BD6712AF-E2 [ROHM]

Brushless DC Motor Controller, 0.04A, PDSO8, ROHS COMPLIANT, SOP-8;
BD6712AF-E2
型号: BD6712AF-E2
厂家: ROHM    ROHM
描述:

Brushless DC Motor Controller, 0.04A, PDSO8, ROHS COMPLIANT, SOP-8

电动机控制 光电二极管
文件: 总29页 (文件大小:535K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DC Brushless Motor Drivers for Cooling Fans  
Two-phase Full-wave  
DC Brushless Fan Motor Drivers  
No.12010EAT03  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Description  
This is the summary of models for two-phase half-wave fan motor driver. They incorporate lock protection, automatic restart  
circuit and FG/AL output. Some of them have variable speed control function, 48V power supply adaptation.  
Feature  
1) Power Tr incorporated(BD6701F)  
2) Pre-driver(BA6406FBA6901FBD6712AFBA6506F)  
3) Variable speed control(BA6901F)  
4) Incorporates reverse connection protection diode(BD6701F)  
5) Incorporates lock protection and automatic restart circuit  
6) Rotation speed pulse signal (FG) output(BD6701FBA6901FBD6712AFBA6506F)  
7) Lock alarm signal (AL) output(BD6701FBA6901FBD6712AFBA6406F)  
Applications  
For desktop PC, server, general consumer equipment, communication equipment and industrial equipment.  
Lineup  
Two-phase half wave  
Power Tr incorporated  
Pre-driver  
BD6701F  
24V power supply  
BA6406F  
BA6506F  
BD6712AF  
BD6712AF  
24V power supply  
24V power supply  
48V power supply  
48V power supply  
www.rohm.com  
2012.03 - Rev.A  
1/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
Absolute maximum ratings  
BD6701FV  
Symbol  
Vcc  
Limit  
36  
Unit  
V
Parameter  
Supply voltage  
Pd  
780*  
mW  
Power dissipation  
Topr  
Tstg  
-40+100  
Operating temperature range  
Storage temperature range  
Output current  
-55+150  
Iomax  
IAL  
800**  
mA  
mA  
V
10  
AL signal output current  
AL signal output voltage  
FG signal output current  
FG signal output voltage  
Junction temperature  
VAL  
36  
IFG  
10  
mA  
V
VFG  
Tjmax  
36  
150  
*
**  
Reduce by 6.24 mW/°C over 25°C. (On 70.0 mm x 70.0 mm x 1.6 mm glass epoxy board)  
This value is not to exceed Pd.  
BA6406F  
Symbol  
Vcc  
Limit  
Unit  
V
Parameter  
Supply voltage  
30  
624*  
-40+100  
-55+125  
70  
Power dissipation  
Pd  
mW  
Operating temperature  
Storage temperature  
Output current  
Topr  
Tstg  
Iomax  
IAL  
mA  
mA  
V
AL signal output current  
AL signal output voltage  
Junction temperature  
8
VAL  
30  
Tjmax  
125  
*
Reduce by 6.24 mW/°C over 25°C. (On 70.0 mm x 70.0 mm x 1.6 mm glass epoxy board)  
BA6506F  
Symbol  
Vcc  
Limit  
Unit  
V
Parameter  
Supply voltage  
30  
624*  
-40+100  
-55+125  
70  
Power dissipation  
Pd  
mW  
Operating temperature  
Storage temperature  
Output current  
Topr  
Tstg  
Iomax  
IFG  
mA  
mA  
V
FG signal output current  
FG signal output voltage  
Junction temperature  
8
VFG  
Tjmax  
30  
125  
*
Reduce by 6.24 mW/°C over 25°C. (On 70.0 mm x 70.0 mm x 1.6 mm glass epoxy board)  
www.rohm.com  
2012.03 - Rev.A  
2/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
BA6901F  
Symbol  
Vcc  
Limit  
36  
Unit  
V
Parameter  
Supply voltage  
Power dissipation  
Operating temperature  
Storage temperature  
Output current  
Pd  
625*  
mW  
Topr  
Tstg  
-40+100  
-55+150  
Iomax  
IFG  
70  
15  
mA  
mA  
V
FG signal output current  
FG signal output voltage  
AL signal output current  
AL signal output voltage  
Junction temperature  
VFG  
IAL  
36  
15  
mA  
V
VAL  
36  
Tjmax  
150  
*
Reduce by 5.0 mW/°C over 25°C. (On 70.0 mm x 70.0 mm x 1.6 mm glass epoxy board)  
BAD6712AF  
Symbol  
Pd  
Limit  
780*  
-35+95  
-55+150  
40  
Unit  
mW  
Parameter  
Supply voltage  
Power dissipation  
Topr  
Operating temperature range  
Storage temperature range  
Output current  
Tstg  
Iomax  
IAL  
mA  
mA  
V
15  
AL signal output current  
VAL  
60  
AL signal output voltage  
Tjmax  
150  
*
Reduce by 6.24 mW/°C over 25°C. (On 70.0 mm x 70.0 mm x 1.6 mm glass epoxy board)  
Operating Conditions  
BD6701F  
Symbol  
Vcc  
Limit  
Unit  
V
Parameter  
6.028.0  
0Vcc-3.0  
Operating supply voltage range  
Hall input voltage range  
VH  
V
BA6406F  
Parameter  
Parameter  
Parameter  
Parameter  
Symbol  
Vcc  
Limit  
Unit  
V
Operating supply voltage range  
Hall input voltage range  
4.028.0  
1.0Vcc-0.5  
VH  
V
BA6506F  
Symbol  
Vcc  
Limit  
Unit  
V
Operating supply voltage range  
Hall input voltage range  
4.028.0  
1.0Vcc-0.5  
VH  
V
BA6901F  
Symbol  
Vcc  
Limit  
Unit  
V
Operating supply voltage range  
Hall input voltage range  
3.528.0  
0Vcc-2.2  
VH  
V
BD6712AF  
Symbol  
Vcc  
Limit  
3.5Vcz  
130  
Unit  
V
Operating supply voltage range  
Hall input voltage range  
VH  
V
FG output voltage rangeAL output voltage range  
VSI  
048  
V
Hall input voltage range  
VH  
0Vcz-1.5  
V
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
3/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
Electrical Characteristics  
BD6701FV(Unless otherwise specified Ta=25,Vcc=12V)  
Limit  
Symbol  
Parameter  
Circuit current  
Characteristics  
Unit  
Conditions  
Min.  
Typ.  
Max.  
9
3
6
mA  
mV  
mV  
V
Fig.1  
-
Icc  
Hall input offset voltage  
Hall input hysteresis  
Output L voltage  
-10  
-
10  
VHofs  
Vhys  
VOL  
±5  
±10  
±15  
0.50  
100  
58  
Fig.2  
Fig.3  
-
-
0.30  
Io=200mA  
Output leak current  
-
-
μA  
V
IOL  
Vo=45V  
Output zenner voltage  
Lock detection ON time  
Lock detection OFF time  
FG output voltage L  
FG output leak current  
AL output voltage L  
AL output leak current  
50  
54  
Fig.4  
Fig.5  
Fig.6  
Fig.7,8  
-
VOZ  
TON  
TOFF  
VALL  
