BM6112FV-C [ROHM]

BM6112FV-C is a gate driver with isolation voltage of 3750Vrms, I/O delay time of 150ns, and incorporates fault signal output function, ready signal output function, under voltage lockout (UVLO) function, short circuit protection (SCP) function, active miller clamping function, output state feedback function and temperature monitor function.For sale of this product, please contact the specifications in our sales office. Currently, we don't sell this on the internet distributors now.;
BM6112FV-C
型号: BM6112FV-C
厂家: ROHM    ROHM
描述:

BM6112FV-C is a gate driver with isolation voltage of 3750Vrms, I/O delay time of 150ns, and incorporates fault signal output function, ready signal output function, under voltage lockout (UVLO) function, short circuit protection (SCP) function, active miller clamping function, output state feedback function and temperature monitor function.For sale of this product, please contact the specifications in our sales office. Currently, we don't sell this on the internet distributors now.

文件: 总38页 (文件大小:2989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Gate Driver Providing Galvanic Isolation Series  
Isolation Voltage 3750 Vrms  
1ch Gate Driver Providing Galvanic Isolation  
BM6112FV-C  
General Description  
Key Specifications  
BM6112FV-C is a gate driver with isolation voltage of  
3750 Vrms, I/O delay time of 150 ns, and incorporates  
fault signal output function, ready signal output function,  
under voltage lockout (UVLO) function, short circuit  
protection (SCP) function, active miller clamping function,  
output state feedback function and temperature monitor  
function.  
Isolation Voltage  
Maximum Gate Drive Voltage:  
I/O Delay Time:  
3750 Vrms  
20 V  
150 ns (Max)  
90 ns  
Minimum Input Pulse Width:  
Package  
SSOP-B28W  
W (Typ) x D (Typ) x H (Max)  
9.2 mm x 10.4 mm x 2.4 mm  
Features  
AEC-Q100 Qualified (Note 1)  
Fault Signal Output Function  
Ready Signal Output Function  
Under Voltage Lockout Function  
Short Circuit Protection Function  
Active Miller Clamping Function  
Output State Feedback Function  
Temperature Monitor Function  
UL1577 (pending)  
(Note 1) Grade1  
Applications  
Automotive Inverter  
Automotive DC-DC Converter  
Industrial Inverter System  
UPS System  
Typical Application Circuit  
1pin  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
1/35  
TSZ22111 14 001  
 
 
 
 
 
 
BM6112FV-C  
Contents  
General Description..............................................................................................................................................................1  
Features ................................................................................................................................................................................1  
Applications..........................................................................................................................................................................1  
Key Specifications................................................................................................................................................................1  
Package.................................................................................................................................................................................1  
Typical Application Circuit....................................................................................................................................................1  
Contents................................................................................................................................................................................2  
Recommended Range of External Constants ......................................................................................................................3  
Pin Configuration..................................................................................................................................................................3  
Pin Description .....................................................................................................................................................................3  
Block Diagram.......................................................................................................................................................................4  
Absolute Maximum Ratings..................................................................................................................................................4  
Thermal Resistance ..............................................................................................................................................................5  
Recommended Operating Conditions ..................................................................................................................................5  
Insulation Related Characteristics........................................................................................................................................5  
Electrical Characteristics......................................................................................................................................................6  
Typical Performance Curves.................................................................................................................................................8  
Application Information......................................................................................................................................................22  
I/O Equivalence Circuit .......................................................................................................................................................28  
Operational Notes...............................................................................................................................................................31  
Ordering Information ..........................................................................................................................................................33  
Marking Diagram.................................................................................................................................................................33  
Physical Dimension and Packing Information....................................................................................................................34  
Revision History..................................................................................................................................................................35  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
2/35  
TSZ22111 15 001  
18.Nov.2019 Rev.001  
 
