BM60059FV-C [ROHM]

内置绝缘电压2500Vrms、输入输出延迟时间450ns、最小输入脉冲宽度400ns的绝缘元件的栅极驱动器。内置故障信号输出功能、低电压时误动作防止功能(UVLO)、短路保护功能(SCP)、米勒钳位功能、温度监测功能、开关控制、栅极恒流驱动功能、栅极状态监视功能。;
BM60059FV-C
型号: BM60059FV-C
厂家: ROHM    ROHM
描述:

内置绝缘电压2500Vrms、输入输出延迟时间450ns、最小输入脉冲宽度400ns的绝缘元件的栅极驱动器。内置故障信号输出功能、低电压时误动作防止功能(UVLO)、短路保护功能(SCP)、米勒钳位功能、温度监测功能、开关控制、栅极恒流驱动功能、栅极状态监视功能。

开关 栅极驱动 脉冲 驱动器
文件: 总49页 (文件大小:1500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Gate Driver Providing Galvanic Isolation Series  
Isolation Voltage 2500 Vrms  
1ch Gate Driver Providing Galvanic Isolation  
BM60059FV-C  
General Description  
Key Specifications  
The BM60059FV-C is a gate driver with an isolation  
voltage of 2500 Vrms. It has an I/O delay time of 450  
ns, minimum input pulse width of 400 ns, and  
incorporates the fault signal output function, under  
voltage lockout (UVLO) function, short circuit protection  
(SCP) function, active miller clamping function,  
temperature monitoring, switching controller function,  
gate constant current driving function and output state  
feedback function.  
Isolation Voltage:  
2500 Vrms  
24 V  
450 ns (Max)  
400 ns  
Maximum Gate Drive Voltage:  
I/O Delay Time:  
Minimum Input Pulse Width:  
Package  
SSOP-B28W  
W (Typ) x D (Typ) x H (Max)  
9.2 mm x 10.4 mm x 2.4 mm  
Features  
AEC-Q100 Qualified(Note 1)  
Fault Signal Output Function  
Under Voltage Lockout Function  
Short Circuit Protection Function  
Fast Turn Off Function for Short Circuit Protection  
Soft Turn Off Function for Short Circuit Protection  
(Adjustable turn off time)  
Active Miller Clamping  
Temperature Monitor  
Switching Controller  
Gate Constant Current Driving Function  
Output State Feedback Function  
UL1577 Recognized: File No. E356010  
(Note 1) Grade1  
Applications  
Automotive Inverter System  
Automotive DCDC Converter  
Industrial Inverter System  
UPS System  
Typical Application Circuit  
GND1  
FLT  
GND2  
OUT2  
DIS  
OUT1L  
OUT1HG  
OUTREF  
VCC2  
INA  
ECU  
TO_SEL  
SENSOR  
OSFB  
FB  
VCC2  
RTC  
TC  
TO2  
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
GND1  
TO1  
V_BATT  
Filter  
Filter  
SCPIN2  
SCPIN1  
PROOUT1  
PROOUT2  
GND2  
snubber  
GND1  
VCC2  
GND2  
+
CVCC2  
GND2  
GND1  
CVBATT  
CVREG  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
1/46  
TSZ22111 14 001  
 
 
 
 
 
 
BM60059FV-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Recommended Range of External Constants.................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Pin Configurations ..........................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................4  
Absolute Maximum Ratings ............................................................................................................................................................4  
Thermal Resistance........................................................................................................................................................................5  
Recommended Operating Conditions.............................................................................................................................................5  
Insulation Related Characteristics ..................................................................................................................................................5  
Electrical Characteristics.................................................................................................................................................................6  
Typical Performance Curves...........................................................................................................................................................9  
UL1577 Ratings Table...................................................................................................................................................................27  
Description of Pins and Cautions on Layout of Board...................................................................................................................28  
Description of Functions and Examples of Constant Setting ........................................................................................................30  
1. Fault Status Output ............................................................................................................................................................30  
2. Under Voltage Lockout (UVLO) Function...........................................................................................................................30  
3. Short Circuit Protection (SCP) Function.............................................................................................................................31  
4. Miller Clamp Function ........................................................................................................................................................32  
5. Gate Constant Current Driving Function ............................................................................................................................33  
6. Output State Feedback Function........................................................................................................................................34  
7. Switching Regulator ...........................................................................................................................................................34  
8. Temperature Monitor Function ...........................................................................................................................................35  
9. I/O Condition Table.............................................................................................................................................................36  
Selection of Components Externally Connected...........................................................................................................................37  
I/O Equivalence Circuits................................................................................................................................................................38  
Operational Notes.........................................................................................................................................................................42  
Ordering Information.....................................................................................................................................................................44  
Marking Diagram ..........................................................................................................................................................................44  
Physical Dimension and Packing Information...............................................................................................................................45  
Revision History............................................................................................................................................................................46  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
2/46  
TSZ22111 15 001  
28.Jul.2021 Rev.002  
 
