BD18353EFV-M [ROHM]

BD18353EFV-M/MUF-M是1ch LED控制器。内置高边电流检测放大器。通过内置PWM生成电路,可以自由设定PWM调光Duty。通过驱动外置P-ch MOSFET实现了PWM调光。将LED的异常状态输出到FAULT_B端子。内置双系统模拟调光。内置用于模拟调光及PWM调光设定的高精度3.0V输出电源。;
BD18353EFV-M
型号: BD18353EFV-M
厂家: ROHM    ROHM
描述:

BD18353EFV-M/MUF-M是1ch LED控制器。内置高边电流检测放大器。通过内置PWM生成电路,可以自由设定PWM调光Duty。通过驱动外置P-ch MOSFET实现了PWM调光。将LED的异常状态输出到FAULT_B端子。内置双系统模拟调光。内置用于模拟调光及PWM调光设定的高精度3.0V输出电源。

放大器 驱动 控制器
文件: 总56页 (文件大小:2257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Boost LED Driver  
1ch High Current LED Controller  
for Automotive  
BD18353EFV-M BD18353MUF-M  
General Description  
Key Specifications  
BD18353EFV-M/MUF-M is a 1ch LED Controller. High  
Input Voltage Range:  
Maximum Output Voltage:  
5 V to 65 V  
65 V  
side current detection amplifier is built-in.  
PWM  
dimming duty can be freely set with built-in PWM  
generation circuit. PWM dimming realizes by driving an  
external P-ch MOSFET. Outputs abnormal LED status  
to the FAULT_B pin. Two systems of analog dimming  
are built-in. High precision 3.0 V output power supply  
for analog dimming and PWM dimming setting is built-in.  
LED Current Sense Voltage Accuracy:  
Setting Frequency Switching Range:  
200 kHz to 2.5 MHz  
Operating Ambient Temperature:-40 °C to +125 °C  
±3 %  
Features  
AEC-Q100 Qualified(Note 1)  
Packages  
W (Typ) x D (Typ) x H (Max)  
6.5 mm x 6.4 mm x 1.0 mm  
3.5 mm x 3.5 mm x 1.0 mm  
Functional Safety Supportive Automotive Products  
Rail-to-Rail Current Sense Amplifier  
PWM Dimming Signal Generator  
Over Voltage Protection (OVP)  
Short Circuit Protection (SCP)  
Analog Dimming (two systems)  
DRL Mode (100 % Duty) Enable  
Outputs Abnormal LED Status (FAULT_B)  
Spread Spectrum Frequency Modulation  
ON/OFF (SSFM_B)  
HTSSOP-B20  
VQFN20FV3535  
(Note 1) Grade1  
VQFN20FV3535  
HTSSOP-B20  
Applications  
Automotive Exterior Lamps  
Rear, Turn, DRL/Position, Fog, High/Low Beam etc.  
Typical Application Circuit  
VIN  
EN  
DRL/PWMI  
VDRV5  
GND BD18353EFV-M/ GL  
MUF-M  
VREF3  
DCDIM1  
DCDIM2  
COMP  
RT  
CS  
PGND  
OPUD  
SNSP  
SNSN  
DSET  
PDRV  
VDRV5  
FAULT_B  
SSFM_B  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
.www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0T1T0B400330-1-2  
05.Feb.2021 Rev.002  
1/53  
BD18353EFV-M BD18353MUF-M  
Pin Configuration (HTSSOP-B20)  
HTSSOP-B20  
(TOP VIEW)  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VIN  
DRL/PWMI  
VDRV5  
GL  
2
EN  
3
GND  
4
VREF3  
CS  
5
DCDIM1  
PGND  
OPUD  
SNSP  
SNSN  
PDRV  
SSFM_B  
6
DCDIM2  
7
COMP  
8
RT  
EXP-PAD  
9
DSET  
10  
FAULT_B  
Pin Description (HTSSOP-B20)  
Pin No.  
Pin Name  
Function  
1
2
VIN  
Power supply input  
Enable input  
GND  
EN  
3
GND  
4
VREF3  
DCDIM1  
DCDIM2  
COMP  
RT  
Reference voltage for analog dimming and PWM dimming duty setting  
Analog dimming input  
5
6
Analog dimming input  
7
Connect capacitor to set feedback compensation  
Connect resistor to set switching frequency  
8
9
DSET  
PWM dimming duty setting voltage input (connect to resistor divider from VREF3 to GND)  
Open drain output for fault state flag  
10  
11  
12  
13  
14  
FAULT_B  
SSFM_B  
PDRV  
SNSN  
SNSP  
Spread spectrum frequency modulation enable input (SSFM enable @SSFM_B = Low)  
P-ch MOSFET gate drive for PWM dimming and LED protection  
Current sense input (-)  
Current sense input (+)  
Output voltage monitor for over voltage protection and under voltage detection  
(connect to resistor divider from output voltage to GND)  
15  
OPUD  
16  
17  
18  
19  
20  
-
PGND  
CS  
Power GND  
Inductor current sense input  
GL  
Output for N-ch MOSFET gate drive  
Bypass with capacitor to provide 5 V bias supply for gate drive  
VDRV5  
DRL/PWMI DRL mode (100 % duty) enable input / External PWM dimming signal input  
EXP-PAD  
Heat radiation pad. The EXP-PAD is connected to GND.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
2/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Pin Configuration (VQFN20FV3535)  
VQFN20FV3535  
(TOP VIEW)  
1
15  
14  
13  
12  
11  
GND  
CS  
2
VREF3  
PGND  
OPUD  
SNSP  
SNSN  
3
DCDIM1  
4
DCDIM2  
EXP-PAD  
5
COMP  
Pin Description (VQFN20FV3535)  
Pin No.  
Pin Name  
Function  
1
2
GND  
GND  
VREF3  
DCDIM1  
DCDIM2  
COMP  
RT  
Reference voltage for analog dimming and PWM dimming duty setting  
Analog dimming input  
3
4
Analog dimming input  
5
Connect capacitor to set feedback compensation  
Connect resistor to set switching frequency  
6
7
DSET  
PWM dimming duty setting voltage input (connect to resistor divider from VREF3 to GND)  
8
FAULT_B Open drain output for fault state flag  
9
SSFM_B Spread spectrum frequency modulation enable input (SSFM enable @SSFM_B = Low)  
10  
11  
12  
PDRV  
SNSN  
SNSP  
P-ch MOSFET gate drive for PWM dimming and protection  
Current sense input (-)  
Current sense input (+)  
Output voltage monitor for over voltage protection and under voltage detection  
(connect to resistor divider from output voltage to GND)  
13  
OPUD  
14  
15  
16  
17  
18  
19  
20  
-
PGND  
CS  
Power GND  
Inductor current sense input  
GL  
Output for N-ch MOSFET gate drive  
Bypass with capacitor to provide 5 V bias supply for gate drive  
VDRV5  
DRL/PWMI DRL mode (100 % duty) enable input / External PWM dimming signal input  
VIN  
EN  
Power supply input  
Enable input  
Heat radiation pad. The EXP-PAD is connected to GND.  
EXP-PAD  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
3/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Block Diagram  
VIN  
VREF  
Internal  
Reference  
Voltage  
TSD  
UVLO  
EN  
VREF  
UVLO  
VIN UVLO  
VDRV 5UVLO  
EN  
TSD  
EN  
TSD  
VDRV5  
5 V Regulator  
VDRV5  
GND  
VREF3  
3 V Reference  
Voltage  
VREF3  
GL  
OCP  
OVP  
PWMDIM  
TSD  
PGND  
Driver  
Controller  
UVLO  
EN  
COMP  
SCP  
CURRENT  
SENSE  
SNSP  
Err Amp  
DC/DC  
Slope  
x 12  
CS  
CLK  
SNSN  
PGND  
0.2 V  
PWMDIM  
EN  
OCP  
DC/DC  
OCP  
DCDIM  
DCDIM1  
DCDIM2  
TSD  
UVLO  
OVP  
INTOVP  
Over Voltage  
Protection  
SCP  
SNSP  
VREF  
OVP  
OVP  
Over Voltage  
Protection  
OPUD  
CLK  
OSC  
DC/DC Oscillator  
RT  
UVD  
Under Voltage  
Detection  
UVD  
OVP  
SSFM  
Spread  
Spectrum  
Modulator  
SSFM_B  
SCP  
Short Circuit  
Protection  
SCP  
Hiccup  
Counter  
FAULT_B  
Fault Logic  
INTCLK  
INTCLK  
Internal CLK  
UVD  
PWMDIM  
INTCLK  
Counter  
PWMDIM  
SNSP  
DSET  
EN  
TSD  
PWMDIM  
PDRV  
EN  
UVLO  
OVP  
SCP  
PWMDIM  
Slope  
Level  
Shift  
TSD  
SNSP - 7.5 V  
UVLO  
OVP  
SCP  
DRL/PWMI  
VREF  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
4/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Description of Blocks  
1 Power Supply for N-ch MOSFET Gate Driver and Internal Circuit (VDRV5)  
The VDRV5 voltage 5.0 V (Typ) is generated from the VIN pin voltage. This voltage is used as the internal power supply of  
the IC and the power supply for driving the DC/DC N-ch MOSFET. It also supplies current to the FAULT_B pin pull up  
resistor.  
The total current supplied to the DC/DC N-ch MOSFET and the resistor must be IDRV5LM (VDRV5 Output Current Limit) or  
less.  
The current supplied to the DC/DC N-ch MOSFET (IMOSFET) can be calculated by the following formula.  
푀푂푆퐹퐸푇 = 푄× 푓  
푆푊  
Where:  
is the gate charge of the MOSFET.  
푆푊  
is the switching frequency.  
Connect CVDRV5 = 2.2 µF as feedback compensation capacitor to the VDRV5 pin. Place ceramic capacitor close to the IC  
to minimize trace length to the VDRV5 pin and also to the IC ground.  
Do not use the VDRV5 as a power supply other than this IC.  
2 High Accuracy Reference Voltage (VREF3)  
The VREF3 voltage 3.0 V (Typ) is generated from the VDRV5 pin voltage. VREF3 is used as a reference voltage for PWM  
dimming duty and analog dimming setting. Input the voltage set by resistor dividing from the VREF3 pin to the DSET pin,  
the DCDIM1 pin, and the DCDIM2 pin.  
Do not connect a capacitor to the VREF3 pin.  
Do not use the VREF3 as a power supply other than this IC.  
3 LED Current Setting (CURRENT SENSE)  
LED current (ILED) can be set by resistor RSNS connected between the SNSP pin and the SNSN pin.  
ꢀ푁ꢀ_100 %  
퐿퐸퐷  
=
[A]  
ꢀ푁ꢀ  
When:  
VDCDIM1, VDCDIM2 > VDCD_100 %  
Where:  
is the Current sense threshold voltage.  
푆ꢂ푆_ꢃꢄꢄ %  
LFILT  
BATT  
CFILT  
CIN1  
CIN2  
CIN3  
L1  
U1 BD18353EFV-M/MUF-M  
CVIN  
RDRL  
VIN  
DRL/PWMI  
VDRV5  
GL  
REN1  
D1  
CVDRV5  
COUT1 COUT2 COUT3 COUT4 COUT5  
EN  
RGL  
REN2  
CEN  
M1  
GND  
IMOSFET  
VREF3  
DCDIM1  
DCDIM2  
COMP  
RT  
CS  
ROPUD1  
RSLP  
RCS  
PGND  
OPUD  
SNSP  
SNSN  
COPUD  
ROPUD2  
CCOMP  
RCOMP  
RSNS  
RRT  
Q1  
DSET  
FAULT_B  
PDRV  
M2  
RPDRV  
RFAULT_B  
VDRV5  
SSFM_B  
RSSFM_B  
ILED  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
5/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Description of Blocks - continued  
4 PWM Dimming (PWMDIM)  
4.1 External P-ch MOSFET Drive  
The PDRV pin drives an external P-ch MOSFET to achieve PWM dimming. Connect the gate of the P-ch MOSFET  
to the PDRV pin. The PDRV pin outputs SNSP and SNSP - 7.5 V (Typ).  
At start up and restart (After UVLO, TSD, SCP, OVP is released or after EN = High input.), after DC/DC starts  
switching, the PDRV pin can output SNSP - 7.5 V (Typ).  
The PDRV output voltage and the DC/DC output voltage (SNSP voltage) have the characteristics shown below figure.  
When the number of LED lights is small, design and evaluate in consideration of the characteristics shown below  
figure. There is a possibility that the external P-ch MOSFET cannot be driven.  
0
-1  
-2  
-3  
-4  
-5  
Tj = +150 °C  
Tj = +25 °C  
Tj = -40 °C  
-6  
-7  
-8  
-9  
-10  
5.0  
7.5  
10.0  
12.5  
15.0  
17.5  
20.0  
SNSP Voltage: VSNSP [V]  
Figure 1. PDRV Output Low Voltage vs SNSP Voltage  
4.2 PWM Dimming Duty Setting  
The BD18353EFV-M/MUF-M has a built-in PWM dimming pulse generation circuit. The PWM dimming duty is set by  
the internal ramp waveform and the voltage input to the DSET pin. The DSET pin voltage is set from VREF3 by a  
resistor voltage divider.  
Setting duty DPWM can be calculated by the following formula.  
− 푉  
ꢉ퐴ꢊꢋ퐵  
ꢆꢀꢇꢈ  
푃푊푀  
=
× ꢌꢍꢍ  
[%]  
− 푉  
ꢉ퐴ꢊꢋ퐵  
ꢉ퐴ꢊꢋꢋ  
Where:  
RDSET1, RDSET2 are the PWM dimming duty setting resistor.  
ꢆꢀꢇꢈ2  
ꢉꢇꢎ3  
×
− 푉  
ꢉ퐴ꢊꢋ퐵  
+ ꢉ  
ꢆꢀꢇꢈ1  
ꢆꢀꢇꢈ2  
푃푊푀  
=
× ꢌꢍꢍ  
[%]  
− 푉  
ꢉ퐴ꢊꢋ퐵  
ꢉ퐴ꢊꢋꢋ  
If:  
RDSET1 = 20 kΩ, RDSET2 = 10 kΩ  
10 푘훺  
20 푘훺 + 10 푘훺  
ꢐ.ꢄꢄ ×  
−ꢄ.4ꢄ  
(
)
푃푊푀 ꢏ푦푝 =  
× ꢌꢍꢍ = ꢒꢍ.ꢍ [%]  
ꢑ.4ꢄ − ꢄ.4ꢄ  
Where:  
푅ꢓ푀푃푃 is the internal ramp peak voltage = 2.40 V (Typ).  
푅ꢓ푀푃ꢔ is the internal ramp bottom voltage = 0.40 V (Typ).  
VREF3  
SNSP  
RDSET1  
DSET  
Level  
Shift  
RDSET2  
PDRV  
VRAMPP  
VRAMPB  
SNSP - 7.5 V  
At UVLO detection, OVP detection, SCP detection (during hiccup operation), TSD detection or EN = Low input, the  
internal ramp waveform becomes VRAMPB voltage.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
6/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
4 PWM Dimming (PWMDIM) - continued  
4.3 PWM Dimming by External Pulse Signal Input  
When the DRL/PWMI pin voltage is VDRLIH or more, it operates at PWM 100 % duty setting. When the DRL/PWMI  
pin voltage is VDRLIL or less, it operates at the PWM dimming duty set by the DSET pin. Therefore, to control PWM  
dimming with external PWM pulse signal, connect the DSET pin to GND and input the PWM signal to the DRL/PWMI  
pin.  
DRL/PWMI  
Input  
External Pulse  
DSET  
4.4 DRL Mode (100 % Duty) Enable Input  
Switching between PWM dimming mode and DRL mode (100 % Duty) can be done with the input voltage at  
DRL/PWMI pin. When the DRL/PWMI pin voltage is VDRLIH or more, it operates at PWM 100 % duty setting. When  
the DRL/PWMI pin voltage is VDRLIL or less, it operates at the PWM dimming duty set by the DSET pin.  
Because the DRL/PWMI pin is composed of a high-voltage element, it is possible to directly input the battery voltage.  
The DRL/PWMI pin is pulled down by current.  
Considering the short circuit between the DRL/PWMI pin and the VDRV5 pin, it is recommended to insert a limiting  
resistor RDRL (47 kΩ or more) as shown below figure.  
PWM Mode  
+B  
VIN  
DRL Mode  
(100 % Duty)  
RDRL  
DRL/PWMI  
DRL Mode (100 % Duty) Switching Application Example  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
7/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Description of Blocks - continued  
5 Analog Dimming (DCDIM)  
BD18353EFV-M/MUF-M has two systems of analog dimming function. For example, it can be used as in Figure 2. (a)  
Thermal Derating Function and BIN Setting Function or in Figure 2. (b) Thermal Derating Function and Input Low Voltage  
Derating Function.  
When the DCDIM1 or DCDIM2 pin (The lower voltage takes precedence) becomes 2.2 V (Typ) or less, the LED current  
decreases.  
When not using the analog dimming function, set it to 2.5 V or more, such as connecting DCDIM1, DCDIM2 voltage to the  
VREF3 pin.  
When the analog dimming rate is low, DC/DC control may become unstable and the LED may flicker.  
Confirm enough in the evaluation.  
VIN  
LED Board  
LED Board  
VREF3  
VREF3  
DCDIM1  
DCDIM2  
DCDIM1  
DCDIM2  
BIN  
Resistor  
Thermistor  
Thermistor  
(a) Thermal Derating Function and BIN Setting Function  
(b) Thermal Derating Function and Input Low Voltage Derating  
Function  
Figure 2. Analog Dimming Application Example  
180  
160  
140  
120  
100  
80  
60  
40  
VSNS_10 % (VDCDIM1, VDCDIM2 = 0.4 V)  
20  
0
0.0  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
DCDIM1, DCDIM2 Voltage: VDCDIM1, VDCDIM2 [V]  
Figure 3. VSNS vs DCDIM1, DCDIM2 Voltage  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
05.Feb.2021 Rev.002  
8/53  
 
