μF  
ROHM  
ROHM  
GCM31CC71H475KA03  
GCM188C71A225KE01  
GCM155R11A104KA01  
murata  
Capacitor  
CVREG  
CCRT  
murata  
murata  
Precautions for board design  
Place CVIN, CVREG in the immediate vicinity of the IC pin. If necessary, connect a bypass capacitor (0.1 μF) close to the IC.  
Select the optimum one for D1 according to the output current.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
22/28.  
BD18327EFV-M  
I/O Equivalence Circuit  
1. SOURCE  
2 . SE  
VIN  
4 . SSE  
VIN VIN  
VIN  
VIN  
SSE  
SE  
OUT  
8. VDR  
9. VOP  
VOP  
10. PSSW  
PSSW  
CLP15V  
VIN  
VIN VREG VREG  
VIN  
VDR  
12. TEST  
TEST  
13 . VSCP  
VSCP  
14 . CRT  
VREG  
VREG  
VREG  
CRT  
15. DISC  
DISC  
17. VREG  
VREG  
19. OUTS  
OUTS  
VREG  
VIN  
20. OUT  
OUT  
VIN  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
23/28.  
BD18327EFV-M  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
TSZ02201-0T1T0B300400-1-2  
© 2021 ROHM Co., Ltd. All rights reserved.  
24/28.  
TSZ22111 • 15 • 001  
25.Nov.2021 Rev.002  
BD18327EFV-M  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 9. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Functional Safety  
“ISO 26262 Process Compliant to Support ASIL-*”  
A product that has been developed based on an ISO 26262 design process compliant to the ASIL level described in  
the datasheet.  
“Safety Mechanism is Implemented to Support Functional Safety (ASIL-*)”  
A product that has implemented safety mechanism to meet ASIL level requirements described in the datasheet.  
“Functional Safety Supportive Automotive Products”  
A product that has been developed for automotive use and is capable of supporting safety analysis with regard to  
the functional safety.  
Note: “ASIL-*” is stands for the ratings of “ASIL-A”, “-B”, “-C” or “-D” specified by each product's datasheet.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
25/28.  
BD18327EFV-M  
Ordering Information  
B D 1  
8
3
2
7 E F V  
-
M E2  
Part Number  
Package  
EFV: HTSSOP-B20  
Packing and Forming Specification  
M: For Automotive  
E2: Embossed Tape and Reel  
Marking Diagram  
HTSSOP-B20 (TOP VIEW)  
Part Number Marking  
LOT Number  
D18327  
Pin 1 Mark  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
26/28.  
BD18327EFV-M  
Physical Dimension and Packing Information  
Package Name  
HTSSOP-B20  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
27/28.  
BD18327EFV-M  
Revision History  
Date  
Version  
001  
Changes  
26.Apr.2021  
New Release  
Page.19 Short Circuit Protection Threshold Voltage  
Change limit: Min = VSCP/2 - 0.100 → VSCP/2 - 0.065  
Max = VSCP/2 + 0.100 → VSCP/2 + 0.065  
25.Nov.2021 002  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B300400-1-2  
25.Nov.2021 Rev.002  
28/28.  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHM’s Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD18333EUV-M (新产品)

BD18333EUV-M is 24CH constant current driver with 8-bit PWM dimming and 8-bit local DC dimming individual channels. Communication with μ-Controller is available via UART.
ROHM

BD18336NUF-M

BD18336NUF-M是面向车载LED灯的40V高耐压恒电流驱动器IC。由于使用的是小型封装,适合用作插座型LED灯的驱动用IC。BD18336NUF-M内置温度降额功能、LED开路检测、输出接地故障保护、SET引脚接地故障保护、过电压保护功能、欠压时分流功能、异常状态FLAG输出功能、输出电流OFF控制输入功能,可实现高可靠性。
ROHM

BD18337EFV-M

BD18337EFV-M是4通道线性LED驱动器,可通过1个引脚控制多个输出的热分散。不仅可显著减少部件数量和安装面积,还非常有助于平台化扩展机型的汽车LED灯驱动模块电路板的通用化设计。可用于车后灯(刹车灯、尾灯)、雾灯、转向灯、牌照灯、日间行车灯(Daylight Running Lamps)等汽车和摩托车领域的众多LED灯驱动。产品内置LED开路检测功能、OUTx(x=1~4)引脚输出接地故障保护功能、过电压静音功能及热关断功能,可实现高可靠性。连接于输出引脚的LED如果是2段的,请使用BD18347EFV-M;如果是3段的,请使用本BD18337EFV-M。
ROHM

BD18337EFV-ME2

LED Driver,
ROHM

BD18340FV-M

BD18340FV-M是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED电流降额功能、LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18340FV-ME2

LED Driver, 2-Segment, PDSO16, SSOP-16
ROHM

BD18341FV-M

BD18341FV-M是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED电流降额功能、LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18341FV-ME2

LED Driver, 2-Segment, PDSO16, SSOP-16
ROHM

BD18342FV-M

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18343FV-M

本产品是面向车载LED灯的70V高耐压恒流控制器。一个本IC最多可驱动10个外置PNP晶体管。同时还内置待机功能,可为降低灯组功耗做贡献。内置LED开路检测、输出短路保护、过电压保护、LED异常状态输入输出功能,可实现高可靠性。
ROHM

BD18343FV-ME2

LED Driver,
ROHM

BD18345EFV-M

BD18345EFV-M是耐压高达70V的车载LED灯用恒流控制器。仅1枚本IC即可驱动多达10个外置PNP晶体管。另外,内置待机功能,有助于降低配套应用的功耗。内置两种LED电流降额功能、LED开路检测功能、输出接地故障保护功能、过电压静音功能及LED异常状态输入输出功能,可靠性更高。
ROHM