BM60059FV-C  
Recommended Range of External Constants  
Pin Configurations  
(TOP VIEW)  
Recommended Value  
Pin Name  
Symbol  
RTC  
Unit  
kΩ  
GND2  
PROOUT2  
PROOUT1  
SCPIN1  
SCPIN2  
TO1  
1
2
3
4
5
6
7
8
9
28 GND1  
27 SENSE  
26 FET_G  
25 VREG  
24 V_BATT  
23 COMP  
22 FB  
Min  
Typ  
Max  
TC  
1.25  
-
50  
(As Temperature  
monitor)  
TC  
RTC  
0.1  
1
10  
MΩ  
(No Temperature  
monitor)  
V_BATT  
VCC2  
CVBATT  
CVCC2  
CVREG  
3
-
-
-
-
μF  
μF  
μF  
0.4  
0.3  
TO2  
VREG  
1
10  
TC  
21 OSFB  
20 SENSOR  
19 TO_SEL  
18 INA  
CVREG : For supplying gate charge current of MOS for fly back  
converter and driving internal transformer.  
VCC2  
OUTREF 10  
OUT1HG 11  
OUT1L 12  
OUT2 13  
CVCC2 : For supplying gate charge current of MOS FET/IGBT.  
17 DIS  
16 FLT  
GND2 14  
15 GND1  
Pin Descriptions  
Pin No.  
1
Pin Name  
GND2  
PROOUT2  
PROOUT1  
SCPIN1  
SCPIN2  
TO1  
Function  
Output-side ground pin  
Fast turn off pin for short circuit protection  
2
3
Soft turn off pin for short circuit protection / Gate voltage input pin  
Short circuit detection pin 1  
4
5
Short circuit detection pin 2  
6
Constant current output pin / Sensor voltage input pin 1  
Constant current output pin / Sensor voltage input pin 2  
Resistor connection pin for setting constant current source output  
Output-side power supply pin  
7
TO2  
8
TC  
9
VCC2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
OUTREF  
OUT1HG  
OUT1L  
OUT2  
Reference voltage pin for constant current driving  
Source side MOS buffer driving pin  
Sink side output pin  
Output pin for Miller Clamp  
GND2  
GND1  
FLT  
Output-side ground pin  
Input-side ground pin  
Fault output pin  
DIS  
Input enabling signal input pin  
INA  
Control input pin  
TO_SEL  
SENSOR  
OSFB  
Temperature information selecting pin  
Temperature information output pin  
Output state feedback output pin  
FB  
Error amplifier inverting input pin for switching controller  
Error amplifier output pin for switching controller  
Main power supply pin  
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
GND1  
Input-side internal power supply pin  
MOS FET for transformer drive control pin for switching controller  
Current feedback resistor connection pin for switching controller  
Input-side ground pin  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
3/46  
TSZ22111 15 001  
BM60059FV-C  
Block Diagram  
OSC  
UVLO_REG  
TIMER  
GND1  
FLT  
GND2  
OUT2  
FLT  
OSC  
RESET  
LOGIC  
PREDRIVER  
DIS  
OUT1L  
OUT1HG  
OUTREF  
VCC2  
S
R
Q
OSFB  
INA  
+
-
TO_SEL  
SENSOR  
OSFB  
FB  
LOGIC  
+
-
+
-
FLT  
VREG  
CURRENT  
SOURCE  
TC  
OSC  
-
+
+
+
-
TO2  
-
DAC  
+
MUX  
S
R
+
-
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
GND1  
TO1  
EDGE  
Q
RST  
SCPIN2  
SCPIN1  
PROOUT1  
PROOUT2  
GND2  
REGULATOR  
OSC  
SLOPE  
UVLO_REG  
UVLO_BATT  
UVLO_VCC2  
Q
S
R
MAX.Duty  
PREDRIVER  
UVLO_BATT  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
V
Main Power Supply Voltage  
VBATTMAX  
VREGMAX  
VCC2MAX  
VINMAX  
-0.3 to +40.0(Note 2)  
-0.3 to +7.0(Note 2)  
-0.3 to +30.0(Note 3)  
-0.3 to +7.0(Note 2)  
-0.3 to +7.0(Note 2)  
10  
Input-side Control Block Supply Voltage  
Output-side Supply Voltage  
V
V
INA, DIS, TOSEL Pin Input Voltage  
FLT, OSFB Pin Input Voltage  
V
VFLTMAX  
IFLT  
ISENSOR  
VFBMAX  
V
FLT, OSFB Pin Output Current  
SENSOR Pin Output Current  
mA  
mA  
V
10  
FB Pin Input Voltage  
-0.3 to VBATT + 0.3 or + 4.3(Note 2)  
1
FET_G Pin Output Current (Peak 5 µs)  
SCPIN1, SCPIN2 pin Input Voltage  
TO1, TO2 Pin Input Voltage  
IFET_GPEAK  
VSCPINMAX  
VTOMAX  
ITOMAX  
A
-0.3 to +6.0(Note 3)  
-0.3 to VCC2 + 0.3(Note 3)  
8
V
V
TO1, TO2 Pin Output Current  
mA  
A
OUT1L Pin Output Current (Peak 5 µs)  
OUT2 Pin Output Current (Peak 5 µs)  
PROOUT1 Pin Output Current (Peak 10 µs)  
PROOUT2 Pin Output Current (Peak 5 µs)  
Storage Temperature Range  
IOUT1LPEAK  
IOUT2PEAK  
self limited(Note 4)  
self limited(Note 4)  
self limited(Note 4)  
self limited(Note 4)  
-55 to +150  
A
IPROOUT1PEAK  
IPROOUT2PEAK  
Tstg  
A
A
°C  
°C  
Maximum Junction Temperature  
Tjmax  
+150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 2) Relative to GND1  
(Note 3) Relative to GND2  
(Note 4) Should not exceed Tjmax = 150 C  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
4/46  
TSZ22111 15 001  
28.Jul.2021 Rev.002  
BM60059FV-C  
Thermal Resistance(Note 5)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 7)  
2s2p(Note 8)  
SSOP-B28W  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 6)  
θJA  
112.9  
34  
64.4  
23  
°C/W  
°C/W  
ΨJT  
(Note 5) Based on JESD51-2A (Still-Air).  
(Note 6) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 7) Using a PCB board based on JESD51-3.  
(Note 8) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70 μm  
74.2 mm x 74.2 mm  
35 μm  
74.2 mm x 74.2 mm  
70 μm  
Recommended Operating Conditions  
Parameter  
Main Power Supply Voltage  
Output-side Supply Voltage  
TO1, TO2 pin Input Voltage  
Operating Temperature  
Symbol  
Min  
Max  
24.0  
24  
Unit  
V
(Note 9)  
VBATT  
4.5  
(Note 10)  
VCC2  
VUVLO2L  
V
(Note 10)  
VTO  
1.35  
-40  
3.84  
V
+125  
Topr  
°C  
(Note 9) Relative to GND1  
(Note 10) Relative to GND2  
Insulation Related Characteristics  
Parameter  
Symbol  
RS  
Characteristic  
> 109  
Unit  
Ω
Insulation Resistance (VIO = 500 V)  
Insulation Withstand Voltage (1 min)  
Insulation Test Voltage (1 s)  
VISO  
2500  
Vrms  
Vrms  
VISO  
3000  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
5/46  
BM60059FV-C  
Electrical Characteristics  
(Unless otherwise specified Ta = -40 °C to +125 °C, VBATT = 5 V to 24 V, VCC2 = VUVLO2L to 24 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
General  
Main Power Supply  
Circuit Current 1  
Main Power Supply  
Circuit Current 2  
FET_G switching operation  
INA, DIS not switching  
FET_G Not switching  
INA , DIS not switching  
FET_G switching operation  
INA = 10 kHz,  
Duty = 50 %  
DIS = L  
FET_G switching operation  
INA = 20 kHz,  
Duty = 50 %  
IBATT1  
IBATT2  
0.5  
0.4  
1.2  
1.1  
2.0  
1.9  
mA  
mA  
Main Power Supply  
Circuit Current 3  
IBATT3  
0.6  
0.6  
1.3  
1.4  
2.1  
2.3  
mA  
mA  
Main Power Supply  
Circuit Current 4  
IBATT4  
DIS = L  
Output-side Circuit Current  
VREG Output Voltage 1  
VREG Output Voltage 2  
Switching Controller  
ICC2  
2.8  
4.5  
4.0  
5.0  
5.0  
4.5  
7.6  
5.5  
-
mA  
V
RTC = 10 kΩ  
VREG1  
VREG2  
5 V VBATT 24 V  
V
VBATT = 4.5 V  
5 V VBATT 24 V  
IFET_G = 0 A (open)  
VBATT = 4.5 V  
FET_G Output Voltage H1  
FET_G Output Voltage H2  
VFETGH1  
V
4.5  
5.0  
5.5  
VFETGH2  
VFETGL  
RONGH  
V
V
Ω
4.0  
0
4.5  
-
-
IFET_G = 0 A (open)  
IFET_G = 0 A (open)  
FET_G Output Voltage L  
FET_G On Resistance  
(Source-side)  
FET_G On Resistance  
(Sink-side)  
0.3  
12  
3
6
IFET_G = -10 mA  
IFET_G = +10 mA  
RONGL  
Ω
0.3  
0.6  
1.3  
Oscillation Frequency  
Soft-start Time  
fOSC_SW  
tSS  
kHz  
ms  
V
170  
-
200  
-
230  
50  
FB Threshold Voltage  
FB Input Current  
VFB  
1.47  
-0.8  
-160  
40  
1.50  
0
1.53  
+0.8  
-40  
IFB  
μA  
μA  
μA  
V
COMP Output Sink Current  
COMP Output Source Current  
V_BATT UVLO Off Voltage  
V_BATT UVLO On Voltage  
Maximum On Duty  
ICOMPSINK  
ICOMPSOURCE  
VUVLOBATTH  
VUVLOBATTL  
DONMAX  
-80  
80  
160  
4.45  
4.35  
95  
4.05  
3.95  
75  
4.25  
4.15  
85  
V
%
Logic Block  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Pull Down Resistance  
Logic Pull Up Resistance  
Logic Input Filtering Time  
VINH  
VINL  
RIND  
RINU  
tINFIL  
0.7 x VREG  
-
-
5.5  
0.3 x VREG  
100  
V
V
kΩ  
kΩ  
ns  
INA, DIS, TO_SEL  
INA, DIS, TO_SEL  
INA, TO_SEL  
DIS  
0
25  
25  
80  
50  
50  
130  
100  
180  
INA, DIS  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
6/46  
TSZ22111 15 001  
BM60059FV-C  
Electrical Characteristics - continued  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Output  
OUT1HG H Level  
Output Voltage  
OUT1HG L Level  
Output Voltage  
VCC2 - 0.8  
-
-
-
-
IOUT1HG = -40 mA  
IOUT1HG = +40 mA  
VOUT1HGH  
VOUT1HGL  
V
V
0.6  
Relative to VCC2  
(Absolute Value)  
IOUT1L = 40 mA  
VOUTREF  
ROUT1L  
1.96  
-
2.00  
0.15  
2.04  
0.30  
V
OUTREF Reference Voltage  
OUT1L On Resistance  
Ω
VCC2 = 15 V,  
Guaranteed by design  
INA, DIS  
IOUTMAX1  
10  
-
-
A
OUT1L Maximum Current  
210  
210  
100  
330  
330  
160  
450  
450  
