BD6039GU-E2 [ROHM]

Power Supply for CCD Camera Module; 电源的CCD相机模块
BD6039GU-E2
型号: BD6039GU-E2
厂家: ROHM    ROHM
描述:

Power Supply for CCD Camera Module
电源的CCD相机模块

CD
文件: 总25页 (文件大小:605K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
System Power Supply ICs for CCD Camera of Mobile Phones  
Power Supply  
for CCD Camera Module  
BD6039GU  
No.10033EAT02  
Description  
BD6039GU is system power supply LSI for CCD camera that supplies all voltage sources for CCD camera.  
This IC has Step up DC/DC converter and LDO for CCD sensor, Inverted DC/DC converter for CCD sensor, and LDO (7ch).  
REGA, REG1, REG8, REG5 can be connected the power supply independent from VBAT.  
Each output voltage has an adjustable by the register, and this IC can correspond to various CCD modules.  
A necessary power supply for CCD camera system is integrated into 1chip, and it contributes to space saving.  
BD6039GU achieves compact size with the chip size package.  
Features  
1) The BD6039GU is equipped with all voltage sources for CCD camera system.  
2) Each output has an adjustable voltage; hence this IC can correspond to various CCD modules.  
3) The BD6039GU is controlled by I2C BUS format.  
4) The BD6039GU employs 4.8mm2 chip size package, so this IC achieves compact size.  
Functions  
1) Step up DC/DC converter and LDO for CCD sensor (+15V/+14.5V/+13V)  
2) Inverted DC/DC converter for CCD sensor (-8V/-7.5V/-7V)  
3) 7ch Series Regulator  
REG1 : 1.2V, Iomax=210mA  
REG2 : 3.0V, Iomax=50mA  
REG5 : 1.5V/1.8V, Iomax=100mA  
REG6 : 3.2V/3.3V, Iomax=260mA  
REG7 : 3.0V/3.3V, Iomax=50mA  
REG8 : 1.5V/1.8V, Iomax=100mA  
REGA : 1.5V/1.8V, Iomax=100mA  
4) Correspondence to I2C BUS format  
5) Thermal shutdown (Auto-return type)  
6) VCSP85H4 chip size package (1.0mm max)  
Absolute Maximum Ratings(Ta=25)  
Parameter  
Maximum Applied voltage 1  
Maximum Applied voltage 2  
Maximum Applied voltage 3  
Maximum Applied voltage 4  
Power Dissipation  
Symbol  
VMAX1  
VMAX2  
VMAX3  
VMAX4  
Pd  
Ratings  
Unit  
V
(Note 1)  
(Note 2)  
(Note 3)  
(Note 4)  
(Note 5)  
20  
18  
V
-13.5  
V
6
V
2110  
mW  
Operating Temperature Range  
Storage Temperature Range  
Topr  
-30 +85  
-55 +150  
Tstg  
(Note 1) SWP, VPLUS1, VPLUS2 pin  
(Note 2) VDD3 pin  
(Note 3) VDD4, SWN pin  
(Note 4) Except Note1~Note3 pin  
(Note 5) Power dissipation deleting is 16.9mW/ , when it’s used in over 25.  
(It’s deleting is on the board that is ROHM’s standard)  
Recommended Operating Conditions (VBATVIO, Ta=-30~85 )  
Parameter  
VBAT input voltage  
VIO pin voltage  
Symbol  
VBAT  
VIO  
Limits  
Unit  
V
2.7 5.5  
1.65 3.3  
V
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
1/24  
Technical Note  
BD6039GU  
Electrical Characteristics(Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
Circuit Current】  
VBAT Circuit current 1  
VBAT Circuit current 2  
VBAT Circuit current 3  
VBAT Circuit current 4  
VBAT Circuit current 5  
VBAT Circuit current 6  
VBAT Circuit current 7  
VBAT Circuit current 8  
VBAT Circuit current 9  
IBAT1  
IBAT2  
IBAT3  
IBAT4  
IBAT5  
IBAT6  
IBAT7  
IBAT8  
IBAT9  
-
-
-
-
-
-
-
-
-
0.1  
0.5  
3.0  
3.0  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
RST=0V, VIO=0V  
RST=0V, VIO=1.8V  
REG1:ON, Io=0mA  
REG2:ON, Io=0mA  
REG5:ON, Io=0mA  
REG6:ON, Io=0mA  
REG7:ON, Io=0mA  
REG8:ON, Io=0mA  
REGA:ON, Io=0mA  
115  
115  
127  
145  
115  
127  
127  
175  
175  
195  
220  
175  
195  
195  
SWREG3:ON,REG3:ON,  
SWREG4:ON, Io=0mA  
VBAT Circuit current 10  
IBAT10  
UVLO  
-
9
14  
mA  
V
UVLO detect voltage  
SWREG3(Step up DC/DC)】  
Output voltage 1  
2.15  
2.4  
2.65  
VBAT falling  
VoPD1  
VoPD2  
VoPD3  
IoPD  
-
16.5  
16.0  
14.5  
-
-
-
V
V
Io=40mA  
Io=40mA  
Output voltage 1  
-
Output voltage 1  
-
-
V
Io=40mA  
(Note 6)  
Output current  
-
40  
-
mA  
%
Efficiency  
EffPD  
-
(80)  
1.0  
Io=40mA(Note 6)  
Iin=100mA  
Oscillator frequency  
SW saturation voltage  
Over voltage protection  
Over current protection  
Soft start current  
foscPD  
VsatPD  
OvPD  
OcPD  
SftPD  
0.8  
1.2  
200  
19.0  
1
MHz  
mV  
V
-
100  
18.5  
0.77  
300  
18.0  
-
-
A
-
mA  
SWREG4(Inverted DC/DC)】  
Output voltage 1  
VoND1  
VoND2  
VoND3  
IoND  
-8.4  
-8.0  
-7.5  
-7.0  
-
-7.6  
-7.1  
-6.6  
40  
V
V
Io=40mA  
Output voltage 2  
-7.9  
Io=40mA  
Output voltage 2  
-7.4  
V
Io=40mA  
Output current  
-
mA  
%
VBAT > 3.0V(Note 6)  
Io=40mA(Note 6)  
Efficiency  
EffND  
-
(70)  
1.0  
-
Oscillator frequency  
SW saturation voltage  
Over voltage protection  
Over current protection  
Soft start current  
foscND  
VsatND  
OvND  
OcND  
SftND  
0.8  
1.2  
200  
-9.5  
1
MHz  
mV  
V
-
-10.5  
-
100  
-10.0  
0.77  
300  
1.0  
Iin=100mA  
A
-
-
mA  
kΩ  
Discharge resister at OFF  
ROFFN  
0.5  
1.5  
