BD93E30GWL (开发中) [ROHM]

BD93E30GWL是一款全功能USB Type-CPower Delivery(PD)控制器,可通过基带通信实现USB PD。该产品支持USB Type-C规范和Power Delivery规范。BD93E30GWL支持PD策略引擎,可通过主机接口与嵌入式控制器或SoC通信。该芯片支持SOP、SOP’和SOP’’信令,因此能够与电缆标记IC通信。BD93E30GWL仅控制支持SSMUX协议的特定IC。;
BD93E30GWL (开发中)
型号: BD93E30GWL (开发中)
厂家: ROHM    ROHM
描述:

BD93E30GWL是一款全功能USB Type-CPower Delivery(PD)控制器,可通过基带通信实现USB PD。该产品支持USB Type-C规范和Power Delivery规范。BD93E30GWL支持PD策略引擎,可通过主机接口与嵌入式控制器或SoC通信。该芯片支持SOP、SOP’和SOP’’信令,因此能够与电缆标记IC通信。BD93E30GWL仅控制支持SSMUX协议的特定IC。

通信 控制器 光电二极管
文件: 总21页 (文件大小:905K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
USB Type-C Power Delivery  
USB Type-C Power Delivery Controller  
BD93E30GWL  
General Description  
Key Specifications  
BD93E30GWL is a full function USB Type-C Power  
Delivery (PD) Controller that supports USB PD using  
base-band communication. It is compatible with USB  
Type-C Specification and Power Delivery specification.  
BD93E30GWL includes support for the PD policy engine  
and communicates with an Embedded Controller or the  
SoC via host interface. It supports SOP, SOP’ and SOP’’  
signaling allowing it to communicate with cable marker  
ICs. BD93E30GWL controls only a specific IC of the  
SSMUX.  
VBUS_C Voltage Range:  
VSVR Voltage Range:  
VCONNIN Voltage Range:  
3.67 V to 22 V  
3.1 V to 5.5 V  
4.9 V to 5.5 V  
Operating Temperature Range: -30 °C to +85 °C  
FW Revision  
Rev.7815(1E87h)  
Applications  
Camera  
PCs  
Smart Speaker  
Features  
32 Bit ARM® Cortex®-M0 Processor Embedded.  
USB Type-C Specification Release 1.3 Compatible.  
USB PD Specification Revision 3.0 Compatible.  
Integrated VCONN Switches.  
Package  
W (Typ) x D (Typ) x H (Max)  
UCSP50L2C(36Pin) 2.63 mm x 2.63 mm x 0.57 mm  
(0.4mm pitch)  
Integrated VBUS N-ch MOSFET Switch Gate Driver.  
Integrated VBUS Discharge Switch.  
Supports Dead Battery Operation.  
I2C Interface for Host Communication.  
Supports DP Alternate Mode Source.  
Typical Application Circuit  
RS  
10mΩ  
Q10  
Q11  
Power Source  
Q20  
Q21  
VBUS  
Power Sink  
CS1S  
1.0μF  
CS2S  
CCS  
CVBC  
0.1 μF  
1.0μF  
10μF  
VSVR  
(3.3V/5.0V)  
F1  
B6  
VSVR  
VDDIO  
(3.3V/5.0V)  
B1  
C2  
A1  
VCONNIN  
CLPON_B  
CC1_C  
VDDIO  
VCONN  
RSDA RSCL  
3.3kΩ 3.3kΩ  
RALT  
100kΩ  
A4  
B4  
C6  
D5  
CC1  
CC2  
SDA  
SCL  
HOST I/F  
BD93E30GWL  
(Package: UCSP50L2C)  
C1  
CC2_C  
GPIO2  
GPIO5  
VDD_CAP  
C4  
USB  
GPIO4  
RVU1 RVU2 RPU RDU  
Type-C PD  
Receptacle  
2.63mm x 2.63mm x 0.57mm  
RVD1  
C5  
F6  
E6  
D3  
GPIO3  
GPIO6  
RVD2  
RPD  
RDD  
U1  
VDD_CAP  
GPIO8  
GPIO9  
D2  
VDD_CAP  
ADCIN  
VDD_CAP  
E1  
C3  
RST_B  
RIDSU  
RTHU  
22 kΩ  
RIDSD  
A6  
D4  
IDSEL  
USB  
2.0  
GPIO7  
GPIO0  
GPIO1  
D+/D-  
RTHD  
A5  
B5  
t°  
PHY  
HPD  
For MUX I/F  
AUX+/AUX-  
CVCC  
SCL SDA  
DP Source  
I/F  
ML0+/ML0-  
ML1+/ML1-  
ML2+/ML2-  
ML3+/ML3-  
4.7μF  
SSMUX  
/ Re-Driver  
/ Re-Timer  
etc.  
SBU1/SBU2  
RX1+/RX1-  
RX2+/RX2-  
TX1+/TX1-  
TX2+/TX2-  
SSRX+/SSRX-  
SSTX+/SSTX-  
USB3.0  
PHY  
GND  
GND  
“ARM® Cortex® “is a registered trademark of Arm Limited.  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
1/18  
 
