ML5233 [ROHM]

过充电和过放电电压检测充放电过电流检测高温检测短路电流检测内置FET驱动器多级连接;
ML5233
型号: ML5233
厂家: ROHM    ROHM
描述:

过充电和过放电电压检测充放电过电流检测高温检测短路电流检测内置FET驱动器多级连接

驱动 驱动器
文件: 总34页 (文件大小:1487K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEDL5233-04  
1 December, 2020  
ML5233  
4- to 10-Series Cell Li-ion Rechargeable Battery Protection IC  
General Description  
The ML5233 is a protection IC for the 4- to 10-cell Li-ion rechargeable battery pack. It detects individual cell  
overvoltage/undervoltage and the pack overcurrent/over-temperature, and then automatically turns on or turns  
off the external charge/discharge NMOS-FETs accordingly. Also the ML5233 can be cascaded to handle battery  
packs with more than 10 cells.  
Features  
4 to 10 cell high-precision overvoltage and undervoltage detection function  
Voltage monitoring function for individual cells  
Overvoltage detection threshold  
Undervoltage detection threshold  
4.25 V,  
2.7 V,  
Detection accuracy: ±15 mV (max)  
Detection accuracy: ±50 mV (max)  
Overcurrent detection function  
Discharge overcurrent detection threshold  
Charge overcurrent detection threshold  
150 mV, Detection accuracy: ±10 mV (max)  
-40 mV, Detection accuracy: ±15 mV (max)  
Short circuit detection function  
Short circuit detection threshold  
300 mV, Detection accuracy: ±15 mV (max)  
Detection delays adjustable using an external capacitor  
Temperature detection function  
: With external NTC (10 k, B=3435) and 4.7 kresistor  
Discharge inhibition temperature: 75 °C or higher  
Charge inhibition temperature : 55 °C or higher  
External charge/discharge FET control: NMOS-FET gate driver built-in  
External shut down command is accepted on the /CFOFF and /DFOFF pins  
In a cascade configuration external circuits can be minimized with the power-up control pin VRSO  
Cell number selectable from predefined 4 values using the CS0 and CS1 pins  
Product code 001 supports 7, 8, 9 or 10-cell connectivity  
Cell numbers and other parameters can be redefined and supplied as an individual product code  
Low current consumption  
Normal operation state : 25 µA (typ.),  
60 µA (max)  
Power-down state  
: 0.1 µA (typ.), 1 µA (max)  
Supply voltage  
: +5 V to +60 V  
Operating temperature  
Package  
: -40°C to +85°C  
: 32-pin LQFP  
Note) This product is not intended for automotive use and for any equipment, device, or system that requires a  
specific quality or high level of reliability (e.g., medical equipment, transportation equipment, aerospace  
machinery, nuclear-reactor controller, fuel-controller, various safety devices). If you are not sure whether  
your application corresponds to such special purposes, please contact your local ROHM sales  
representative in advance.  
1/34  
FEDL5233-04  
ML5233  
Block Diagram  
VDD  
VREG  
VNTC  
TSNS  
Voltage  
Regulator  
V10  
Thermistor  
Driver  
V9  
V8  
V7  
Voltage  
Clamp  
Temperature  
Detector  
Clock  
Generator  
V6  
Reference  
Voltage  
Generator  
CS0  
V5  
V4  
Control  
Logic  
&
CS1  
CAS  
Delay  
Timer  
PULLD  
Cell Voltage  
Detector  
V3  
TEST  
V2  
V1  
Cell Voltage  
Monitor  
VRSO  
VRSI  
Charger/Load  
Detector  
V0  
/DFOFF  
/CFOFF  
FET  
Driver  
Current  
Detector  
GND  
C_FET  
D_FET  
CDLY  
ISENSE  
Pin Configuration (top view)  
VDD  
V10  
V9  
V8  
V7  
V6  
V5  
V4  
1
24 PULLD  
23 CDLY  
22 GND  
21 TEST  
20 VRSO  
19 VRSI  
18 N.C.  
2
3
4
5
6
7
8
17 C_FET  
2/34  
FEDL5233-04  
ML5233  
Pin Description  
Pin  
Pin No.  
I/O  
Description  
Power supply input pin.  