(Note 6) The power efficiency changes with the fluctuation of external parts and the board mounting condition.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
2/24  
Technical Note  
BD6039GU  
Electrical Characteristics(Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)  
Limits  
Symbol  
Unit  
Parameter  
Condition  
Min.  
Typ.  
Max.  
REG1 (1.2V LDO)】  
Output voltage  
Vo1  
1.140  
1.20  
10  
1.260  
60  
V
Io=210mA  
Load stability  
ΔVo11  
ΔVo12  
-
-
mV  
mV  
Io=1~210mA, VIN1=1.8V  
Input stability  
10  
60  
VBAT=3.2~4.5V, Io=210mA, VIN1=1.8V  
f=100Hz, VBAT(AC)=200mVp-p,  
VIN1=1.8V, Io=50mA, BW=20Hz~20kHz  
Ripple rejection ratio  
RR1  
-
50  
-
dB  
Short circuit current limit  
Discharge resister at OFF  
REG2 (3.0V LDO)】  
Output voltage  
Ilim01  
-
-
200  
1.0  
400  
1.5  
mA  
Vo=0V  
ROFF1  
kΩ  
Vo2  
2.910  
3.00  
0.2  
10  
3.090  
0.3  
60  
V
V
Io=50mA  
Output voltage  
Vsat2  
ΔVo21  
ΔVo22  
-
-
-
VBAT=2.5V, Io=50mA  
Io=1~50mA  
Load stability  
mV  
mV  
Input stability  
10  
60  
VBAT=3.4~4.5V, Io=50mA  
f=100Hz, VBAT(AC)=200mVp-p  
Io=50mA, BW=20Hz~20kHz  
Ripple rejection ratio  
RR2  
-
60  
-
dB  
Short circuit current limit  
Discharge resister at OFF  
Ilim02  
-
-
50  
100  
1.5  
mA  
Vo=0V  
ROFF2  
1.0  
kΩ  
REG3 (15V/14.5V/13V LDO)】  
Output voltage1  
Output voltage2  
Output voltage3  
Output voltage  
Load stability  
Vo31  
14.55  
15.0  
14.5  
13.0  
0.32  
20  
15.45  
14.95  
13.45  
0.5  
V
V
Io=40mA  
Vo32  
Vo33  
14.05  
Io=40mA  
12.55  
V
Io=40mA  
Vsat3  
ΔVo31  
ΔVo32  
-
-
-
V
VPLUS2=11V, Io=40mA  
Io=140mA  
80  
mV  
mV  
Input stability  
10  
60  
VPLUS2=16.517.5V, Io=40mA  
Output voltage temperature  
fluctuation rate  
ΔVo33  
-
±100  
-
ppm/Ta=-30℃~85, Io=40mA  
Output ripple voltage  
Short circuit current limit  
Discharge resister at OFF  
REG5 (1.5V/1.8V LDO)】  
Output voltage1  
RR3  
Ilim03  
ROFF3  
-
-
-
3
-
mVp-p Io=40mA, BW=20Hz80kHz(Note 7)  
100  
1.0  
mA  
Vo=0V  
0.5  
1.5  
kΩ  
Vo51  
Vo52  
1.440  
1.50  
1.80  
0.09  
10  
1.560  
1.854  
0.14  
60  
V
V
Io=100mA  
Output voltage2  
1.746  
Io=100mA  
Output voltage  
Vsat5  
ΔVo51  
-
-
V
VIN5=1.7V, Io=100mA, Vo=1.8V  
Io=1~100mA, Vo=1.8V, VIN5=2.8V  
Load stability  
mV  
VBAT=3.3~4.5V, Io=100mA, Vo=1.8V  
VIN5=2.8V  
f=100Hz, VBAT(AC)=200mVp-p, Vo=1.8V  
VIN5=2.8V, Io=50mA, BW=20Hz~20kHz  
Input stability  
ΔVo52  
-
-
10  
50  
60  
-
mV  
dB  
Ripple rejection ratio  
RR5  
Short circuit current limit  
Discharge resister at OFF  
REG6 (3.2V/3.3V LDO)】  
Output voltage1  
Ilim05  
-
-
200  
1.0  
400  
1.5  
mA  
Vo=0V  
ROFF5  
kΩ  
Vo61  
Vo62  
3.104  
3.20  
3.30  
0.07  
10  
3.296  
3.399  
0.13  
60  
V
V
Io=260mA  
Output voltage2  
3.201  
Io=260mA  
Output voltage  
Vsat6  
ΔVo61  
-
-
V
VIN6=3.2V, Io=260mA, Vo=3.3V  
Io=1~260mA, Vo=3.3V, VIN6=3.6V  
Load stability  
mV  
VBAT=3.4~4.5V, Io=260mA, Vo=3.3V  
VIN6=3.6V  
f=100Hz, VBAT(AC)=200mVp-p, Vo=3.3V  
VIN6=3.8V, Io=50mA, BW=20Hz~20kHz  
Input stability  
ΔVo62  
-
-
10  
60  
60  
-
mV  
dB  
Ripple rejection ratio  
RR6  
Short circuit current limit  
Ilim06  
-
-
250  
1.0  
500  
1.5  
mA  
Vo=0V  
Discharge resister at OFF  
ROFF6  
kΩ  
(Note 7) BW: Band width  
www.rohm.com  
2010.03 - Rev.A  
3/24  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6039GU  
Electrical Characteristics(Unless otherwise specified, Ta=25, VBAT=3.6V, VIO=1.8V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min.  
Typ.  
Max.  
REG7 (3.0V/3.3V LDO)】  
Output voltage1  
Output voltage2  
Output voltage  
Vo71  
Vo72  
2.910  
3.00  
3.30  
0.2  
10  
3.090  
3.399  
0.3  
V
V
V
Io=50mA  
Io=50mA  
3.201  
Vsat7  
Δvo71  
Δvo72  
-
-
-
VBAT=2.5V, Io=50mA, Vo=3.0V  
Load stability  
60  
mV Io=1~50mA, Vo=3.0V  
Input stability  
10  
60  
mV VBAT=3.4~4.5V, Io=50mA, Vo=3.0V  
f=100Hz, VBAT(AC)=200mVp-p, Vo=3.0V  
Io=50mA, BW=20Hz~20kHz  
Ripple rejection ratio  
RR7  
-
60  
-
dB  
Short circuit current limit  
Discharge resister at OFF  
REG8 (1.5V/1.8V LDO)】  
Output voltage1  
Ilim07  
-
-
50  
100  
1.5  
mA Vo=0V  
ROFF7  
1.0  
kΩ  
Vo81  
Vo82  
1.440  
1.50  
1.80  
0.09  
10  
1.560  
1.854  
0.14  
60  
V
V
V
Io=100mA  
Output voltage2  
1.746  
Io=100mA  
Output voltage  
Vsat8  
Δvo81  
-
-
VIN8=1.7V, Io=100mA, Vo=1.8V  
Load stability  
mV Io=1~100mA, Vo=1.8V, VIN8=2.8V  
VBAT=3.3~4.5V, Io=100mA, Vo=1.8V  
VIN8=2.8V  
Input stability  
Δvo82  
-
-
10  
50  
60  
-
mV  
f=100Hz, VBAT(AC)=200mVp-p, Vo=1.8V  
VIN8=2.8V, Io=50mA, BW=20Hz~20kHz  
Ripple rejection ratio  
RR8  
dB  
Short circuit current limit  
Discharge resister at OFF  
REGA (1.5V/1.8V LDO)】  
Output voltage1  
Ilim08  
-
-
200  
1.0  
400  
1.5  
mA Vo=0V  
ROFF8  
kΩ  
VoA1  
VoA2  
1.440  
1.50  
1.80  
0.09  
10  
1.560  
1.854  
0.14  
60  
V
V
V
Io=100mA  
Output voltage2  
1.746  
Io=100mA  
Output voltage  
VsatA  