 
 
 
 
 
 
BD93E30GWL  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
FW Revision ...................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Description................................................................................................................................................................................4  
Block Diagram ................................................................................................................................................................................5  
Description of Block........................................................................................................................................................................6  
Absolute Maximum Ratings ............................................................................................................................................................7  
Thermal Resistance........................................................................................................................................................................7  
Recommended Operating Conditions.............................................................................................................................................8  
Internal Memory Cell Characteristics..............................................................................................................................................8  
Electrical Characteristics.................................................................................................................................................................8  
Timing Chart .................................................................................................................................................................................10  
I/O Equivalence Circuits................................................................................................................................................................12  
Operational Notes.........................................................................................................................................................................14  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply............................................................................................................................14  
Power Supply Lines........................................................................................................................................................14  
Ground Voltage...............................................................................................................................................................14  
Ground Wiring Pattern....................................................................................................................................................14  
Recommended Operating Conditions.............................................................................................................................14  
Inrush Current.................................................................................................................................................................14  
Testing on Application Boards ........................................................................................................................................14  
Inter-pin Short and Mounting Errors ...............................................................................................................................14  
Unused Input Pins ..........................................................................................................................................................14  
Regarding the Input Pin of the IC ...................................................................................................................................15  
Ceramic Capacitor..........................................................................................................................................................15  
Thermal Shutdown Circuit (TSD)....................................................................................................................................15  
Over Current Protection Circuit (OCP) ...........................................................................................................................15  
Disturbance Light............................................................................................................................................................15  
9.  
10.  
11.  
12.  
13.  
14.  
Ordering Information.....................................................................................................................................................................16  
Marking Diagram ..........................................................................................................................................................................16  
Physical Dimension and Packing Information...............................................................................................................................17  
Revision History............................................................................................................................................................................18  
www.rohm.com  
TSZ02201-0V2V0A000810-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
2/18  
TSZ22111 • 15 • 001  
11.Mar.2021 Rev.001  
 