IALL  
VFGL  
IFGL  
Clamp current =10mA  
0.30  
0.50  
0.70  
7.0  
0.4  
50  
sec  
sec  
V
3.0  
5.0  
IFG=5mA  
VFG=36V  
IAL=5mA  
VAL=36V  
-
-
-
-
-
-
-
-
μA  
V
0.4  
50  
Fig.7,8  
-
μA  
BA6406F(Unless otherwise specified Ta=25,Vcc=12V)  
Limit  
Typ.  
Symbol  
Parameter  
Circuit current  
Characteristics  
Unit  
Conditions  
Min.  
-
Max.  
5.0  
±15  
0.5  
-
At output OFF  
Icc  
Vhys  
VALL  
IAL  
3.2  
mA  
mV  
V
Fig.10  
Fig.11  
Fig.12  
-
Hall input hysteresis  
AL output L voltage  
AL current capacity  
±3  
-
-
-
-
IAL=5mA  
VAL=2V  
8.0  
mA  
Charge current of capacitor for  
lock detection  
Discharge current of capacitor  
for lock detection  
Charge-discharge current ratio of  
capacitor for lock detection  
Clamp voltage of capacitor for  
lock detection  
VLD=1.5V  
ILDC  
ILDD  
2.0  
0.35  
3
3.45  
0.80  
4.5  
5.25  
1.45  
8
μA  
μA  
-
Fig.13  
Fig.13  
-
VLD=1.5V  
rCD=ILDC/ILDD  
rCD  
VLDCL  
2.2  
2.6  
3.0  
V
Fig.14  
Comparison voltage of capacitor  
for lock detection  
Output H voltage  
VLDCP  
VOH  
0.4  
10  
0.6  
0.8  
-
V
V
Fig.14  
Fig.15  
Io=10mA  
10.5  
BA6506F(Unless otherwise specified Ta=25,Vcc=12V)  
Limit  
Typ.  
Symbol  
Parameter  
Circuit current  
Characteristics  
Unit  
Conditions  
Min.  
-
Max.  
5.0  
±15  
0.5  
-
At output OFF  
Icc  
Vhys  
VALL  
IAL  
3.2  
mA  
mV  
V
Fig.16  
Fig.17  
Fig.18  
-
Hall input hysteresis  
FG output L voltage  
FG current capacity  
±3  
-
-
-
-
IAL=5mA  
VAL=2V  
8.0  
mA  
Charge current of capacitor for  
lock detection  
Discharge current of capacitor  
for lock detection  
Charge-discharge current ratio of  
capacitor for lock detection  
Clamp voltage of capacitor for  
lock detection  
VLD=1.5V  
ILDC  
ILDD  
2.0  
0.35  
3
3.45  
0.80  
4.5  
5.25  
1.45  
8
μA  
μA  
-
Fig.19  
Fig.19  
-
VLD=1.5V  
rCD  
rCD=ILDC/ILDD  
VLDCL  
2.2  
2.6  
3.0  
V
Fig.20  
Comparison voltage of capacitor  
for lock detection  
Output H voltage  
VLDCP  
VOH  
0.4  
10  
0.6  
0.8  
-
V
V
Fig.20  
Fig.21  
10.5  
Io=10mA  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
4/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
BA6901F(Unless otherwise specified Ta=25,Vcc=12V)  
Limit  
Symbol  
Parameter  
Circuit current  
Characteristics  
Unit  
Conditions  
At output OFF  
Min.  
3.0  
±4  
Typ.  
7.0  
Max.  
12.0  
±20  
Icc  
mA  
mV  
Fig.22  
Fig.23  
Hall input hysteresis  
Vhys  
±10  
Charge current of capacitor for  
lock detection  
Discharge current of capacitor  
for lock detection  
Charge-discharge current ratio of  
capacitor for lock detection  
Clamp voltage of capacitor for  
lock detection  
Comparison voltage of capacitor  
for lock detection  
VLD=1.5V  
ILDC  
ILDD  
2.0  
0.2  
4
5.0  
0.5  
8.0  
0.8  
μA  
μA  
-
Fig.24  
Fig.24  
-
VLD=1.5V  
rCD=ILDC/ILDD  
rCD  
10  
16  
VLDCL  
VLDCP  
1.60  
0.25  
2.40  
0.60  
3.20  
0.95  
V
Fig.25  
Fig.25  
V
Io=-10mA  
Voltage between output  
and Vcc  
Output H voltage  
VOH  
-
1.5  
2.0  
V
Fig.26  
FG output L voltage  
IFG=5mA  
VFGL  
VALL  
-
0.10  
0.10  
92.0  
50  
0.50  
0.50  
99.5  
150  
-
V
V
Fig.27  
Fig.28  
Fig.29  
-
AL output L voltage  
IAL,IALB=5mA  
CL=100mV  
-
75.0  
-
CL-CS offset voltage  
Response time for current limit  
PWM input voltage H  
PWM input voltage L  
VofsCS  
TCS  
mV  
μsec  
V
At output ON  
At output OFF  
Fig.30  
Fig.30  
VPWMH  
VPWML  
2.0  
-
-
-
0.8  
V
Charge-discharge pulse  
comparison voltage  
-
-
-
VCRCP 0.26  
0.35  
0.44  
V
V
V
ITO=-0.5mA  
Charge-discharge pulse output  
voltage H  
Voltage between output  
and Vcc  
VTOH  
VTOL  
0.7  
0.7  
1.0  
1.3  
Charge-discharge pulse output  
voltage L  
ITO=0.5mA  
1.0  
1.3  
BD6712AF (Unless otherwise specified Ta=25,Vcc=5V)  
Limit  
Typ.  
Symbol  
Parameter  
Internal voltage  
Characteristics  
Unit  
Conditions  
Min.  
5.5  
0.5  
4
Max.  
6.5  
3.0  
9.5  
25  
-
Vcz  
Icc1  
6.0  
1.5  
6.7  
15  
0.5  
5
V
Icc=10mA  
-
Circuit current1  
mA  
mA  
mV  
sec  
sec  
**  
Fig.31  
-
Circuit current2  
Icc2  
Hall input hysteresis voltage  
Lock detection ON time  
Lock detection OFF time  
Vhys  
TON  
TOFF  
5
Fig.32  
Fig.33  
0.25  
2.5  
1
10  
Vcc-0. Vcc-0.  
Fig.34,35  
Output H voltage  
VOH  
Vcc  
V
Io=-10mA  
5
-
2
0.2  
0.15  
0
Fig.36,37  
Output L voltage  
VOL  
VFGL  
IFGL  
VALL  
IALL  
0.5  
0.5  
10  
V
V
Io=10mA  
IFG=5mA  
VFG=48V  
IAL=5mA  
VAL=48V  
Fig.38,39  
FG output L voltage  
FG output leak current  
AL output L voltage  
AL output leak current  
-
-
-
μA  
V
Fig.38,39  
-
-
0.15  
0
0.5  
10  
-
μA  
*
**  
H+:3V,H-:2V,Output,FG,AL terminal are open  
Hall-input is 100Hz square wave. Output is connected with 1kΩto ground. FG and AL are connected with 50kΩto Vcc.  
www.rohm.com  
2012.03 - Rev.A  
5/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
Truth table  
BD6701F  
H+  
H
H-  
L
OUT1  
OUT2  
FG  
H
L
L
(Output Tr OFF)  
(Output Tr ON)  
(Output Tr ON)  
L
H
H
L
H
(Output Tr ON)  
(Output Tr OFF)  
(Output Tr OFF)  
BA6406F  
H+  
H
H-  
L
A1  
A2  
H
L
(Output Tr ON)  
(Output Tr OFF)  
L
H
L
H
(Output Tr OFF)  
(Output Tr ON)  
BA6506F  
H+  
H
H-  
L
A1  
A2  
FG  
H
L
H
(Output Tr ON)  
(Output Tr OFF)  
(Output Tr OFF)  
L
H
L
L
H
(Output Tr OFF)  
(Output Tr ON)  
(Output Tr ON)  
BA6901F  
H+  
H
L
H-  
L
PWM  
H, OPEN  
H, OPEN  
L
A1  
A2  
FG  
H
L
H
(Output Tr ON)  
(Output Tr OFF)  
(Output Tr OFF)  
L
H
L
H
L
(Output Tr OFF)  
(Output Tr ON)  
(Output Tr ON)  
L
L
H
H
L
(Output Tr OFF)  
(Output Tr OFF)  
(Output Tr OFF)  
L
(Output Tr ON)  
L
L
H
L
(Output Tr OFF)  
(Output Tr OFF)  
BD6712AF  