220  
OUT1 Turn On Time  
tPON  
tPOFF  
tDEAD  
ns  
ns  
ns  
OUT1 Turn Off Time  
INA, DIS  
OUT1HG-OUT1L Dead Time  
Between  
OUT1HG  
and  
-
25  
50  
OUT1HG L to H Transition Time  
tOUT1HGLH  
ns  
VCC2 = 1000 pF  
Guaranteed by design  
IPROOUT1 = 40 mA  
IPROOUT2 = 40 mA  
IOUT2 = 40 mA  
PROOUT1 On Resistance  
PROOUT2 On Resistance  
OUT2 On Resistance  
OUT2 On Threshold Voltage  
OUT2 On Delay Time  
0.4  
0.2  
0.25  
1.8  
-
0.9  
0.4  
0.45  
2.0  
70  
2.0  
0.9  
1.00  
2.2  
115  
-
RONPRO1  
RONPRO2  
RON2  
VOUT2ON  
tOUT2ON  
CM  
Ω
Ω
Ω
V
ns  
100  
-
kV/μs  
Common Mode Transient Immunity  
Guaranteed by design  
5 V  
tPOFF  
2.5 V  
INA  
OUT1HG  
OUT1L  
2.5 V  
tPON  
90 %  
90 %  
tDEAD  
90 %  
10 %  
tDEAD  
tOUT1HGLH  
90 %  
OUT1HG  
10 %  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
7/46  
TSZ22111 15 001  
BM60059FV-C  
Electrical Characteristics - continued  
Parameter  
Temperature Monitor  
TC Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
VTC  
0.980  
0.975  
-22  
8
87.5  
47.0  
5.6  
1.000  
1.000  
0
1.020  
1.025  
+22  
14  
92.5  
53.0  
14.4  
+13  
1.0  
V
mA  
μA  
kHz  
%
TO1, TO2 Output Current  
TO1, TO2 Output Current Offset  
SENSOR Output Frequency  
SENSOR Output Duty1  
SENSOR Output Duty2  
SENSOR Output Duty3  
TO1,TO2 Input Voltage Offset  
TO_SEL Switching Time  
SENSOR On Resistance  
(Source-side)  
ITO  
RTC = 10 kΩ  
ITOOFFSET  
fOSC_TO  
DSENSOR1  
DSENSOR2  
DSENSOR3  
VTOOFFSET  
tTOSEL  
RTC = 10 kΩ  
10  
90.0  
50.0  
10.0  
0
VTO1 = VTO2 = 1.35 V  
VTO1 = VTO2 = 2.59 V  
VTO1 = VTO2 = 3.84 V  
Guaranteed by design  
%
%
mV  
μs  
-13  
-
-
RSENSORH  
RSENSORL  
-
-
60  
60  
160  
160  
Ω
Ω
ISENSOR = -5 mA  
ISENSOR = +5 mA  
SENSOR On Resistance  
(Sink-side)  
Protection Functions  
VREG UVLO Off Voltage  
VREG UVLO On Voltage  
VREG UVLO Filtering Time  
VREG UVLO Delay Time  
(OUT1HG)  
VREG UVLO Delay Time  
(FLT)  
Output-side UVLO Off  
Threshold Voltage  
VUVLO1H  
VUVLO1L  
tUVLO1FIL  
4.05  
3.95  
2
4.25  
4.15  
10  
4.45  
4.35  
30  
V
V
μs  
tDUVLO1OUT1HG  
tDUVLO1FLT  
VUVLO2H  
2
2
10  
10  
30  
30  
μs  
μs  
V
10.7  
9.7  
2
11.7  
10.7  
10  
12.7  
11.7  
30  
Output-side UVLO On  
Threshold Voltage  
VUVLO2L  
V
Output-side UVLO  
Filtering Time  
Output-side UVLO Delay Time  
(OUT1HG)  
Output-side UVLO Delay Time  
(FLT)  
tUVLO2FIL  
μs  
μs  
μs  
V
tDUVLO2OUT1HG  
tDUVLO2FLT  
VSCDET  
2
10  
30  
3
-
65  
Short Current Detection  
Voltage  
0.67  
0.02  
0.02  
0.02  
1
0.70  
0.07  
0.05  
0.05  
-
0.73  
0.11  
0.08  
0.08  
35  
Short Current Detection  
Delay Time (OUT1HG)  
Short Current Detection  
Delay Time (PROOUT1)  
Short Current Detection  
Delay Time (PROOUT2)  
Short Current Detection  
Delay Time (FLT)  
tDSCPOUT1HG  
tDSCPPRO1  
tDSCPPRO2  
tDSCPFLT  
μs  
μs  
μs  
μs  
OUT1HG = 1 kΩ Pull up  
PROOUT1 = 30 kΩ  
Pull up  
PROOUT2 = 30 kΩ  
Pull up  
100  
30  
-
160  
-
220  
110  
80  
PROOUT2 On Time  
Soft Turn Off Release Time  
FLT Output On Resistance  
Fault Output Holding Time  
Gate State H Detection  
Threshold Voltage  
tPRO2ON  
tSCPOFF  
RFLTL  
ns  
μs  
Ω
OUT1L = 30 kΩ Pull up  
30  
40  
IFLT = 5 mA  
tFLTRLS  
30  
50  
ms  
VOSFBH  
VOSFBL  
4.5  
4.0  
5.0  
4.5  
5.5  
5.0  
V
V
Gate State L Detection  
Threshold Voltage  
OSFB Output Filtering Time  
OSFB Output On Resistance  
OSFB Output Holding Time  
tOSFBFIL  
ROSFBL  
tOSFBRLS  
5.0  
-
7.4  
30  
40  
9.8  
80  
50  
μs  
Ω
IOSFB = 5 mA  
30  
ms  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
8/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves  
(Reference data)  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
2.00  
1.75  
1.50  
VBATT = 4.5 V  
Ta = +125 °C  
Ta = +25 °C  
1.25  
1.00  
0.75  
0.50  
VBATT = 24 V  
VBATT = 14 V  
Ta = -40 °C  
-40  
0
40  
80  
120  
4
8
12  
16  
20  
24  
Temperature : Ta [°C]  
Main Power SupplyVoltage : VBATT [V]  
Figure 1. Main Power Supply Circuit Current 1 vs  
Main Power Supply Voltage  
Figure 2. Main Power Supply Circuit Current 1 vs  
Temperature  
(FET_G switching operation, INA not switching)  
(FET_G switching operation, INA not switching)  
1.9  
1.9  
1.6  
1.3  
1.0  
0.7  
0.4  
1.6  
1.3  
1.0  
0.7  
0.4  
VBATT = 4.5 V  
Ta = +125 °C  
Ta = +25 °C  
VBATT = 24 V  
VBATT = 14 V  
Ta = -40 °C  
4
8
12  
16  
20  
24  
-40  
0
40  
80  
120  
Main Power SupplyVoltage : VBATT [V]  
Temperature : Ta [°C]  
Figure 3. Main Power Supply Circuit Current 2  
vs Main Power Supply Voltage  
Figure 4. Main Power Supply Circuit Current 2  
vs Temperature  
(FET_G not switching, INA not switching)  
(FET_G not switching, INA not switching)  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
9/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
2.0  
1.8  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VBATT = 4.5 V  
1.6  
Ta = +125 °C  
Ta = +25 °C  
1.4  
1.2  
1.0  
VBATT = 24 V  
VBATT = 14 V  
Ta = -40 °C  
0.8  
0.6  
4
9
14  
19  
24  
-40  
0
40  
80  
120  
Main Power SupplyVoltage : VBATT [V]  
Temperature : Ta [°C]  
Figure 5. Main Power Supply Circuit Current 3 vs Main  
Power Supply Voltage  
Figure 6. Main Power Supply Circuit Current 3 vs  
Temperature  
(FET_G switching operation, INA = 10 kHz,  
Duty = 50 %)  
(FET_G switching operation, INA = 10 kHz,  
Duty = 50 %)  
2.2  
2.2  
2.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
1.8  
VBATT = 4.5 V  
Ta = +125 °C  
Ta = +25 °C  
1.6  
1.4  
1.2  
VBATT = 24 V  
VBATT = 14 V  
1.0  
Ta = -40 °C  
0.8  
0.6  
4
8
12  
16  
20  
24  
-40  
0
40  
80  
120  
Main Power SupplyVoltage : VBATT [V]  
Temperature : Ta [°C]  
Figure 7. Main Power Supply Circuit Current 4 vs  
Main Power Supply Voltage  
Figure 8. Main Power Supply Circuit Current 4 vs  
Temperature  
(FET_G switching operation, INA = 20 kHz,  
Duty = 50 %)  
(FET_G switching operation, INA = 20 kHz,  
Duty = 50 %)  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
10/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
7.6  
6.8  
6.0  
5.2  
4.4  
3.6  
2.8  
7.6  
6.8  
6.0  
VCC2 = 24 V  
Ta = +25 °C  
Ta = +125 °C  
5.2  
4.4  
3.6  
2.8  
Ta = -40 °C  
VCC2 = 15 V  
VCC2 = 14 V  
14  
16  
18  
20  
22  
24  
-40  
0
40  
80  
120  
Output-Side SupplyVoltage : VCC2 [V]  
Temperature : Ta [°C]  
Figure 9. Output-side Circuit Current vs  
Output-Side Supply Voltage  
(RTC = 10kΩ)  
Figure 10. Output-side Circuit Current vs  
Temperature  
(RTC = 10kΩ)  
5.50  
5.25  
5.00  
4.75  
4.50  
4.25  
4.00  
5.50  
5.25  
5.00  
4.75  
4.50  
4.25  
4.00  
VBATT = 14 V  
VBATT = 24 V  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
VBATT = 4.5 V  
4
8
12  
16  
20  
24  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Main Power SupplyVoltage : VBATT [V]  
Figure 11. VREG Output Voltage vs  
Main Power Supply Voltage  
Figure 12. VREG Output Voltage vs  
Temperature  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
11/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
5.50  
5.25  
5.00  
4.75  
0.30  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
4.50  
4.25  
4.00  
4
8
12  
16  
20  
24  
4
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 14. FET_G Output Voltage L vs  
Main Power Supply Voltage  
Figure 13. FET_G Output Voltage H vs  
Main Power Supply Voltage  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
12.0  
10.5  
9.0  
Ta = +125 °C  
Ta = +25 °C  
Ta = +25 °C  
Ta = +125 °C  
7.5  
6.0  
4.5  
Ta = -40 °C  
Ta = -40 °C  
12 16  
3.0  
4
8
20  
24  
4
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 15. FET_G On Resistance (Source-side)  
vs Main Power Supply Voltage  
Figure 16. FET_G On Resistance (Sink-side)  
vs Main Power Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
12/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
230  
220  
50.0  
42.5  
35.0  
27.5  
20.0  
12.5  
5.0  
210  
Ta = -40 °C  
Ta = +25 °C  
200  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
190  
180  
Ta = +125 °C  
170  
4
8
12  
16  
20  
24  
4
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 17. Oscillation Frequency vs  
Main Power Supply Voltage  
Figure 18. Soft-start Time vs Main Power  
Supply Voltage  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
0.8  
0.6  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
0.4  
0.2  
0.0  
Ta = +25 °C  
Ta = -40 °C  
-0.2  
-0.4  
-0.6  
-0.8  
Ta = +125 °C  
4
8
12  
16  
20  