BD93E30GWL  
Pin Configuration  
(TOP VIEW)  
CC1_C  
TEST1  
TEST3  
TEST2  
TEST4  
SDA  
GPIO0  
GPIO1  
GPIO3  
GPIO5  
IDSEL  
VDDIO  
GPIO2  
GND  
A
B
C
VCONNIN  
SCL  
CC2_C CLPON_B ADCIN  
GPIO4  
GPIO7  
GND  
RST_B GPIO9  
D
E
F
VDD_CAP VCC_CAP SW2_S SW1_S CS  
GPIO8  
GPIO6  
VSVR  
VBUS_C SW2_G SW1_G VBUS  
1
2
3
4
5
6
(BOTTOM VIEW)  
VSVR  
VBUS_C SW2_G SW1_G VBUS  
GPIO6  
GPIO8  
GND  
F
E
D
VDD_CAP VCC_CAP SW2_S SW1_S CS  
GND  
RST_B GPIO9  
GPIO7  
GPIO4  
SCL  
GPIO5  
GPIO3  
GPIO1  
GPIO0  
CC2_C CLPON_B ADCIN  
GPIO2  
VDDIO  
IDSEL  
C
B
A
VCONNIN  
CC1_C  
TEST3  
TEST1  
TEST4  
TEST2  
SDA  
1
2
3
4
5
6
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
3/18  
BD93E30GWL  
Pin Description  
Pin No.  
Pin Name  
CC1_C  
TEST1  
TEST2  
SDA  
Function  
A1  
A2  
A3  
A4  
A5  
A6  
B1  
B2  
B3  
B4  
B5  
B6  
C1  
C2  
C3  
C4  
C5  
C6  
D1  
D2  
D3  
D4  
D5  
D6  
E1  
E2  
E3  
E4  
E5  
E6  
F1  
F2  
F3  
F4  
F5  
F6  
Configuration channel 1 for Type-C.  
TEST pin. Short to GND.  
TEST pin. Short to GND.  
I2C slave data  
GPIO0  
IDSEL  
GPIO / I2C master data  
I2C Device ID Select.  
VCONNIN  
TEST3  
TEST4  
SCL  
Input power for VCONN  
TEST pin. Short to GND.  
TEST pin. Short to GND.  
I2C slave clock  
GPIO1  
VDDIO  
CC2_C  
CLPON_B  
ADCIN  
GPIO4  
GPIO3  
GPIO2  
GND  
GPIO / I2C master clock  
GPIO H level voltage input  
Configuration channel 2 for Type-C.  
Enable clamper of CC Open: Dead-battery not support, L: Dead-battery support  
Input voltage to ADC  
GPIO  
GPIO  
GPIO  
Ground  
RST_B  
GPIO9  
GPIO7  
GPIO5  
GND  
System reset signal input  
GPIO  
GPIO  
GPIO  
Ground  
VDD_CAP  
VCC_CAP  
SW2_S  
SW1_S  
CS  
Internal LDO 1.5 V  
Internal power supply (for internal use only)  
Power path FET BG/SRC voltage  
Power path FET BG/SRC voltage  
Current monitor input  
GPIO  
GPIO8  
VSVR  
Power supply from 3.3 V / 5 V system voltage rail  
Power supply from VBUS for Type-C  
Power path FET gate control  
Power path FET gate control  
VBUS Current/Voltage Monitor Input  
GPIO  
VBUS_C  
SW2_G  
SW1_G  
VBUS  
GPIO6  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
4/18  
11.Mar.2021 Rev.001  
BD93E30GWL  
Block Diagram  
POWCNT  
CSENSE  
VSVR  
VCC_CAP  
VDD_CAP  
OSC  
VREF  
VCONNIN  
CLPON_B  
CC_PHY  
VDDIO  
SCL  
Device Policy Manager  
Policy Engine  
Protocol Layer  
(MCU with memory)  
I/F BUS  
ADC  
SDA  
CC1_C  
CC2_C  
BMC_  
PHY  
RST_B  
IDSEL  
ADCIN  
GPIOs  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
5/18  
BD93E30GWL  
Description of Block  
(VREF)  
VREF block is internal power source circuit of this LSI with the UVLO (Under Voltage Lock Out) function.  
The main power input is VSVR. And for supporting dead battery operation, VBUS_C can become power source of this LSI  
when VSVR does not exist.  
VREF block monitors VSVR and VBUS_C, and chooses an appropriate power supply by detecting normal condition or  
dead battery condition. From the voltage which it selected, it generates VCC_CAP and VDD_CAP for internal circuits.  
(OSC)  
OSC block is reference clock circuit of this LSI. This LSI does not need any external clock sources.  
(I/F BUS)  
I/F Bus block have I2C Slave for Host Control. The I2C Slave is intended to communicate with HOST MCU such as the EC.  
(Device Policy Manager)  
Device Policy Manager manages USB Type-C Power Delivery operation. It is constructed in internal MCU and program  
memory. It is accessible using Host IF Bus from external host MCU. And the writing access to program memory is possible  
from Host IF Bus.  
(Policy Engine / Protocol Layer)  
Policy Engine and Protocol Layer perform USB Power Delivery operation. These blocks are constructed in internal MCU  
and the program memory in the same way as Device Policy Manager.  
(CC_PHY)  
CC_PHY is a physical layer of USB Type-C. It supports the following function.  
Dual Role Port (Dual Role Data and Dual Role Power).  
Pull-up Current Source (for USB default / 1.5 A / 3.0 A).  
Pull-down Resistor for Up Facing Port (UFP).  
The CC1_C pin and the CC2_C pin clamper for dead battery.  
VCONN output select switch for E-marked IC.  
VBUS Detecting.  
(BMC_PHY)  
BMC_PHY is a physical layer of USB Power Delivery. By control from Protocol Layer, it performs coding, decoding and  
judgment of CRC and communicates Base Band PD signal.  
(POWCNT)  
POWCNT block is power path control circuit of VBUS and can monitor VBUS voltage. It has two gate drivers for Nch  