BD18353EFV-M BD18353MUF-M  
Description of Blocks - continued  
6 Enable Setting (EN)  
The BD18353EFV-M/MUF-M can be ON/OFF controlled by the EN pin. It is possible to set the EN pin voltage by a  
resistor voltage divider from VIN.  
(
)
ꢇ푁2  
ꢖ 푅  
ꢇ푁1  
=
× 퐸ꢂꢕ퐻  
× 퐸ꢂꢕ퐿  
[V]  
[V]  
ꢕꢂ푂ꢂ  
ꢇ푁2  
(
)
ꢖ 푅  
ꢇ푁2  
ꢇ푁1  
ꢕꢂ푂퐹퐹  
=
ꢇ푁2  
Where:  
퐸ꢂꢕ퐻 is the EN High level threshold voltage = 1.0 V (Typ).  
퐸ꢂꢕ퐿 is the EN Low level threshold voltage = 0.9 V (Typ).  
VIN  
REN1  
EN  
REN2  
When the EN pin voltage becomes VENIL or less, the PDRV pin outputs High level to turn off external P-ch MOSFET.  
DC/DC is stopped and the GL pin outputs Low level.  
When pulling up to the VIN pin to fix the EN pin to High, considering the short circuit between the EN pin and the GND pin, it  
is recommended to insert a limiting resistor.  
7 Switching Frequency Setting (OSC)  
The switching frequency of the DC/DC can be set by the resistor RRT connected to the RT pin.  
99ꢄꢄ  
× ꢌꢍꢐ  
× ꢌꢍꢐ  
[kHz] (200 kHz to 700 kHz)  
[kHz] (2.0 MHz to 2.5 MHz)  
푆푊ꢃ  
ꢉꢈ  
9ꢄꢄꢄ  
푆푊ꢑ  
ꢉꢈ  
8 Spread Spectrum Frequency Modulation (SSFM)  
BD18353EFV-M/MUF-M has built-in spread spectrum function. It operates at a frequency of ±6 % (Typ) around the  
frequency fSW set by RRT The spread spectrum function can be set to ON/OFF by the SSFM_B pin.  
.
To use the spread spectrum function, pull down the SSFM_B pin to GND.  
In case the spread spectrum function will not be used, pull up the SSFM_B pin to the VDRV5 pin.  
Considering a short circuit between the SSFM_B pin and the PDRV pin, it is recommended to insert a pull up resistor or a  
pull down resistor (47 kΩ or more).  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
9/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Description of Blocks - continued  
9 Protection Function  
9.1 Under Voltage Lock Out (UVLO)  
UVLO is a protection circuit that prevents IC malfunction at power-on or power-off.  
When the VIN pin voltage becomes VINUVD or less or the VDRV5 pin voltage becomes VDRV5UVD or less, the PDRV pin  
outputs high level to turn off external P-ch MOSFET. DC/DC is stopped and GL outputs low level.  
9.2 Thermal Shutdown (TSD)  
TSD shuts down circuits at 175 °C (Typ) and release them at 150 °C (Typ).  
9.3 Over Current Protection (OCP)  
When the CS pin voltage becomes VCSOCP or more, over current is detected and the GL pin outputs Low until the next  
switching cycle.  
9.4 Over Voltage Protection (OVP)  
OVP voltage can be set by dividing resistors ROPUD1, ROPUD2 connected between DC/DC output and GND.  
LED open failure can also be detected by the OVP function.  
The detection voltage VOUT_OVP is set by the following formula.  
ꢖ 푅  
ꢗꢋꢘꢆ2  
ꢗꢋꢘꢆ1  
푂푈푇_푂푉푃  
=
× 푂푉푃 [V]  
ꢗꢋꢘꢆ2  
Where:  
푂푉푃 is the over voltage protection detect voltage = 1.00 V (Typ).  
When OVP is detected, the PDRV pin outputs high level to turn off the external P-ch MOSFET. DC/DC stops and GL  
outputs low level. FAULT_B outputs low level and outputs error detection.  
OVP has hysteresis, and when the OPUD pin voltage becomes VOVP - VOVPHYS or less, DC/DC restarts. When the  
LED is open, OVP is detected again and the OVP detection operation is repeated.  
When OVP is released and the voltage between the SNSP pin and the SNSN pin becomes VSG (Status Good Voltage)  
or more, FAULT_B outputs high level. FAULT_B holds low output until tFAULT_BL elapses after OVP is released.  
VOUT  
ROPUD1  
OPUD  
ROPUD2  
Figure 4. OVP Setting Circuit  
LED Open  
LED Open Release  
VOUT  
VOVP  
VOVP - VOVPHYS  
OPUD  
VSNSP_SNSN  
FAULT_B  
VSG  
tFAULT_BL  
GL  
DC/DC  
Condition  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
Figure 5. Timing Chart (OVP)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
10/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
9 Protection Function - continued  
9.5 Internal Over Voltage Protection (INTOVP)  
If the LED opens with the resistor ROPUD1 open or the OPUD pin grounded (dual fail), the DC/DC is over voltage and  
the IC destroyed.  
The BD18353EFV-M/MUF-M has an internal OVP circuit that monitors the SNSP pin voltage and prevents destruction  
of the IC.  
However, since the threshold value is fixed (VINTOVP), when the absolute voltage of the external parts is low, the parts  
may be destroyed.  
When INTOVP is detected, the PDRV pin outputs High level to turn off the external P-ch MOSFET. DC/DC stops  
and GL outputs low level. FAULT_B outputs Low level and outputs error detection. When INTOVP is released and  
the voltage between the SNSP pin and the SNSN pin becomes VSG or more, FAULT_B outputs high level.  
FAULT_B holds low output until tFAULT_BL elapses after OVP is released.  
VOUT  
ROPUD1  
OPUD  
ROPUD2  
INTOVP  
SNSP  
INTOVP Circuit  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
11/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
9 Protection Function - continued  
9.6 Under Voltage Detection (UVD)  
UVD voltage can be set by dividing resistors ROPUD1, ROPUD2 connected between DC/DC output and GND.  
The detection voltage (VOUT_UVD) is set by the following formula.  
ꢖ푅  
ꢗꢋꢘꢆ1  
푂푈푇_푈푉퐷  
=
ꢗꢋꢘꢆ2 × 푈푉퐷 [V]  
ꢗꢋꢘꢆ2  
Where:  
푈푉퐷 is the under voltage detection threshold voltage = 100 mV (Typ).  
UVD is detected when the OPUD pin voltage become VUVD or less. UVD is monitored when the voltage between the  
SNSP pin and the SNSN pin becomes VSG or more in the ON section of PWM dimming.  
After detection the internal counter starts. When the voltage between the SNSP pin and the SNSN pin becomes VSG  
or more in the ON section of PWM dimming, it counts up. When the total time reaches tUVD, the FAULT_B outputs  
becomes Low.  
After UVLO, TSD, SCP, OVP is released or after EN = High input, until tUVDDIS has elapsed, UVD does not be  
detected.  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
PWM Dimming  
PDRV  
VSNSP  
VSNSP - VPDRVOL  
VSNSP_SNSN  
IOUT  
VSG  
VOPUD  
VUVD  
Reset  
Reset  
Count  
Up  
Count  
Up  
Count  
Up  
Count  
Up  
Count  
Up  
Count  
Up  
Internal Counter  
Condition  
Reset  
Hol
Hold  
Hold  
Hold  
Count Over  
FAULT_B  
Timing Chart (UVD)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
12/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
9 Protection Function - continued  
9.7 Short Circuit Protection (SCP)  
When the anode of the LED is shorted to GND, the voltage between the SNSP pin and the SNSN pin can be  
monitored and protected by SCP.  
When the voltage between the SNSP pin and the SNSN pin become VSCPON or more, SCP is detected after SCP delay  
time (tSCPDLY).  
When SCP is detected, the PDRV pin outputs High level to turn off the external P-ch MOSFET. DC/DC stops and GL  
outputs Low level. FAULT_B outputs Low level and outputs error detection.  
Restart after hiccup time (tHICCUP) elapses. If the anode of the LED is shorted to GND, the SCP is detected again and  
the operation is repeated.  
FAULT_B holds Low output until tFAULT_BL after restart.  
LED Short  
LED Short Release  
VSCPON  
VSNSP_SNSN  
VSNSP  
PDRV  
tHICCUP  
tHICCUP  
tHICCUP  
VSNSP - VPDRVOL  
COMP  
GL  
FAULT_B  
tFAULT_BL  
Figure 6. Timing Chart (SCP)  
When the anode of the LED is shorted to GND, the voltage between the SNSP pin and the SNSN pin may exceed the  
absolute voltage. It is recommended to insert a PNP transistor as shown below figure and clamp the voltage.  
Design to take full consideration of power dissipation of RSNS and P-ch MOSFET.  
SNSP  
SNSN  
PDRV  
Figure 7. Example of Current Clamp Circuit  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
13/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Description of Blocks - continued  
10 Outputs Abnormal Status (FAULT_B)  
The following table summarizes the device behavior under fault condition.  
Fault Description Operations  
Operation at Detection  
Protection Function  
FAULT_B Output  
DC/DC  
PDRV Pin  
COMP Pin  
Discharge  
EN = Low Detect  
VIN UVLO Detect  
VDRV5 UVLO Detect  
TSD Detect  
OFF  
High (= SNSP)  
Hiz  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
-
High (= SNSP)  
High (= SNSP)  
High (= SNSP)  
-
Discharge  
Discharge  
Discharge  
-
Hiz  
Hiz  
Hiz  
DC/DC  
OCP Detect  
DC/DC  
OVP Detect  
DC/DC  
INTOVP Detect  
DC/DC  
UVD Detect  
-
High (= SNSP)  
High (= SNSP)  
-
Discharge  
Discharge  
-
Low  
Low  
Low (after counting tUVD  
Low  
)
SCP Detect  
OFF  
High (= SNSP)  
Discharge  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
14/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Absolute Maximum Ratings (Tj = 25 °C)  
Parameter  
Symbol  
VIN  
Rating  
Unit  
V
Supply Pin Voltage (VIN)  
EN, DRL/PWMI Pin Voltage  
SNSP, SNSN Pin Voltage  
PDRV Pin Voltage  
-0.3 to +70  
-0.3 to +70  
-0.3 to +70  
-0.3 to +70  
-0.3 to +70  
-7 to +70  
VEN, VDRL/PWMI  
VSNSP, VSNSN  
VPDRV  
V
V
V
OPUD, SSFM_B Pin Voltage  
SNSP to OPUD Pin Voltage  
SNSP to SSFM_B Pin Voltage  
SNSP to SNSN Pin Voltage  
SNSP to PDRV Pin Voltage  
VDRV5 Pin Voltage  
VOPUD, VSSFM_B  
VSNSP_OPUD  
VSNSP_SSFM_B  
VSNSP_SNSN  
VSNSP_PDRV  
VDRV5  
V
V
-7 to +70  
V
-0.3 to +0.6  
-0.3 to +10  
-0.3 to +7  
-0.3 to +70  
V
V
V
VIN to VDRV5 Pin Voltage  
VVIN_VDRV5  
V
VREF3, DCDIM1, DCDIM2, COMP,  
RT, DSET Pin Voltage  
VREF3, VDCDIM1, VDCDIM2  
,
-0.3 to +7  
V
VCOMP, VRT, VDSET  
GL, CS Pin Voltage  
VGL, VCS  
VFAULT_B  
Tjmax  
Tstg  
-0.3 to +7  
-0.3 to +7  
150  
V
V
FAULT_B Pin Voltage  
Maximum Junction Temperature  
Storage Temperature Range  
°C  
°C  
-55 to +150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
15/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
HTSSOP-B20  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
143.0  
8
26.8  
4
°C/W  
°C/W  
ΨJT  
VQFN20FV3535  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
181.9  
19  
50.5  
7
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
Board Size  
Single  
FR-4  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Thermal Via(Note 5)  
Material  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Pitch  
Diameter  
4 Layers  
FR-4  
1.20 mm  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
16/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Recommended Operating Condition  
Parameter  
Symbol  
VIN  
Min  
5
Typ  
Max  
65  
Unit  
V
Supply Voltage (VIN)(Note 1)  
Output Voltage (SNSP)  
PWM Frequency Input  
PWM Minimum Pulse Width  
Switching Frequency  
13  
-
VSNSP  
fPWMI  
tMIN  
-
65  
V
30  
10  
200  
-40  
-
2000  
-
Hz  
μs  
kHz  
°C  
-
fSW  
-
2500  
+125  
Operating Ambient Temperature  
Topr  
-
(Note 1) ASO should not be exceeded.  
Recommended Setting Parts Range  
Parameter  
Symbol  
CVIN  
Min  
1.4  
1.4  
0.6  
10  
Typ  
Max  
3.3  
3.3  
1.5  
-
Unit  
μF  
μF  
μF  
μF  
kΩ  
Ω
Capacitor Connecting to the VIN Pin(Note 2)  
Capacitor Connecting to the VDRV5 Pin(Note 2)  
Capacitor Connecting to the COMP Pin(Note 2)  
Total DC/DC Output Capacitor(Note 2)  
2.2  
CVDRV5  
2.2  
CCOMP  
1.0  
COUT  
-
-
Resistor Connecting to the EN Pin  
REN1, REN2  
RCOMP  
4.7  
-
100  
100  
49  
100  
-
Resistor Connecting to the COMP Pin  
Resistor Connecting to the RT Pin  
33  
-
RRT  
3.9  
4.7  
10  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
Resistor Connecting to the DSET1,DSET2 Pin  
Resistor Connecting to the FAULT_B Pin  
Resistor Connecting to the SSFM_B Pin  
Resistor Connecting to the DRL/PWMI Pin  
RDSET1, RDSET2  
RFAULT_B  
RSSFM_B  
RDRL  
-
-
47  
-
-
47  
-
-
(Note 2) Set the capacitor in consideration of temperature characteristics and DC bias characteristics.  
www.rohm.com  
TSZ02201-0T1T0B400330-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
17/53  
TSZ22111 • 15 • 001  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Electrical Characteristics  
(Unless otherwise specified VIN = 13 V, Tj = -40 °C to +150 °C)  
Limit  
Typ  
Unit  
Conditions  
Parameter  
Symbol  
Min  
Max  
[Total]  
VIN Circuit Current 1  
IIN1  
IIN2  
-
-
380  
1.7  
580  
2.3  
μA  
VEN = 0 V, No switching  
VEN = 5 V  
VSNSP_SNSN > VSNS_100 %  
VDCDIM1 = VDCDIM2 = 3.0 V  
VIN Circuit Current 2  
mA  
VIN UVLO Detect Voltage  
VINUVD  
VINUVR  
4.10  
4.49  
-
4.30  
4.70  
0.4  
4.49  
4.91  
-
V
V
V
V
V
VIN falling  
VIN UVLO Release Voltage  
VIN UVLO Hysteresis Voltage  
VDRV5 UVLO Detect Voltage  
VDRV5 UVLO Release Voltage  
VIN rising  
VINUVHYS  
VDRV5UVD  
VDRV5UVR  
VINUVR - VINUVD  
VDRV5 falling  
VDRV5 rising  
3.94  
4.22  
4.15  
4.45  
4.38  
4.68  
VDRV5 UVLO  
Hysteresis Voltage  
-
0.3  
-
VDRV5UVHYS  
V
VDRV5UVR - VDRV5UVD  
[Reference Voltage]  
CVDRV5 = 2.2 μF  
IVDRV5 = 0 mA to 10 mA load  
VDRV5 Reference Voltage  
VDRV5  
4.76  
-
5.00  
0.25  
5.25  
0.65  
V
V
VIN = 4.75 V  
IVDRV5 = 10 mA load  
VDRV5 Drop Voltage  
VDRV5DP  
VDRV5 Output Current Limit  
VREF3 Reference Voltage  
VREF3 Output Current Limit  
[EN]  
IDRV5LM  
VREF3  
45  
2.91  
2
-
3.00  
-
-
3.09  
-
mA  
V
IVREF3 = 0 mA to 2 mA load  
IREF3LM  
mA  
EN Pull Down Current  
IEN  
0.6  
1.2  
1.8  
μA  
V
VEN = 5 V  
VEN rising  
EN High Level Threshold  
Voltage  
VENIH  
0.96  
1.00  
1.04  
EN Low Level Threshold  
Voltage  
VENIL  
0.86  
0.90  
0.1  
0.94  
V
V
VEN falling  
EN Hysteresis Voltage  
[OSCILLATOR Circuit]  
Switching Frequency 1  
Switching Frequency 2  
RT Output Voltage  
VENHYS  
-
-
VENIH - VENIL  
fSW1  
fSW2  
VRT  
270  
300  
2300  
330  
kHz  
kHz  
V
RRT = 33 kΩ  
RRT = 3.9 kΩ  
VSSFM_B = 4 V  
VSSFM_B = 0 V  
2070  
2530  
-
-
0.8  
-
-
Spread Spectrum Frequency  
fSSFM  
fSW/1024  
Hz  
Spread Spectrum Frequency  
Modulation Width  
fSSFMW  
-
±6  
-
%
V
VSSFM_B = 0 V  
SSFM_B High Level  
Input Voltage  
VSSFM_BIH  
VSSFM_BIL  
RSSFM_BD  
3.0  
-
-
-
-
Spread spectrum disable  
Spread spectrum enable  
SSFM_B = 4 V  
SSFM_B Low Level  
Input Voltage  
0.4  
800  
V
SSFM_B  
Pull Down Resistor  
200  
400  
kΩ  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
18/53  
05.Feb.2021 Rev.002  
 