24  
4
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 19. FB Threshold Voltage vs Main  
Power Supply Voltage  
Figure 20. FB Input Current vs Main  
Power Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
13/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
160  
140  
120  
100  
80  
-40  
Ta = -40 °C  
-60  
Ta = +125 °C  
Ta = +25 °C  
-80  
-100  
-120  
Ta = +125 °C  
Ta = +25 °C  
-140  
-160  
60  
Ta = -40 °C  
40  
4
8
12  
16  
20  
24  
4
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 21. COMP Sink Current vs Main  
Power Supply Voltage  
Figure 22. COMP Source Current vs Main  
Power Supply Voltage  
6
5
4
3
2
1
0
95  
93  
91  
89  
87  
85  
83  
81  
79  
77  
75  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta =
+
125
°
C  
Ta = +25 °C  
Ta = -40 °C  
3.95  
4.05  
4.15  
4.25  
4.35  
4.45  
4
8
12  
16  
20  
24  
Main Power SupplyVoltage : VBATT [V]  
Main Power SupplyVoltage : VBATT [V]  
Figure 24. Maximum On Duty vs Main  
Power Supply Voltage  
Figure 23. FLT Voltage vs Main Power Supply Voltage  
(V_BATT UVLO On / Off Voltage)  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
14/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
100  
85  
70  
55  
40  
25  
3.5  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
3.0  
H Level  
Ta = +25 °C  
Ta = -40 °C  
2.5  
2.0  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
L Level  
Ta = +125 °C  
1.5  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
VREG Output Voltage : VREG [V]  
VREG Output Voltage : VREG [V]  
Figure 25. Logic High/Low Level Input  
Voltage vs VREG Output Voltage  
Figure 26. Logic Pull Down Resistance vs VREG  
Output Voltage  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
100  
85  
70  
55  
40  
25  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
4.9 5.1  
80  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
4.5  
4.7  
5.3  
5.5  
VREG Output Voltage : VREG [V]  
VREG Output Voltage : VREG [V]  
Figure 28. Logic Input Filtering Time vs  
VREG Output Voltage  
Figure 27. Logic Pull Up Resistance vs  
VREG Output Voltage  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
15/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
0.0  
-0.1  
-0.2  
-0.3  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
Ta = +125 °C  
Ta = -40 °C  
-0.4  
Ta = +125°C  
Ta = +25 °C  
-0.5  
-0.6  
-0.7  
-0.8  
Ta =
+
25
°
C  
Ta = -40 °C  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 29. OUT1HG H Level Output  
Voltage vs Output-side Supply Voltage  
(IOUT1HG = -40 mA)  
Figure 30. OUT1HG L Level Output  
Voltage vs Output-side Supply Voltage  
(IOUT1HG = +40 mA)  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 31. OUTREF Reference Voltage vs  
Output-side Supply Voltage  
(Relative to VCC2)  
Figure 32. OUT1L On Resistance vs Output-side  
Supply Voltage  
(IOUT1L = 40 mA)  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
16/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
410  
360  
410  
360  
310  
260  
210  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
310  
260  
210  
Ta = -40 °C  
Ta = +25 °C  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 33. OUT1 Turn On Time vs  
Output-side Supply Voltage  
Figure 34. OUT1 Turn Off Time vs  
Output-side Supply Voltage  
50  
40  
30  
20  
10  
0
220  
200  
180  
160  
140  
120  
100  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 35. OUT1HG - OUT1L Dead Time  
vs Output-side Supply Voltage  
Figure 36. OUT1HG L to H Transition Time  
vs Output-side Supply Voltage  
(Between OUT1HG and VCC2 = 1000 pF)  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
17/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
2
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1.8  
Ta = +125 °C  
1.6  
1.4  
Ta = +125 °C  
Ta = +25 °C  
1.2  
Ta = +25 °C  
Ta = -40 °C  
1
0.8  
0.6  
0.4  
Ta = -40 °C  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 37. PROOUT1 On Resistance vs  
Output-side Supply Voltage  
(IPROOUT1 = 40 mA)  
Figure 38. PROOUT2 On Resistance vs  
Output-side Supply Voltage  
(IPROOUT2 = 40 mA)  
2.2  
2.1  
2
0.95  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
0.85  
0.75  
0.65  
0.55  
0.45  
0.35  
0.25  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
1.9  
1.8  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 39. OUT2 On Resistance vs Output  
Side Supply Voltage  
Figure 40. OUT2 On Threshold Voltage vs  
Output Side Supply Voltage  
(IOUT2 = 40 mA)  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
18/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
115  
1.020  
1.010  
1.000  
0.990  
0.980  
Ta = +125 °C  
Ta = +125 °C  
Ta = +25 °C  
95  
75  
Ta = -40 °C  
Ta = +25 °C  
Ta = -40 °C  
55  
35  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 41. OUT2 On Delay Time vs  
Output-side Supply Voltage  
Figure 42. TC Voltage vs Output-side  
Supply Voltage  
1.025  
1.015  
1.005  
0.995  
0.985  
0.975  
10  
Ta = +125 °C  
Ta = +25 °C  
1
Ta = -40 °C  
0.1  
1
10  
100  
14  
16  
18  
20  
22  
24  
TC Resistance : RTC [kΩ]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 43. TO1, TO2 Output Current vs  
Output-side Supply Voltage  
(RTC = 10 )  
Figure 44. TO Output Current vs TC Resistance  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
19/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
14  
13  
12  
11  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
10  
9
Ta = +125 °C  
8
14  
16  
18  
20  
22  
24  
1
1.5  
2
2.5  
3
3.5  
4
Output-side SupplyVoltage : VCC2 [V]  
TO1, TO2 pin Input Voltage : VTO [V]  
Figure 45. SENSOR Output Frequency vs  
Output-side Supply Voltage  
Figure 46. SENSOR Output Duty vs TO1, TO2  
pin Input Voltage  
53  
52  
51  
50  
49  
48  
47  
92.5  
91.5  
90.5  
89.5  
88.5  
87.5  
Ta = +25°C  
Ta = -40°C  
Ta = +25 °C  
Ta = -40 °C  
Ta = +125 °C  
Ta = +125 °C  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output Side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 47. SENSOR Output Duty1 vs Output-side  
Supply Voltage  
Figure 48. SENSOR Output Duty2 vs Output-side  
Supply Voltage  
(VTO1 = VTO2 = 1.35 V)  
(VTO1 = VTO2 = 2.59 V)  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
20/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
14.4  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
12.2  
Ta = +25 °C  
Ta = -40 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
10  
Ta = +125 °C  
7.8  
5.6  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output Side SupplyVoltage : VCC2 [V]  
Figure 49. SENSOR Output Duty3 vs  
Output-side Supply Voltage  
(VTO1 = VTO2 = 3.84 V)  
Figure 50. TO_SEL Switching Time vs  
Output-side Supply Voltage  
160  
130  
100  
70  
160  
130  
100  
70  
Ta = +125 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = +25 °C  
40  
40  
Ta = -40 °C  
Ta = -40 °C  
10  
10  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4.75  
5
5.25  
5.5  
VREG Output Voltage : VREG [V]  
VREG Output Voltage : VREG [V]  
Figure 51. SENSOR On Resistance (Source-side)  
vs VREG Output Voltage  
Figure 52. SENSOR On Resistance (Sink-side)  
vs VREG Output Voltage  
(ISENSOR = -5 mA)  
(ISENSOR = +5 mA)  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
21/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
6
30  
26  
22  
18  
14  
10  
6
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
5
4
3
2
1
0
2
-40  
0
40  
80  
120  
3.95  
4.05  
4.15  
4.25  
4.35  
4.45  
VREG Output Voltage : VREG [V]  
Temperature : Ta [°C]  
Figure 53. FLT Voltage vs VREG Output Voltage  
(VREG UVLO On / Off Voltage)  
Figure 54. VREG UVLO Filtering Time vs  
Temperature  
30  
26  
22  
18  
14  
10  
6
30  
26  
22  
18  
14  
10  
6
2
2
-40  
0
40  
80  
120  
-40  
0
40  
80  
120  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 56. VREG UVLO Delay Time (FLT) vs  
Temperature  
Figure 55. VREG UVLO Delay Time (OUT1HG)  
vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
22/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
6
5
4
3
2
1
0
30  
26  
22  
18  
14  
10  
6
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
2
-50  
-25  
0
25  
50  
75  
100 125  
9.7  
10.2  
10.7  
11.2  
11.7  
12.2  
12.7  
Output-side UVLO On/Off Threshold Voltage :  
Temperature : Ta [°C]  
VUVLO2L/VUVLO2H [V]  
Figure 57. FLT Voltage vs Output-side UVLO On/Off  
Voltage  
Figure 58. Output-side UVLO Filtering Time vs  