MOSFET switch, high withstand discharge switch for VBUS and over voltage protection (OVP).  
(ADC)  
ADC block is a general-purpose ADC. It is used for the monitoring of various operating states. Monitoring object is external  
input voltage for thermistor circuit, VBUS voltage, system Voltage, die temperature and source current  
(CSENSE)  
CSENSE can perform monitoring VBUS current on the high side of the VBUS power lane.  
www.rohm.com  
TSZ02201-0V2V0A000810-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
6/18  
TSZ22111 • 15 • 001  
11.Mar.2021 Rev.001  
BD93E30GWL  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
VSVR  
VB  
Rating  
-0.3 to +6.0  
-0.3 to +28  
-0.3 to VSVR  
+150  
Unit  
V
Supply Voltage [VSVR]  
VBUS_C Voltage [VB]  
V
I/O Voltage [VDDIO]  
VDDIO  
Tjmax  
Tstg  
VSRC  
VDRV  
VGS  
V
Maximum Junction Temperature  
Storage Temperature Range  
SW1_S, SW2_S Voltage  
SW1_G, SW2_G Voltage  
°C  
°C  
V
-55 to +150  
-0.3 to +22  
-0.3 to +28  
-0.3 to +6.0  
-0.2 to +0.186  
-0.3 to +28  
-0.3 to +2.1  
-0.3 to +6.0  
V
SW1_G – SW1_S, SW2_G – SW2_S  
Voltage  
V
VBUS – CS Voltage  
VCS  
V
VBUS, CS Voltage  
VHV  
V
VCC_CAP, VDD_CAP, ADCIN Voltage  
VLV  
V
All Other Pins  
VOTH  
V
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
2s2p(Note 3)  
UCSP50L2C  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
63.60  
4.00  
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A (Still-Air).  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface  
of the component package.  
(Note 3) Using a PCB board based on JESD51-9.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.5 mm x 101.5 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
99.5 mm x 99.5 mm  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Thickness  
70 μm  
Footprints and Traces  
99.5 mm x 99.5 mm  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
7/18  
BD93E30GWL  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Temperature  
VSVR Voltage  
Topr  
VSVR  
-30  
3.1  
+25  
3.3  
-
+85  
5.5  
5.5  
22  
°C  
V
VCONNIN Voltage  
VBUS_C Voltage  
VDDIO Voltage  
VCONN  
VB  
4.9  
V
3.67  
1.7  
-
V
VDDIO  
3.3  
5.5  
V
Internal Memory Cell Characteristics (Unless otherwise specified VSVR = VDDIO = 3.3 V, VB = 5.0 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
cycles Ta = -30 °C to +85 °C  
years Ta = -30 °C to +85 °C  
Conditions  
Data rewriting number (Note 4)  
Data retention life (Note 5)  
Mrw  
Mrl  
100  
20  
-
-
-
-
(Note 4) BD93E30GWL cannot rewrite FW. ROHM cannot guarantee if FW rewriting.  
(Note 5) Not 100% Tested.  
Electrical Characteristics (Unless otherwise specified VSVR = VDDIO = 3.3 V, VB = 5.0 V, Ta = 25 °C)  
Parameter  
Current Consumption  
Shutdown Current  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
RST_B = “L”  
VSVR Current  
ISD  
ISP  
IST  
-
-
-
-
200  
2
190  
μA  
μA  
USB-C Un-Attached  
VSVR Current  
The option function stops.  
USB-C Attached, PD Standby  
VSVR Current  
Stop Current  
-
-
Standby Current  
mA  
VREF  
VCC_CAP Voltage  
VDD_CAP Output Voltage  
VSVR UVLO release  
VBUS_C UVLO release  
VDDIO UVLO release  
VCCIN  
V15D  
-
-
-
-
-
3.3  
1.5  
-
-
V
V
V
V
V
Standby  
Standby  
-
VDBSVR  
VBUSDET  
VDBDDIO  
3.10  
3.67  
1.7  
-
1.0  
Digital DC Characteristics (GPIOx: x = 0 to 9, SDA/SCL)  
0.8 x  
VDDIO  
VDDIO  
+ 0.3  
0.2 x  
VDDIO  
Input “H” Voltage 1  
VIH1  
-
V
Input “L” Voltage 1  
Input Leak Current 1  
Output “H” Voltage 1  
VIL1  
IIL1  
-0.3  
-
0
-
V
μA  
V
-5  
+5  
0.85 x  
VDDIO  
VOH1  
-
IL = 1 mA  
Digital DC Characteristics (GPIOx: x = 2 to 9)  
Output “L” Voltage 1 VOL1  
-
-
-
-
0.3  
0.4  
V
V
IL = -1 mA  
IL = -3 mA  
Digital DC Characteristics (GPIOx: x = 0 to 1, SDA/SCL)  
Output “L” Voltage 2 VOL2  
Digital AC Characteristics (GPIOx: x = 0 to 1, SDA/SCL)  
SCL Frequency fSCL  
-
0
400  
kHz  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
8/18  
BD93E30GWL  
Electrical Characteristic (Unless otherwise specified VSVR = VDDIO = 3.3 V, VB = 5.0 V, Ta = 25 °C) – continued  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
CC_PHY  
Pull-up Current (USB default)  
Pull-up Current (1.5 A mode)  
Pull-up Current (3.0 A mode)  
Pull-down Resistor  
VCONN  
IIP1  
IIP2  
64  
166  
304  
4.6  
80  
180  
330  
5.1  
96  
194  
356  
5.6  
µA  
µA  
µA  
kΩ  
IIP3  
RRD  
SW On Resistor  
RONVC  
ILIMVC1  
ILIMVC2  
-
1.2  
400  
800  
-
-
-
Ω
Current Limit 1  