ΔVoA1  
-
-
VINA=1.7V, Io=100mA, Vo=1.8V  
Load stability  
mV Io=1~100mA, Vo=1.8V, VINA=2.8V  
VBAT=3.3~4.5V, Io=100mA, Vo=1.8V  
VINA=2.8V  
Input stability  
ΔVoA2  
-
-
10  
50  
60  
-
mV  
f=100Hz, VBAT(AC)=200mVp-p, Vo=1.8V  
dB  
Ripple rejection ratio  
RRA  
VINA=2.8V, Io=50mA, BW=20Hz~20kHz  
Short circuit current limit  
Discharge resister at OFF  
I2C Input (RST, SDA, SCL)】  
LOW level input voltage  
Ilim0A  
-
-
200  
1.0  
400  
1.5  
mA Vo=0V  
ROFFA  
kΩ  
VIL  
-0.3  
-
-
0.25VIO  
V
V
HIGH level input voltage  
VIH  
0.75VIO  
VBAT+0.3  
Hysteresis of Schmitt trigger  
input  
LOW level output voltage  
(SDA) at 3mA sink current  
Vhys  
VOL  
li  
0.05VIO  
-
-
-
-
V
V
0
0.30  
10  
input voltage  
from (0.1 x VIO) to (0.9 x VIO)  
Input current each I/O pin  
-10  
μA  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
4/24  
Technical Note  
BD6039GU  
Power Dissipation (On the ROHM’s standard board)  
2.5  
2210mW  
2
1.5  
1
0.5  
0
0
25  
50  
75  
Ta(  
100  
125  
150  
)
Fig.1 Power Dissipation  
Information of the ROHM’s standard board  
Material  
:
glass-epoxy  
Size  
:
50mm×58mm×1.75mm (8 Layer)  
Pattern of the board Refer to after page  
www.rohm.com  
2010.03 - Rev.A  
5/24  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6039GU  
Block Diagram / Application Circuit Example  
Battery  
2.2μF(6.3V)  
F
RB521S-30  
10μH  
2.2μF(6.3V)  
1μF(25V)  
VBAT1  
VBAT2  
VBAT3  
VBAT4  
VBAT5  
VBAT6  
VBAT7  
VDD3  
1μF(16V)  
REG3  
15V / 14.5V / 13V  
Iomax=40mA  
0.08  
4.4μF(16V)  
Driver  
VIN1  
REG1  
VDD1  
-
1.2V  
Iomax=210mA  
2.2μF(6.3V)  
1μF(6.3V)  
1μF(6.3V)  
Control  
+
REG2  
VDD2  
1μF(6.3V)  
OSC  
VREF  
3.0V  
Iomax=50mA  
VREF  
+
Feed Back  
-
-
+
VIN5  
0.1μF(6.3V)  
SWREG3  
REG5  
VDD5  
1.5V / 1.8V  
Iomax=100mA  
2.2μF(6.3V)  
1μF(6.3V)  
1μF(6.3V)  
VIO  
REG7  
TSD  
VDD7  
1μF(6.3V)  
3.0V / 3.3V  
Iomax=50mA  
RST  
SDA  
VIN8  
I2C  
CPU  
CONT  
SCL  
REG8  
VDD8  
1.5V / 1.8V  
Iomax=100mA  
2.2μF(6.3V)  
1μF(6.3V)  
VINA  
TO1  
TO2  
UVLO  
REGA  
AVDD  
TO3  
1.5V / 1.8V  
Iomax=100mA  
2.2μF(6.3V)  
1μF(6.3V)  
TO4  
TO5  
TO6  
SWREG4  
VBATN2  
VBATN1  
Current Sense  
TO7  
-
+
0.08ꢀ  
2.2μF(6.3V)  
OSC  
+
R
RB521S-30  
SWN  
Driver  
Control  
Q
-
S
Battery  
VIN6  
Over Voltage Limit  
-
+
9.4μF(16V)  
1μF(16V)  
4.7μH  
REG6  
VDD6  
3.2V / 3.3V  
Iomax=260mA  
VDD4  
-8V / -7.5V / -7V  
-
+
Iomax=40mA  
4.7μF(6.3V)  
9.4μF(16V)  
Fig.2 Block Diagram / Application Circuit example  
www.rohm.com  
2010.03 - Rev.A  
6/24  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6039GU  
Pin Configuration Bottom View]  
J
H
G
F
T4  
VDD3 VPLUS1 VBAT5  
GND6  
GNDP  
SWP  
AVDD  
VINA  
T3  
VDD2  
VBAT6 VPLUS2 TESTO3 TESTO1 GNDPS VBAT4  
VIN5  
VIN1  
VIN8  
VDD6  
VIN6  
GND5  
GND4  
VDD7 TESTO2  
NC  
VDD5  
VDD1  
VDD8  
VREF  
VBAT3  
VBAT2  
GND7  
SCL  
TO7  
TO5  
TO3  
SDA  
VIO  
E
D
C
B
A
RST  
TO6  
VBAT7  
TO4  
GND1  
VBAT1 VBATN1 GND3  
T1  
TO1  
TO2  
GND8  
SWN  
VBATN2 GND2  
VDD4  
T2  
1
2
3
4
5
6
7
8
9
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
7/24  
Technical Note  
BD6039GU  
Package Outline  
VCSP85H4  
SIZE  
A ball pitch  
:
:
:
CSP small package  
4.8mm2(A difference in public : X,Y Both ±0.05mm) Height 1.0mm max  
0.5 mm  
(Unit: mm)  
www.rohm.com  
2010.03 - Rev.A  
8/24  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6039GU  
Pin Functions(total 57Pins)  
ESD Diode  
For Power For GND  
Initial  
conditions  
No Pin No. Pin Name I/O  
Functions  
1
2
3
4
5
6
7
8
B5  
B8  
C8  
H7  
J4  
VBAT1  
VBAT2  
VBAT3  
VBAT4  
VBAT5  
VBAT6  
VBAT7  
VREF  
VIO  
RST  
SDA  
SCL  
TO7  
TO6  
TO5  
TO3  
TO2  
TO1  
TO4  
VIN6  
VDD6  
SWP  
GNDP  
GNDPS  
VPLUS1  
VPLUS2  
VDD3  
VIN1  
VDD1  
VDD2  
VIN5  
VDD5  
VDD7  
VIN8  
VDD8  
VINA  
AVDD  
VBATN2  
VBATN1  
SWN  
VDD4  
T1  
-
-
-
-
-
-
-
O
-
I
I
I
-
-
-
-
-
-
-
I
O
O
-
-
I
I
O
I
O
O
I
O
O
I
O
I
O
I
I
O
I
I
I
-
-
-
-
-
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
-
Battery is connected  
Battery is connected  
Battery is connected  
Battery is connected  
Battery is connected  
Battery is connected  
Battery is connected  
Reference voltage output  
Power supply for logic  
Reset input (L: reset, H: reset cancel)  
I2C data input  
I2C clock input  
Test pin (Open)  
Test pin (Open)  
Test pin (Open)  
Test pin Open)  
Test pin (Open)  
Test pin (Open)  
Test pin (Open)  
Input voltage for REG6 (connect to VBAT)  
REG6 output pin  
SWREG3 coil switching pin  
SWREG3 Power ground  
SWREG3 Power ground  
SWREG3 boost voltage feedback pin  
Input voltage forREG3  
REG3 output pin  
Input voltage for REG  
REG1 output pin  
REG2 output pin  
Input voltage for REG5  
REG5 output pin  
REG7 output pin  
Input voltage for REG8  
REG8 output pin  
Input voltage for REGA  
REGA output pin  