Temperature  
30  
26  
22  
18  
14  
10  
6
63  
53  
43  
33  
23  
13  
3
2
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 60. Output-side UVLO Delay Time (FLT)  
vs Temperature  
Figure 59. Output-side UVLO Delay Time  
(OUT1HG) vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
23/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
0.11  
0.08  
0.05  
0.02  
0.73  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
0.72  
0.71  
0.7  
0.69  
0.68  
0.67  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 61. Short Current Detection Voltage vs  
Output-side Supply Voltage  
Figure 62. Short Current Detection Delay Time  
(OU1HG) vs Output-side Supply Voltage  
(OUT1HG = 1 kΩ Pull Up)  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
Ta = -40 °C  
Ta = +125 °C  
Ta = +25 °C  
14  
16  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 63. Short Current Detection Delay Time  
(PROOUT1) vs Output-side Supply Voltage  
Figure 64. Short Current Detection Delay Time  
(PROOUT2) vs Output-side Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
24/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
220  
200  
180  
160  
140  
120  
100  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
31  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
26  
21  
16  
11  
6
Maximum  
of the jitter  
Minimum  
of the jitter  
Ta = +25 °C  
Ta = -40 °C  
16  
Ta = +125 °C  
1
14  
18  
20  
22  
24  
14  
16  
18  
20  
22  
24  
Output-side SupplyVoltage : VCC2 [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 65. Short Current Detection Delay Time  
(FLT) vs Output-side Supply Voltage  
Figure 66. PROOUT2 On Time vs Output-side  
Supply Voltage  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Ta = +125 °C  
Ta = -40 °C  
Ta = +25 °C  
Maximum  
of the jitter  
80  
Ta = +125 °C  
Ta = +25 °C  
70  
Minimum  
of the jitter  
60  
Ta = +25 °C  
50  
Ta = +125 °C  
Ta = -40 °C  
16  
40  
Ta = -40 °C  
30  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
14  
18  
20  
22  
24  
VREG Output Voltage : VREG [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 67. Soft Turn Off Release Time vs  
Output-side Supply Voltage  
Figure 68. FLT Output On Resistance vs VREG  
Output Voltage (IFLT = 5 mA)  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
25/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
50  
45  
5.5  
5.25  
5
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
H Level  
40  
4.75  
4.5  
4.25  
4
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
L Level  
35  
30  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
14  
16  
18  
20  
22  
24  
VREG Output Voltage : VREG [V]  
Output-side SupplyVoltage : VCC2 [V]  
Figure 69. Fault Output Holding Time vs VREG  
Output Voltage  
Figure 70. Gate State H/L Detection Threshold  
Voltage vs Output-side Supply Voltage  
9.8  
8.6  
7.4  
6.2  
5
80  
70  
60  
50  
40  
30  
20  
10  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
-50 -25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
VREG Output Voltage : VREG [V]  
Figure 71. OSFB Output Filtering Time vs  
VREG Output Voltage  
Figure 72. OSFB Output On Resistance vs  
VREG Output Voltage (IOSFB = 5 mA)  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
26/46  
TSZ22111 15 001  
BM60059FV-C  
Typical Performance Curves - continued  
(Reference data)  
50  
45  
Ta = -40 °C  
Ta = +25 °C  
40  
Ta = +125 °C  
35  
30  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
VREG Output Voltage : VREG [V]  
Figure 73. OSFB Output Holding Time vs  
VREG Output Voltage  
UL1577 Ratings Table  
Following values are described in UL Report.  
Parameter  
Side 1 (Input-side) Circuit Current  
Side 2 (Output-side) Circuit Current  
Side 1 (Input-side) Consumption Power  
Side 2 (Output-side) Consumption Power  
Isolation Voltage  
Value  
1.2  
Unit  
Conditions  
mA  
mA  
mW  
mW  
Vrms  
°C  
VBATT = 14 V, OUT1HG = H, OUT1L = L  
VCC2 = 15 V, OUT1HG = H, OUT1L = L  
VBATT = 14 V, OUT1HG = H, OUT1L = L  
VCC2 = 15 V, OUT1HG = H, OUT1L = L  
5.0  
16.8  
75  
2500  
125  
150  
150  
1.3  
Maximum Operating (Ambient) Temperature  
Maximum Junction Temperature  
Maximum Storage Temperature  
Maximum Data Transmission Rate  
°C  
°C  
MHz  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
27/46  
BM60059FV-C  
Description of Pins and Cautions on Layout of Board  
1. V_BATT (Main power supply pin)  
This is the main power supply pin. Connect a bypass capacitor between the V_BATT pin and the GND1 pin in order to  
suppress voltage variations.  
2. GND1 (Input-side ground pin)  
This is the ground pin on the input-side.  
3. VCC2 (Output-side power supply pin)  
The VCC2 pin is a power supply pin on the output-side. To reduce voltage fluctuations due to the driving current of the  
internal transformer and output current, connect a bypass capacitor between the VCC2 pin and the GND2 pin.  
4. GND2 (Output-side ground pin)  
This is the ground pin on the output-side. Connect the GND2 pin to the emitter/source of output device.  
5. INA (Control input pin), DIS (Input enabling signal input pin)  
These are the pins for determining the output logic.  
DIS  
H
INA  
X
OUT1HG  
OUT1L  
H
H
L
L
L
L
L
L
H
Hi-Z  
X: Don't care  
6. FLT (Fault output pin)  
The FLT pin is an open drain pin that sends a fault signal when a fault occurs (i.e., when the V_BATT UVLO / VREG  
UVLO / VCC2 UVLO or short circuit protection function (SCP) is activated).  
Status  
Normal operation  
Fault  
FLT  
Hi-Z  
L
7. OSFB (Output state feedback output pin)  
This is an open drain pin which compares gate logic of the output device monitored with the PROOUT1 pin and the DIS  
or INA pin input logic, and outputs Low when they disaccord.  
PROOUT1  
(input)  
H
Status  
DIS  
INA  
OSFB  
H
H
L
X
X
L
L
Hi-Z  
L
L
H
L
Normal operation  
Fault  
L
L
Hi-Z  
Hi-Z  
L
L
H
H
X
H
L
L
X
X
Hi-Z  
X: Don't care  
8. SENSOR (Temperature information output pin), TO_SEL (Temperature information selecting pin)  
This is a pin which outputs the voltage of either the TO1 pin or TO2 pin converted to Duty cycle. The TO_SEL pin  
determines which information to output, either the TO1 pin or TO2 pin.  
TO_SEL  
SENSOR Output  
L
Output information of the TO1 pin  
Output information of the TO2 pin  
H
9. FB (Error amplifier inverting input pin for switching controller)  
This is a voltage feedback pin of the switching controller. Connect it to the VREG pin when the switching controller is not  
used.  
10. COMP (Error amplifier output pin for switching controller)  
This is the gain control pin of the switching controller. Connect a phase compensation capacitor and resistor. When the  
switching controller is not used, connect it to the GND1 pin.  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
28/46  
TSZ22111 15 001  
28.Jul.2021 Rev.002  
BM60059FV-C  
Description of Pins and Cautions on Layout of Board - continued  
11. VREG (Input-side internal power supply pin)  
This is the internal power supply pin on the input side. Be sure to connect a capacitor between the VREG pin and the  
GND1 pin in order to prevent from oscillation and suppress voltage variation due to FET_G output current and internal  
transformer driving current.  
It is also possible to supply voltage (4.5 V to 5.5 V) externally to the VREG pin. In this case, please short the VREG pin  
and the V_BATT pin.  
12. FET_G (MOS FET for transformer drive control pin for switching controller)  
This is the MOS FET control pin for the switching controller transformer drive. Leave it open when the switching  
controller is not used.  
13. SENSE (Current feedback resistor connection pin for switching controller)  
This is a pin connected to the resistor of the switching controller current feedback. Connect it to VREG when switching  
controller is not used.  
14. OUT1HG (Source side MOS buffer driving pin)  
This is the buffer driving pin for gate on side. Connect it to the gate pin of the buffer (Pch MOS FET). Also, connect a  
resistor ROUT1HG between the OUT1HG pin and the VCC2 pin to control the gate voltage of the buffer.  
15. OUTREF (Reference voltage pin for constant current drive)  
This is the reference pin for gate constant current drive. Connect a resistor ROUTREF between the VCC2 pin and the  
source pin of the buffer (Pch MOS FET). Also, connect the source pin of the buffer to the OUTREF pin.  