BM6112FV-C  
Recommended Range of External Constants  
Pin Configuration  
(TOP VIEW)  
Recommended Value  
Pin Name Symbol  
Unit  
GND1  
NC  
28  
27  
VEE2  
PROOUT2  
PROOUT1  
1
2
Min  
1.25  
0.1  
Typ  
-
Max  
50  
-
TC  
RTC  
kΩ  
µF  
µF  
µF  
26 NC  
3
VCC1  
VCC2  
VREG  
CVCC1  
CVCC2  
CVREG  
0.22  
-
4
25 VCC1  
OUT2  
VREG  
TC  
0.2  
-
5
24  
23  
22  
21  
20  
19  
18  
17  
16  
NC  
0.01  
0.1  
0.47  
6
NC  
7
NC  
TO  
8
SENSOR  
RDY  
INB  
GND2  
SCPIN2  
SCPIN1  
VCC2  
OUT1H  
OUT1L  
9
10  
11  
12  
13  
INA  
ENA  
FLT  
GND1  
15  
VEE2 14  
Pin Description  
Pin No.  
1
Pin Name  
VEE2  
PROOUT2  
PROOUT1  
OUT2  
VREG  
TC  
Function  
Output-side negative power supply pin  
Soft turn-off pin 2  
2
3
Soft turn-off pin 1 / Gate voltage input pin  
Gate control pin for active miller clamping  
4
5
Power supply pin for driving MOSFET for active miller clamping  
Resistor connection pin for setting constant current source output  
Constant current output pin / Sensor voltage input pin  
Output-side ground pin  
6
7
TO  
8
GND2  
SCPIN2  
SCPIN1  
VCC2  
OUT1H  
OUT1L  
VEE2  
GND1  
FLT  
9
Short circuit current detection pin 2  
Short circuit current detection pin 1  
Output-side positive power supply pin  
Source-side output pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Sink-side output pin  
Output-side negative power supply pin  
Input-side ground pin  
Fault output pin  
ENA  
Input pin for enabling control input signal  
Control input pin  
INA  
INB  
Control input pin  
RDY  
Ready output pin  
SENSOR  
NC  
Temperature information output pin  
Non connection  
NC  
Non connection  
NC  
Non connection  
VCC1  
NC  
Input-side power supply pin  
Non connection  
NC  
Non connection  
GND1  
Input-side ground pin  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
3/35  
TSZ22111 15 001  
BM6112FV-C  
Block Diagram  
Absolute Maximum Ratings  
Parameter  
Symbol  
VCC1MAX  
VCC2MAX  
VEE2MAX  
Rating  
Unit  
V
Input-side Supply Voltage  
-0.3 to +7.0(Note 2)  
-0.3 to +24.0(Note 3)  
-15.0 to +0.3(Note 3)  
Output-side Positive Supply Voltage  
Output-side Negative Supply Voltage  
V
V
Maximum Difference between Output-side Positive and  
Negative Supply Voltages  
VMAX2  
30.0  
V
INA, INB, ENA Pin Input Voltage  
FLT, RDY Pin Input Voltage  
FLT, RDY Pin Output Current  
SENSOR Pin Output Current  
SCPIN1, SCPIN2 Pin Input Voltage  
TO Pin Input Voltage  
VINMAX  
VFLTMAX,VRDYMAX  
IFLT,IRDY  
ISENSOR  
-0.3 to VCC1+0.3 or +7.0(Note 2)  
V
V
-0.3 to +7.0(Note 2)  
10  
mA  
mA  
V
10  
VSCPINMAX  
VTOMAX  
-0.3 to VCC2+0.3 or +24.0(Note 3)  
-0.3 to VCC2+0.3 or +24.0(Note 3)  
V
TO Pin Output Current  
ITOMAX  
1
mA  
°C  
°C  
Storage Temperature Range  
Maximum Junction Temperature  
Tstg  
-55 to +150  
+150  
Tjmax  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 2) Relative to GND1  
(Note 3) Relative to GND2  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
4/35  
TSZ22111 15 001  
BM6112FV-C  
Thermal Resistance (Note 4)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 6)  
2s2p(Note 7)  
SSOP-B28W  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 5)  
θJA  
112.9  
34  
64.4  
23  
°C/W  
°C/W  
ΨJT  
(Note 4) Based on JESD51-2A(Still-Air)  
(Note 5) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 6) Using a PCB board based on JESD51-3.  
(Note 7) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
35μm  
74.2mm x 74.2mm  
70μm  
Recommended Operating Conditions  
Parameter  
Input-side Supply Voltage  
Symbol  
Min  
4.5  
14  
Max  
5.5  
20  
Unit  
V
(Note 8)  
VCC1  
(Note 9)  
Output-side Positive Supply Voltage  
Output-side Negative Supply Voltage  
VCC2  
V
(Note 9)  
VEE2  
-12  
0
V
Maximum Difference between Output-side Positive and Negative  
Supply Voltages  
VMAX2  
Topr  
-
28  
V
Operating Temperature  
-40  
+125  
°C  
(Note 8) Relative to GND1  
(Note 9) Relative to GND2  
Insulation Related Characteristics  
Parameter  
Symbol  
RS  
Characteristic  
>109  
Unit  
Ω
Insulation Resistance (VIO = 500 V)  
Insulation Withstand Voltage / 1 min  
Insulation Test Voltage / 1 s  
VISO  
3750  
Vrms  
Vrms  
VISO  
4500  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
5/35  
TSZ22111 15 001  
BM6112FV-C  
Electrical Characteristics  
(Unless otherwise specified, Ta = -40 °C to +125 °C, VCC1 = 4.5 V to 5.5 V, VCC2 = 14 V to 20 V, VEE2 = -12 V to 0 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
General  
1.9  
1.9  
3.9  
3.9  
7.8  
7.8  
Input-side Circuit Current 1  
Input-side Circuit Current 2  
Input-side Circuit Current 3  
Input-side Circuit Current 4  
Output-side Circuit Current  
Logic Block  
ICC11  
ICC12  
ICC13  
ICC14  
ICC2  
mA  
mA  
mA  
mA  
mA  
OUT1L = L  
OUT1H = H  
2.1  
4.3  
8.6  
INA = 10 kHz, Duty = 50 %  
INA = 20 kHz, Duty = 50 %  
RTC = 4.7 kΩ  
2.3  