SWREG4 current sense pin  
SWREG4 current sense pin  
SWREG4 coil switching pin  
SWREG4 boost voltage feedback pin  
Test pin  
A
A
A
A
A
A
A
P
C
H
I
H
F
G
F
G
F
G
A
A
Q
A
B
B
A
A
U
C
Q
Q
C
Q
Q
C
Q
C
Q
A
A
B
V
S
S
S
S
N
M
N
B
B
B
B
B
B
B
B
W
H2  
B2  
D8  
E2  
D2  
F2  
E1  
D1  
C2  
C1  
B1  
A3  
A2  
B3  
D9  
E9  
J7  
-
-
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
-
VBAT  
-
VBAT  
-
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
-
-
-
-
J6  
H6  
J3  
H3  
J2  
VBAT  
VBAT  
-
-
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
-
-
VPLUS2  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
-
G9  
F8  
H1  
H9  
G8  
G1  
F9  
E8  
H8  
J8  
A6  
B6  
A5  
A8  
A1  
A9  
J9  
-
VBAT  
GND  
VBAT  
VBAT  
VBAT  
VBAT  
-
-
GND  
GND  
GND  
GND  
GND  
GND  
GND  
-
-
-
-
-
T2  
T3  
T4  
Test pin  
Test pin  
Test pin  
Test pin  
Test pin  
Test pin  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
NC pin  
I
I
O
O
O
-
-
-
-
-
J1  
H5  
G2  
H4  
B4  
A7  
B7  
B9  
C9  
J5  
TESTO1  
TESTO2  
TESTO3  
GND1  
GND2  
GND3  
GND4  
GND5  
GND6  
GND7  
GND8  
NC  
VBAT  
-
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
VBAT  
-
-
-
-
-
-
-
-
-
F1  
A4  
G7  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
9/24  
Technical Note  
BD6039GU  
Equivalent Circuit  
A
B
F
J
VBAT  
C
G
K
VBAT  
D
H
L
VBAT  
E
VBAT  
VBAT  
VBAT  
VBAT  
VIO  
VIO  
I
VBAT  
VIO  
VBAT  
VIO  
VIO  
VIO  
VBAT  
VBAT  
VBAT  
M VBAT  
VBAT  
VBAT  
VPLUS2  
N
R
V
VBAT  
O VBAT  
P
T
Q VBAT  
VBAT  
VBAT  
S
VBAT  
VBAT  
U
VPLUS2  
W
OPEN  
×
www.rohm.com  
2010.03 - Rev.A  
10/24  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6039GU  
I2C BUS format  
The writing/reading operation is based on the I2C slave standard.  
Slave address  
A7  
0
A6  
0
A5  
0
A4  
1
A3  
0
A2  
0
A1  
1
R/W  
1/0  
Bit Transfer  
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes  
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.  
SDA  
SCL  
data line  
Stable; data valid  
change of  
data  
allowed  
START and STOP condition  
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L  
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has  
been H, it will become STOP (P) conditions and an access end.  
SDA  
SCL  
S
P
STOP condition  
START condition  
Acknowledge  
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and  
a receiver returns the acknowledge signal by setting SDA to L.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
SCL  
1
2
8
9
S
clock pulse for  
acknowledgement  
START condition  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
11/24  
Technical Note  
BD6039GU  
Writing protocol  
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd  
byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is  
carried out automatically. However, when a register address turns into the last address(07h), it is set to 00h by the next  
transmission. After the transmission end, the increment of the address is carried out.  
1
1
*
*
S
0 A A7A6A5A4 A3A2A1A0 A D7D6D5D4D3D2D1D0 A  
D7D6D5D4D3D2D1D0 A  
DATA  
P
X X X X X X X  
slave address  
register address  
DATA  
R/W=0(write)  
register address  
increment  
register address  
increment  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
from master to slave  
from slave to master  
P=STOP condition  
*1: Write Timing  
Reading protocol  
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address  
accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the  
last address(07h), the next byte will read out 00h. After the transmission end, the increment of the address is carried out.  
S
1
A D7 D6 D5 D4 D3 D2 D1 D0 A  
DATA  
D7 D6 D5 D4 D3 D2 D1 D0 A  
DATA  
P
X
X X X X X X  
slave address  
register address  
increment  
register address  
increment  
R/W=1(read)  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
from master to slave  
from slave to master  
P=STOP condition  
Multiple reading protocols  
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The  
data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will  
read out 00h. After the transmission end, the increment of the address is carried out.  
S
A
A Sr  
1 A  
X X X X X X X  
slave address  
0
A7A6A5A4A3A2A1A0  
register address  
X X X X X X X  
slave address  
R/W=0(write)  
R/W=1(read)  
A
P
D7D6D5D4D3D2D1D0 A  
DATA  
D7D6D5D4D3D2D1D0  
DATA  
register address  
increment  
register address  
increment  
A=acknowledge(SDA LOW)  
A=not acknowledge(SDA HIGH)  
S=START condition  
P=STOP condition  
Sr=repeated START condition  
from master to slave  
from slave to master  
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading  
operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading  
data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge)  
is done.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