16. OUT1L (Sink side output pin)  
This is the driving pin for gate off side.  
17. OUT2 (Output pin for Miller Clamp)  
This is the miller clamp pin for preventing a rise of gate voltage. The OUT2 pin should be open when miller clamp  
function is not used.  
18. PROOUT1 (Soft turn off pin for short circuit protection / Gate voltage input pin), PROOUT2 (Fast turn off pin for short  
circuit protection)  
This is a pin for soft turn off of output device when short-circuit protection is activated. Both the PROOUT1 pin and the  
PROOUT2 pin are turned on for tPRO2ON from short circuit detection. After tPRO2ON, only the PROOUT1 pin is turned on. It  
also functions as monitoring gate voltage pin for miller clamp function and output state feedback function.  
19. SCPIN1, SCPIN2 (Short circuit detection pin)  
These are pins used to detect current for short circuit protection. When the SCPIN1 pin or the SCPIN2 pin voltage is  
more than VSCDET, the SCP function is activated. There is a possibility of the IC malfunction in an open state. To avoid  
such trouble, short the SCPIN1 or SCPIN2 pin to the GND2 when the SCP function is not used.  
20. TC (Resistor connection pin for setting constant current source output)  
The TC pin is a resistor connection pin for setting the constant current output for temperature monitor. If an arbitrary  
resistance value is connected between the TC pin and the GND2 pin, it is possible to set the constant current value  
output from the TO1 pin and the TO2 pin.  
21. TO1, TO2 (Constant current output / Sensor voltage input pin)  
The TO1 pin and the TO2 pin are constant current output / sensor voltage input pins for temperature monitor. It can be  
used as a sensor input by connecting a device with arbitrary impedance between the TOx pin and the GND2.  
Furthermore, the TOx (x = 1 or 2) pin disconnect detection function is built-in.  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
29/46  
TSZ22111 15 001  
28.Jul.2021 Rev.002  
BM60059FV-C  
Description of Functions and Examples of Constant Setting  
1. Fault Status Output  
This function is used to output a fault signal from the FLT pin when a fault occurs (i.e., when the under voltage lockout  
function (UVLO) or short circuit protection function (SCP) is activated), after fault state cancellation, the FLT pin holds a  
fault signal until fault output holding time (tFLTRLS).  
Fault occurs (UVLO or SCP)  
Status  
Status  
Normal  
FLT pin  
Hi-Z  
L
Hi-Z  
FLT  
L
Fault occurs  
H
OUT  
L
Fault output holding time (tFLTRLS  
)
Figure 74. Fault Status Output Timing Chart  
2. Under Voltage Lockout (UVLO) Function  
The BM60059FV-C incorporates the under voltage lockout (UVLO) function on V_BATT, VREG and VCC2. When the  
power supply voltage drops to the UVLO ON voltage, the OUT1HG pin outputs Hsignal and the OUT1L pin and the  
FLT pin both output the Lsignal. When the power supply voltage rises to the UVLO OFF voltage, these pins are reset.  
However, during the fault output holding time set in Fault Status Outputsection, the OUT1HG pin holds the Hsignal  
and the OUT1L pin and the FLT pin hold the Lsignal. In addition, to prevent miss-triggering due to noise, filtering time  
tUVLO1FIL and tUVLO2FIL are set on V_BATT, VREG and VCC2.  
H
L
INA  
VUVLOBATTH  
VUVLOBATTL  
V_BATT  
Hi-Z  
FLT(Note 11)  
OUT1HG(Note11)  
OUT1L(Note11)  
L
H
L
Hi-Z  
L
H
L
FET_G(Note12)  
Hi-Z  
Figure 75. V_BATT UVLO Function Operation Timing Chart  
H
L
INA  
VUVLO1H  
VUVLO1L  
VREG  
Hi-Z  
L
H
L
Hi-Z  
L
FLT(Note11)  
OUT1HG(Note11)  
OUT1L(Note11)  
H
FET_G(Note12)  
Hi-Z  
L
Figure 76. VREG UVLO Function Operation Timing Chart  
H
L
INA  
VUVLO2H  
VUVLO2L  
VCC2  
Hi-Z  
L
FLT(Note11)  
OUT1HG(Note11)  
OUT1L(Not 11)  
FET_G  
H
L
Hi-Z  
Hi-Z  
L
H
L
Figure 77. VCC2 UVLO Function Operation Timing Chart  
(Note 11) The FLT pin, the OUT1HG pin and the OUTPUT1L pin start operation after fault output holding time.  
(Note 12) The FET_G pin starts operation immediately after UVLO reset.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
30/46  
BM60059FV-C  
Description of Functions and Examples of Constant Setting - continued  
3. Short Circuit Protection (SCP) Function  
When the SCPIN1 pin or the SCPIN2 pin voltage exceeds the VSCDET, the SCP function is activated. When the SCP  
function is activated, the OUT1HG pin voltage is set to the Hlevel, the OUT1L pin voltage is set to the Hi-Zlevel and  
the PROOUT1 pin, the PROOUT2 pin and the FLT pin voltage go to the Llevel first (Fast Turn Off). Next, after tPRO2ON  
has passed from the Short Current Detection, the PROOUT2 pin is set to the Hi-Zlevel (Soft Turn Off). And then, when  
short-circuit current, the OUT1L pin becomes the Llevel. Finally, when the fault output holding time has elapsed, the  
SCP function is released and the FLT pin becomes the Hi-Zlevel. The PROOUT1 pin holds the Lstate until the  
OUT1HG pin becomes the Llevel.  
Please take note that when the OUT1L pin is “L”, the short-circuit is not detected.  
H
L
INA  
tSCPOFF  
tSCPOFF  
VSCDET  
SCPINx  
(x = 1 or 2)  
H
L
Hi-Z  
L
Hi-Z  
L
Hi-Z  
L
Hi-Z  
L
OUT1HG  
OUT1L  
PROOUT1  
PROOUT2  
FLT  
Gate Voltage  
tPRO2ON  
tPRO2ON  
tFLTRLS  
tFLTRLS  
Figure 78. SCP Operation Timing Chart  
START  
OUT1L = L, PROOUT1 = L  
No  
VSCPINx > VSCDET  
Yes  
OUT1HG = H, OUT1L = Hi-Z,  
PROOUT1 = L, PROOUT2 = L, FLT = L  
No  
Exceed tFLTRLS  
Yes  
No  
Exceed tPRO2ON  
Yes  
FLT = Hi-Z  
PROOUT2 = Hi-Z  
No  
INA = H, DIS = L  
Yes  
No  
No  
VSCPINx VSCDET  
UT1HG = H, OUT1L = Hi-Z,  
PROOUT1 = Hi-Z  
Yes  
Exceed tSCPOFF  
Yes  
Figure 79. SCP Operation Status Transition Diagram  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
31/46  
BM60059FV-C  
Description of Functions and Examples of Constant Setting - continued  
4. Miller Clamp Function  
When the OUT1HG pin = H, the OUT1 pin = L and the PROOUT1 pin voltage < VOUT2ON, the internal MOS of the OUT2  
pin is turned ON and the miller clamp function operates. This state is kept until the OUT1HG pin becomes L and the  
OUT1L pin becomes Hi-Z. While the short circuit protection function is activated, miller clamp function operates after the  
lapse of soft turn off release time tSCPOFF  
.
SCPINx  
(x = 1 or 2)  
Short current protection  
Operated  
INA  
PROOUT1 Input  
OUT2  
VSCDET  
X
L
X
Hi-Z  
Hi-Z  
L
X
X
X
VOUT2ON  
< VOUT2ON  
X
Not operated  
L
H
Hi-Z  
X: Don't care  
VCC2  
OUTREF  
OUT1HG  
PREDRIVER  
OUTREF  
+
-
OUT1L  
PROOUT1  
PREDRIVER  
PREDRIVER  
LOGIC  
OUT2  
PREDRIVER  
+
-
VOUT2ON  
GND2  
Figure 80. Block Diagram of Miller Clamp Function  
H
INA  
L
VSCDET  
SCPINx  
FLT  
0 V  
Hi-Z  
L
H
OUT1HG  
OUT1L  
L
Hi-Z  
L
PROOUT1  
OUT2  
VOUT2ON  
Hi-Z  
L
tPON tPOFF  
tSCPOFF  
tOUT2ON  
tFLTRLS  
Figure 81. Timing Chart of Miller Clamp Function  
SCPINx: SCPIN1 or SCPIN2  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
32/46  
TSZ22111 15 001  
BM60059FV-C  
Description of Functions and Examples of Constant Setting - continued  
5. Gate Constant Current Driving Function  
This IC has a gate constant current driving function. Charge the gate of the output element with a constant current by  
connecting buffer (Pch MOS FET MOUT1H) and resistors (ROUTREF, ROUT1HG) as shown in Figure 82. IGATE can be set using  
the following formula:  
IGATE [A] = VOUTREF [V] /ROUTREF [Ω]  
The table below shows the recommended components for the external parts (MOUT1H, ROUTREF, and ROUT1HG). If using  
other component for MOUT1H or using resistors outside the recommended range, please make sure that there is no  
overshoot or oscillation of the current in the operating temperature condition and current setting.  
Recommended Value  
Recommended  
Symbol  
Manufacturer  
Unit  
Components  
Min  
-
Max  
MOUT1H  
ROUTREF  
ROUT1HG  
ROHM  
ROHM  
ROHM  
RSR015P06HZGTL  
-
-
-
0.34  
0.5  
Ω
MCR Series  
LTR Series  
2.5  
kΩ  
VCC2  
ROUT1HG  
ROUTREF  
VOUTREF  
OUTREF  
PREDRIVER  
OUT1HG  
MOUT1H  
IGATE  
+
-
LOGIC  
OUT1L  
GND2  
PREDRIVER  
Figure 82. Block Diagram of Gate Constant Current Driving Function  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
33/46  
TSZ22111 15 001  
BM60059FV-C  
Description of Functions and Examples of Constant Setting - continued  
6. Output State Feedback Function  
When the gate logic of output device monitored with the PROOUT1 pin and input logic are compared, and they are  