Connect an external CR filter for noise rejection.  
1
VDD  
Battery cell 10 high voltage input pin.  
2
3
4
5
6
V10  
V9  
V8  
V7  
V6  
I
I
I
I
I
Battery cell 10 low voltage input and Battery cell 9 high voltage input pin.  
Battery cell 9 low voltage input and Battery cell 8 high voltage input pin.  
Battery cell 8 low voltage input and Battery cell 7 high voltage input pin.  
Battery cell 7 low voltage input and Battery cell 6 high voltage input pin.  
Battery cell 6 low voltage input and Battery cell 5 high voltage input pin.  
Should be connected to GND for the 4 cell series connected battery pack application.  
Battery cell 5 low voltage input and Battery cell 4 high voltage input pin.  
Should be connected to GND for the 4 to 5 cell series connected battery pack application.  
Battery cell 4 low voltage input and Battery cell 3 high voltage input pin.  
Should be connected to GND for the 4 to 6 cell series connected battery pack application.  
Battery cell 3 low voltage input and Battery cell 2 high voltage input pin.  
Should be connected to GND for the 4 to 7 cell series connected battery pack application.  
Battery cell 2 low voltage input and Battery cell 1 high voltage input pin.  
Should be connected to GND for the 4 to 8 cell series connected battery pack application.  
Battery cell 1 low voltage input pin.  
Should be connected to GND for the 4 to 9 cell series connected battery pack application.  
Ground pins.  
Current sense resistor input pin. Connect a resistor of the resistance value corresponding to  
the detecting current between this pin and the GND pin. Should be tied to GND if not used.  
Discharge FET control signal output pin. Should be tied to the gate pin of the external NMOS  
FET.  
Charge FET control signal output pin. Should be tied to the gate pin of the external NMOS  
FET.  
7
8
V5  
V4  
V3  
V2  
V1  
V0  
I
I
I
I
I
9
10  
11  
12  
I
I
13, 22 GND  
15  
16  
17  
19  
ISENSE  
D_FET  
C_FET  
VRSI  
O
O
Negative terminal of the load/charger input pin. Load or charger presence is decided by this  
input level.  
IO  
Power-up signal output pin in cascade connection. Should be tied to the next upper VRSI pin.  
LSI test input pin. Should be fixed to GND.  
20  
21  
23  
VRSO  
TEST  
CDLY  
O
I
Short current detection delay time setting pin. Should be tied to GND through a capacitor.  
IO  
External pull-down control signal output for load removal detection. Should be tied to the gate  
of the external pull-down control NMOS-FET when cascaded.  
24  
PULLD  
O
Cascade mode selection input. Should be fixed to the VREG level when cascaded.  
25  
26  
27  
CAS  
CS1  
CS0  
I
I
I
Pins to specify battery cell number. Either the VREG or the GND level should be applied.  
Input pin for high temperature charge/discharge inhibition detection. Connect a thermistor  
between this pin and GND. Should be tied to the VNTC pin if not used.  
Thermistor power supply. Should be connected to TSNS through a 4.7 kresistor.  
Should be pulled down with a 100 kΩ resistor if not used.  
Built-in 4.3 V regulator output pin. Should be tied to GND through a 1 F capacitor. Do not  
use this pin as power supply for an external circuit.  
28  
29  
30  
TSNS  
VNTC  
VREG  
I
O
O
OFF control command input pin for the charge FET. The "L" level input forces Hi-Z on the  
C_FET output. Should be tied to the next upper C_FET pin through an external resistor when  
cascaded.  
31  
/CFOFF  
I
OFF control command input pin for the discharge FET. The "L" level input forces "L" on the  
D_FET output. Should be tied to the next upper D_FET pin through an external resistor when  
cascaded.  
32  
/DFOFF  
N.C.  
I
No connect. Leave them electrically unconnected.  