H+  
H-  
L
OUT1  
OUT2  
FG  
H
H
L
H
L
L
(Output Tr OFF)  
L
H
H
(Output Tr ON)  
www.rohm.com  
2012.03 - Rev.A  
6/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
Reference Data  
BD6701F  
BD6701F  
BD6701F  
BD6701F  
12  
20  
10  
0
5
4
3
2
1
0
100℃  
100℃  
9
25℃  
-40℃  
6
25℃  
-40℃  
100℃  
25℃  
-40℃  
25℃  
3
-10  
-20  
Operating Voltage Range  
Operating Voltage Range  
100℃  
0
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
0
0.2  
0.4  
0.6  
0.8  
-40℃  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Output current, Io [mA]  
Fig.1 Circuit current  
Fig.2 Hall input hysteresis  
Fig.3 Output L voltage  
BD6701F  
BD6701F  
BD6701F  
60  
58  
56  
54  
52  
50  
0.60  
0.55  
0.50  
0.45  
0.40  
6.0  
5.5  
5.0  
4.5  
4.0  
100℃  
100℃  
100℃  
25℃  
25℃  
25℃  
-40℃  
-40℃  
Operating Voltage Range  
Operating Voltage Range  
Operating Voltage Range  
-40℃  
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
Supply voltage, Vcc [V]  
Supply voltage,Vcc [V]  
Supply voltage, Vcc [V]  
Fig.5 Lock detection ON time  
Fig.4 Output zenner voltage  
Fig.6 Lock detection OFF time  
BD6701F  
BD6701F  
BD6701F  
0.20  
0.15  
0.10  
0.05  
0.00  
0.20  
0.15  
0.10  
0.05  
0.00  
10.0  
100℃  
6V  
25℃  
1.0  
0.8  
12V  
28V  
-40℃  
36  
0.1  
0
2
4
6
8
10  
0.1  
1.0  
10.0  
100.0  
0
2
4
6
8
10  
FG/AL current, IFG/IAL [mA]  
Drain - source voltage, Vds[V]  
Fig.9 Output Tr ASO  
(Ton=100msec)  
FG/AL current, IFG/IAL [mA]  
Fig.7 FG/AL output L voltage  
(Temperature characteristics)  
Fig.8 FG/AL output L voltage  
(Voltage characteristics)  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
7/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
BA6406F  
BA6406F  
BA6406F  
BA6406F  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
20  
Operating Voltage Range  
4
3
2
1
0
-40℃  
10  
0
100℃  
100℃  
25℃  
-40℃  
25℃  
25℃  
-40℃  
25℃  
100℃  
-40℃  
-10  
-20  
100℃  
Operating Voltage Range  
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
0
2
4
6
8
10  
Supply voltage, Vcc [V]  
AL current, IAL[mA]  
Supply voltage, Vcc [V]  
Fig.10 Circuit current  
Fig.11 Hall input hysteresis  
Fig.12 AL output L voltage  
BA6406F  
Operating Voltage Range  
BA6406F  
BA6406F  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
100℃  
100℃  
25℃  
25℃  
-40℃  
-40℃  
-40℃  
25℃  
-40℃  
25℃  
100℃  
100℃  
0
20  
40  
60  
80  
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
Output current, Io [mA]  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Fig.13 Charge-discharge current of  
capacitor for lock detection  
Fig.14 Clamp-comparison voltage  
of capacitor for lock detection  
Fig.15 Output H voltage  
www.rohm.com  
2012.03 - Rev.A  
8/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
BA6506F  
BA6406F  
BA6406F  
BA6406F  
5
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
20  
Operating Voltage Range  
4
3
2
1
0
-40℃  
10  
0
100℃  
100℃  
25℃  
-40℃  
25℃  
25℃  
-40℃  
25℃  
100℃  
-40℃  
-10  
-20  
100℃  
Operating Voltage Range  
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
0
2
4
6
8
10  
Supply voltage, Vcc [V]  
AL current, IAL[mA]  
Supply voltage, Vcc [V]  
Fig.16 Circuit current  
Fig.17 Hall input hysteresis  
Fig.18AL output L voltage  
BA6406F  
Operating Voltage Range  
BA6406F  
BA6406F  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
Operating Voltage Range  
100℃  
25℃  
-40℃  
100℃  
25℃  
-40℃  
-40℃  
25℃  
100℃  
-40℃  
25℃  
-40℃  
25℃  
100℃  
100℃  
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
0
20  
40  
60  
80  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Output current, Io [mA]  
Fig.19 Charge-discharge current of  
capacitor for lock detection  
Fig.20 Clamp-comparison voltage  
of capacitor for lock detection  
Fig.21 Output H voltage  
www.rohm.com  
2012.03 - Rev.A  
9/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
BA6901F  
BA6901F  
100℃  
BA6901F  
BA6901F  
6.0  
4.0  
2.0  
0.0  
-2.0  
10  
8
20  
10  
0
100℃  
25℃  
100℃  
25℃  
25℃  
-40℃  
-40℃  
-40℃  
6
4
-40℃  
25℃  
100℃  
25℃  
-10  
-20  
2
Operating Voltage Range  
100℃  
Operating Voltage Range  
Operating Voltage Range  
-40℃  
0
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
80  
30  
25℃  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Fig.22 Circuit current  
Fig.23 Hall input hysteresis  
Fig.24 Charge-discharge current of  
capacitor for lock detection  
BA6901F  
BA6901F  
BA6901F  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
1.0  
Operating Voltage Range  
100℃  
0.8  
0.6  
-40℃  
25℃  
25℃  
-40℃  
100℃  
100℃  
0.4  
0.2  
0.0  
25℃  
-40℃  
0
6
12  
18  
24  
30  
0
20  
40  
60  
0
3
6
9
12  
15  
Supply voltage, Vcc [V]  
Output current, Io [mA]  
FG current, IFG[mA]  
Fig.25 Clamp-comparison voltage of  
capacitor for lock detection  
Fig.26 Output H voltage  
Fig.27 FG Output L voltage  
BA6901F  
BA6901F  
BA6901F  
1.0  
1.0  
0.8  
0.5  
0.3  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
-40℃  
0.8  
0.6  
-40℃  
25℃  
25℃  
100℃  
100℃  
100℃  
0.4  
0.2  
0.0  
25℃  
Operating Voltage Range  
Operating Voltage Range  
-40℃  
0
3
6
9
12  
15  
0
6
12  
18  
24  
0
6
12  
18  
24  
30  
AL current, IAL[mA]  
Supply voltage, Vcc[V]  
Supply voltage, Vcc[V]  
Fig29 CS-CL offset voltage  
Fig.30 PWM input threshold voltage  
Fig28 AL Output L voltage  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
10/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
BD6712AF  
BD6712AF  
BD6712AF  
BD6712AF  
10  
8
0.5  
0.4  
0.3  
0.2  
0.1  
5
4
3
2
1
95℃  
95℃  
-35℃  
-35℃  
25℃  