4.6  
9.2  
1.26  
2.80  
4.60  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Pull-down Resistance  
Logic Pull-up Resistance  
Logic Input Filtering Time  
ENA Input Filtering Time  
Output  
VINH  
VINL  
2.0  
0
-
-
VCC1  
0.8  
100  
100  
90  
V
V
INA, INB, ENA  
INA, INB, ENA  
INA, ENA  
INB  
RIND  
RINU  
tINFIL  
tENAFIL  
25  
25  
-
50  
50  
-
kΩ  
kΩ  
ns  
µs  
INA, INB  
4
10  
20  
IOUT1H = -40 mA  
IOUT1L = 40 mA  
OUT1H ON Resistance  
OUT1L ON Resistance  
ROUT1H  
ROUT1L  
-
-
0.20  
0.20  
0.45  
0.45  
Ω
Ω
VCC2 = 15 V  
Guaranteed by design  
OUT1H, OUT1L Maximum Current  
IOUT1MAX  
20  
-
-
A
IPROOUT1 = 40 mA  
PROOUT1 ON Resistance  
PROOUT1 Maximum Current  
RPRO1  
-
0.5  
-
1.1  
-
Ω
VCC2 = 15 V  
Guaranteed by design  
IPRO1MAX  
3
A
IPROOUT2 = 40 mA  
Guaranteed by design  
PROOUT2 ON Resistance  
PROOUT2 Maximum Current  
RPRO2  
-
0.20  
-
0.45  
-
Ω
VCC2 = 15 V  
Guaranteed by design  
IPRO2MAX  
5
A
Turn ON Time  
tON  
tOFF  
40  
40  
90  
90  
0
150  
150  
+30  
ns  
ns  
ns  
Turn OFF Time  
Propagation Distortion  
tPDIST  
-30  
tOFF - tON  
Load = 1 nF  
Guaranteed by design  
Rise Time  
Fall Time  
tRISE  
-
-
30  
30  
50  
50  
ns  
ns  
Load = 1 nF  
Guaranteed by design  
tFALL  
IOUT2 = -10 mA  
OUT2 ON Resistance (Source)  
OUT2 ON Resistance (Sink)  
OUT2 Maximum Current  
ROUT2H  
ROUT2L  
-
-
2.0  
2.0  
-
4.5  
4.5  
-
Ω
Ω
A
IOUT2 = 10mA  
IOUT2MAX  
Guaranteed by design  
0.4  
1.8  
-
OUT2 ON Threshold Voltage  
OUT2 Output Delay Time  
VREG Output Voltage  
VOUT2ON  
tDOUT2  
VREG  
2.0  
135  
5.0  
-
2.2  
195  
5.5  
-
V
ns  
Relative to VEE2  
4.5  
100  
V
Relative to VEE2  
CM  
kV/µs  
Common Mode Transient Immunity  
Guaranteed by design  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
6/35  
BM6112FV-C  
Electrical Characteristics - continued  
(Unless otherwise specified, Ta = -40 °C to 125 °C, VCC1 = 4.5 V to 5.5 V, VCC2 = 14 V to 20 V, VEE2 = -12 V to 0 V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
Temperature Monitor  
TC Pin Voltage  
VTC  
ITO  
-
0.94  
200  
90.0  
10.0  
1.0  
0
-
V
μA  
%
TO Pin Output Current  
Maximum Duty  
196  
88.0  
9.0  
204  
92.0  
11.0  
1.4  
RTC = 4.7 kΩ  
DMAX  
DMIN  
VTO = 3.84 V  
VTO = 1.35 V  
Minimum Duty  
%
SENSOR Output Frequency  
Duty Accuracy 1 (Actual - Typ)  
Duty Accuracy 2 (Actual - Typ)  
Duty Accuracy 3 (Actual - Typ)  
Duty Accuracy 4 (Actual - Typ)  
fSENSOR  
DACC1  
DACC2  
DACC3  
DACC4  
0.7  
kHz  
%
-2.0  
-1.3  
-1.1  
-1.0  
+2.0  
+1.3  
+1.1  
+1.0  
3.0 V VTO 3.84 V  
2.5 V VTO < 3.0 V  
2.0 V VTO < 2.5 V  
1.35 VTO < 2.0 V  
0
%
0
%
0
%
SENSOR ON Resistance  
(Source-side)  
RSENSORH  
-
-
60  
60  
160  
160  
Ω
Ω
ISENSOR = -5 mA  
ISENSOR = 5 mA  
SENSOR ON Resistance  
(Sink-side)  
RSENSORL  
Protection Functions  
Input-side UVLO OFF Voltage  
Input-side UVLO ON Voltage  
Input-side UVLO Filtering Time  
Output-side UVLO OFF Voltage  
Output-side UVLO ON Voltage  
VUVLO1H  
VUVLO1L  
tUVLO1FIL  
VUVLO2H  
VUVLO2L  
4.05  
3.95  
2
4.25  
4.15  
10  
4.45  
4.35  
30  
V
V
µs  
V
11.5  
10.5  
12.5  
11.5  
13.5  
12.5  
V
Output-side UVLO Filtering  
Time  
tUVLO2FIL  
tDUVLO2OUT  
tDUVLO2RDY  
2
2
10  
10  
30  
30  
µs  
µs  
µs  
Output-side UVLO Delay Time  
(OUT1H, OUT1L)  
Output-side UVLO Delay Time  
(RDY)  
3
-
-
65  
0.10  
0.20  
0.22  
0.30  
ISCPIN1, ISCPIN2 = 1mA  
SCPIN Input Voltage  
VSCPIN  
V
SCPIN Leading Edge  
Blanking Time  
SCPIN1, SCPIN2  
Guaranteed by Design  
tSCPINLEB  
0.10  
µs  
Short Circuit Detection Voltage  
VSCDET  
tSCPFIL  
0.67  
0.15  
0.70  
0.30  
0.73  
0.45  
V
SCPIN1, SCPIN2  
SCPIN1, SCPIN2  
Short Circuit Detection  
Filtering Time  
µs  
FLT Delay Time  
tDFLT  
tPRO2ON  
VOSFBH  
VOSFBL  
tOSFBFIL  
RRDYL  
0.2  
0.5  
160  
5.0  
4.5  
7.4  
30  
0.9  
220  
-
µs  
ns  
V
PROOUT2 ON Time  
100  
PROOUT1 H Detection Voltage  
PROOUT1 L Detection Voltage  
OSFB Output Filtering Time  
RDY Output ON Resistance  
FLT Output ON Resistance  
-
-
5.0  
-
-
V
9.8  
80  
80  
μs  
Ω
IRDY = 5 mA  
IFLT = 5 mA  
RFLTL  
-
30  
Ω
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
7/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves  
(Reference data)  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
VCC1 = 5.5 V  
VCC1 = 5.0 V  
VCC1 = 4.5 V  
-50  
-25  
0
25  
50  
75  
100 125  
4.50  
4.75  
5.00  
5.25  
5.50  
Input-side Supply Voltage: VCC1 [V]  
Temperature: Ta [°C]  
Figure 1.  
Figure 2.  
Input-side Circuit Current 1  
vs Input-side Supply Voltage  
Input-side Circuit Current 1 vs Temperature  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
VCC1 = 5.5 V  
VCC1 = 5.0 V  
VCC1 = 4.5 V  
-50  
-25  
0
25  
50  
75  
100 125  
4.50  
4.75  
5.00  
5.25  
5.50  
Input-side Supply Voltage: VCC1 [V]  
Temperature: Ta [°C]  
Figure 4.  
Figure 3.  
Input-side Circuit Current 2  