14, 18  
3/34  
FEDL5233-04  
ML5233  
Absolute Maximum Ratings  
GND=0V, Ta=25°C  
Item  
Symbol  
VDD  
Condition  
Applied to VDD pin  
Rating  
Unit  
Supply voltage  
-0.3 to +86.5  
-0.3 to VDD+0.3  
V
V
V
VIN1  
Applied to V0 to V10 pins  
Applied to VRSI pin  
VIN2  
VDD-86.5 to VDD+0.3  
Applied to /CFOFF and /DFOFF  
pins  
VIN3  
VIN4  
-0.3 to +86.5  
V
V
Input voltage  
Applied to CS0, CS1, CAS, TSNS,  
CDLY, and ISENSE pins  
-0.3 to VREG+0.3  
VIN5  
Applied to TEST pin  
-0.3 to VDD+0.3  
-0.3 to VDD+0.3  
VDD-86.5 to VDD+0.3  
-0.3 to +6.5  
V
V
V
V
V
VOUT1  
VOUT2  
VOUT3  
VOUT4  
Applied to D_FET and VRSO pins  
Applied to C_FET pin  
Output voltage  
Applied to VREG pin  
Applied to VNTC and PULLD pins  
-0.3 to VREG+0.3  
Power  
dissipation  
PD  
IOS  
1.0  
10  
W
mA  
°C  
Short-circuit  
output current  
Applied to VREG, VNTC, PULLD,  
C_FET, D_FET, and VRSO pins  
Storage  
temperature  
TSTG  
-55 to +150  
Recommended Operating Conditions  
(GND= 0 V)  
Item  
Symbol  
VDD  
Condition  
Applied to VDD pin  
Range  
5 to 60  
Unit  
V
Supply voltage  
Operational temperature  
TOP  
-40 to +85  
°C  
4/34  
FEDL5233-04  
ML5233  
Electrical Characteristics  
DC Characteristics  
VDD=5 V to 60 V, GND=0 V, Ta=-40 to +85°C  
Item  
Symbol  
VIH1  
VIL1  
Condition  
Min.  
Typ.  
Max.  
VREG  
0.2×VREG  
2
Unit  
V
Digital "H" input voltage (Note 1)  
Digital "L" input voltage (Note 1)  
Digital "H" input current (Note 1)  
Digital "L" input current (Note 1)  
0.8×VREG  
0
V
IIH1  
VIH = VREG  
VIL = GND  
Average current in  
normal operation  
mode  
2  
µA  
µA  
IIL1  
Cell monitoring pin  
Input current (Note 2)  
IINVC  
0.1  
0.1  
3
µA  
Cell monitoring pin  
Input leakage current (Note 2)  
IILVC  
Power-down mode  
2
µA  
V
IOH=-10 µA  
VDD =18 V to 60 V  
IOL = 100 µA  
FET "H" output voltage (Note 3)  
VOH1  
10  
14  
18  
FET "L" output voltage (Note 4)  
C_FET output leakage current  
/CFOFF and /DFOFF pins  
"H" input voltage  
VOL1  
ILCF  
0.2  
5
V
VCFET= 0 V to VDD  
5  
µA  
VIH2  
VIL2  
IIH2  
VDD-0.1  
VDD+18  
VDD-1.5  
2
V
V
/CFOFF and /DFOFF pins  
"L" input voltage  
0
/CFOFF and /DFOFF pins  
"H" input current  
VIH2=VDD  
VIL2=0 V  
2  
µA  
µA  
/CFOFF and /DFOFF pins  
"L" input current  
IIL2  
PULLD pin "H" output voltage  
PULLD pin "L" output voltage  
CDLY pin "L" output voltage  
VOH2  
VOL2  
VOL3  
IOH = -100 µA  
IOL = 100 µA  
VREG-0.4  
VREG  
0.1  
V
V
V
IOL = 100 µA  
0.4  
At short current  
detection  
CDLY pin pull-up resistor  
VREG pin output voltage  
VNTC pin output voltage  
RPUC  
VREG  
VNTC  
44  
3.8  
2.2  
63  
4.3  
2.4  
82  
4.8  
2.6  
k  
V
With load current 1  
mA or less  
With 14.7 kΩ  
V
resistor connection  
VNTC=0 V to 3.5 V  
VTSNS=0 V to 3.5 V  
VNTC pin output leakage current  
TSNS pin input leakage current  
ISENSE pin input leakage  
current  
ILNTC  
IILTS  
2  
2  
2
2
µA  
µA  
IILIS  
VISENSE=0 V to 3.5 V  
2  
2
µA  
TEST pin pull-down resistance  
RPDT  
50  
100  
200  
k  
Note 1: Applied to CS0, CS1, and CAS pins.  