-35℃  
6
25℃  
95℃  
25℃  
4
2
Operating Voltage Range  
Operating Voltage Range  
Operating Voltage Range  
0
0
6
12  
18  
24  
30  
0
6
12  
Supply voltage, Vcc [V]  
18  
24  
30  
0
6
12  
18  
24  
30  
Supply voltage, Vcc [V]  
Supply voltage, Vcc [V]  
Fig.31 Circuit current  
Fig.32 Lock detection ON time  
Fig.33 Lock detection OFF time  
BD6712AF  
BD6712AF  
BD6712AF  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
1
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0.8  
0.6  
0.4  
0.2  
0
-35℃  
25℃  
28V  
12V  
95℃  
25℃  
95℃  
-35℃  
3.5V  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Output current, Io [mA]  
Output current, Io [mA]  
Output current, Io [mA]  
Fig.34 Output H voltage  
(Temperature characteristics)  
Fig.35 Output H voltage  
(Voltage characteristics)  
Fig.36 Output L voltage  
(Temperature characteristics)  
BD6712AF  
BD6712AF  
BD6712AF  
1
0.8  
0.6  
0.4  
0.2  
0
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
3.5V  
95℃  
25℃  
3.5V  
12V  
12V  
28V  
-35℃  
28V  
0
10  
20  
30  
40  
0
2
4
6
8
10  
0
2
4
6
8
10  
Output current, Io [mA]  
Fig.37 Output L voltage  
(Voltage characteristics)  
FG/AL current, IFG/IAL [mA]  
FG/AL current, IFG/IAL [mA]  
Fig.38 FG/AL output L voltage  
(Temperature characteristics)  
Fig.39 FG/AL output L voltage  
(Voltage characteristics)  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
11/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
Block diagram, application circuit, and pin assignment  
BD6701F  
OUT2  
1
GND  
8
Lock  
Detect  
Auto  
Pre Drive  
Connect  
a
pull-up resistor  
because open collector output  
is set.  
Restart  
AL  
2
OUT1  
7
P.25  
Set according to the amplitude  
of hall element output and hall  
input voltage range.  
OSC  
P.22  
FG  
3
H-  
6
HALL  
Take a measure against Vcc voltage  
rise generated by reverse connection  
of current and back electromotive  
force.  
Control  
TSD  
P.25  
HALL  
AMP  
REG  
H+  
5
Vcc  
4
-
+
Terminal  
PIN No.  
Function  
name  
OUT2  
AL  
Motor output terminal 2  
1
2
3
4
5
6
7
8
Lock alarm signal output terminal  
Rotating speed pulse signal output terminal  
Power terminal  
FG  
Vcc  
Hall input terminal+  
H+  
Hall input terminal-  
H-  
Motor output terminal 1  
GND terminal  
OUT1  
GND  
BA6406F  
Take a measure against Vcc voltage  
rise generated by reverse connection  
of current and back electromotive  
force.  
Output Tr is equipped externally.  
Provide back electromotive force  
Vcc  
1
A2  
8
a
regenerating current route by Zenner  
diode for clamping.  
P.25  
P.25  
REG  
A1  
7
H+  
HALL  
AMP  
Set according to the amplitude  
of hall element output and hall  
input voltage range.  
HALL  
2
+
-
LOGIC  
P.22  
AL  
3
LD  
6
0.33μF  
4.7μF  
Connect  
because open collector output  
is set.  
a
pull-up resistor  
Lock detection ON time and lock  
detection OFF time can be set.  
Lock  
+
-
Detect  
Auto  
GND  
5
H-  
4
P.25  
Restart  
P.17  
+
-
Terminal  
PIN No.  
Function  
name  
Vcc  
H+  
AL  
Power terminal  
1
2
3
4
5
6
7
8
Hall input terminal +  
Lock alarm signal output terminal  
Hall input terminal -  
H-  
GND  
LD  
GND terminal  
Lock detection and automatic restart capacitor connecting terminal  
A1  
Output terminal 1  
Output terminal 2  
A2  
www.rohm.com  
2012.03 - Rev.A  
12/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
BA6506F  
Take a measure against Vcc voltage  
rise generated by reverse connection  
Output Tr is equipped externally.  
Vcc  
A2  
8
Provide  
a back electromotive force  
of current and back electromotive  
1
regenerating current route by Zenner  
diode for clamping.  
force.  
P.25  
P.25  
REG  
A1  
7
H+  
HALL  
AMP  
Set according to the amplitude  
of hall element output and hall  
input voltage range.  
HALL  
2
+
-
LOGIC  
P.22  
FG  
3
LD  
6
0.33μF  
4.7μF  
Connect  
because open collector output  
is set.  
a
pull-up resistor  
Lock detection ON time and lock  
detection OFF time can be set.  
Lock  
+
-
Detect  
Auto  
GND  
5
H-  
4
P.25  
Restart  
P.17  
+
-
Terminal  
PIN No.  
Function  
name  
Vcc  
H+  
Power terminal  
1
2
3
4
5
6
7
8
Hall input terminal +  
FG  
H-  
Rotating speed pulse signal output terminal  
Hall input terminal -  
GND  
LD  
GND terminal  
Lock detection and automatic restart capacitor connecting terminal  
A1  
Output terminal 1  
Output terminal 2  
A2  
www.rohm.com  
2012.03 - Rev.A  
13/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
BA6901F  
Incorporates  
charging  
and  
Take a measure against Vcc voltage  
discharging pulse circuit and enables  
speed control corresponding to  
ambient temperature with use of  
thermistor.  
rise generated by reverse connection  
of current and back electromotive  
force.  
5kΩ  
200kΩ  
CR  
TOUT  
P.25  
+
-
P.19  
1
16  
Output Tr is equipped externally.  
0.1μF  
4.7μF  
FG  
Vcc  
Provide  
a back electromotive force  
Incorporates power supply  
clamp circuit and enables  
application of high voltage.  
regenerating current route by Zenner  
diode for clamping.  
2
15  
REG  
A2  
AL  
P.25  
P.25  
A2  
A1  
3
14  
Lock  
Detect  
Auto  
ALB  
Current limit setting resistor.  
P.20  
A1  
Enables speed control by  
pulse input.  
4
13  
Restart  
PWM  
CL  
P.18  
Output current detecting resistor. Pay  
attention to wattage because large  
current is present  
PWM  
5
12  
5Ω  
0.47μF  
-
4.7μF  
Lock detection ON time and lock  
detection OFF time can be set.  
+
LD  
CS  
+
-
P.20  
6
11  
0.001μF  
0.1μF  
P.17  
CNF  
Set according to the amplitude  
of hall element output and hall  