12/24  
Technical Note  
BD6039GU  
Timing diagram  
SDA  
BUF  
t
r
t
f
t
t f  
SU;DAT  
t
HD;STA  
SU;STA  
t
LOW  
t
t SP  
r
t
SCL  
SU;STO  
t
t
HD;STA  
t
HD;DAT  
t
S
S
P
Sr  
HIGH  
t
Electrical Characteristics (Unless otherwise specified, Ta=25oC, VBAT=3.6V, VIO=1.8V/3.0V)  
Standard-mode  
Fast-mode  
Typ.  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
Min.  
Max.  
I2C BUS format  
SCL clock frequency  
fSCL  
tLOW  
0
-
-
-
-
-
-
-
-
-
100  
0
-
-
-
-
-
-
-
-
-
400  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
4.0  
4.7  
0
-
1.3  
0.6  
0.6  
0.6  
0
-
tHIGH  
-
-
Hold time (repeated) START condition  
After this period, the first clock is generated  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
-
-
Set-up time for a repeated START condition  
Data hold time  
-
-
0.9  
-
3.45  
Data set-up time  
250  
4.0  
4.7  
-
-
-
100  
0.6  
1.3  
Set-up time for STOP condition  
-
Bus free time between a STOP  
and START condition  
-
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
13/24  
Technical Note  
BD6039GU  
Register List  
Register data  
Address  
Function  
D7  
D6  
D5  
D4  
D3  
D2  
-
D1  
-
D0  
00h  
01h  
VER2:0]  
-
-
SFTRST Software reset  
VDD1EN Power down 1  
-
AVDDEN  
VDD6EN  
VDD5EN  
VDD4EN  
VDD3EN  
VDD2EN  
Output voltage  
Setting1  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
VDD4SEL1 VDD4SEL0 VDD3SEL1 VDD3SEL0  
Reserved  
Output voltage  
VDD5SEL  
AVDDSEL  
-
VDD8SEL  
VDD7SEL  
Reserved  
Reserved  
VDD8EN  
-
VDD6SEL  
VDD7EN  
Reserved  
Reserved  
Setting2  
-
-
-
-
-
-
Reserved SWREG3EN Power down 2  
Reserved  
Reserved  
Reserved for TEST  
for TEST  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
for TEST  
for TEST  
for TEST  
for TEST  
for TEST  
Input "0” for "-".  
Input “0” for “Reserved”  
Access to the register for the test and the undefined register is prohibited.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
14/24  
Technical Note  
BD6039GU  
Register Map  
Address00h < Software reset >  
Address  
R/W  
Bit7  
Bit6  
-
Bit5  
-
Bit4  
-
Bit3  
-
Bit2  
-
Bit1  
Bit0  
00h  
00h  
R/W  
VER[2:0]  
SFTRST  
Initial  
Value  
Initial Value  
20h  
-
-
-
-
-
20h  
Bit [7:5] : VER[2:0]  
“001” :  
Reading the version information  
DS1  
This register is “Read Only”  
Bit [4:1] : Not used  
Bit 0 :  
SFTRST  
“0” :  
Reset cancel  
“1” :  
Reset (All register initializing)  
Address01h < Power down 1 >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
01h  
R/W  
-
AVDDEN VDD6EN VDD5EN VDD4EN VDD3EN VDD2EN VDD1EN  
Initial  
Value  
00h  
-
0
0
0
0
0
0
0
Bit 7 :  
Bit 6 :  
Not used  
AVDDEN  
AVDD Control (ON/OFF)  
“0” :  
“1” :  
OFF  
ON  
Bit 5 :  
Bit 4 :  
Bit 3 :  
Bit 2 :  
Bit 1 :  
Bit 0 :  
VDD6EN  
VDD6 Control (ON/OFF)  
OFF  
ON  
“0” :  
“1” :  
VDD5EN  
VDD5 Control (ON/OFF)  
OFF  
ON  
“0” :  
“1” :  
VDD4EN  
VDD4 Control (ON/OFF)  
OFF  
ON  
“0” :  
“1” :  
VDD3EN  
VDD3 Control (ON/OFF)  
OFF  
ON  
“0” :  
“1” :  
VDD2EN  
VDD2 Control (ON/OFF)  
OFF  
ON  
“0” :  
“1” :  
VDD1EN  
VDD1 Control (ON/OFF)  
“0” :  
“1” :  
OFF  
ON  
www.rohm.com  
2010.03 - Rev.A  
15/24  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6039GU  
Address02h < Output voltage Setting1 >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
0
Bit2  
Bit1  
00h  
Bit0  
0
02h  
R/W  
VDD4SEL1 VDD4SEL0 VDD3SEL1 VDD3SEL0  
Reserved  
Initial  
Value  
Initial Value  
00h  
0
0
0
0
Bit [7:6] : VDD4SEL[1:0]  
VDD4 Output voltage  
“00” :  
“01” :  
“10” :  
“11” :  
-8V  
-7.5V  
-7V  
-7V  
Bit [5:4] : VDD3SEL[1:0]  
VDD3 Output voltage  
“00” :  
“01” :  
“10” :  
“11” :  
14.5V  
15V  
13V  
13V  
Bit [3:0] : Not used  
Address03h < Output voltageSetting2 >  
Address  
R/W  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
03h  
R/W  
AVDDSEL VDD8SEL VDD7SEL Reserved Reserved VDD6SEL Reserved VDD5SEL  
Initial Value  
Bit 7 :  
00h  
0
0
0
0
0
0
0
0
AVDDSEL  
AVDD Output voltage Setting  
“0” :  
“1” :  
1.5V  
1.8V  
Bit 6 :  
Bit 5 :  
VDD8SEL  
VDD8 Output voltage Setting  
1.5V  
1.8V  
“0” :  
“1” :  
VDD7SEL  
VDD7 Output voltage Setting  
“0” :  
“1” :  
3.3V  
3.0V  
Bit [4:3] : Not used  
Bit 2 :  
VDD6SEL  
VDD6 Output voltage Setting  
“0” :  
“1” :  
3.3V  
3.2V  
Bit 1 :  
Bit 0 :  
Not used  
VDD5SEL  
VDD5 Output voltage Setting  
“0” :  
“1” :  
1.8V  
1.5V  
www.rohm.com  
2010.03 - Rev.A  
16/24  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6039GU  
Address04h < Power down 2 >  
Address  
R/W  
Bit7  
Bit6  
-
Bit5  
-
Bit4  
-
Bit3  
Bit2  
Bit1  
Bit0  
04h  
R/W  
-
VDD8EN  
VDD7EN Reserved SWREG3EN  
Initial Value  
00h  
-
-
-
-
0
0
0
0
Bit [7:4] : Not used  
Bit 3 :  
Bit 2 :  
VDD8EN  
VDD8 Control (ON/OFF)  
OFF  
ON  
“0” :  
“1” :  
VDD7EN  
VDD7 Control (ON/OFF)  
“0” :  
“1” :  