Note 2: Applied to V0 to V10 pins.  
Note 3: Applied to C_FET and D_FET pins.  
Note 4: Applied to D_FET pin.  
Note 5: Applied to C_FET pin.  
Supply Current Characteristics  
VDD= 5 to 60 V, GND=0 V, Ta=-40 to +85°C  
Item  
Symbol  
IDD  
Condition  
Min.  
Typ.  
Max.  
Unit  
Current consumption in  
normal operation  
No output load  
25  
60  
µA  
Current consumption  
in power-down mode  
IDDS  
No output load  
0.1  
1.0  
µA  
5/34  
FEDL5233-04  
ML5233  
Detection/Release Threshold Characteristics (Ta = 25 °C)  
VDD=36 V, GND=0 V, Ta=+25°C  
Item  
Symbol  
VOV  
Condition  
Min.  
Typ.  
Max.  
Unit  
Overvoltage detection  
threshold  
4.235  
4.25  
4.265  
V
Overvoltage release  
threshold  
VOVR  
VUV  
3.95  
2.65  
2.95  
140  
-55  
4.00  
2.70  
3.00  
150  
-40  
4.05  
2.75  
3.05  
160  
-25  
V
V
Undervoltage detection  
threshold  
Undervoltage release  
threshold  
VUVR  
VOCU  
VOCO  
VSHRT  
V
Discharge overcurrent  
detection threshold  
Charge overcurrent  
detection threshold  
Short circuit  
mV  
mV  
mV  
285  
300  
315  
detection threshold  
High temperature  
charge inhibition  
detection threshold  
High temperature  
charge inhibition  
release threshold  
High temperature  
discharge inhibition  
detection threshold  
High temperature  
discharge inhibition  
release threshold  
VCHD  
VCHR  
VDHD  
VDHR  
0.99  
1.16  
670  
800  
1.02  
1.21  
700  
850  
1.05  
1.26  
730  
900  
V
V
mV  
mV  
6/34  
FEDL5233-04  
ML5233  
Detection/Release Threshold Characteristics (Ta = 0 to 60 °C)  
VDD=36 V, GND=0 V, Ta=0 to 60°C  
Item  
Symbol  
VOV  
Condition  
Min.  
Typ.  
Max.  
Unit  
Overvoltage detection  
threshold  
4.225  
4.25  
4.275  
V
Overvoltage release  
threshold  
VOVR  
VUV  
3.93  
2.6  
4.00  
2.7  
4.07  
2.8  
V
V
Undervoltage detection  
threshold  
Undervoltage release  
threshold  
VUVR  
VOCU  
VOCO  
VSHRT  
2.9  
3.0  
3.1  
V
Discharge overcurrent  
detection threshold  
Charge overcurrent  
detection threshold  
Short circuit  
135  
-65  
270  
150  
-40  
300  
165  
-15  
330  
mV  
mV  
mV  
detection threshold  
High temperature  
charge inhibition  
detection threshold  
High temperature  
charge inhibition  
release threshold  
High temperature  
discharge inhibition  
detection threshold  
High temperature  
discharge inhibition  
release threshold  
VREG drop detection  
threshold  
VCHD  
VCHR  
VDHD  
VDHR  
0.97  
1.14  
650  
780  
1.02  
1.21  
700  
850  
1.07  
1.28  
750  
920  
V
V
mV  
mV  
VUREG  
VRREG  
3.0  
3.4  
3.4  
3.8  
3.8  
4.2  
V
V
VREG drop release  
threshold  
7/34  
FEDL5233-04  
ML5233  
Charger Detection / Removal and Load Removal Threshold Characteristics (Ta=25 °C)  
VDD=36 V, GND=0 V, Ta=+25°C  
Item  
Symbol  
VPC  
Condition  
Wake-up from  
power-down mode  
In charge overcurrent state  
CAS pin = "L"  
Min.  
Typ.  
Max.  