different, the OSFB pin outputs L. In order to prevent the detection error due to delay of input and output, OSFB filter  
time tOSFBON is provided. After resolving the mismatch state, hold the OSFB to Low until OSFB output holding time  
(tOSFBRLS) is completed.  
7. Switching Regulator  
(1) Basic action  
This IC has a switching controller which turns ON/OFF in synchronous with internal clock. When VBATT voltage is  
supplied (VBATT > VUVLOBATTH), the FET_G pin starts switching by soft-start. Output voltage is determined by the  
following equation through the external resistance and winding ratio nof the flyback transformer  
(n = Secondary side winding number / FB side winding number).  
VOUT = VFB × {(R1 + R2) / R2} × n [V]  
(2) Max Duty  
When, for example, the output load is large and the voltage level of the SENSE pin does not reach current detection  
level, the output is forcibly turned off by Maximum On Duty (DONMAX).  
(3) Pin conditions when switching controller is not used  
Implement pin setting as shown below when switching controller is not used.  
Pin Number  
Pin Name  
FB  
Treatment Method  
Connect to VREG  
Connect to GND1  
Connect to power supply  
Connect a capacitor  
No connection  
22  
23  
24  
25  
26  
27  
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
Connect to VREG  
Soft start  
R
1  
R2  
-
FB  
VFB  
+
COMP  
V_BATT  
VREG  
FET_G  
SENSE  
GND1  
UVLO_BATT  
UVLO_VREG  
VOUT  
VREG  
Slope  
COMP  
+
R
-
Max Duty  
Q
S
OSC  
Figure 83. Block Diagram of Switching Controller  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
34/46  
TSZ22111 15 001  
BM60059FV-C  
Description of Functions and Examples of Constant Setting - continued  
8. Temperature Monitor Function  
This IC has a built-in constant current output circuit that supplies a constant current output from the TO1 and TO2 pins.  
The current value ITO can be adjusted depending on the resistance value connected between the TC pin and the  
GND2 pin. Furthermore, the TO1 pin and the TO2 pin have voltage input function. The SENSOR pin outputs the signal  
of the TO1 pin or the TO2 pin voltage converted to Duty. The TO_SEL pin determines which output is selected  
whether the TO1 pin or the TO2 pin. When TO_SEL = Low, the TO1 pin is selected. When TO_SEL = High, the TO2  
pin is selected. When only one of the TO1 or the TO2 pin is used, connect the other TOx pin to GND2. (x = 1 or 2)  
ITO [mA] = 10 × VTC [V] / RTC [kΩ]  
VCC2  
OSC  
x10  
TOx  
TC  
SENSOR  
Z
RTC  
GND2  
x = 1, 2  
Figure 84. Block Diagram of Temperature Monitor Function  
TO_SEL  
4.1 V  
1.1 V  
TO2 Pin Input Voltage  
TO1 Pin Input Voltage  
SENSOR Pin Output  
Figure 85. Timing Chart of Temperature Monitor Function  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
35/46  
TSZ22111 15 001  
BM60059FV-C  
Description of Functions and Examples of Constant Setting - continued  
9. I/O Condition Table  
Input  
Output  
No  
Status  
1
2
3
4
5
6
7
8
9
SCP  
H
L
L
L
L
L
L
L
L
L
X
X
X
X
X
X
H
H
H
X
X
X
X
X
X
X
X
X
H
L
H
H
H
H
H
H
H
H
H
Z
L
L
L
L
L
L
L
L
Z
Z
L
Z
L
Z
L
Z
L
L
Z
Z
Z
Z
Z
Z
Z
Z
LZ  
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
Z
L
Z
UVLO  
X
X
Z
Z
Z
Z
Z
Z
Z
Z
VREG UVLO  
UVLO  
X
X
X
X
X
X
UVLO  
X
X
H
L
VCC2 UVLO  
V_BATT UVLO  
Disable  
UVLO  
X
X
UVLO  
UVLO  
H
L
H
L
10  
11  
12  
13  
L
L
L
L
L
L
L
L
L
L
H
L
H
H
L
L
L
Z
Z
Z
L
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
L
Z
Z
L
Normal Operation  
L Input  
H
H
H
L
Normal Operation  
H Input  
L
SCPINx: SCPIN1 or SCPIN2, ○: Power supply voltage > UVLO, X: Don't care, Z: Hi-Z  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
© 2017 ROHM Co., Ltd. All rights reserved.  
36/46  
TSZ22111 15 001  
28.Jul.2021 Rev.002  
BM60059FV-C  
Selection of Components Externally Connected  
The following are the recommended external components.  
ROHM  
MCR03EZP  
ROHM  
MCR series  
LTR series  
GND1  
FLT  
GND2  
OUT2  
DIS  
OUT1L  
OUT1HG  
OUTREF  
VCC2  
ROHM  
INA  
ECU  
RSR015P06HZGTL  
TO_SEL  
VCC2  
SENSOR  
OSFB  
FB  
TC  
TO2  
COMP  
TO1  
V_BATT  
ROHM  
MCR03EZP  
Filter  
Filter  
V_BATT  
SCPIN2  
SCPIN1  
PROOUT1  
PROOUT2  
GND2  
snubber  
VREG  
GND1  
VCC2  
FET_G  
SENSE  
GND2  
GND1  
GND2  
ROHM  
GND1  
MCR series  
LTR series  
ROHM  
RB168VYM150FH  
ROHM  
LTR18EZP  
Sumida  
CEER117  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
37/46  
TSZ22111 15 001  
BM60059FV-C  
I/O Equivalence Circuits  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Internal Power  
Pin Function  
VCC2  
SCPIN1  
Supply  
4
Short circuit detection pin 1  
SCPIN2  
SCPIN1  
SCPIN2  
5
6
GND2  
Short circuit detection pin 2  
TO1  
Internal Power  
VCC2  
Supply  
Constant current output pin /  
Sensor voltage input pin 1  
TO1  
TO2  
TO2  
7
Constant current output pin /  
Sensor voltage input pin 2  
TC  
TC  
8
GND2  
Resistor connection pin for setting constant  
current source output  
VCC2  
OUTREF  
OUTREF  
GND2  
10  
Reference voltage pin for constant current  
drive  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
38/46  
TSZ22111 15 001  
BM60059FV-C  
I/O Equivalence Circuits - continued  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
VCC2  
Pin Function  
OUT1HG  
11  
OUT1HG  
Source side MOS buffer driving pin  
GND2  
VCC2  
OUT1L  
Sink side output pin  
OUT2  
12  
13  
2
PROOUT2  
OUT2  
OUT1L  
Output pin for Miller Clamp  
PROOUT2  
GND2  
VCC2  
Fast turn off pin for short circuit protection  
Internal  
Power  
PROOUT1  
Supply  
3
PROOUT1  
Soft turn off pin for short circuit protection /  
Gate voltage input pin  
GND2  
FLT  
Fault output pin  
FLT  
OSFB  
16  
21  
OSFB  
GND1  
Output state feedback output pin  
VREG  
SENSOR  
SENSOR  
20  
Temperature information output pin  
GND1  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
39/46  
TSZ22111 15 001  
BM60059FV-C  
I/O Equivalence Circuits - continued  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
VREG  
DIS  
DIS  
17  
Input enabling signal input pin  
GND1  
VREG  
INA  
18  
19  
Control input pin  
TO_SEL  
INA  
TO_SEL  
Temperature information selecting pin  
GND1  
VREG  
FB  
22  
FB  
Error amplifier inverting input pin  
for switching controller  
GND1  
VREG  
COMP  
COMP  
GND1  
23  
Error amplifier output pin  
for switching controller  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
40/46  
TSZ22111 15 001  
BM60059FV-C  
I/O Equivalence Circuits - continued  
Pin Name  
Pin No.  
Input Output Equivalent Circuit Diagram  
Pin Function  
V_BATT  
VREG  
Internal Power  
Supply  
25  
Input-side internal power supply pin  
VREG  
FET_G  
FET_G  
26  
GND1  
MOS FET for transformer drive control  
pin for switching controller  
VREG  
SENSE  
27  
SENSE  
GND1  
Current feedback resistor connection pin  
for switching controller  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
41/46  
BM60059FV-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
42/46  
BM60059FV-C  
Operational Notes continued  
8.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
9.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10. Regarding the Input Pin of the IC  
This IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 86. Example of IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
43/46  
TSZ22111 15 001  
BM60059FV-C  
Ordering Information  
B M 6 0 0 5 9  
F
V -  
C E 2  
Part Number  
Package  
FV: SSOP-B28W  
Product class  
C: for Automotive applications  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SSOP-B28W (TOP VIEW)  
Part Number Marking  
LOT Number  
B M 6 0 0 5 9  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
44/46  
TSZ22111 15 001  
BM60059FV-C  
Physical Dimension and Packing Information  
Package Name  
SSOP-B28W  
www.rohm.com  
© 2017 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
45/46  
BM60059FV-C  
Revision History  
Date  
Revision  
001  
Changes  
29.Nov.2019  
New Release  
Page 1 Added UL1577 Recognizedin the Features column  
Page 4 Changed from power dissipationto thermal resistancein the Caution 2  
Page 5 Changed Vcc2 Recommended Operating Condition  
Page 6 Changed Vcc2 condition in the Electrical Characteristics  
Page 27 Added UL1577 Rating Tables  
28.Jul.2021  
002  
www.rohm.com  
TSZ02201-0818ACH00070-1-2  
28.Jul.2021 Rev.002  
© 2017 ROHM Co., Ltd. All rights reserved.  
46/46  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM60060FV-C