OFF  
ON  
Bit 1 :  
Bit 0 :  
Not used (must be “0”)  
SWREG3EN  
SWREG3 Control (ON/OFF)  
“0” :  
“1” :  
OFF  
ON  
www.rohm.com  
2010.03 - Rev.A  
17/24  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6039GU  
Explanation for Operate  
1. Reset  
There are two kinds of reset, Software reset and Hardware reset.  
(1) Software reset  
It shifts to software reset with changing a register (SFTRST) setting “0” “1”.  
The register is returned to the initials value under the state of Soft Reset, and it stops accepting all address except  
for SFTRST.  
It’s possible to release from a state of Soft Reset by setting register “1” “0”.  
(2) Hardware reset  
It shifts to hard reset by changing RST pin “H” “L”.  
The condition of all registers under Hardware Reset pin is returned to the initial value, and it stops accepting  
all address.  
It’s possible to release from a state of hardware reset by setting register “L” “H”.  
(3) Reset Sequence  
When hardware reset was done during software reset, Software reset is canceled when hard reset is canceled.  
(Because the initial value of Soft Reset is “0”)  
2. Thermal shutdown  
The blocks which thermal shutdown function is effective in  
SWREG3  
SWREG4  
REG1  
REG2  
REG3  
REG5  
REG6  
REG7  
REG8  
REGA  
A thermal shutdown function works in about 175 oC. (Design reference value)  
When returns to undetected condition from detected condition, each block will start up simultaneously. So, if there are  
some problems, (for example rush current) please work out a countermeasure on system (for example sequence on start up)  
3. UVLO(Under voltage detection of VBAT)  
When UVLO works, all register (except for Address=00h, SFTRST) will return to initial value.  
Please set the register again after VBAT comes to normal value.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
18/24  
Technical Note  
BD6039GU  
4. ON/OFF control  
This IC controls each blocks by register setting after start up VREF (internal reference voltage).  
Detection voltage of VREF’s rise-up is 1.1V when static output is 1.2V.  
The output of SWREG3 is power supply for REG3, but there is no internal sequencer about these 2-blocks.  
Please be careful about ON/OFF timing.  
VDD6EN  
VDD*EN  
SWREG3EN  
VDD3EN  
VDD4EN  
VREF  
VREF>1.1[V]  
SWREG3  
REG3  
VDD3  
SWREG4  
VDD4  
REG6  
VDD6  
REG*  
(VPLUS2)  
VDD*  
*1,2,5,7,8,AVDD  
VREF receives a turning on instruction blocked either each and begins rise up. Therefore, it is necessary to consider the  
block started up first at the rise time of VREF  
LDO ON  
VREF output  
95% up  
LDO output  
Worst 5ms  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
19/24  
Technical Note  
BD6039GU  
5. I2C BUS  
Operation when a signal beyond fSCL=400kHz is input cannot be guaranteed, because this LSI doesn’t correspond to the  
H/S(High Speed) mode of the I2C BUS format.  
When it uses on the serial-bus-system which the F/S(Fast Speed) mode was mixed in with the H/S mode, please connect  
it and remove a connection by using the mutual connection bridge from the H/S mode section to F/S mode section or in  
that reverse direction.  
However, an optional input signal never spreads to the logic part of IC, because it stops the operation of the input buffer of  
SDA and SCL at RST pin=L.  
At RST=L, output ”H” fixed  
Level shifter  
SCL  
(SDA)  
EN  
Logic  
RST  
6. Low input voltage LDO  
This is the system of LDO that can be input low voltage.  
Please start up LDO after input VIN*, and please input VIN* after input VBAT.  
VBAT  
VIN*  
VREF  
VDD*  
limiter  
7. Power up sequence  
Input of VBAT, VIO and control of each block should be done by the sequence below.  
VBAT  
TVBATON  
TVBATOFF  
VIO  
TVIOON=min 0.1ms  
TVIOOFF=min  
1ms  
RST  
TRSTB=min 0.1ms  
TRST=min 0ms  
Enable  
Please take enough time for each wait time  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
20/24  
Technical Note  
BD6039GU  
8. Start up for DC/DC  
DC/DC has soft start function to prevent rush current at starting up (both SWREG3, SWREG4)  
Soft start time is 21ms(max) based from internal OSC frequency. So, please take load current after this soft start time.  
SWREG3 is power supply for REG3. Please input the command SWREG3 on after input REG3 on, to prevent rush current  
at start up REG3. (REG3’s rush current is prevented by SWREG3’s soft start function.)  
At the unusual case the value of Cout (capacitor connected to Vout) is very large, soft start time will finish before SWREG3  
rise up. So, there is a possibility to appear large rush current.  
REG3EN  
T1=min  
0ms  
SWREG3EN  
Tsoft=max 21ms  
REG3O, VPLUS  
OFF  
Soft Start Mode  
Normal Mode  
Load Current  
9. Start up for LDO  
LDO has soft start function to prevent rush current at starting up. This IC doesn’t consider the start up with the load current.  