BD18353EFV-M BD18353MUF-M  
Electrical Characteristics - continued  
(Unless otherwise specified VIN = 13 V, Tj = -40 °C to +150 °C)  
Limit  
Typ  
Unit  
Conditions  
Parameter  
Symbol  
Min  
Max  
[N-ch Gate Driver]  
GL ON Resistor High  
RGLH  
RGLL  
-
-
-
-
1.0  
0.6  
60  
2.5  
1.5  
-
Ω
Ω
IGL = 10 mA load  
GL ON Resistor Low  
IGL = 10 mA input  
RRT = 33 kΩ  
Minimum OFF Time 1  
Minimum OFF Time 2  
[DC/DC Current Detection]  
Over Current Detection Voltage  
tOFFMIN1  
tOFFMIN2  
ns  
ns  
35  
-
RRT = 3.9 kΩ  
275  
300  
120  
321  
VCSOCP  
tCSBLK  
mV  
ns  
VCS rising  
CS Pin  
-
-
Leading Edge Blanking Time  
Slope Compensation Current  
Peak  
-
-
50  
-
-
ICSSLPP  
μA  
V
CS to COMP Level Shift  
Voltage  
1.26  
VCSCMPLS  
No slope compensation added  
VSNSP_SNSN = 166.5 mV  
[Error Amplifier]  
Trans Conductance  
gM  
-
-
1300  
200  
-
-
μS  
μA  
VSNSP_SNSN = 83.3 mV  
VDCDIM1 = VDCDIM2 = 0 V  
COMP Sink Current  
ICOMPSI  
VSNSP_SNSN = 83.3 mV  
VDCDIM1 = VDCDIM2 = 3.0 V  
COMP Source Current  
ICOMPSO  
-
200  
-
μA  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
19/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Electrical Characteristics - continued  
(Unless otherwise specified VIN = 13 V, Tj = -40 °C to +150 °C)  
Limit  
Typ  
Unit  
Conditions  
Parameter  
Symbol  
Min  
Max  
[Current Sense Amplifier]  
Tj = +25 °C  
VSNS_100 % = VSNSP - VSNSN  
VSNSN = 0 V, 30 V  
VDCDIM1 = VDCDIM2 = 2.5 V  
Tj = -40 °C to +125 °C  
VSNS_100 % = VSNSP - VSNSN  
VSNSN = 0 V, 30 V  
165.0  
161.7  
146  
166.7  
166.7  
150  
171.7  
171.7  
153  
mV  
mV  
mV  
mV  
LED Current Sense Voltage  
100 %  
VSNS_100 %  
VDCDIM1 = VDCDIM2 = 2.5 V  
VSNS_90 % = VSNSP - VSNSN  
VSNSN = 0 V, 30 V  
VDCDIM1 = 2.0 V  
LED Current Sense Voltage  
90 %  
VSNS_90 %  
VDCDIM2 = 2.5 V  
VSNS_10 % = VSNSP - VSNSN  
VSNSN = 0 V, 30 V  
VDCDIM1 = 0.4 V  
LED Current Sense Voltage  
10 %  
VSNS_10 %  
13.7  
16.7  
19.7  
VDCDIM2 = 2.5 V  
Common-mode Input Range  
High Side Voltage Detection  
VSNSN_HSS  
VSNSN_LSS  
ISNSP_HSS  
ISNSN_HSS  
ISNSP_LSS  
ISNSN_LSS  
VSCPON  
1.9  
1.8  
160  
18  
2.0  
1.9  
330  
35  
2.1  
2.0  
530  
54  
V
V
VSNSN rising  
VSNSN falling  
Common-mode Input Range  
Low Side Voltage Detection  
SNSP Pin Input Current  
High Side Voltage  
VSNSP_SNSN = 166.5 mV  
VSNSN = 60 V  
μA  
μA  
μA  
μA  
mV  
SNSN Pin Input Current  
High Side Voltage  
VSNSP_SNSN = 166.5 mV  
VSNSN = 60 V  
SNSP Pin Input Current  
Low Side Voltage  
VSNSP_SNSN = 166.5 mV  
VSNSN = 0 V  
-8  
-4  
-2  
SNSN Pin Input Current  
Low Side Voltage  
VSNSP_SNSN = 166.5 mV  
VSNSN = 0 V  
-92  
325  
-50  
350  
-28  
375  
Short Circuit Protection  
Threshold Voltage  
VSNSP_SNSN rising  
Short Circuit Protection  
Delay Time  
tSCPDLY  
tHICCUP  
40  
33  
50  
40  
60  
48  
μs  
Hiccup Time  
ms  
Short circuit detect  
VOPUD rising  
[Over Voltage Protection / Under Voltage Detection]  
Over Voltage Protection Detect  
Voltage  
VOVP  
VOVPHYS  
VUVD  
0.96  
1.00  
0.1  
100  
-
1.04  
V
V
Over Voltage Protection  
Hysteresis Voltage  
-
-
-
-
-
Under Voltage Detection  
Threshold Voltage  
mV  
V
Internal Over Voltage Protection  
Detect Voltage  
VINTOVP  
65  
VSNSP monitor  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
20/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Electrical Characteristics - continued  
(Unless otherwise specified VIN = 13 V, Tj = -40 °C to +150 °C)  
Limit  
Typ  
Unit  
Conditions  
Parameter  
[PWM Dimming]  
Symbol  
Min  
Max  
480  
PWM Dimming Frequency  
fPWM  
320  
400  
Hz  
V
VREF3 / 3 x VREF3 / 3 x VREF3 / 3 x  
0.4 - 0.02 0.4 0.4 + 0.02  
VREF3 / 3 x VREF3 / 3 x VREF3 / 3 x  
Internal Ramp Bottom Voltage  
VRAMPB  
Internal Ramp Peak Voltage  
DSET Pin Input Current  
VRAMPP  
IDSET  
V
2.4 - 0.02  
2.4  
2.4 + 0.02  
-
0
1
μA VDSET = 3.0 V  
IPDRV = 10 mA load  
VSNSP = 30 V  
-
20  
50  
PDRV Pull Up ON Resistor  
PDRV Pull Down Current  
RPDRV_U  
Ω
VDSET = 0 V, VDRL/PWMI = 0 V  
VSNSP_PDRV = 0 V, VSNSP = 30 V  
VDSET = 5 V, VDRL/PWMI = 0 V  
17  
38  
65  
IPDRV_D  
mA  
V
PDRV Output Low Voltage  
VPDRVOL  
6.5  
7.5  
9.0  
VSNSP_PDRV, VSNSP = 30 V  
[DRL Mode]  
DRL/PWMI Threshold Voltage  
DRL Mode  
1.42  
0.95  
1.50  
1.00  
1.58  
1.05  
VDRLIH  
VDRLIL  
V
VDRL/PWMI rising  
DRL/PWMI Threshold Voltage  
PWM Mode  
V
V
VDRL/PWMI falling  
DRL/PWMI Hysteresis Voltage  
DRL/PWMI Pull Down Current  
[Analog Dimming]  
VDRLIHYS  
IDRL/PWMI  
-
0.5  
1.0  
-
VDRLIH - VDRLIL  
0.5  
2.0  
μA VDRL/PWMI = 5 V  
DCDIM1, DCDIM2  
0 % Threshold Voltage  
VDCD_0 %  
VDCD_100 %  
IDCD  
0.17  
2.14  
-
0.20  
2.20  
0
0.23  
2.26  
1
V
V
VDCDIM1, VDCDIM2  
VDCDIM1, VDCDIM2  
DCDIM1, DCDIM2  
100 % Threshold Voltage  
DCDIM1, DCDIM2 Pin Input  
Current  
μA VDCDIM1 = VDCDIM2 = 3.0 V  
[Outputs LED Status]  
FAULT_B Output Low Voltage  
FAULT_B Leak Current  
VFAULT_BOL  
IFAULT_B  
tUVD  
-
-
0.1  
0
0.4  
1
V
IFAULT_B = 5 mA input  
μA VFAULT_B = 5.5 V  
Under Voltage Detection Time  
16  
20  
24  
ms  
EN = Low to High  
Under Voltage Detection  
Disable Time  
VIN UVLO release  
VDRV5 UVLO release  
tUVDDIS  
16  
20  
24  
ms  
TSD release  
FAULT_B Pin Holds Low Output  
Time  
SCP release  
OVP release  
tFAULT_BL  
VSG  
16  
20  
20  
24  
ms  
Status Good Voltage  
-
-
mV VSNSP_SNSN rising  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
21/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Typical Performance Curves  
(Unless otherwise specified VIN = 13 V, Tj = +25 °C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
650  
600  
550  
500  
450  
400  
350  
Tj = +150 °C  
Tj = +25 °C  
Tj = -40 °C  
300  
250  
200  
150  
100  
50  
Tj = +150 °C  
Tj = +25 °C  
Tj = -40 °C  
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Supply Voltage: VIN [V]  
Supply Voltage: VIN [V]  
Figure 8. VIN Circuit Current 1 vs Supply Voltage  
Figure 9. VIN Circuit Current 2 vs Supply Voltage  
5.50  
5.40  
5.30  
5.20  
5.10  
5.00  
4.90  
4.80  
4.70  
4.60  
4.50  
5.0  
4.9  
Release  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
Detection  
4.1  
4.0  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 10. VIN UVLO Detect/Release Voltage  
vs Temperature  
Figure 11. VDRV5 Reference Voltage vs Temperature  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
22/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN = 13 V, Tj = +25 °C)  
330  
320  
310  
300  
290  
280  
270  
3.10  
3.08  
3.06  
3.04  
3.02  
3.00  
2.98  
2.96  
2.94  
2.92  
2.90  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 12. VREF3 Reference Voltage vs Temperature  
(IVREF3 = 0 mA to 2 mA load)  
Figure 13. Switching Frequency 1 vs Temperature  
(RRT = 33 kΩ)  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
100  
90  
80  
70  
60  
50  
40  
Tj = +150 °C  
Tj = +25 °C  
Tj = -40 °C  
30  
20  
10  
0
0
20  
40  
60  
80  
100  
-50 -25  
0
25  
50  
75 100 125 150  
Resistor Connecting to the RT Pin: RRT [kΩ]  
Temperature [°C]  
Figure 14. Switching Frequency 2 vs Temperature  
(RRT = 3.9 kΩ)  
Figure 15. Minimum OFF Time vs  
Resistor Connecting to the RT Pin  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
23/53  
05.Feb.2021 Rev.002  
 