vs Input-side Supply Voltage  
Input-side Circuit Current 2 vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
8/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
9.0  
8.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
7.0  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
6.0  
VCC1 = 5.5 V  
VCC1 = 5.0 V  
5.0  
4.0  
3.0  
2.0  
VCC1 = 4.5 V  
4.50  
4.75  
5.00  
5.25  
5.50  
-50  
-25  
0
25  
50  
75  
100 125  
Input-side Supply Voltage: VCC1 [V]  
Temperature: Ta [°C]  
Figure 5.  
Figure 6.  
Input-side Circuit Current 3  
vs Input-side Supply Voltage  
Input-side Circuit Current 3 vs Temperature  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
VCC1 = 5.5 V  
VCC1 = 5.0 V  
VCC1 = 4.5 V  
4.50  
4.75  
5.00  
5.25  
5.50  
-50  
-25  
0
25  
50  
75  
100 125  
Input-side Supply Voltage: VCC1 [V]  
Temperature: Ta [°C]  
Figure 7.  
Figure 8.  
Input-side Circuit Current 4  
vs Input-side Supply Voltage  
Input-side Circuit Current 4 vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
9/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
5.0  
4.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
4.0  
VCC2 = 20 V  
Ta = +125 °C  
Ta = +25 °C  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
VCC2 = 15 V  
VCC2 = 14 V  
Ta = -40 °C  
14  
15  
16  
17  
18  
19  
20  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Output-side Positive Supply Voltage: VCC2 [V]  
Figure 9.  
Figure 10.  
Output-side Circuit Current vs  
Output-side Circuit Current vs Temperature  
Output-side Positive Supply Voltage  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
100.0  
87.5  
75.0  
62.5  
50.0  
37.5  
25.0  
Pull-up to 5 V  
Ta = +125 °C  
Ta = +25 °C  
VCC1 = 4.5 V  
VCC1 = 5.0 V  
VCC1 = 5.5 V  
Ta = -40 °C  
-50  
-25  
0
25  
50  
75  
100 125  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
Logic Input Voltage: VIN [V]  
Temperature: Ta [°C]  
Figure 11.  
Figure 12.  
RDY Voltage vs Logic Input Voltage  
(Logic High/Low Level Input Voltage)  
Logic Pull-down Resistance vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
10/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
100.0  
87.5  
90  
80  
70  
60  
50  
40  
30  
20  
VCC1 = 4.5 V  
VCC1 = 5.0 V  
VCC1 = 5.5 V  
75.0  
VCC1 = 4.5 V  
VCC1 = 5.0 V  
VCC1 = 5.5 V  
62.5  
50.0  
37.5  
25.0  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 13.  
Figure 14.  
Logic Pull-up Resistance vs Temperature  
Logic Input Filtering Time vs Temperature  
20  
18  
16  
14  
12  
10  
8
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VCC1 = 5.5 V  
VCC1 = 5.0 V  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
VCC1 = 4.5 V  
6
4
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 15.  
Figure 16.  
ENA Input Filtering Time vs Temperature  
OUT1H ON Resistance vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
11/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
0.10  
0.05  
0.00  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 17.  
Figure 18.  
OUT1L ON Resistance vs Temperature  
PROOUT1 ON Resistance vs Temperature  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
150  
140  
130  
120  
110  
100  
90  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
80  
70  
60  
50  
40  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 19.  
Figure 20.  
PROOUT2 ON Resistance vs Temperature  
Turn ON Time vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
12/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
150  
140  
130  
120  
110  
100  
90  
50  
40  
30  
20  
10  
0
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
80  
VCC2 = 14 V  
70  
VCC2 = 15 V  
VCC2 = 20 V  
60  
50  
40  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 21. Turn OFF Time vs Temperature  
Figure 22. Rise Time vs Temperature  
50  
40  
30  
20  
10  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 23. Fall Time vs Temperature  
Figure 24.  
OUT2 ON Resistance (Source) vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
13/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
4.5  
4.0  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
3.5  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 25.  
Figure 26.  
OUT2 ON Resistance (Sink) vs Temperature  
OUT2 ON Threshold Voltage vs Temperature  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
200  
180  
160  
140  
120  
100  
80  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100 125  
14  
15  
16  
17  
18  
19  
20  
Temperature: Ta [°C]  
Output-side Positive Supply Voltage: VCC2 [V]  
Figure 27.  
Figure 28.  
OUT2 Output Delay Time vs Temperature  
VREG Output Voltage vs  
Output-side Positive Supply Voltage  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
14/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
1.00  
204  
203  
202  
201  
200  
199  
198  
197  