Please add the load current after LDO’s output voltage rise up completely.  
REG1, REG2, REG5, REG7, REG8, REGA>  
Enable  
VOUT  
OFF  
Soft Start Mode  
Normal Mode  
Load Current  
REG6>  
REG6EN  
REG6O  
95% VOUT  
OFF  
Soft Start Mode  
Normal Mode  
Load Current  
10.Input capacitor for LDO  
Regarding REG1,REG5,REG8,REGA (can be connect with different power supply from VBAT), please connect capacitor  
with VIN* to prevent the influence ripple of VIN* to Vout.  
The required Value of input capacitor is changes from conditions of input voltage, output voltage, output capacitor, output  
impedance of power supply, wire impedance of power line, etc. So, please decide it after evaluation with real application,  
and with an enough margin.  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
21/24  
Technical Note  
BD6039GU  
PCB pattern of the Power Dissipation Measuring Board  
1st layer(component)  
2nd layer  
3rd layer  
4th layer  
5th layer  
6th layer  
7th layer  
8th layer(solder)  
www.rohm.com  
2010.03 - Rev.A  
22/24  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6039GU  
Notes for use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can  
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any  
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety  
measures including the use of fuses, etc.  
(2) Power supply and ground line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention  
to the interference by common impedance of layout pattern when there are plural power supplies and ground lines.  
Especially, when there are ground pattern for small signal and ground pattern for large current included the external  
circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between  
the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the  
characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low  
temperature, thus determining the constant.  
(3) Ground voltage  
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.  
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient.  
(except for VDD4,SWN)  
(4) Short circuit between pins and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can  
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin  
and the power supply or the ground pin, the ICs can break down.  
(5) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(6) Input pins  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the  
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the  
input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower  
than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input  
pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to  
the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.  
(7) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a  
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.  
(8) Thermal shutdown circuit (TSD)  
This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher,  
the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating  
the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do  
not continuously use the LSI with this circuit operating or use the LSI assuming its operation.  
(9) Thermal design  
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in  
actual states of use.  
(10) LDO  
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it  
has the possibility that an operation becomes unstable.  
(11) About the pin for the test, the un-use pin  
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a  
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our  
company person in charge.  
(12) About the rush current  
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal  
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width  
of ground wiring, and routing of wiring.  
(13) About the function description or application note or more.  
The function description and the application notebook are the design materials to design a set. So, the contents of the  
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the  
external elements  
www.rohm.com  
2010.03 - Rev.A  
23/24  
© 2010 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BD6039GU  
Ordering part number  
B D  
6
0
3
9
G U  
-
E
2
Part No.  
Part No.  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
GU: VCSP85H4  
VCSP85H4 (BD6039GU)  
<Tape and Reel information>  
1PIN MARK  
Tape  
Embossed carrier tape (heat sealing method)  
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
4.8 0.05  
(
)
S
0.06  
S
57-φ0.30 0.05  
0.05  
A
A B  
J
H
G
F
B
E
D
C
B
A
(φ0.15)INDEX POST  
1
2
3 4 5 6 7 8 9  
Direction of feed  
1pin  
0.4 0.05  
P=0.5×8  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
2010.03 - Rev.A  
24/24  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2010 ROHM Co., Ltd. All rights reserved.  
R1010  
A