BD18353EFV-M BD18353MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN = 13 V, Tj = +25 °C)  
175  
173  
171  
169  
167  
165  
163  
161  
159  
157  
155  
160  
158  
156  
154  
152  
150  
148  
146  
144  
142  
140  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 16. LED Current Sense Voltage 100 %  
vs Temperature  
Figure 17. LED Current Sense Voltage 90 %  
vs Temperature  
(VDCDIM1 = VDCDIM2 = 2.5 V)  
(VDCDIM1 = 2.0 V, VDCDIM2 = 2.5 V)  
17.5  
17.1  
16.7  
16.3  
15.9  
15.5  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25  
50  
75 100 125 150  
Temperature [°C]  
Figure 18. LED Current Sense Voltage 10 %  
vs Temperature  
Figure 19. Common-mode Input Range High Side  
Voltage Detection vs Temperature  
(VDCDIM1 = 0.4 V, VDCDIM2 = 2.5 V)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
24/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN = 13 V, Tj = +25 °C)  
120  
115  
110  
105  
100  
95  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.92  
0.90  
90  
85  
80  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
-50 -25  
0
25  
50  
75 100 125 150  
Temperature [°C]  
Figure 20. Over Voltage Protection Detect Voltage  
vs Temperature  
Figure 21. Under Voltage Detection Threshold Voltage  
vs Temperature  
480  
460  
440  
420  
400  
380  
360  
340  
320  
100  
80  
60  
40  
Tj = +150 °C  
Tj = +25 °C  
Tj = -40 °C  
20  
0
-50 -25  
0
25  
50  
75 100 125 150  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8  
DSET Voltage: VDSET [V]  
Temperature [°C]  
Figure 22. PWM Dimming Frequency vs Temperature  
Figure 23. PWM Dimming Duty vs DSET Voltage  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
25/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN = 13 V, Tj = +25 °C)  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
50.0  
47.5  
45.0  
42.5  
40.0  
37.5  
35.0  
32.5  
30.0  
-50 -25  
0
25  
50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Temperature [°C]  
Temperature [°C]  
Figure 24. PDRV Output Low Voltage vs Temperature  
Figure 25. Hiccup Time vs Temperature  
0
-1  
-2  
-3  
-4  
Tj = +150 °C  
Tj = +25 °C  
Tj = -40 °C  
-5  
-6  
-7  
-8  
-9  
-10  
5.0  
15.0  
25.0  
35.0  
45.0  
55.0  
65.0  
SNSP Votage: VSNSP [V]  
Figure 26. PDRV Output Low Voltage vs SNSP Voltage  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
05.Feb.2021 Rev.002  
26/53  
BD18353EFV-M BD18353MUF-M  
Typical Performance Curves - continued  
(Application Examples 1 BOOST (Position Mode / DRL Mode))  
EN  
3.0 V/div  
EN  
3.0 V/div  
COMP  
2.0 V/div  
COMP  
2.0 V/div  
VOUT  
10.0 V/div  
VOUT  
10.0 V/div  
10.0 ms/div  
ILED  
500 mA/div  
ILED  
500 mA/div  
2.0 ms/div  
Figure 27. EN Power ON (DRL Mode)  
Figure 28. EN Power ON (PWM Mode)  
VIN  
5.0 V/div  
VIN  
5.0 V/div  
COMP  
2.0 V/div  
COMP  
2.0 V/div  
VOUT  
10.0 V/div  
ILED  
500 mA/div  
VOUT  
10.0 V/div  
10.0 ms/div  
ILED  
500 mA/div  
10.0 ms/div  
Figure 29. VIN Power ON (DRL Mode)  
Figure 30. VIN Power OFF (DRL Mode)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
27/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Typical Performance Curves - continued  
(Application Examples 1 BOOST (Position Mode / DRL Mode))  
VIN  
5.0 V/div  
VIN  
5.0 V/div  
COMP  
2.0 V/div  
COMP  
2.0 V/div  
VOUT  
10.0 V/div  
10.0 ms/div  
VOUT  
10.0 V/div  
10.0 ms/div  
ILED  
500 mA/div  
ILED  
500 mA/div  
Figure 31. VIN Power ON (PWM Mode)  
Figure 32. VIN Power OFF (PWM Mode)  
PWMI  
3.0 V/div  
PWMI  
3.0 V/div  
PDRV  
PDRV  
10.0 V/div  
10.0 V/div  
2.0 ms/div  
ILED  
500 mA/div  
ILED  
500 mA/div  
2.0 ms/div  
Figure 33. PWM Mode → DRL Mode  
Figure 34. DRL Mode → PWM Mode  
www.rohm.com  
TSZ02201-0T1T0B400330-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
28/53  
TSZ22111 • 15 • 001  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Typical Performance Curves - continued  
(Application Examples 1 BOOST (Position Mode / DRL Mode))  
VOUT  
20.0 V/div  
VOUT  
20.0 V/div  
GL  
5.0 V/div  
GL  
5.0 V/div  
FAULT_B  
5.0 V/div  
FAULT_B  
5.0 V/div  
ILED  
1.0 A/div  
50.0 ms/div  
ILED  
1.0 A/div  
50.0 ms/div  
Figure 35. LED Open Operation (Normal → Open)  
DRL Mode  
Figure 36. LED Open Operation (Open → Normal)  
DRL Mode)  
VOUT  
10.0 V/div  
VOUT  
10.0 V/div  
GL  
5.0 V/div  
GL  
5.0 V/div  
FAULT_B  
5.0 V/div  
FAULT_B  
5.0 V/div  
ILED  
1.0 A/div  
20.0 ms/div  
ILED  
1.0 A/div  
20.0 ms/div  
Figure 37. SCP Operation (Normal → Short)  
DRL Mode  
Figure 38. SCP Operation (Short → Normal)  
DRL Mode  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
29/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Typical Performance Curves - continued  
(Application Examples 1 BOOST (Position Mode / DRL Mode))  
VOUT  
20.0 V/div  
VOUT  
20.0 V/div  
GL  
5.0 V/div  
GL  
5.0 V/div  
FAULT_B  
5.0 V/div  
FAULT_B  
5.0 V/div  
50.0 ms/div  
50.0 ms/div  
ILED  
ILED  
1.0 A/div  
1.0 A/div  
Figure 39. LED Open Operation (Normal → Open)  
PWM Mode  
Figure 40. LED Open Operation (Open → Normal)  
PWM Mode  
VOUT  
10.0 V/div  
VOUT  
10.0 V/div  
GL  
5.0 V/div  
GL  
5.0 V/div  
FAULT_B  
5.0 V/div  
FAULT_B  
5.0 V/div  
20.0 ms/div  
ILED  
1.0 A/div  
20.0 ms/div  
ILED  
1.0 A/div  
Figure 41. SCP Operation (Normal → Short)  
PWM Mode  
Figure 42. SCP Operation (Short → Normal)  
PWM Mode  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
30/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Typical Performance Curves - continued  
(Application Examples 1 BOOST (Position Mode / DRL Mode))  
RT  
100 mV/div  
RT  
100 mV/div  
GL  
2.0 V/div  
GL  
2.0 V/div  
ILED  
500 mA/div  
ILED  
500 mA/div  
1.0 ms/div  
1.0 ms/div  
Figure 43. SSFM Operation (DRL Mode)  
Figure 44. SSFM Operation (PWM Mode)  
www.rohm.com  
TSZ02201-0T1T0B400330-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
31/53  
TSZ22111 • 15 • 001  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Application Examples  
1 BOOST (Position Mode / DRL Mode)  
BATT = 8 V to 18 V  
LED = 8 series, Vf = 3.0 V (Typ), 3.5 V (Max)  
LED Current = 1.04 A  
VIN Enable Threshold = 6.1 V  
OVP Setting Voltage = 51.9 V  
DC/DC Switching Frequency = 300 kHz  
LFILT  
BATT  
CFILT  
CIN1  
CIN2  
CIN3  
L1  
U1 BD18353EFV-M/MUF-M  
CVIN  
RDRL  
VIN  
DRL/PWMI  
VDRV5  
REN1  
D1  
CVDRV5  
COUT1 COUT2 COUT3 COUT4 COUT5  
EN  
REN2  
CEN  
M1  
GND  
GL  
CS  
RGL  
VREF3  
DCDIM1  
DCDIM2  
COMP  
RT  
ROPUD1  
RSLP  
RCS  
PGND  
OPUD  
SNSP  
SNSN  
COPUD  
ROPUD2  
CCOMP  
RCOMP  
RSNS  
RRT  
Q1  
DSET  
FAULT_B  
PDRV  
M2  
RPDRV  
VDRV5  
SSFM_B  
RSSFM_B  
RFAULT_B  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
32/53  
05.Feb.2021 Rev.002  
 