input voltage range.  
H-  
7
10  
Phase compensating capacitor  
when current is limited.  
-
+
-
HALL  
GND  
+
H+  
P.22  
P.20  
8
9
Terminal  
PIN No.  
Function  
name  
CR  
FG  
Charging and discharging pulse circuit capacitor and resistor connecting terminal  
Rotating speed pulse signal output terminal  
Lock alarm signal output terminal  
1
2
AL  
3
ALB  
PWM  
LD  
Lock alarm signal terminal(inversion signal of AL)  
PWM input terminal(H or OPEN:Output ON, L:Output OFF)  
Lock detection and automatic restart capacitor connecting terminal  
Phase compensating capacitor connecting terminal  
GND terminal  
4
5
6
CNF  
GND  
H+  
7
8
Hall input terminal +  
9
H-  
Hall input terminal -  
10  
11  
12  
13  
14  
15  
16  
CS  
Current detecting input terminal  
CL  
Current limiting input terminal  
A1  
Output terminal 1  
A2  
Output terminal 2  
Vcc  
TOUT  
Power terminal  
Charging and discharging pulse output terminal  
www.rohm.com  
2012.03 - Rev.A  
14/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
BD6712AF  
Take a measure against Vcc voltage  
rise generated by reverse connection  
of current and back electromotive  
force.  
P25  
0Ω  
100kΩ  
Vcc  
OUT2  
Incorporates power supply  
clamp circuit and enables  
application of high voltage.  
1
8
REG  
TSD  
Output Tr is equipped externally.  
P.21  
Provide  
a back electromotive force  
regenerating current route by Zenner  
diode for clamping  
OUT1  
H+  
+
HALL  
2
7
Control  
P.25  
-
Set according to the amplitude  
of hall element output and hall  
input voltage range..  
HALL  
AMP  
Connect  
because open collector output  
is set.  
a
pull-up resistor  
P.22  
FG  
AL  
3
6
Lock  
Detect  
Auto  
P.25  
Restart  
Connect  
a
pull-up resistor  
because open collector output  
is set.  
H-  
GND  
4
5
P.25  
Terminal  
name  
PIN No.  
Function  
Vcc  
Power terminal  
Hall input terminal+  
1
2
3
4
5
6
7
8
H+  
AL  
Lock alarm signal output terminal  
Hall input terminal  
H-  
GND  
FG  
GND terminal  
Rotating speed pulse signal output terminal  
Output terminal 1  
OUT1  
OUT2  
Output terminal 2  
www.rohm.com  
2012.03 - Rev.A  
15/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
Description of operations  
Function table  
Reference  
page  
BD6701F  
BA6406F  
BA6506F  
BA6901F  
BD6712AF  
Incorporated  
counter  
Lock  
protection auto  
restart  
P.16  
CR timer  
P.17  
P.18  
P.18,  
19  
PWM input  
Variable speed control  
Current limit circuit  
Supply voltage clamping circuit  
FG output  
P.20  
P.21  
P.25  
P.25  
AL output  
1) Lock protection and automatic restart  
Incorporated counter system BD6701FBD6712AF>  
Motor rotation is detected by hall signal, and lock detection ON time (TON) and lock detection OFF time (TOFF) are set  
by IC internal counter. Timing chart is shown in Fig.40.  
H+  
TOFF  
TON  
ON  
OUT1  
Output Tr OFF  
OUT2  
FG  
Hi (Open collector)  
AL  
Motor  
locking  
Lock  
release  
Recovers  
normal operation  
Lock  
detection  
Fig.40 Lock protection (incorporated counter system) timing chart  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
16/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
CR timer system BA6406FBA6506FBA6901F>  
Charging and discharging time at LD terminal depends on the capacitor equipped externally on LD terminal. Charging  
and discharging time is determined as follows:  
C×(VLDCL-VLDCP)  
TON(charging time) =  
ILDC  
C×(VLDCL-VLDCP)  
TOFF(discharging time)=  
ILDD  
C
Capacity of capacitor equipped externally on LD terminal  
LDCL LD terminal clamping voltage  
LDCP LD terminal comparator voltage  
LDC  
LDD  
LD terminal charging current  
LD terminal discharging current  
For reference, charging and discharging time when C = 1.0μF can be calculated as follows(BA6901F);  
Charging time0.36sec(output ON)  
Discharging time3.6sec(output OFF)  
Timing chart of LD terminal is shown in Fig.41.  
H-  
A1  
TOFF  
TON  
ON  
Output Tr OFF  
LD terminal clamping  
voltage  
LD  
LD terminal comparator  
voltage  
HIGH(open collector)  
AL  
FG  
Motor Lock  
locking detection  
Lock Recovers normal  
release operation  
Fig.41 Lock protection (CR timer system) timing chart  
When the motor is locked with hall input terminal (H-) in Lo status, FG logic is reversed.  
AL might be high for few hundred ms in turning on. (BA6406F)  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
17/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
3) PWM terminal BA6901F>  
The signal input to PWM terminal is below L (0.8V or less), output (A1 and A2) turns off. And when it is above H (2.0V or  
more), output turns on. PWM terminal is pulled up by resistor (30kΩ:typ.) inside IC. When it is open, the output is in  
operating mode.  
H+  
PWM  
A1  
A2  
FG  
Fig.42 Timing chart in PWM control  
4) Charging and discharging pulse circuit compatible with temperature variable speed control BA6901F>  
When an external capacitor and resistor are connected to CR terminal, saw wave is generated by charging and  
discharging of capacitor corresponding to the cycle of hall signal. Saw wave of CR terminal changes with the external  
capacitor and resistor. Waveform of CR terminal is output to TOUT by buffer amplifier.  
CR terminal is variable from VCRCP (0.35V:typ., see the electric characteristics) to Vcc. When CR voltage is above  
Vcc-VTOH (1V:typ., see the electric characteristics), CR terminal signal is not output to TOUT terminal as shown in  
Fig.43.  
Hall input  
Hall input  
Vcc-VTOH  
(typ. Vcc-1V)  
Vcc-VTOH  
(typ. Vcc-1V)  
VCRCP  
(typ. 0.35V)  
VCRCP  
(typ. 0.35V)  
CR  
CR  
Vcc-VTOH  