相关型号:

BD6040GUL

Charger Protection IC with Internal FET
ROHM

BD6041GUL

Silicon Monolithic Integrated Circuit
ROHM

BD6041GUL-E2

Buffer/Inverter Based Peripheral Driver, 1.2A, PBGA9, 1.60 X 1.60 MM, 0.55 MM HEIGHT, ROHS COMPLIANT, VCSP-9
ROHM

BD6041GUL_11

Silicon Monolithic Integrated Circuit
ROHM

BD6042GUL

Silicon Monolithic Integrated Circuit
ROHM

BD6042GUL-E2

Buffer/Inverter Based Peripheral Driver, 1.2A, PBGA9, 1.60 X 1.60 MM, 0.55 MM HEIGHT, ROHS COMPLIANT, VCSP-9
ROHM

BD6044GUL

Silicon Monolithic Integrated Circuit
ROHM

BD6044GUL-E2

Peripheral Driver,
ROHM

BD6046GUL

Negative Voltage Protection type
ROHM

BD6046GUL-E2

Buffer/Inverter Based Peripheral Driver, 1.2A, PBGA13, 2.50 X 2.50 MM, 0.55 MM HEIGHT, ROHS COMPLIANT, VCSP-13
ROHM

BD6047AGUL

BD6047AGUL可防止整机因来自USB端子的超标输入电压而损坏。除以往的充电保护IC的功能外,还可在不增加外置部件的前提下对因USB的反接等而发生的负电压进行保护。通过采用罗姆自有的本系列技术,实现了针对最大±30V的异常输入电压的保护。
ROHM

BD6061GUT

Synchronous rectification step-up DC/DC converter for mobile phone
ROHM