BD18353EFV-M BD18353MUF-M  
1 BOOST (Position Mode / DRL Mode) - continued  
1.1 Recommended Parts List  
Parts  
IC  
Symbol  
U1  
Parts Name  
BD18353EFV-M/MUF-M  
MCR03  
Value  
-
Unit  
-
Product Maker  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
murata  
murata  
murata  
murata  
murata  
murata  
murata  
murata  
murata  
murata  
REN1  
51  
kΩ  
kΩ  
kΩ  
kΩ  
Ω
REN2  
MCR03  
10  
RDSET1  
RDSET2  
RCOMP  
RRT  
MCR03  
39  
MCR03  
10  
MCR03  
33  
MCR03  
33  
kΩ  
kΩ  
kΩ  
Ω
RFAULT_B  
RSSFM_B  
RPDRV  
RSNS  
MCR03  
10  
MCR03  
47  
Resistor  
MCR03  
0
LTR18  
0.16  
560  
11  
Ω
ROPUD1  
ROPUD2  
RCS  
MCR03  
kΩ  
kΩ  
Ω
MCR03  
LTR18  
0.024  
10  
RGL  
MCR03  
Ω
RSLP  
MCR03  
0
kΩ  
kΩ  
μF  
μF  
μF  
μF  
μF  
μF  
μF  
pF  
μF  
μF  
RDRL  
MCR03  
10  
CFILT  
GCM32ER71H475KA  
GCM32ER71H475KA  
GCM32ER71H475KA  
GCM32ER71H475KA  
GCM188L81H104KA  
GCM155R71H103KA  
GCM21BR11E105KA  
GCM155R72A102KA  
GCM21BR71E225KA  
GCJ188R72A104KA  
4.7  
4.7  
4.7  
4.7  
0.1  
0.01  
1
CIN1  
CIN2  
CIN3  
CVIN  
CEN  
Capacitor  
CCOMP  
COPUD  
CVDRV5  
COUT1  
COUT2, COUT3  
1000  
2.2  
0.1  
,
GCM32DC72A475KE  
4.7  
μF  
murata  
COUT4, COUT5  
LFILT  
L1  
CLF6045NIT-2R2N-D  
MSS1278-103MLB  
RBQ10BM65AFHTL  
IRLR3110ZTRPBF  
2.2  
10  
-
μH  
μH  
-
TDK  
Inductor  
Coil Craft  
ROHM  
D1  
Diode  
MOSFET  
M1  
-
-
Infineon  
ON  
MOSFET  
Transistor  
M2  
Q1  
FDC3535  
-
-
-
-
Semiconductor  
SST2907AHZG  
ROHM  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
33/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Application Examples - continued  
2 BOOST to VIN (Position Mode / DRL Mode)  
Position Mode  
Position = 13 V  
LED = 4 series, Vf = 3.0 V (Typ)  
LED Current = 1.04 A  
PWM Frequency = 400 Hz  
PWM Dimming Duty = 10.6 %  
VIN Enable Threshold = 6.1 V  
OVP Setting Voltage = 51.9 V  
DC/DC Switching Frequency = 412 kHz  
DRL Mode  
DRL = 13 V  
LED = 4 series, Vf = 3.0 V (Typ)  
LED Current = 1.04 A  
PWM Dimming Duty = 100 %  
VIN Enable Threshold = 6.1 V  
OVP Setting Voltage = 51.9 V  
DC/DC Switching Frequency = 412 kHz  
DRL  
CIN1  
CIN2  
CIN3  
Position  
COUT4  
COUT5  
L1  
U1 BD18353EFV-M/MUF-M  
CVIN  
RDRL  
VIN  
DRL/PWMI  
VDRV5  
GL  
REN1  
D1  
CVDRV5  
COUT1 COUT2  
COUT3  
EN  
REN2  
CEN  
M1  
ROPUD1  
GND  
RGL  
VREF3  
DCDIM1  
DCDIM2  
COMP  
RT  
CS  
Q2  
RSLP  
RCS  
PGND  
OPUD  
SNSP  
SNSN  
COPUD  
ROPUD2  
CCOMP  
RCOMP  
RSNS  
RRT  
Q1  
RDSET1  
DSET  
FAULT_B  
PDRV  
M2  
RPDRV  
RDSET2  
VDRV5  
SSFM_B  
RSSFM_B  
RFAULT_B  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
34/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
2 BOOST to VIN (Position Mode / DRL Mode) - continued  
2.1 Recommended Parts List  
Parts  
IC  
Symbol  
U1  
Parts Name  
BD18353EFV-M/MUF-M  
MCR03  
Value  
-
Unit  
-
Product Maker  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
murata  
murata  
murata  
murata  
murata  
murata  
murata  
murata  
murata  
murata  
REN1  
51  
kΩ  
kΩ  
kΩ  
kΩ  
Ω
REN2  
MCR03  
10  
RDSET1  
RDSET2  
RCOMP  
RRT  
MCR03  
39  
MCR03  
10  
MCR03  
33  
MCR03  
24  
kΩ  
kΩ  
kΩ  
Ω
RFAULT_B  
RSSFM_B  
RPDRV  
RSNS  
MCR03  
10  
MCR03  
47  
Resistor  
MCR03  
0
LTR18  
0.16  
680  
18  
Ω
ROPUD1  
ROPUD2  
RCS  
MCR03  
kΩ  
kΩ  
Ω
MCR03  
LTR18  
0.024  
10  
RGL  
MCR03  
Ω
RSLP  
MCR03  
2.4  
10  
kΩ  
kΩ  
μF  
μF  
μF  
μF  
μF  
μF  
μF  
pF  
μF  
μF  
RDRL  
MCR03  
CFILT  
GCM32ER71H475KA  
GCM32ER71H475KA  
GCM32ER71H475KA  
GCM32ER71H475KA  
GCM188L81H104KA  
GCM155R71H103KA  
GCM21BR11E105KA  
GCM155R72A102KA  
GCM21BR71E225KA  
GCJ188R72A104KA  
4.7  
4.7  
4.7  
4.7  
0.1  
0.01  
1
CIN1  
CIN2  
CIN3  
CVIN  
CEN  
Capacitor  
CCOMP  
COPUD  
CVDRV5  
COUT1  
COUT2, COUT3  
1000  
2.2  
0.1  
,
GCM32DC72A475KE  
4.7  
μF  
murata  
COUT4, COUT5  
Inductor  
Diode  
L1  
D1  
M1  
MSS1278-103MLB  
RBQ10BM65AFHTL  
IRLR3110ZTRPBF  
10  
-
μH  
Coil Craft  
ROHM  
-
-
-
Infineon  
MOSFET  
Transistor  
ON  
M2  
FDC3535  
-
-
Semiconductor  
Q1  
Q2  
SST2907AHZG  
SST2907AHZG  
-
-
-
-
ROHM  
ROHM  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
35/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Application Examples - continued  
3 SEPIC  
Position Mode  
Position = 13 V  
LED = 4 series, Vf = 3.0 V (Typ)  
LED Current = 1.04 A  
PWM Frequency = 400 Hz  
PWM Dimming Duty = 10.6 %  
VIN Enable Threshold = 6.1 V  
OVP Setting Voltage = 51.9 V  
DC/DC Switching Frequency = 412 kHz  
DRL Mode  
DRL = 13 V  
LED = 4 series, Vf = 3.0 V (Typ)  
LED Current = 1.04 A  
PWM Dimming Duty = 100 %  
VIN Enable Threshold = 6.1 V  
OVP Setting Voltage = 51.9 V  
DC/DC Switching Frequency = 412 kHz  
DRL  
Position  
L1  
CIN1  
CIN2  
CIN3  
U1 BD18353EFV-M/MUF-M  
CVIN  
RDRL  
VIN  
DRL/PWMI  
VDRV5  
GL  
REN1  
D1  
CSW  
CVDRV5  
COUT1 COUT2 COUT3 COUT4 COUT5  
EN  
M1  
REN2  
CEN  
GND  
RGL  
VREF3  
DCDIM1  
DCDIM2  
COMP  
RT  
CS  
ROPUD1  
RSLP  
RCS  
PGND  
OPUD  
SNSP  
SNSN  
COPUD  
ROPUD2  
CCOMP  
RCOMP  
RSNS  
RRT  
Q1  
RDSET1  
DSET  
FAULT_B  
PDRV  
M2  
RPDRV  
RDSET2  
VDRV5  
SSFM_B  
RSSFM_B  
RFAULT_B  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
36/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
3 SEPIC - continued  
3.1 Recommended Parts List  
Parts  
IC  
Symbol  
U1  
Parts Name  
BD18353EFV-M/MUF-M  
MCR03  
Value  
-
Unit  
-
Product Maker  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
ROHM  
murata  
murata  
-
REN1  
51  
kΩ  
kΩ  
kΩ  
kΩ  
Ω
REN2  
MCR03  
10  
RDSET1  
RDSET2  
RCOMP  
RRT  
MCR03  
39  
MCR03  
10  
MCR03  
15  
MCR03  
24  
kΩ  
kΩ  
kΩ  
Ω
RFAULT_B  
RSSFM_B  
RPDRV  
RSNS  
MCR03  
10  
MCR03  
47  
Resistor  
MCR03  
0
LTR18  
0.16  
470  
11  
Ω
ROPUD1  
ROPUD2  
RCS  
MCR03  
kΩ  
kΩ  
Ω
MCR03  
LTR18  
0.024  
10  
RGL  
MCR03  
Ω
RSLP  
MCR03  
2.4  
10  
kΩ  
kΩ  
μF  
μF  
-
RDRL  
MCR03  
CIN1  
GCM32ER71H475KA  
GCM32ER71H475KA  
-
4.7  
4.7  
-
CIN2  
CIN3  
CVIN  
-
-
-
-
CEN  
GCM155R71H103KA  
GCM21BR11E105KA  
GCM155R72A102KA  
GCM21BR71E225KA  
GCJ188R72A104KA  
GCM32DC72A475KE  
0.01  
1
μF  
μF  
pF  
μF  
μF  
μF  
murata  
murata  
murata  
murata  
murata  
murata  
CCOMP  
COPUD  
CVDRV5  
COUT1  
CSW  
Capacitor  
1000  
2.2  
0.1  
4.7 x 2  
COUT2, COUT3  
COUT4, COUT5  
,
GCM32DC72A475KE  
4.7  
μF  
murata  
Inductor  
Diode  
L1  
D1  
M1  
MSD1278T-103MLB  
RBQ10BM65AFHTL  
IRLR3110ZTRPBF  
10  
-
μH  
Coil Craft  
ROHM  
-
-
-
Infineon  
MOSFET  
Transistor  
ON  
M2  
Q1  
FDC3535  
-
-
-
-
Semiconductor  
SST2907AHZG  
ROHM  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
37/53  
05.Feb.2021 Rev.002  
 