内置绝缘电压2500Vrms、输入输出延迟时间210ns、最小输入脉冲宽度90ns的绝缘元件的栅极驱动器。内置故障信号输出功能、防止低压故障功能(UVLO)、短路保护功能(SCP、内置检测电压温度特性校正功能)、检出短路时切断时间缩短功能、米勒钳位功能(MC)、温度监测功能、开关控制、栅极电阻切换功能、栅极状态监视功能。
ROHM

BM60210FV-C

High Voltage High & Low-side, Gate Driver
ROHM

BM60210FV-CE2

High Voltage High & Low-side, Gate Driver
ROHM

BM60212FV-C

BM60212FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置内置镜夹功能/低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-C

BM60213FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置低电压时误动作防止功能(UVLO)。
ROHM

BM60213FV-CE2

Buffer/Inverter Based MOSFET Driver,
ROHM

BM6031B

Supplementary Fuseblocks BM Series
COOPER

BM6031PQ

Supplementary Fuseblocks BM Series
COOPER

BM6031SQ

Supplementary Fuseblocks BM Series
COOPER

BM6032B

Supplementary Fuseblocks BM Series
COOPER

BM6032PQ

Supplementary Fuseblocks BM Series
COOPER

BM6032SQ

Supplementary Fuseblocks BM Series
COOPER