196  
0.98  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
VCC2 = 20 V  
VCC2 = 14 V  
VCC2 = 15 V  
0.96  
0.94  
0.92  
0.90  
0.88  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 29.  
Figure 30.  
TC Pin Voltage vs Temperature  
TO Pin Output Current vs Temperature  
92.0  
91.5  
91.0  
90.5  
90.0  
89.5  
89.0  
88.5  
88.0  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
9.6  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
9.4  
9.2  
9.0  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 31.  
Figure 32.  
Maximum Duty vs Temperature  
Minimum Duty vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
15/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
1.4  
1.3  
1.2  
1.1  
1.0  
2.0  
1.5  
1.0  
0.5  
0.0  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
-0.5  
-1.0  
-1.5  
-2.0  
0.9  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
0.8  
0.7  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 34.  
Figure 33.  
Duty Accuracy 1 (Actual - Typ) vs Temperature  
SENSOR Output Frequency vs Temperature  
1.2  
1.0  
1.4  
1.2  
1.0  
0.8  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 35.  
Figure 36.  
Duty Accuracy 2 (Actual - Typ) vs Temperature  
Duty Accuracy 3 (Actual - Typ) vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
16/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
160  
140  
120  
100  
80  
1.0  
0.8  
0.6  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 38.  
Figure 37.  
Duty Accuracy 4 (Actual - Typ) vs Temperature  
SENSOR ON Resistance (Source) vs Temperature  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
160  
140  
120  
100  
80  
Pull-up to 5 V  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
Ta = +125 °C  
Ta = +25 °C  
Ta = -40 °C  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100 125  
4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40  
Input-side Supply Voltage: VCC1[V]  
Temperature: Ta [°C]  
Figure 39.  
Figure 40.  
RDY Voltage vs Input-side Supply Voltage  
SENSOR ON Resistance (Sink) vs Temperature  
(Input-side UVLO ON/OFF Voltage)  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
17/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
30  
Pull-up to 5 V  
25  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
Ta = -40 °C  
Ta = +25 °C  
Ta = +125 °C  
20  
15  
10  
5
0
10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0  
Output-side Positive Supply Voltage: VCC2 [V]  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Figure 41.  
Figure 42.  
Input-side UVLO Filtering Time vs Temperature  
RDY Voltage vs Output-side Positive Supply Voltage  
(Output-side UVLO ON/OFF Voltage)  
30  
25  
20  
15  
10  
5
28  
24  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
VCC2 = 14 V  
20  
VCC2 = 15 V  
VCC2 = 20 V  
16  
12  
8
4
0
0
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 43.  
Figure 44.  
Output-side UVLO Delay Time (OUT1H, OUT1L)  
vs Temperature  
Output-side UVLO Filtering Time vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
18/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
70  
60  
50  
40  
30  
20  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
10  
0
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 45.  
Figure 46.  
Output-side UVLO Delay Time (RDY)  
vs Temperature  
SCPIN Input Voltage vs Temperature  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.73  
0.72  
0.71  
0.70  
0.69  
0.68  
0.67  
VCC2 = 20 V  
VCC2 = 15 V  
VCC2 = 14 V  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 47.  
Figure 48.  
SCPIN Leading Edge Blanking Time vs Temperature  
Short Circuit Detection Voltage vs Temperature  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
19/35  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.45  
0.40  
0.35  
0.30  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
0.25  
0.20  
0.15  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 49.  
Figure 50.  
Short Circuit Detection Filtering Time vs Temperature  
FLT Delay Time vs Temperature  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
220  
200  
180  
160  
140  
120  
100  
VCC2 = 14 V  
VCC2 = 15 V  
VCC2 = 20 V  
VCC1 = 4.5 V  
VCC1 = 5.0 V  
VCC1 = 5.5 V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 51.  
Figure 52.  
OSFB Output Filtering Time vs Temperature  
PROOUT2 ON Time vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
20/35  
TSZ22111 15 001  
BM6112FV-C  
Typical Performance Curves - continued  
(Reference data)  
80  
70  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCC1 = 4.5 V  
VCC1 = 5.0 V  
VCC1 = 5.5 V  
60  
50  
40  
30  
20  
10  
0
VCC1 = 4.5 V  
VCC1 = 5.0 V  
VCC1 = 5.5 V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 53.  
Figure 54.  
RDY Output ON Resistance vs Temperature  
FLT Output ON Resistance vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