BD18353EFV-M BD18353MUF-M  
Application Parts Selection Method (Boost Mode Application)  
Refer to Application Examples 1. BOOST (Position Mode / DRL Mode).  
A constant setting sheet is available. Contact ROHM directly.  
Select application parts by the following procedure.  
1. Enable Setting.  
2. PWM Dimming Duty Setting.  
3. Switching Frequency Setting.  
4. Derivation of input peak current (IL_MAX).  
Feedback of  
change value  
5. Over Current protection Setting.  
6. Inductor Selection.  
7. OVP (LED Open) Detection Voltage Setting.  
8. Diode and MOSFET Selection.  
9. Output Capacitor Selection.  
10. Input Capacitor Selection.  
11. Feedback Compensation.  
12. Actual Operation Confirmation.  
www.rohm.com  
TSZ02201-0T1T0B400330-1-2  
05.Feb.2021 Rev.002  
© 2020 ROHM Co., Ltd. All rights reserved.  
38/53  
TSZ22111 • 15 • 001  
BD18353EFV-M BD18353MUF-M  
Application Parts Selection Method (Boost Mode Application) - continued  
1 Enable Setting  
The BD18353EFV-M/MUF-M can be ON/OFF controlled by the EN pin.  
Design value: VINON = 6.1 V, VINOFF = 5.5 V  
(
)
ꢇ푁2  
(
)
ꢖ 푅  
5ꢃ ꢙꢚ ꢖꢃꢄ ꢙꢚ  
ꢃꢄ ꢙꢚ  
ꢇ푁1  
=
× 퐸ꢂꢕ퐻  
× 퐸ꢂꢕ퐿  
=
× ꢌ.ꢍ = 6.ꢌ  
[V]  
[V]  
ꢕꢂ푂ꢂ  
ꢇ푁2  
(
)
ꢖ 푅  
ꢇ푁2  
(
)
5ꢃ ꢙꢚ ꢖꢃꢄ ꢙꢚ  
ꢃꢄ ꢙꢚ  
ꢇ푁1  
ꢕꢂ푂퐹퐹  
=
=
× ꢍ.ꢛ = ꢜ.ꢝꢛ  
ꢇ푁2  
2 PWM Dimming Setting (Internal PWM Dimming Signal Generator)  
The BD18353EFV-M/MUF-M has a built-in PWM dimming pulse generation circuit. Set the duty with the built-in ramp  
waveform and the voltage input to the DSET pin. The DSET pin voltage is set from the VREF3 pin by resistance voltage  
division.  
Design value: PWM Dimming Duty (DPWM) = 10.6 %  
ꢆꢀꢇꢈ2  
ꢉꢇꢎ3  
×
− 푉  
ꢉ퐴ꢊꢋ퐵  
+ ꢉ  
ꢆꢀꢇꢈ1  
ꢆꢀꢇꢈ2  
푃푊푀  
=
=
× ꢌꢍꢍ  
− 푉  
ꢉ퐴ꢊꢋ퐵  
ꢉ퐴ꢊꢋꢋ  
10 푘훺  
3ꢞ 푘훺 + 10 푘훺  
ꢐ.ꢄꢄ ×  
− ꢄ.4ꢄ  
× ꢌꢍꢍ = ꢌꢍ.6  
[%]  
ꢑ.4ꢄ − ꢄ.4ꢄ  
3 Switching Frequency Setting  
The switching frequency of the DC/DC can be set by the resistor RRT connected to the RT pin.  
Design value: Switching Frequency = 300 kHz  
99ꢄꢄ  
99ꢄꢄ  
푆푊ꢃ  
× ꢌꢍ=  
× ꢌꢍ= ꢒꢍꢍ  
[kHz]  
ꢐꢐ ꢙꢚ  
ꢉꢈ  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
39/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Application Parts Selection Method (Boost Mode Application) - continued  
4 Derivation of Input Peak Current IL_MAX (VDCDIM1 > 2.5 V, VDCDIM2 > 2.5 V)  
4.1 Calculation of Output Voltage (VOUT  
)
BOOST Setting:  
푂푈푇 = ꢁ  
× ꢠ ꢡ 푆ꢂ푆_ꢃꢄꢄ % ꢡ ꢢ푂ꢂ_푃푊푀퐹퐸푇 × 퐼퐿퐸퐷  
ꢟ_퐿퐸퐷  
= ꢒ × 8 ꢡ ꢍ.ꢌ667 ꢡ ꢍ.ꢣ × ꢌ ≈ ꢣꢝ.ꢝ  
[V]  
Where:  
is the Vf of LED (Typ: 3.0 V, Max: 3.5 V).  
is the number of series LED.  
ꢟ_퐿퐸퐷  
푂ꢂ_푃푊푀퐹퐸푇 is the ON resistance of MOSFET for PWM Dimming. (M1)  
퐿퐸퐷 is the output LED current.  
4.2 Calculation of DC/DC Switching Duty (DSW  
)
− 푉 ꢑ4 푉 − ꢃꢐ 푉  
ꢗꢘꢈ  
ꢤ푁  
푆푊  
=
=
≈ ꢍ.ꢝꢜ8  
ꢑ4 푉  
ꢗꢘꢈ  
4.3 Calculation of Output Current (ILED  
)
ꢄ.ꢃꢥꢥꢦ  
ꢄ.ꢃꢥ  
ꢀ푁ꢀ_100 %  
퐿퐸퐷  
=
=
≈ ꢌ.ꢍꢝ  
[A]  
ꢀ푁ꢀ  
4.4 Calculation of Input Peak Current (IL_MAX  
)
퐿_푀ꢓ푋 = 퐼퐿_ꢓ푉퐸_푀ꢓ푋 ꢡ 훥퐼퐿_푀ꢓ푋 = ꢒ.ꢛꢍ ꢡ ꢌ.ꢒꢍ = ꢜ.ꢣ  
[A]  
[A]  
[A]  
퐿_푀ꢕꢂ = 퐼퐿_ꢓ푉퐸_푀ꢕꢂ ꢧ 훥퐼퐿  
= ꢌ.ꢝ8 ꢧ ꢌ.ꢒꢍ = ꢍ.ꢌ8  
ꢊ퐴ꢨ  
× ꢕ  
ꢑꢪ 푉 × ꢃ ꢓ  
= ≈ ꢒ.ꢛꢍ  
ꢄ.9 × ꢪ  
ꢗꢘꢈ_ꢊ퐴ꢨ  
ꢩꢇꢆ  
퐿_ꢓ푉퐸_푀ꢓ푋  
퐿_ꢓ푉퐸_푀ꢕꢂ  
=
=
휂 × 푉  
ꢤ푁_ꢊꢤ푁  
× ꢕ  
ꢑ4 푉 × ꢃ ꢓ  
≈ ꢌ.ꢝ8  
ꢄ.9 × ꢃꢪ  
ꢗꢘꢈ_ꢊꢤ푁  
ꢩꢇꢆ  
=
[A]  
휂 × 푉  
ꢤ푁_ꢊ퐴ꢨ  
(푉  
− 푉 )  
ꢤ푁  
ꢤ푁  
ꢗꢘꢈ  
훥퐼퐿_푀ꢓ푋  
=
×
×
ꢗꢘꢈ  
ꢀꢫ_ꢊꢤ푁  
ꢃ4 푉  
(ꢑꢪ 푉 − ꢃ4 푉)  
ꢑꢪ 푉  
=
×
×
≈ ꢣ.ꢜꢛ  
[A]  
ꢃꢄ 휇퐻  
ꢑꢦꢄ ꢙ퐻푧  
Where:  
퐿_푀ꢓ푋  
퐿_푀ꢕꢂ  
is the maximum inductor current.  
is the minimum inductor current.  
is the mean inductor current.  
퐿_ꢓ푉퐸  
퐿_ꢓ푉퐸_푀ꢓ푋  
퐿_ꢓ푉퐸_푀ꢕꢂ  
훥퐼퐿_ꢓ푉퐸  
is the maximum mean inductor current.  
is the minimum mean inductor current.  
is the maximum inductor ripple current.  
is the Efficiency.  
is the minimum switching frequency.  
푆푊_푀ꢕꢂ  
●Assign minimum input voltage for calculation.  
●BD18353EFV-M/MUF-M adopts current mode DC/DC converter control. When IL_MIN is positive, it becomes to be in the  
consecutive modes, and it will be in the discontinuity mode when IL_MIN is negative. Feedback characteristics are easy to  
become insufficient in the discontinuous mode, and responsiveness turns worse, and a switching waveform pattern  
becomes irregular, and stability is easy to turn worse. Therefore it is sufficient validation of feedback characteristics are  
recommended.  
●η (efficiency) is calculated as 90 %.  
●In the case of VDCDIM1 ≤ 2.5 V or VDCDIM2 ≤ 2.5 V, calculate ILED with reference to Description of Blocks 5 Analog Dimming  
(DCDIM).  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
40/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Application Parts Selection Method (Boost Mode Application) - continued  
5 Over Current Protection Setting  
Select RCS (resistance for over current detection) to realize below.  
Design value: Over current detection = 12.5 A  
ꢭꢀꢗꢭꢋ_ꢊꢤ푁  
푂퐶푃_푀ꢕꢂ  
푂퐶푃_푀ꢕꢂ  
=
=
> 퐼퐿_푀ꢓ푋  
[A]  
[A]  
ꢭꢀ  
ꢄ.ꢑꢦ5  
ꢭꢀꢗꢭꢋ_ꢊꢤ푁  
=
≈ ꢌꢌ.ꢝ6 > ꢜ.ꢣ  
ꢄ.ꢄꢑ4  
ꢭꢀ  
Where:  
푂퐶푃_푀ꢕꢂ  
is the minimum over current detection current.  
is the minimum over current detection voltage.  
퐶푆푂퐶푃_푀ꢕꢂ  
Set a sufficient margin in consideration of the variation of the inductor.  
6 Inductor Selection  
For the purpose of stabilizing current mode DC/DC converter operation, adjustment of L value within the following condition  
is recommended.  
Design value: RSLP = 0.0 kΩ  
ꢯꢰ  
(
)
ꢗꢘꢈ  
− 푉  
× 푅 × 푅 × ꢃ.5 × ꢃꢄ  
ꢤ푁  
ꢭꢀ  
ꢉꢈ  
ꢮ >  
ꢮ >  
4 ꢙ ꢖ 푅  
ꢀꢩꢋ  
ꢯꢰ  
(
)
ꢑꢪ − ꢪ × ꢑ4.ꢑ4 푚 × ꢐꢐ.ꢐꢐ ꢙ × ꢃ.5 × ꢃꢄ  
≈ 6  
[μH]  
[µH]  
4 ꢙ  
Design value: RSLP = 1.2 kΩ  
ꢯꢰ  
(
)
ꢑꢪ − ꢪ × ꢑ4.ꢑ4 푚 × ꢐꢐ.ꢐꢐ ꢙ × ꢃ.5 × ꢃꢄ  
ꢮ >  
≈ ꢝ.7  
4 ꢙ ꢖ ꢃ.ꢑ ꢙ  
Reduction of calculated value will increase stability, but may reduce responsiveness such as power voltage variation. If  
the above formula is not satisfied, the switching becomes unstable due to sub-harmonic oscillation, and the LED may flicker.  
The condition can be eased by adding RSLP  
.
However, be aware that adding RSLP will also change OCP detection (IOCP)  
level. The formula for calculating the OCP detection level (IOCP) when RSLP is added is as follows.  
Design value: RSLP = 1.2 kΩ  
1.0ꢰ  
× 1.2 × 10  
ꢀꢫ_ꢊ퐴ꢨ  
ꢱ푉  
×
× 푅  
ꢀꢩꢋ  
ꢭꢀꢗꢭꢋ_ꢊꢤ푁  
ꢯꢰ  
ꢀꢫ_ꢊꢤ푁  
ꢉꢈ  
푂퐶푃_푀ꢕꢂ  
=
=
> 퐼퐿_푀ꢓ푋  
[A]  
[A]  
ꢭꢀ  
1.0ꢰ  
33 푘 × 1.2 × 10  
0.ꢵ2  
2ꢵ0 푘  
ꢴꢄ.ꢑꢦ5 −  
×
× ꢃ.ꢑ ꢙꢶ  
ꢯꢰ  
푂퐶푃_푀ꢕꢂ  
≈ 7.8ꢛ > 퐼퐿_푀ꢓ푋  
ꢄ.ꢄꢑ4  
Where:  
푆푊_푀ꢓ푋  
is the maximum DC/DC switching duty.  
is the minimum switching frequency.  
is the maximum inductor current.  
푆푊_푀ꢕꢂ  
퐿_푀ꢓ푋  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
41/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Application Parts Selection Method (Boost Mode Application) - continued  
7 OVP (LED Open) Detection Voltage Setting  
LED open detection voltage needs higher voltage setting than overshoot of output voltage at start up to avoid start up  
failure. Further, output voltage at the time of LED open detection (VOUT_OVP) is calculable as shown below by setting  
ROPUD1 and ROPUD2  
.
Design value: Over voltage detection = 51.9 V  
ꢖ 푅  
ꢗꢋꢘꢆ2  
ꢗꢋꢘꢆ1  
푂푈푇_푂푉푃  
=
=
× 푂푉푃  
ꢗꢋꢘꢆ2  
5ꢥꢄ ꢙ ꢖ ꢃꢃ ꢙ × ꢌ.ꢍ ꢁ ≈ ꢜꢌ.ꢛ (ꢏ푦푝)  
[V]  
ꢃꢃ ꢙ  
Where:  
푂푈푇_푂푉푃 is the OVP (LED Open) Detection Voltage.  
ROPUD1, ROPUD2 resistor will be the current discharge path for the output capacitor when PWM = Low.  
Improperly the resistor value can increase VOUT ripple and cause the LED to flicker. Therefore, it is recommended to  
select ROPUD1 in the range of 500 kΩ to 1000 kΩ.  
Sufficient verification for LED flickering is required with actual application as behavior differs by characteristic of output  
capacitor and LED. (VOUT drop can be prevented by inserting bigger output capacitor or ODT resistance.)  
8 Diode and MOSFET Selection  
Selection of MOSFET M1  
Select a MOSFET (M1) whose VDS rating is higher than the maximum voltage for OVP (LED open) detection.  
ꢖ 푅  
ꢗꢋꢘꢆ2  
ꢗꢋꢘꢆ1  
ꢷꢌ 퐷푆 > 푂푈푇_푂푉푃_푀ꢓ푋  
=
=
× 푂푉푃_푀ꢓ푋  
ꢗꢋꢘꢆ2  
5ꢥꢄ ꢙ ꢖ ꢃꢃ ꢙ  
ꢃꢃ ꢙ  
(
)
× ꢌ.ꢍꢝ ꢁ ≈ ꢜꢝ ꢷ푎푥  
[V]  
Where:  
ꢷꢌ 퐷푆  
is the maximum rating voltage between drain and source of M1.  
푂푈푇_푂푉푃_푀ꢓ푋 is the maximum over voltage detection voltage.  
The RMS current rating (IDS_RMS) flowing between the drain - source of M1 can be calculated as follows.  
퐷푆_푅푀푆 = ꢌ.ꢒ × ꢸ퐼퐿_ꢓ푉ꢹ^ꢣ × 푆푊  
Where:  
퐿_ꢓ푉퐸 is the mean inductor current.  
푆푊 is the Switching Duty.  
A loss of M1 is calculated next. The loss of M1 has Switching loss PLOSS1 and M1 On resistance loss PLOSS2  
loss PLOSS1 and M1 On resistance loss PLOSS2 can be calculated as follows.  
.
Switching  
(
) × 푓 × 푂푈푇 퐷ꢃ × 퐼퐿_ꢓ푉퐸  
ꢖ 푡  
(
)
퐿푂푆푆ꢃ  
=
푆푊  
퐿푂푆푆ꢑ = 퐼퐿_ꢓ푉퐸 × ꢢ푂ꢂ × 푆푊  
Where:  
is the rise time of M1 drain-source.  
is the fall time of M1 drain-source.  
퐷ꢃ is the forward voltage of D1.  
푂ꢂ is the ON resistance of M1.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
42/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
8 Diode and MOSFET Selection - continued  
Selection of rectifier diode D1  
For power consumption reduction, use a Schottky Barrier diode for rectification diode D1. The withstand voltage rating of  
the diode shall be higher than the OVP (LED Open) detection voltage. In addition, Schottky Barrier diode with low leakage  
current shall be selected if PWM dimming is used. Because the leakage current increases with higher temperature  
environment, the output capacitor can be discharged in PWM = Low which may result that LED current will be unstable.  
The current limit of D1 can be calculated in following formula.  
(
)
퐷ꢃ = 퐼퐿_ꢓ푉퐸 × ꢌ 푆푊  
Where:  
퐿_ꢓ푉퐸 is the mean inductor current.  
푆푊 is the DC/DC switching duty.  
Selection of MOSFET M2  
Consider margin and set the rated voltage rather higher than the actual usage condition for LED current and output voltage.  
Selection of transistor Q1 for current clamp  
It is recommended to insert Q1 to control the flow of excessive large current at the time of anode ground fault. By inserting  
Q1, the set current is clamped by the Vf of Q1, so the withstand current of M2 can be suppressed.  
For example, when Vf = 0.5 V, the current is clamped at about 3 times the set current. Select the Vce of Q1 that satisfies  
the following formula.  
퐶퐸 > 푂푈푇_푂푉푃_푀ꢓ푋  
Also, select in consideration of hfe, speed and saturation voltage.  
9 Output Capacitor Selection  
Output capacity includes two purposes. The first is to reduce output ripple. The second is to supply current to LED when  
MOSFET (D1) is switched on. The output voltage ripple is influenced by both bulk capacity and ESR. (When a ceramic  
capacitor is used, most of the ripple caused by bulk capacity.) Bulk capacity and the ESR can be calculated in lower  
formula.  
ꢀꢫ_ꢊ퐴ꢨ  
푂푈푇 ≥ 퐼퐿퐸퐷  
×
ꢽ푉  
×ꢟ  
ꢀꢫ_ꢊꢤ푁  
ꢭꢗꢘꢈ  
ꢽ푉  
ꢇꢀꢉ  
<
ꢩ_ꢊ퐴ꢨ  
퐸푆푅  
Where:  
훥ꢁ  
is the influence with the capacitor among output ripple.  
퐶푂푈푇  
퐸푆푅 is the ripple which occurs in the ESR of the output capacitor.  
is the minimum switching frequency.  
푆푊_푀ꢕꢂ  
The total output ripple permitted here can be expressed as product of LED current ripple and the equivalent resistance of  
the LED. This equivalent resistance is defined as "ΔV / ΔI of the LED current", and it is necessary to calculate from I-V  
properties in the data sheet of the selected LED. When the application condition is the number of the driven LED = 8 pcs  
(equivalent resistance 0.2 Ω / LED), LED current = 1 A (IL_MAX = 5.2 A), switching duty = 72 %(VIN = 8 V, VOUT = 28 V) ,  
switching frequency = 300 kHz, LED current ripple = 5%. Then the total output ripple can be calculated as follows.  
(
)
푂푈푇_푅ꢕ푃푃퐿퐸 = ꢌ ꢾ × ꢜ % × ꢍ.ꢣ ꢿ × 8 = 8ꢍ  
[mV]  
Where:  
푂푈푇_푅ꢕ푃푃퐿퐸 is the VOUT ripple voltage.  
If bulk capacity causes 95 % among total output ripple, the output capacitor is calculated as follows.  
ꢄ.ꢦꢑ  
푂푈푇 ≥ ꢌ × ꢄ.ꢄꢪ × ꢄ.95  
×
≈ ꢒꢌ.6  
[µF]  
ꢐꢄꢄ ꢙ퐻푧  
(
)
ꢄ.ꢄꢪ × ꢄ.ꢄ5  
ꢗꢘꢈ_ꢉꢤꢋꢋꢩꢇ  
퐸푆푅  
<
=
≈ ꢍ.77  
[mΩ]  
5.ꢑ  
ꢩ_ꢊ퐴ꢨ  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
43/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
9 Output Capacitor Selection - continued  
However the capacitance of output capacitor mentioned above is minimum capacitance. Therefore select parts considering  
the tolerance of the capacitor and DC bias properties. Furthermore, because small external part connected to output may  
lead to bigger ripple on output voltage, which may result in LED flickering, sufficient verification of the actual application is  
required. Increase output capacitors if judged to be required from the verification. In addition, an acoustic noise may be  
produced by the piezoelectric effect of the ceramic capacitor during PWM dimming. Low ESR electrolytic capacitor used  
together with a ceramic capacitor may reduce this noise. But capacitance may largely decrease with a change of the  
voltage with the ceramic capacitor and may not accord with the numerical value calculated from theory.  
10 Input Capacitor Selection  
In DC/DC converter, since peak current flows between input and output, a capacitor is also required in the input side.  
Therefore, low ESR capacitors with capacitor of 10 µF or more and ESR component of 100 mΩ or less are recommended  
as input capacitors. If a capacitor out of the range is selected, an excessive ripple voltage may be superimposed on the  
input voltage and the LSI may malfunction.  
∆ꢕ  
ꢕꢂ ≥  
ꢪ × 푉  
× ꢟ  
ꢀꢫ  
ꢤ푁_ꢉꢤꢋꢋꢩꢇ  
Where:  
is the VIN ripple voltage.  
ꢕꢂ_푅ꢕ푃푃퐿퐸  
11 Feedback Compensation  
●Concerning stability condition of application.  
Stability condition for system with negative feedback is as shown below.  
Phase-lag when gain is 1 (0 dB) is no more than 150 ° (namely, phase margin is 30 ° or more).  
Further, since DC/DC converter application is sampled by switching frequency, GBW of the entire system is set to be 1 /  
10 or less of switching frequency. To wrap up, target characteristics of application are as shown below.  
●Phase-lag when gain is 1 (0 dB) is 150 ° or less (namely, phase margin is 30 ° or more).  
●GBW at the time (namely, frequency when gain is 0 dB) is 1/10 or less of switching frequency. Therefore, in order to  
raise responsiveness by limiting GBW, higher switching frequency is required.  
●Phase margin: 60 ° or more  
●GBW: 1/20 or less of switching frequency.  
is recommended.  
The knack for securing stability feedback compensation is to insert phase-lead fZ1 near GBW. GBW is determined by COUT  
and phase-lag fP due to output impedance RL (= VOUT / ILED).  
They are shown in the following formulae.  
Phase-lead  
푍ꢃ  
=
ꢑ 휋 × 퐶  
× 푅  
ꢭꢗꢊꢋ  
ꢭꢗꢊꢋ  
Phase-lag  
푓 =  
ꢑ 휋 × 푅 × 퐶  
ꢗꢘꢈ  
ꢗꢘꢈ  
=  
ꢩꢇꢆ  
As described above, secure phase margin. For RL value at max load should be inserted. In addition, with boost DC/DC,  
right half plane zero (RHP zero) is to be considered. This zero has a characteristic of zero as a gain and as the pole with  
phase. Because it causes an oscillation when this zero effects on a control loop, it is necessary to bring GBW just before  
RHP zero. RHP zero fZ2 can be calculated with an equation below and shows good characteristic by setting GBW to be  
lower than 1/10 of RHP zero or less.  
ꢤ푁  
2
푅 × (  
)
ꢗꢘꢈ  
푍ꢑ  
=
ꢑ 휋 × 퐿  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
44/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
11 Feedback Compensation - continued  
Particularly when supply voltage rises and gets close to output voltage, the switching output becomes irregular and ripple of  
the output voltage increases. Ripple of the LED current may thereby get bigger.  
Since this setting is obtained by simplified, not strict, calculation, adjustment by actual equipment may be required in some  
cases.  
Further, since these characteristics will vary depending upon substrate layout, load condition, etc., confirm satisfactorily  
with actual equipment when planning mass production.  
12 Actual Operation Confirmation  
Select external parts based on verification with actual equipment since characteristics will vary depending on various  
factors such as load current, input voltage, output voltage, inductor value, load capacity, switching frequency and mounting  
pattern.  
About the attention point at the time of the PCB layout  
1. Locate the decoupling capacitor of CVIN, CVDRV5 close to an LSI pin as much as possible.  
2. RRT locates it close to the RT pin, and prevent there from being capacity.  
3. Because high current may flow in PGND, lower impedance.  
4. Prevent noise to be applied to the EN, VREF3, COMP, RT, DCDIM1, DCDIM2, DSET, OPUD, SNSP and SNSN pins.  
5. As the GL, CS, PDRV pins are switching, be careful not to affect the neighboring patterns.  
6. There is EXP-PAD on the back side of the package.  
7. For noise reduction, PGND of RCS and PGND of COUT recommend to have one common grounds. In addition, consider  
the PCB layout so that the current path of M1 → RCS, RCS → PGND and the current path of M1 → D1 → COUT → PGND  
are the shortest and with the lowest impedance on the same surface without vias etc.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
45/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
I/O Equivalence Circuits  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
I/O Equivalence Circuit  
I/O Equivalence Circuit  
VDRV5  
EN  
VREF3  
GND  
2
4
EN  
VREF3  
(20)  
(2)  
GND  
VDRV5  
5
DCDIM1  
DCDIM2  
VDRV5  
(3)  
DCDIM1  
DCDIM2  
7
COMP  
COMP  
(5)  
6
GND  
(4)  
GND  
VDRV5  
DSET  
VDRV5  
8
9
RT  
DSET  
RT  
(6)  
(7)  
GND  
GND  
FAULT_B  
SSFM_B  
PGND  
10  
(8)  
11  
FAULT_  
B
SSFM_B  
(9)  
GND  
( ) is the VQFN20FV3535 package  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
46/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
I/O Equivalence Circuits- continued  
Pin  
No.  
Pin  
Name  
Pin  
No.  
Pin  
Name  
I/O Equivalence Circuit  
I/O Equivalence Circuit  
SNSP  
13  
SNSP  
SNSN  
SNSP  
(11)  
12  
PDRV  
PGND  
PDRV  
OPUD  
GL  
SNSN  
PGND  
(10)  
14  
SNSP - 7.5 V  
(12)  
VDRV5  
OPUD  
15  
17  
CS  
(13)  
(15)  
CS  
PGND  
PGND  
VIN  
VDRV5  
18  
19  
VDRV5  
GND  
VDRV5  
GL  
(16)  
(17)  
PGND  
DRL/  
PWMI  
20  
DRL/  
PWMI  
(18)  
GND  
( ) is the VQFN20FV3535 package.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
05.Feb.2021 Rev.002  
47/53  
BD18353EFV-M BD18353MUF-M  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
48/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
14. Functional Safety  
“ISO 26262 Process Compliant to Support ASIL-*”  
A product that has been developed based on an ISO 26262 design process compliant to the ASIL level described in  
the datasheet.  
“Safety Mechanism is Implemented to Support Functional Safety (ASIL-*)”  
A product that has implemented safety mechanism to meet ASIL level requirements described in the datasheet.  
“Functional Safety Supportive Automotive Products”  
A product that has been developed for automotive use and is capable of supporting safety analysis with regard to the  
functional safety.  
Note: “ASIL-*” is stands for the ratings of “ASIL-A”, “-B”, “-C” or “-D” specified by each product's datasheet.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
49/53  
05.Feb.2021 Rev.002  
 