Unit  
Charger detection  
VRSI threshold  
VDDX0.4  
VDDX0.5  
VDDX0.6  
V
VPLU1  
0.1  
0.2  
0.3  
V
Charger removal  
VRSI threshold  
In charge overcurrent state  
CAS pin = "H"  
VPLU2  
VPLD  
VRL  
0.3  
VDDX0.7  
2.2  
0.4  
VDDX0.75  
2.4  
0.5  
VDDX0.8  
2.6  
V
V
V
Power-down mode  
In discharge overcurrent  
state  
Load removal  
VRSI threshold  
Charger Detection / Removal and Load Removal Threshold Characteristics  
(Ta=0 to 60 °C)  
VDD=36 V, GND=0 V, Ta=0 to 60°C  
Item  
Symbol  
VPC  
Condition  
Wake-up from power-down  
mode  
Min.  
Typ.  
Max.  
Unit  
Charger detection  
VRSI threshold  
VDDX0.35  
VDDX0.5  
VDDX0.65  
V
In charge overcurrent state  
CAS pin = "L"  
VPLU1  
0
0.2  
0.4  
0.4  
0.6  
V
Charger removal  
VRSI threshold  
In charge overcurrent state  
CAS pin = "H"  
VPLU2  
VPLD  
VRL  
0.2  
V
V
V
Power-down mode  
In discharge overcurrent  
state  
VDDX0.65 VDDX0.75 VDDX0.85  
Load removal  
VRSI threshold  
VRSI pin pull-up  
resistance  
2.0  
2.4  
2.8  
In charge overcurrent state,  
power-down mode  
In discharge overcurrent  
state  
RPU  
RPD  
200  
500  
1000  
kΩ  
VRSI pin pull-down  
resistance  
0.5  
-2  
2
4
2
2
2
MΩ  
CAS pin = "L"  
Without pull-up/-down  
resistor  
ILPS1  
ILPS2  
IOL  
µA  
µA  
µA  
CAS pin = "L"  
VRSI pin input current  
Without pull-up/-down  
resistor  
-3  
-0.2  
1
CAS pin = "H"  
CAS pin = "H"  
VRSI pin = "L"  
VOL = 5 V  
VRSO pin output  
current  
0.5  
VRSO pin output  
leakage current  
VRSO pin pull-down  
resistance  
VRSI pin = "H"  
VRSO = 36 V  
IOLK  
0
2
µA  
CAS pin = "H"  
at wake-up  
RPDR  
200  
500  
1000  
kΩ  
8/34  
FEDL5233-04  
ML5233  
Detection Delay and Monitor Cycle Characteristics (Ta = 25 °C)  
VDD=36 V, GND=0 V, Ta=+25°C  
Item  
Symbol  
tOV  
Condition  
Min.  
2.6  
Typ.  
Max.  
Unit  
Overvoltage detection delay  
(Note)  
3.0  
4.0  
sec  
Undervoltage detection delay  
(Note)  
tUV  
0.85  
70  
1.00  
100  
100  
1.65  
130  
130  
sec  
ms  
ms  
Charge overcurrent detection  
delay  
tOCO  
tOCU  
Discharge overcurrent  
detection delay  
70  
Short circuit detection delay  
Cell voltage monitor cycle  
Temperature monitor cycle  
Temperature measurement  
time  
tSC  
tDET  
tPT  
CDLY=10 nF  
0.7  
320  
320  
1.0  
400  
400  
1.3  
480  
480  
ms  
ms  
ms  
tTM  
2.3  
3
3.7  
ms  
Load removal delay  
Charger removal delay  
Internal source oscillation  
clock cycle  
tORL  
70  
70  
100  
100  
130  
130  
ms  
ms  
tOCHG  
tOSC  
tOVT  
tUVT  
85  
70  
100  
100  
100  
100  
100  
115  
610  
610  
130  
130  
VREG  
µs  
ms  
ms  
ms  
ms  
V
Overvoltage detection delay  
for test mode (Note)  
Undervoltage detection delay  
for test mode (Note)  
Cell voltage monitor cycle  
for test mode  
TSNS pin = VREG  
TSNS pin = VREG  
TSNS pin = VREG  
TSNS pin = VREG  
70  
tDETT  
tPTT  
70  
Temperature monitor cycle  
for test mode  
70  
TSNS pin input voltage  
for test mode  
VTST  
VREG-0.3  
(Note) Time lag due to cell voltage monitor cycle should be added on top of these values.  