300  
600  
mA  
mA  
Current Limit 2  
Voltage Measurement  
VBUS_C / VBUS Voltage  
Measurement Range  
External Input Voltage Measurement  
Range  
VRV  
0
0
-
-
28  
V
V
VRIN  
1.5  
CSENCE  
Current Sense Range  
Measured Current Accuracy  
POWCNT  
ICS  
0.1  
-10  
-
-
9
A
With 10 mΩ  
IACC  
+10  
%
When it measured 8A.  
VBUS_C OVP Detect Accuracy  
Fast Discharge SW on Resistor  
Soft Discharge SW on Resistor  
ACOVP  
RONFAST  
RONSFT  
-5  
-
-
+5  
-
%
Ω
OVP Detecting Voltage = 6.0 V  
VBUS_C=1.0 V  
510  
200  
-
-
kΩ  
VBUS_C=1.0 V  
Differential Voltage  
(between SW1_G and SW1_S, or  
VGDRV  
-
5.5  
-
V
SWx_S = 5.0 V  
SW2_G and SW2_S)  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
9/18  
BD93E30GWL  
Timing Chart  
(Normal Wakeup)  
3.3 V  
VSVR  
0 V  
0 V  
0 V  
0 V  
5 V  
VBUS_C  
VDDIO  
t1  
t2  
VCONNIN  
1.5 V  
VDD_CAP  
(Internal)  
0 V  
CC1_C  
CC2_C  
(Pull Up or Pull  
Down)  
Hi-Z  
Pull Up or Pull Down Enable  
LSI Operation Shutdown  
HW Standby  
Initialization  
Active (Type-C)  
According to USB Type-C Specification  
t3  
Timing Characteristic (Ta = 25°C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
VDDIO Input Timing from VSVR  
Input  
VCONNIN Input Timing from VSVR  
Input  
t1  
t2  
t3  
0
0
-
-
-
-
-
-
ms  
ms  
ms  
Not emergency operating.  
I2C (master) is disable.  
LSI Wakeup Time  
100  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
10/18  
BD93E30GWL  
Timing Chart - continued  
(Normal Shutdown)  
t4  
3.3 V  
VSVR  
0.5 V  
0 V  
5 V  
VBUS_C  
3.3 V  
t5  
VDDIO  
0.5 V  
0 V  
5 V  
4.9 V  
VCONNIN  
t6  
1.5 V  
VDD_CAP  
(Internal)  
0 V  
CC1_C  
CC2_C  
(Pull Up or  
Pull Down)  
Pull Up or Pull Down Enable  
Hi-Z  
Timing Characteristic (Ta = 25°C)  
Parameter  
Symbol  
t4  
Min  
-
Typ  
Max  
400  
Unit  
ms  
Conditions  
VSVR Falling Time  
-
As for the timing of t5 and t6, it is arbitrary. But LSI may not maintain action of USB Type-C PD when it is lost during LSI action.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
11/18  
BD93E30GWL  
I/O Equivalence Circuits  
PIN  
Pin Name  
Equivalent Circuit Diagram  
No.  
VSVR  
VBUS_C  
E2  
VCC_CAP  
VCC_CAP  
E1  
VDD_CAP  
A1  
C1  
CC1_C  
CC2_C  
C2  
F5  
CLPON_B  
VBUS  
VBUS  
E5  
CS  
C3  
A6  
ADCIN  
IDSEL  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
12/18  
BD93E30GWL  
I/O Equivalence Circuits - continued  
A4  
B4  
A5  
B5  
C6  
C5  
C4  
D5  
F6  
D4  
E6  
D3  
SDA  
SCL  
VDDIO  
VDDIO  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
F4  
F3  
SW1_G  
SW2_G  
SWX_S  
E4  
E3  
SW1_S  
SW2_S  
VCC_CAP  
D2  
RST_B  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
13/18  
BD93E30GWL  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
TSZ02201-0V2V0A000810-1-2  
© 2020 ROHM Co., Ltd. All rights reserved.  
14/18  
TSZ22111 • 15 • 001  
11.Mar.2021 Rev.001  
BD93E30GWL  
Operational Notes – continued  
10. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 1. Example of Monolithic IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
12. Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
13. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
14. Disturbance Light  
In a device where a portion of silicon is exposed to light such as in a WL-CSP and chip products, IC characteristics  
may be affected due to photoelectric effect. For this reason, it is recommended to come up with countermeasures that  
will prevent the chip from being exposed to light.  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
15/18  
BD93E30GWL  
Ordering Information  
B D 9 3 E 3 0 G W L -  
E 2  
Part Number  
Package  
GWL:UCSP50L2C  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
UCSP50L2C (TOP VIEW)  
1PIN MARK  
Part Number Marking  
LOT Number  
D93E30  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
16/18  
BD93E30GWL  
Physical Dimension and Packing Information  
Package Name  
UCSP50L2C (BD93E30GWL)  
< Tape and Reel Information >  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
Direction of feed E2  
The direction is the pin 1 of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
17/18  
BD93E30GWL  
Revision History  
Date  
Revision  
001  
Changes  
11.Mar.2021  
New Release  
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0V2V0A000810-1-2  
11.Mar.2021 Rev.001  
18/18  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.) ; or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BD93E70GWL (开发中)