(typ. Vcc-1V)  
VTOL  
(typ. 1V)  
TOUT  
VTOL  
(typ. 1V)  
TOUT  
Fig.43 CR terminal and TOUT terminal timing chart  
www.rohm.com  
2012.03 - Rev.A  
18/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
5) Variable speed control application BA6901F>  
This is an example of the application which makes the fan motor rotating speed variable corresponding to ambient  
temperature with thermistor by use of charging and discharging pulse circuit and PWM input.  
TOUT  
CR  
+
-
16  
1
Vcc  
FG  
15  
2
REG  
AL  
3
A2  
A2  
A1  
14  
Lock  
Detect  
Auto  
ALB  
4
A1  
13  
Restart  
CL  
PWM  
+
-
12  
PWM  
5
VTH  
-
CS  
+
LD  
Thermistor  
11  
+
-
6
H-  
CNF  
10  
7
-
+
-
HALL  
+
GND  
H+  
8
9
Fig. 44 Example of temperature variable speed application  
VTH  
TOUT  
PWM  
A1  
A2  
Fig. 45 Temperature variable speed timing chart  
When the temperature becomes the lower and the thermistor terminal voltage the higher, PWM pulse becomes the  
shorter and speed is reduced as shown in Fig. 45.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
19/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
6) Current limiting circuit BA6901F>  
Output current limitation can be set by the voltage (VCL) input to CL terminal. Connect a resistor (RNF) for detecting  
output current between the emitter of external output transistor and GND, and input the voltage generated by resistor to  
CS terminal, thereby detecting the output current. The output current is limited so that CL terminal and CS terminal has  
the same potential. There is an offset between CL terminal and CS terminal. Current limiting value can be calculated by  
the formula below:  
VCLVofsCS  
Current limiting  
value =  
RNF  
VofsCS = CL-CS offset  
When limiting the output current, capacitor for phase compensation must be connected between CNF terminal and Vcc  
terminal. When the output current is not to be limited, fix CL terminal voltage to High level (Vcc) and CS terminal to Low  
level (GND).  
CNF Vcc  
A1  
CNF Vcc  
A1  
A2  
A2  
CS  
CS  
Current limiting  
CL  
CL  
(a) When current limiting is applied  
(b) When current limiting is not applied  
Fig.46 External circuit of output  
www.rohm.com  
2012.03 - Rev.A  
20/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
7) Power supply voltage clamping circuit BD6712AF>  
When the external supply voltage exceeds supply clamping voltage Vcz (see the electric characteristics), supply  
clamping turns on. Adjust the capacity of bypass capacitor (C2) so that the transient peak voltage does not exceed the  
maximum of supply clamping voltage at IC power supply terminal (Vcc).  
When you use the external supply voltage above supply clamping voltage, insert the limiting resistor (R1) between the  
external supply and IC supply terminal. Set the limiting resistor (R1) so that Icc does not exceed the operation power  
supply amperage.  
Example of calculation for BD6712AF is shown below:  
External supply voltage  
VS  
Supply clamping voltage  
Hall current limiting resistor  
Hall element current  
Vcz=6V(typ.)  
R2  
Supply current limiting resistor R1  
Circuit crrent  
Supply terminal voltage  
Then,  
Icc  
IH  
Vcc  
Hall element resistance  
RH  
VS - Vcc  
Icc + IH  
R1 =  
・・・①  
Icc  
Vcc  
R1  
OUT2  
1
8
VS  
C2  
REG  
TSD  
R2  
IH  
H+  
AL  
+
-
2
3
4
7
Control  
OUT1  
RH  
HALL  
AMP  
FG  
6
Lock  
Detect  
Auto  
Restart  
GND  
5
H-  
Fig.47 Example of supply voltage clamping application circuit  
Assuming R2 = 2kΩ and RH = 0.5kΩ, IH is calculated as follows:  
Vcc  
IH =  
・・・②  
R2 + RH  
=
=
6V / (2kΩ+0.5kΩ)  
2.4mA  
Icc has minimum 4mA and maximum 30mA, therefore the minimum and maximum value of R1 is calculated as follows  
by the formula :  
VS  
5V  
R1 Min. value  
0Ω  
R1 Max. value  
0kΩ  
550Ω  
2.8kΩ  
24V  
48V  
1.3kΩ  
6.6kΩ  
www.rohm.com  
2012.03 - Rev.A  
21/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
8) Hall input setting  
Hall input voltage range is shown in operating conditions.  
Vcc  
Hall input voltage range upper limit  
Hall input voltage range lower limit  
GND  
Fig.48 Hall input voltage range  
Adjust the hall element bias resistor R1 and R2 in Fig.49 so that the input voltage at hall amplifier is input in "hall input  
voltage range" including the amplitude of signal.  
For a model having hall input voltage range lower limit 0V,R2 = 0Ωis acceptable.  
Reduction of noise of hall signal  
Hall element may be affected by Vcc noise or the like depending on the wiring pattern of board. In this case, place a  
capacitor like C1 in Fig.49. In addition, when wiring from the hall element output to IC hall input is long, noise may be  
loaded on wiring. In this case, place a capacitor like C2 in Fig.49.  
H-  
H+  
Vcc  
C2  
R1  
C1  
Hall element  
RH  
R2  
Hall bias current Vcc / (R1+R2+RH )  
Fig.49 Application near of hall signal  
www.rohm.com  
2012.03 - Rev.A  
22/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
Equivalent circuit  
BD6701F  
1) Hall input terminal  
2) Output terminal  
OUT1  
OUT2  
Vcc  
1k  
1k  
Ω
Ω
3 FG output terminal  
4) AL output terminal  
FG  
AL  
BA6406F  
1) Hall input terminal  
2) Output terminal  
3)AL signal output terminal  
Vcc  
AL  
H+  
H-  
1k  
1k  
Ω
Ω
A1,A2  
15k  
Ω
BA6506F  
1) Hall input terminal  
2) Output terminal  
3)FG signal output terminal  
Vcc  
FG  
H+  
H-  
1k  
1k  
Ω
Ω
A1,A2  
15k  
Ω
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
23/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
BA6901F  
1) Hall input terminal  
2) Current limiting input terminal  
3) Charge-discharge pulse  