9/34  
FEDL5233-04  
ML5233  
Detection Delay and Monitor Cycle Characteristics (Ta = 0 to 60 °C)  
VDD=36 V, GND=0 V, Ta=0 to 60°C  
Item  
Symbol  
tOV  
Condition  
Min.  
2.4  
Typ.  
Max.  
Unit  
Overvoltage detection delay  
(Note)  
3.0  
4.2  
sec  
Undervoltage detection delay  
(Note)  
tUV  
0.80  
50  
1.00  
100  
100  
1.75  
150  
150  
sec  
ms  
ms  
Charge overcurrent detection  
delay  
tOCO  
tOCU  
Discharge overcurrent  
detection delay  
50  
Short circuit detection delay  
Cell voltage monitor cycle  
Temperature monitor cycle  
Temperature measurement  
time  
tSC  
tDET  
tPT  
CDLY=10 nF  
0.6  
300  
300  
1.0  
400  
400  
1.4  
500  
500  
ms  
ms  
ms  
tTM  
2
3
4
ms  
Load removal delay  
Charger removal delay  
Internal source oscillation  
clock cycle  
tORL  
50  
50  
100  
100  
150  
150  
ms  
ms  
tOCHG  
tOSC  
80  
100  
120  
µs  
(Note) Time lag due to cell voltage monitor cycle should be added on top of these values.  
10/34  
FEDL5233-04  
ML5233  
Transient Characteristics  
VDD=36 V, GND=0 V, Ta=0 to 60°C  
Item  
Symbol  
tDFETR  
Condition  
Min.  
Typ.  
Max.  
Unit  
D_FET pin  
output rise time  
C_FET pin  
output rise time  
D_FET pin  
output fall time  
CL=22 nF, RG=10 kΩ  
95  
400  
µs  
CL=22 nF, RG=1 0kΩ  
RL=1 M  
tCFETR  
tFETF  
95  
1
400  
150  
µs  
µs  
CL=22 nF, RG=10 kΩ  
Measurement circuit  
C_FET  
D_FET  
RG=10kΩ  
CL=22 nF  
RG=10kΩ  
GND  
CL=22 nF  
RL=1MΩ  
Timing Diagrams  
10 V  
0.5 V  
D_FET  
0 V  
0 V  
tDFETF  
tDFETR  
10 V  
0.5 V  
C_FET  
0 V  
0 V  
tCFETR  
(Note) C_FET output fall depends on the time constant of the external loads RL and CL  
11/34  
FEDL5233-04  
ML5233  
Timing Diagrams  
This section shows the timing diagrams of application circuit example 1 (without cascade connection).  
Overvoltage Detection and Recovery  
(Note 3)  
(Note 2)  
VOV  
Voltage difference between  
adjacent cell monitor pins  
(Vn+1 - Vn)  
VOVR  
tDET  
tDET  
tDET  
tDET  
tDET  
tDET  
tDET  
tOV  
tDET  
tDET  
tDET  
VOH1  
VOH1  
D_FET  
C_FET  
(Note 1)  
0 V  
GND  
GND  
VRSI  
ISENSE  
Overvoltage detection  
delay timer operating  
Charger present  
Load present  
Overvoltage state  
State  
Overvoltage  
detected  
Recovery from  
overvoltage state  
(Note 1) C_FET pin is pulled down with a resistor.  
(Note 2) Even if the voltage difference between Vn+1 and Vn reaches or exceeds the overvoltage detection  
threshold VOV, there may be a time lag before starting the overvoltage detection delay timer  
because cell voltages are monitored every 400 ms (typ.).  
(Note 3) Even if the voltage difference between Vn+1 and Vn reaches or exceeds the overvoltage release  
threshold VOVR, there may be a time lag before recovering from the overvoltage state because cell  
voltages are monitored every 400 ms (typ.).  