BD93E70GWL是一款全功能USB Type-CPower Delivery(PD)控制器,可通过基带通信实现USB PD。该产品支持USB Type-C规范和Power Delivery规范。BD93E70GWL支持PD策略引擎,可通过主机接口与嵌入式控制器或SoC通信。该芯片支持SOP、SOP’和SOP’’信令,因此能够与电缆标记IC通信。 BD93E70GWL仅控制支持SSMUX协议和可调DCDC的特定IC。
ROHM

BD93F

isc Silicon NPN Power Transistor
ISC

BD93F10MWV

BD93F10MWV is a full function USB Type-C Power Delivery (PD) Controller that supports USB PD using base-band communication. It is compatible with USB Type-C specification and Power Delivery specification. BD93F10MWV includes support for the PD policy engine and communicates with an Embedded Controller or the SoC via host interface.
ROHM

BD93F50MWV

BD93F50MWV is a full function USB Type-C Power Delivery (PD) Controller that supports USB PD using base-band communication. It is compatible with USB Type-C Specification and Power Delivery specification. BD93F50MWV includes support for the PD policy engine and communicates with an Embedded Controller or the SoC via host interface.
ROHM

BD940

isc Silicon PNP Power Transistor
ISC

BD9400BFP

Silicon Monolithic integrated Circuit
ROHM

BD9400BFP-E2

Switching Regulator, Voltage-mode, 2A, 500kHz Switching Freq-Max, PDSO25, ROHS COMPLIANT, HSOP-25
ROHM

BD9401FM

Silicon Monolithic integrated Circuit
ROHM

BD9401FV

Silicon Monolithic integrated Circuit
ROHM

BD9403FV

Silicon Monolithic integrated Circuit
ROHM

BD94062F

BD94062F是白色LED用高效率驱动器,适用于大屏幕液晶驱动器。BD94062F 内置了准谐振方式(quasi-resonant: QR)DCDC转换器和电流连续方式(continuous current mode: CCM)DCDC转换器,可为LED串联阵列的可向光源提供适当电压。外接电流检测电阻,可实现高自由度的电源设计。
ROHM

BD9408FV

BD9408FV是白色LED用高效率驱动器,适用于大屏幕液晶驱动器。BD9408FV内置了可向光源(LED串联连接的阵列)提供适当电压的DC/DC转换器。BD9408FV中内置了应对异常状态的几种保护功能。过电压保护(OVP: over voltage protection)、过电流检测(OCP: over current limit protection of DC/DC)、LED过流保护(LED OCP: LED Over Current Protection)、过升压保护(FBMAX)等。因此,可在更宽的电压条件及负载条件下使用。
ROHM