output terminal  
Output current detecting terminal  
Vcc  
Vcc  
Vcc  
30  
30  
Ω
Ω
1k  
Ω
TOUT  
1k  
1k  
Ω
Ω
1k  
1k  
Ω
Ω
H+  
H-  
CS  
CL  
4) PWM input terminal  
5) Output terminal  
6) Signal output terminal  
FG AL ALB  
Vcc  
Vcc  
30k  
Ω
Ω
A1, A2  
1k  
Ω
PWM  
100k  
15k  
Ω
GND  
BD6712AF  
1) Hall input terminal  
2) Output terminal  
Vcc  
Vcc  
OUT1  
OUT2  
1k  
Ω
H+  
H-  
1k  
1k  
Ω
Ω
1k  
Ω
3) FG output terminal or AL output terminal  
4) Power supply terminal  
FG  
or  
AL  
Vcc  
50k  
Ω
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
24/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
Safety measure  
1) Reverse connection protection diode  
Reverse connection of power results in IC destruction as shown in Fig 50. When reverse connection is possible, reverse  
connection protection diode must be added between power supply and Vcc.  
Reverse power connection  
Vcc  
After reverse connection  
destruction prevention  
Vcc  
In normal energization  
Vcc  
Circuit  
block  
Each  
pin  
Circuit  
block  
Each  
pin  
Circuit  
block  
Each  
pin  
GND  
GND  
GND  
Internal circuit impedance high  
Large current flows  
Thermal destruction  
No destruction  
amperage small  
Fig.50 Current flow when power is connected reversely  
As for BD6701F, this diode is built-in in the IC, so a protection diode between power supply -Vcc terminal is unnecessary.  
2) About measures of voltage rise by back electromotive force  
The voltage of output terminal rises by back electromotive force. The diode D1 of Fig.51 is necessary to divide a power  
supply line of motor with small signal line, so that the voltage of the output does not affect a power supply line.  
D1  
IC  
Fig.51 Separation of a power supply line  
The models that incorporate power Tr (BD6701F) have the circuit, which clamps the output voltage so that back  
electromotive force does not exceed the maximum rating voltage of output Tr.  
3) FG, AL output  
Vcc  
Pull-up  
resistor  
FG /AL  
Protection  
resistor R1  
Connector  
of board  
Fig.52 Protection of FG and AL terminal  
FG and AL output is an open collector and requires pull-up resistor.  
The IC can be protected by adding resistor R1. An excess of absolute maximum rating, when FG or AL output terminal  
is directly connected to power supply, could damage the IC.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
25/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
4) Problem of GND line PWM switching  
Do not perform PWM switching of GND line because GND terminal potential cannot be kept to a minimum.  
Vcc  
Motor  
Driver  
Controller  
GND  
PWM input  
Prohibite  
Fig.53 GND Line PWM switching prohibited  
Calculation of power consumption by IC  
Vcc  
Power consumption of this IC is approximately calculated as follows:  
Pc=Pc1+Pc2+Pc3  
Icc  
Pc1Power consumption by circuit current  
Pc1=Vcc×Icc  
Pc2Power consumption on output stage  
Pc2=VOL×Io  
FG  
IFG  
VOL is the L voltage of output terminal 1 and 2.  
Io is the current flowing to output terminal 1 and 2.  
Pc3Power consumption at FG and AL  
Pc3=VFG×IFGVAL×IAL  
OUT1  
OUT2  
VFG is L voltage of FG output.  
Io  
VAL is L voltage of AL output.  
IFG and IAL are the current of FG and AL.  
Fig.54 Calculation of power consumption by IC  
Power consumption by IC greatly changes with use condition of IC such as power supply voltage and output current.  
Consider thermal design so that the maximum power dissipation on IC package is not exceeded.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
26/28  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
Thermal derating curve  
Power dissipation (total loss) indicates the power that can be consumed by IC at Ta = 25ºC (normal temperature). IC is  
heated when it consumes power, and the temperature of IC chip becomes higher than ambient temperature. The  
temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, etc, and consumable  
power is limited. Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and  
thermal resistance of package (heat dissipation capability). The maximum junction temperature is in general equal to the  
maximum value in the storage temperature range.  
Heat generated by consumed power of IC is radiated from the mold resin or lead frame of package. The parameter which  
indicates this heat dissipation capability (hardness of heat release) is called heat resistance, represented by the symbol θja  
[/W]. The temperature of IC inside the package can be estimated by this heat resistance. Fig.55 shows the model of heat  
resistance of the package.  
Heat resistance θja, ambient temperature Ta, junction temperature Tj, and power consumption P can be calculated by the  
equation below:  
θja (TjTa) / P  
[/W]  
Thermal derating curve indicates power that can be consumed by IC with reference to ambient temperature. Power that can  
be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by thermal resistance  
θja.  
Thermal resistance θja depends on chip size, power consumption, package ambient temperature, packaging condition, wind  
velocity, etc., even when the same package is used. Thermal derating curve indicates a reference value measured at a  
specified condition. Fig.56 shows a thermal derating curve (Value when mounting FR4 glass epoxy board 70 [mm] x 70 [mm]  
x 1.6 [mm] (copper foil area below 3 [%]))  
θja = (Tj-Ta) / P [/W]  
Ambient temperature Ta[]  
Chip surface temperature Tj[]  
Power consumption P[W]  
Fig.55 Thermal resistance  
Pd(mW)  
800  
Pd(mW)  
800  
780  
700  
700  
625  
600  
560  
624  
600  
BA6901F  
500  
400  
500  
400  