21/35  
TSZ22111 15 001  
BM6112FV-C  
Application Information  
1. Description of Pins and Cautions on Layout of Board  
(1) VCC1 (Input-side power supply pin)  
The VCC1 pin is a power supply pin on the input side. To suppress voltage fluctuations due to the driving current of the  
internal transformer, connect a bypass capacitor between the VCC1 and GND1 pins.  
(2) GND1 (Input-side ground pin)  
The GND1 pin is a ground pin on the input side.  
(3) VCC2 (Output-side positive power supply pin)  
The VCC2 pin is a positive power supply pin on the output side. To suppress voltage fluctuations due to the OUT1H pin  
or the OUT1L pin output current and due to the driving current of the internal transformer and output current, connect a  
bypass capacitor between the VCC2 and GND2 pins.  
(4) VEE2 (Output-side negative power supply pin)  
The VEE2 pin is a negative power supply pin on the output side. To suppress voltage fluctuations due to the OUT1H pin  
or the OUT1L pin output current and due to the driving current of the internal transformer and output current, connect a  
bypass capacitor between the VEE2 and GND2 pins. Connect the VEE2 pin to the GND2 pin when no negative power  
supply is used.  
(5) GND2 (Output-side ground pin)  
The GND2 pin is a ground pin on the output side. Connect the GND2 pin to the emitter or source of output device.  
(6) INA, INB, ENA (Control input pin)  
The INA, INB, and ENA pins are pins used to determine output logic.  
ENA  
L
H
H
H
INB  
Dont care  
INA  
Dont care  
Dont care  
OUT1H  
Hi-Z  
Hi-Z  
Hi-Z  
H
OUT1L  
L
L
L
H
L
L
L
H
Hi-Z  
(7) FLT (Fault output pin)  
The FLT pin is an open drain pin used to output a fault signal when short circuit protection (SCP) function is activated,  
and will be released at the rising edge of the ENA.  
State  
FLT  
Hi-Z  
L
While in normal operation  
When a Fault occurs (SCP)  
(8) RDY (Ready output pin)  
The RDY pin shows the status of three internal protection features which are VCC1 UVLO, VCC2 UVLO and output  
state feedback (OSFB). The term "output state feedback" shows whether the PROOUT1 pin voltage (High or Low)  
corresponds to input logic or not.  
Status  
RDY  
Hi-Z  
L
While in normal operation  
VCC1 UVLO or VCC2 UVLO or Output state feedback  
(9) SENSOR (Temperature information output pin)  
This is a pin which outputs the voltage of the TO pin converted to Duty cycle.  
(10) OUT1H, OUT1L (Source-side, Sink-side output pin)  
The OUT1H pin is a source side pin used to drive the gate of a power device. The OUT1L pin is a sink side pin used to  
drive the gate of a power device. The OUT1H pin is also used to monitor gate voltage for active miller clamping function.  
(11) OUT2 (Gate control pin for active miller clamping)  
The OUT2 pin is a pin used for controlling the external MOSFET to prevent an increase in gate voltage due to the miller  
current of the power device connected to the OUT1H pin or the OUT1L pin.  
(12) VREG (Power supply pin for driving MOSFET for active miller clamping)  
The VREG pin is a power supply pin for active miller clamping (Typ 5 V). Be sure to connect a capacitor between the  
VREG pin and the VEE2 pin to prevent oscillation and to suppress voltage fluctuations due to the OUT2 pin output  
current.  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
22/35  
TSZ22111 15 001  
BM6112FV-C  
Description of Pins and Cautions on Layout of Board continued  
(13) PROOUT1, PROOUT2 (Soft turn-off pin / Gate voltage input pin)  
These are pins for soft turn off of the gate of the power device when short circuit protection is activated. Both the  
PROOUT1 pin and the PROOUT2 pin turn on for tPRO2ON (Typ 160 ns) from short circuit detection. After tPRO2ON (Typ  
160ns), only the PROOUT1 pin continues to turn on. The PROOUT1 pin is also used to monitor gate voltage for output  
state feedback function.  
(14) SCPIN1, SCPIN2 (Short circuit current detection pin)  
The SCPIN1 pin and the SCPIN2 pin are pins used to detect current for short-current protection. When the SCPIN1 pin  
or the SCPIN2 pin voltage exceeds VSCDET (Typ 0.7 V), SCP function will be activated. This may cause the IC to  
malfunction in an open state. To avoid such trouble, connect the SCPIN1 pin or the SCPIN2 pin to the GND2 pin  
respectively if either of which is not used. In order to prevent the wrong detection due to noise, the noise mask time  
tSCPFIL (Typ 0.3 µs) is set.  
(15) TC (Resistor connection pin for setting constant current source output)  
The TC pin is a resistor connection pin for setting the constant current output. If an arbitrary resistance value is  
connected between the TC pin and the VEE2 pin, it is possible to set the constant current value output from the TO pin.  
(16) TO (Constant current output pin / Sensor voltage input pin)  