BD18353EFV-M BD18353MUF-M  
Ordering Information  
B D 1  
8
3
5
3
x
x
x
-
M E 2  
Package  
EFV: HTSSOP-B20  
MUF: VQFN20FV3535  
Product Rank  
M: for Automotive  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagrams  
HTSSOP-B20 (TOP VIEW)  
Part Number Marking  
LOT Number  
D 1 8 3 5 3  
Pin 1 Mark  
VQFN20FV3535 (TOP VIEW)  
Part Number Marking  
BD  
LOT Number  
18353  
Pin 1 Mark  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
05.Feb.2021 Rev.002  
50/53  
BD18353EFV-M BD18353MUF-M  
Physical Dimension and Packing Information  
Package Name  
HTSSOP-B20  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
51/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Physical Dimension and Packing Information  
Package Name  
VQFN20FV3535  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
52/53  
05.Feb.2021 Rev.002  
BD18353EFV-M BD18353MUF-M  
Revision History  
Date  
Revision  
001  
Changes  
16.Mar.2020  
New Release  
Change Electrical Characteristics  
VDRV5 Reference Voltage  
Before: IVDRV5 = 0 mA to 10 mA  
After: IVDRV5 = 0 mA to 10 mA load  
VDRV5 Drop Voltage  
Before: IVDRV5 = 10 mA  
After: IVDRV5 = 10 mA load  
VREF3 Reference Voltage  
Before: IVREF3 = 0 mA to 2 mA  
After: IVREF3 = 0 mA to 2 mA load  
OSCILLATOR Circuit  
Before: Spread Spectrum Frequency Moduration Width  
After: Spread Spectrum Frequency Modulation Width  
GL ON Resistor High  
Before: IGL = -10 mA  
After: IGL = 10 mA load  
GL ON Resistor Low  
Before: IGL = +10 mA  
After: IGL = 10 mA input  
COMP Sink Current  
Before: VDCDIM = 0 V  
After: VDCDIM1 = VDCDIM2 = 0 V  
Internal Ramp Bottom Voltage  
Before: (Min) 0.38 (Typ) 0.40 (Max) 0.42  
After: (Min) VREF3 / 3 x 0.4 - 0.02 (Typ) VREF3 / 3 x 0.4 (Max) VREF3 / 3 x 0.4 + 0.02  
Deletion: VREF3 = 3.0 V  
05.Feb.2021  
002  
Internal Ramp Peak Voltage  
Before: (Min) 2.38 (Typ) 2.40 (Max) 2.42  
After: (Min) VREF3 / 3 x 2.4 - 0.02 (Typ) VREF3 / 3 x 2.4 (Max) VREF3 / 3 x 2.4 + 0.02  
Deletion: VREF3 = 3.0 V  
PDRV Pull Up ON Resistor  
Before: VSNSP_PDRV = 7 V, VSNSP = 30 V, VDSET = 5 V, VDRL/PWM = 0 V  
After: IPDRV = 10 mA load, VSNSP = 30 V, VDSET = 0 V, VDRL/PWMI = 0 V  
PDRV Pull Down Current  
Before: VDSET = 0 V, VDRL/PWM = 0 V  
After: VDSET = 5 V, VDRL/PWMI = 0 V  
FAULT_B Output Low Voltage  
Before: IFAULT_B = 5 mA  
After: IFAULT_B = 5 mA input  
Change Typical Performance Curves  
Before: VREF3 Reference Voltage vs Temperature (IVREF3 = 0 mA to 2 mA)  
After: VREF3 Reference Voltage vs Temperature (IVREF3 = 0 mA to 2 mA load)  
Change Application Examples  
SEPIC Recommended Parts List Inductor L1  
Before: MSS1278T-103MLB  
After: MSD1278T-103MLB  
Append 14. Functional Safety  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0T1T0B400330-1-2  
53/53  
05.Feb.2021 Rev.002  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD18353MUF-M