BD6712AF  
BD6701F  
BA6406F  
300  
200  
300  
200  
100  
0
100  
0
25  
50  
75 95 100 125  
150  
Ta(  
)
25  
50  
75 85 95100 125  
150  
Ta(  
)
Reduce by 6.24 mW/°C over 25°C.BD6701F, BA6406F, BD6712AF>  
Reduce by 5.0 mW/°C over 25°C.BA6901F>  
(70.0mm×70.0mm×1.6mm glass epoxy board)  
Fig.56 Thermal derating curve  
www.rohm.com  
2012.03 - Rev.A  
27/28  
© 2012 ROHM Co., Ltd. All rights reserved.  
BD6701F, BA6406F, BA6506F, BA6901F, BD6712AF  
Technical Note  
Cautions on use  
1) Absolute maximum ratings  
An excess in the absolute maximum rations, such as supply voltage, temperature range of operating conditions, etc.,  
can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit.  
If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices,  
such as fuses.  
2) Connecting the power supply connector backward  
Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply  
lines. An external direction diode can be added.  
3) Power supply line  
Back electromotive force causes regenerated current to power supply line, therefore take a measure such as placing a  
capacitor between power supply and GND for routing regenerated current. And fully ensure that the capacitor  
characteristics have no problem before determine a capacitor value. (when applying electrolytic capacitors, capacitance  
characteristic values are reduced at low temperatures)  
4) GND potential  
The potential of GND pin must be minimum potential in all operating conditions. Also ensure that all terminals except  
GND terminal do not fall below GND voltage including transient characteristics. However, it is possible that the motor  
output terminal may deflect below GND because of influence by back electromotive force of motor. Malfunction may  
possibly occur depending on use condition, environment, and property of individual motor. Please make fully  
confirmation that no problem is found on operation of IC.  
5) Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation(Pd) in actual operating  
conditions.  
6) Inter-pin shorts and mounting errors  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if pins are shorted together.  
7) Actions in strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to  
malfunction.  
8) ASO  
When using the IC, set the output transistor so that it does not exceed absolute maximum rations or ASO.  
9) Thermal shut down circuit(1)  
The IC incorporates a built-in thermal shutdown circuit (TSD circuit). Operation temperature is 175(typ.) and has a  
hysteresis width of 25(typ.). When IC chip temperature rises and TSD circuit works, the output terminal becomes an  
open state. TSD circuit is designed only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC  
or guarantee its operation. Do not continue to use the IC after operation this circuit or use the IC in an environment  
where the operation of this circuit is assumed. (1:BA6406F does not incorporate TSD circuit.)  
10) Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to  
stress. Always discharge capacitors after each process or step. Always turn the IC’s power supply off before connecting  
it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an  
antistatic measure. Use similar precaution when transporting or storing the IC.  
11) GND wiring pattern  
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns,  
placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage  
variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change  
the GND wiring pattern of any external components, either.  
12) Capacitor between output and GND  
When a large capacitor is connected between output and GND, if Vcc is shorted with 0V or GND for some cause, it is  
possible that the current charged in the capacitor may flow into the output resulting in destruction. Keep the capacitor  
between output and GND below 100uF.  
13) IC terminal input  
When Vcc voltage is not applied to IC, do not apply voltage to each input terminal. When voltage above Vcc or below  
GND is applied to the input terminal, parasitic element is actuated due to the structure of IC. Operation of parasitic  
element causes mutual interference between circuits, resulting in malfunction as well as destruction in the last. Do not  
use in a manner where parasitic element is actuated.  
14) In use  
We are sure that the example of application circuit is preferable, but please check the character further more in  
application to a part which requires high precision. In using the unit with external circuit constant changed, consider the  
variation of externally equipped parts and our IC including not only static character but also transient character and  
allow sufficient margin in determining.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
28/28  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BD6712AF_11

Silicon Monolithic Integrated Circuit
ROHM

BD6713EFV

Single-Phase Full-Wave Motor Pre-Driver for Fan
ROHM

BD67173NUX

Three-Phase Full-Wave Fan Motor Driver
ROHM

BD67173NUX-E2

Three-Phase Full-Wave Fan Motor Driver
ROHM

BD6718FV

Single-Phase Full-Wave Motor Pre-Driver for Fan Motor
ROHM

BD6718FV-E2

Brushless DC Motor Controller, 0.02A, BCDMOS, PDSO20, ROHS COMPLIANT, SSOP-20
ROHM

BD6721FS

Single-Phase Full-Wave Motor Driver for Fan Motor
ROHM

BD6721FS_1

Single-Phase Full-Wave Motor Driver for Fan Motor
ROHM

BD6722FS

Single-Phase Full-Wave Motor Driver for Fan Motor
ROHM

BD6722FS-E2

Brushless DC Motor Controller, 1.5A, BCDMOS, PDSO16, ROHS COMPLIANT, SSOP-16
ROHM

BD6722FS_1

Single-Phase Full-Wave Motor Driver for Fan Motor
ROHM

BD6726FU

Silicon Monolithic Integrated Circuit
ROHM