The TO pin is constant current output or voltage input pin. It can be used as a sensor input by connecting an element  
with arbitrary impedance between the TO pin and the GND2 pin.  
2. Description of Functions and Examples of Constant Setting  
(1) Active Miller Clamping Function  
When OUT1H Hi-Z and the OUT1H pin voltage < VOUT2ON (Typ 2 V), the OUT2 pin outputs High signal and the external  
MOSFET is turned ON. Once OUT2 is turned High, OUT2 remains High even if OUT1H exceeds VOUT2ON (Typ 2 V).  
When OUT1H = High, the OUT2 pin outputs Low signal and the external MOSFET is turned OFF.  
OUT1H  
OUT2  
Hi-Z (Not less than VOUT2ON  
)
L
H
L
Hi-Z (less than VOUT2ON  
)
H
OUT1H, OUT1L  
OUT1H  
(Monitor gate voltage)  
VOUT2ON  
tDOUT2  
(Typ 135 ns)  
OUT2  
Figure 55. Timing chart of active Miller clamping  
(2) Fault Status Output Function  
This function is used to output a fault signal from the FLT pin when short-circuit protection is activated and hold the Fault  
signal until rising edge of the ENA is put in.  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
23/35  
TSZ22111 15 001  
BM6112FV-C  
Description of Functions and Examples of Constant Setting continued  
(3) Under Voltage Lockout (UVLO) Function  
BM6112FV-C incorporates under voltage lockout (UVLO) function both on the input and the output sides. When the  
power supply voltage drops to UVLO ON voltage, the OUT1L pin and the RDY pin will output a Lsignal. When the  
power supply voltage rises to UVLO OFF voltage, these pins will be reset. To prevent malfunctions due to noise, Filtering  
time tUVLO1FIL and tUVLO2FIL are set on both input and output sides.  
H
INA  
L
VUVLO1H  
VUVLO1L  
VCC1  
RDY  
OUT1H, OUT1L  
Hi-Z  
L
H
L
Figure 56. Input-side UVLO Function Operation Timing Chart  
H
INA  
L
VUVLO2H  
VUVLO2L  
VCC2  
RDY  
OUT1H, OUT1L  
Hi-Z  
L
H
Hi-Z  
Figure 57. Output-side UVLO Operation Timing Chart  
(4) Short Circuit Protection (SCP) Function  
When the SCPIN1 pin voltage or the SCPIN2 pin voltage exceeds a voltage set with VSCDET (Typ 0.7 V) parameter, SCP  
function will be activated. When SCP function is activated, the OUT1H pin and the OUT1L pin voltage will be set to Hi-  
Zlevel, and both the PROOUT1 pin and the PROOUT2 pin turn on for tPRO2ON (Typ 160 ns). After tPRO2ON (Typ 160 ns),  
only the PROOUT1 pin continues to turn on. First, the PROOUT1 pin voltage and the PROOUT2 pin voltage will go to  
the Llevel (soft turn-off). Next, when the OUT1H pin voltage < VOUT2ON (Typ 2 V), the OUT1H pin and the OUT1L pin  
become L and the PROOUT1 pin become Hi-Z. Finally, SCP function will be released at the rising edge of the ENA.  
H
L
H
INA  
tSCPINLEB  
ENA  
L
tENAFIL  
VSCDET  
SCPINx  
tSCPFIL  
H
OUT1H, OUT1L  
Hi-Z  
L
Hi-Z  
L
Hi-Z  
L
Hi-Z  
PROOUT1  
PROOUT2  
tPRO2ON  
tDFLT  
FLT  
L
tDOUT2ON  
Gate Voltage  
VOUT2ON  
Figure 58. SCP Operation Timing Chart  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
24/35  
TSZ22111 15 001  
BM6112FV-C  
Short Circuit Protection (SCP) Function continued  
Collector or drain voltage (VDESAT) at which desaturation protection function operates and the blanking time (tBLANK  
)
determined by external component can be calculated by the formula below.  
푅3 +푅2  
퐷퐸푆퐴푇 = 푉  
×
– 푉  
[V]  
푆퐶퐷퐸푇  
퐹퐷1  
푅3  
푅3+푅2+푅1  
푅3  
> 푉  
×
[V]  
퐶퐶2푀퐼푁  
푆퐶퐷퐸푇  
푅2+푅1  
푅3+푅2+푅1  
푅3  
ꢇꢈꢉꢊꢋ  
퐵퐿퐴푁퐾 = − 푅3+푅2+푅1 × ꢀꢁ × 퐵퐿퐴푁퐾 ꢃ 6.5 × ꢄ0ꢅ12 × ln(ꢄ −  
×
)
[s]  
(
)
ꢈꢈꢌ  
where:  
퐷퐸푆퐴푇 is the collector or drain voltage at which desaturation protection function operates.  
퐹퐷1 is the forward voltage of the diode.  
is the Short Circuit Detection Voltage.  
푆퐶퐷퐸푇  
퐶퐶2푀퐼푁 is the minimum Output-side Positive Supply Voltage.  
퐵퐿퐴푁퐾 is the blanking time.  
ꢀꢄ is the resistance 1 to determine the 퐷퐸푆퐴, 퐶퐶2푀퐼푁 and 퐵퐿퐴푁퐾  
ꢀꢍ is the resistance 2 to determine the 퐷퐸푆퐴, 퐶퐶2푀퐼푁 and 퐵퐿퐴푁퐾  
ꢀꢁ is the resistance 3 to determine the 퐷퐸푆퐴, 퐶퐶2푀퐼푁 and 퐵퐿퐴푁퐾  
.
.
.
퐵퐿퐴푁퐾 is the capacitance to determine the 퐵퐿퐴푁퐾  
.
Reference Value  
R2  
VDESAT  
R1  
R3  
4.0 V  
4.5 V  
5.0 V  
5.5 V  
6.0 V  
6.5 V  
7.0 V  
7.5 V  
8.0 V  
8.5 V  
9.0 V  
9.5 V  
10.0 V  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
15 kΩ  
39 kΩ  
6.8 kΩ  
6.8 kΩ  
5.1 kΩ  
5.1 kΩ  
5.1 kΩ  
6.8 kΩ  
6.8 kΩ  
7.5 kΩ  
8.2 kΩ  
6.8 kΩ  
10 kΩ  
6.8 kΩ  
9.1 kΩ  
43 kΩ  
36 kΩ  
39 kΩ  
43 kΩ  
62 kΩ  
68 kΩ  
82 kΩ  
91 kΩ  
82 kΩ  
130 kΩ  
91 kΩ  
130 kΩ  
Figure 59. Block Diagram for DESAT  
25/35  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
BM6112FV-C  
Description of Functions and Examples of Constant Setting continued  
(5) Temperature monitor function  
The TO Pin Output Current (ITO) is supplied from the TO pin from the built-in constant current circuit. This current value  
can be adjusted in accordance with the resistance value between the TC pin and the VEE2 pin. Furthermore, the TO pin  