BD18353EFV-M/MUF-M是1ch LED控制器。内置高边电流检测放大器。通过内置PWM生成电路,可以自由设定PWM调光Duty。通过驱动外置P-ch MOSFET实现了PWM调光。将LED的异常状态输出到FAULT_B端子。内置双系统模拟调光。内置用于模拟调光及PWM调光设定的高精度3.0V输出电源。
ROHM

BD18362EFV-M

BD18362EFV-M是内置8ch的FET开关的矩阵LED控制器。可通过开关内置FET开关,控制LED的依次亮灯。内置电荷泵为栅极驱动器供电。内置亮灯图案,无需微控制器。
ROHM

BD18364EFV-M (新产品)

BD18364EFV-M是一款内置8通道旁路开关的升降压型LED驱动器。采用本IC可实现时序转向灯和动画灯点亮电路。旁路开关可利用微控制器通信单独控制ON和OFF。可通过电流限制电路来防止旁路开关控制时产生的过电流。
ROHM

BD18377EFV-M

12 Channel Constant Current LED Driver IC
ROHM

BD18377EFV-ME2

12 Channel Constant Current LED Driver IC
ROHM

BD18378EFV-M

Advanced 12 Channel Constant Current LED Driver IC
ROHM

BD18378EFV-ME2

Advanced 12 Channel Constant Current LED Driver IC
ROHM

BD18395EFV-M

BD18395EFV-M是可用于矩阵LED控制(时序控制)的降压LED驱动器。输入电压范围可达4.5V至70V,具备低功耗关断功能,可提供最大2.0A的平均输出电流。LED电流可使用外接电流设定电阻来设定,通过峰值电流检测OFFTIME控制进行动作。内置UVLO、过电流保护、LED开路检测、热关断功能、LED低电压检测、状态良好输出功能。适合进行矩阵控制的LED驱动器。
ROHM

BD18397EUV-M (开发中)

The BD18397EUV-M is 2ch synchronous buck DC/DC LED driver with using on-time topology supporting near fixed switching frequency and fast switching duty regulation and with using average LED current feed buck topology for more accreted LED current regulation system over wide input, LED output range.
ROHM

BD18397RUV-M

BD18397RUV-M是一款双通道同步降压型DC-DC LED驱动器,采用ON-Time拓扑结构支持接近恒定的开关频率和快速开关占空比调节,并采用平均LED电流反馈降压拓扑结构在更宽输入和LED输出范围内实现更出色的LED电流调节系统。
ROHM

BD18398EUV-M (开发中)

The BD18398EUV-M is 3ch synchronous buck DC/DC LED driver with using on-time topology supporting near fixed switching frequency and fast switching duty regulation and with using average LED current feed buck topology for more accreted LED current regulation system over wide input, LED output range.
ROHM

BD18398RUV-M

BD18398RUV-M是一款三通道同步降压型DC-DC LED驱动器,采用ON-Time拓扑结构支持接近恒定的开关频率和快速开关占空比调节,并采用平均LED电流反馈降压拓扑结构在更宽输入和LED输出范围内实现更出色的LED电流调节系统。
ROHM