voltage is converted to Duty and outputs the signal to the SENSOR pin.  
ꢋꢈ  
푇푂  
=
[A]  
ꢋꢈ  
where:  
푇푂 is the TO pin Output Current.  
푇퐶 is the TC pin Voltage.  
푇퐶 is the resistance to determine the desired 푇푂  
.
Figure 60. Block Diagram of Temperature Monitor Function  
The SENSOR Duty is calculated according to the following calculating formula.  
(VTO < 1.35 V):  
ꢏꢐꢑꢏꢒꢀ ꢓ푢푡푦 = ꢄ0 [%]  
(1.35 V VTO < 2.5 V):  
ꢏꢐꢑꢏꢒꢀ ꢓ푢푡푦 = ꢁꢍ × 푇푂 − ꢁꢁ.ꢍ [%]  
(2.5 V VTO 3.84 V):  
ꢏꢐꢑꢏꢒꢀ ꢓ푢푡푦 = ꢁꢍ × 푇푂 − ꢁꢍ.9  
[%]  
(3.84 V < VTO):  
ꢏꢐꢑꢏꢒꢀ ꢓ푢푡푦 = 90 [%]  
where:  
ꢏꢐꢑꢏꢒꢀ ꢓ푢푡푦 is the duty cycle obtained by converting the TO pin voltage.  
푇푂 is the TO pin voltage.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.35  
3.84  
1
2
3
4
VTO[V]  
Figure 61. SENSOR Duty vs TO Voltage  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
26/35  
BM6112FV-C  
Description of Functions and Examples of Constant Setting continued  
(6) Gate State Monitoring Function  
When gate logic and input logic of output device monitored with the PROOUT1 pin are compared, a logic L is output  
from the RDY pin when they differ. In order to prevent the detection error due to delay of input and output, OSFB output  
filtering time tOSFBFIL is provided.  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
27/35  
TSZ22111 15 001  
18.Nov.2019 Rev.001  
BM6112FV-C  
I/O Equivalence Circuit  
Pin Name  
Pin No.  
Input Output Equivalence Circuit Diagram  
Pin Function  
PROOUT2  
VCC2  
2
Soft turn-off pin 2  
OUT1L  
PROOUT2, OUT1L  
VEE2  
13  
Sink-side Output pin  
VCC2  
PROOUT1  
PROOUT1  
3
Soft turn-off pin 1 /  
Gate voltage input pin  
GND2  
VEE2  
VCC2  
VREG  
OUT2  
VEE2  
OUT2  
4
5
Gate control pin for active miller  
clamping  
Internal Power  
Supply  
VREG  
Power supply pin for driving MOSFET  
for active miller clamping  
Internal Power  
TC  
VCC2  
Supply  
6
Resister connection pin for setting  
constant current source output  
TO  
TC  
TO  
7
GND2  
VEE2  
Constant current output pin /  
Sensor voltage input pin  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
28/35  
BM6112FV-C  
I/O Equivalence Circuit - continued  
Pin Name  
Pin No.  
Input Output Equivalence Circuit Diagram  
VCC2  
Pin Function  
SCPIN2  
9
Short circuit current detection pin 2  
SCPIN1, SCPIN2  
SCPIN1  
10  
GND2  
Short circuit current detection pin 1  
VCC2  
OUT1H  
12  
OUT1H  
VEE2  
Source-side output pin  
FLT  
Fault output pin  
RDY  
16  
20  
17  
FLT, RDY  
GND1  
Ready output pin  
ENA  
VCC1  
Input enabling signal input pin  
INA  
ENA, INA  
18  
Control input pin  
GND1  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
29/35  
TSZ22111 15 001  
BM6112FV-C  
I/O Equivalence Circuit - continued  
Pin Name  
Pin No.  
Input Output Equivalence Circuit Diagram  
Pin Function  
VCC1  
INB  
INB  
19  
Control input pin  
GND1  
VCC1  
SENSOR  
21  
SENSOR  
GND1  
Temperature information output pin  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
30/35  
BM6112FV-C  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
31/35  
TSZ22111 15 001  
18.Nov.2019 Rev.001  
BM6112FV-C  
Operational Notes continued  
10. Regarding the Input Pin of the IC  
This IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 62. Example of IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
32/35  
TSZ22111 15 001  
BM6112FV-C  
Ordering Information  
B M 6  
1
1
2
F
V
-
C E 2  
Part Number  
Package  
FV : SSOP-B28W  
Product class  
C: for Automotive applications  
Packaging and forming specification  
E2: Embossed tape and reel  
(SSOP-B28W)  
Marking Diagram  
SSOP-B28W (TOP VIEW)  
Part Number Marking  
LOT Number  
B M 6 1 1 2  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
33/35  
TSZ22111 15 001  
BM6112FV-C  
Physical Dimension and Packing Information  
Package Name  
SSOP-B28W  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
34/35  
BM6112FV-C  
Revision History  
Date  
Revision  
001  
Changes  
18.Nov.2019  
New Release  
www.rohm.com  
TSZ02201-0818ACH00110-1-2  
18.Nov.2019 Rev.001  
© 2019 ROHM Co., Ltd. All rights reserved.  
35/35  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM61M22BFJ-C

本品为内置绝缘电压2500Vrms、最大输入输出延迟时间60ns、最小输入脉冲宽度60ns的绝缘元件的栅极驱动器。内置低电压时误动作防止功能(UVLO)。
ROHM

BM61M41RFV-C

BM61M41RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能。
ROHM

BM61S40RFV-C

BM61S40RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能、过电压保护功能。
ROHM

BM61S41RFV-C

BM61S41RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能。
ROHM

BM6201FS

600V PrestoMOS™ built-in Three phase brushless fan motor driver
ROHM

BM6201FS-E2

600V PrestoMOS™ built-in Three phase brushless fan motor driver
ROHM

BM6202FS

3-Phase Brushless Fan Motor Driver
ROHM

BM6202FS-E2

3-Phase Brushless Fan Motor Driver
ROHM
BOOKLY

BM6203FS

3-Phase Brushless Fan Motor Driver
ROHM

BM6203FS-E2

3-Phase Brushless Fan Motor Driver
ROHM
BOOKLY