12/34  
FEDL5233-04  
ML5233  
Overvoltage Detection, Transition to Power-down Mode and Recovery  
(Note 2)  
(Note 1)  
VUVR  
VUV  
Voltage difference between  
adjacent cell monitor pins  
tDET  
tDET  
tDET  
tDET  
tUV  
tDET  
tDET  
tDET  
(Vn+1 - Vn)  
VOH1  
D_FET  
0 V  
Hi-Z  
VOH1  
VOH1  
C_FET  
VRSI  
VPLD  
VPC  
GND  
GND  
ISENSE  
Undervoltage  
detection delay  
timer operating  
Charger present  
Load present  
Undervoltage state  
Undervoltage detected  
State  
Power-down  
mode  
Recovery from  
undervoltage state  
Charger detected  
Recovery from power-down mode  
(Note 1) Even if the voltage difference between Vn+1 and Vn reaches or exceeds the undervoltage  
detection threshold VUV, there may be a time lag before starting the undervoltage detection delay  
timer because cell voltages are monitored every 400 ms (typ.).  
(Note 2) Even if the voltage difference between Vn+1 and Vn reaches or exceeds the undervoltage  
release threshold VUVR, there may be a time lag before recovering from the undervoltage state  
because cell voltages are monitored every 400 ms (typ.).  
13/34  
FEDL5233-04  
ML5233  
Discharge Overcurrent Detection and Recovery  
Voltage difference between  
adjacent cell monitor pins  
(Vn+1 - Vn)  
VOH1  
D_FET  
0 V  
0 V  
VOH1  
C_FET  
(Note 1)  
VRL  
VRSI  
GND  
GND  
tORL  
VOCU  
ISENSE  
tOCU  
Load present  
Load absent  
Load absent  
Discharge overcurrent  
detected  
Discharge overcurrent state  
Load removal  
State  
Recovery from discharge  
overcurrent state  
(Note 1) C_FET pin is pulled down with a resistor.  
14/34  
FEDL5233-04  
ML5233  
Charge Overcurrent Detection and Recovery  
Voltage difference between  
adjacent cell monitor pins  
(Vn+1 - Vn)  
VOH1  
D_FET  
VOH1  
C_FET  
(Note 1)  
0 V  
GND  
VPLU  
VRSI  
tOCO  
tOCHG  
GND  
ISENSE  
VOCO  
Charger absent  
Charger present  
Charger absent  
State  
Charge overcurrent state  
Charge overcurrent  
detected  
Charger removal  
Recovery from charge  
overcurrent state  
(Note 1) C_FET pin is pulled down with a resistor.  
15/34  
FEDL5233-04  
ML5233  
Short Circuit Detection and Recovery  
Voltage difference between  
adjacent cell monitor pins  
(Vn+1 - Vn)  
VOH1  
D_FET  
0 V  
0 V  
VOH1  
C_FET  
(Note 1)  
CDLY  
VRSI  
GND  
GND  
VRL  
tORL  
VSHRT  
GND  
ISENSE  
State  
tSC  
Load absent  
Load present  
Load absent  
Short circuit detected  
Short circuit state  
Load removal  
Recovery from  
short circuit state  
(Note 1) C_FET pin is pulled down with a resistor.  
16/34  
FEDL5233-04  
ML5233  
High Temperature Detection and Recovery  
VNTC  
VNTC  
Hi-Z  
VCHR  
VCHD  
VDHR  
VDHD  
0 V  
TSNS  
tPT  
tPT  
tPT  
tPT  
tTM  
tTM  
VOH1  
C_FET  
(Note 1)  
0 V  
VOH1  
D_FET  
State  
0 V  
Temperature below  
45 °C is detected  
Temperature above  
75 °C is detected  
Temperature between  
55 °C and 75 °C is detected  
Temperature between  
45 °C and 65°C is  
detected  
Charge permitted  
Charge inhibited  
Charge inhibited  
Charge inhibited  
Charge permitted  
Discharge permitted  
Discharge permitted  
Discharge inhibited  
Discharge permitted  
Discharge permitted  
(Note 1) C_FET pin is pulled down with a resistor.  
(Note 2) NTC(10kΩ,B=3435) and 4.7kΩ resistor is connected.  
17/34  
FEDL5233-04  
ML5233  
Functional Description  
States of ML5233  
The ML5233 has the following eight states which depend on individual cell voltages and the input  
levels of the ISENSE and TSNS pins.  
1. Initial state  
2. Normal operation state  
3. Overvoltage state  
4. Undervoltage state (including power-down mode)  
5. Discharge overcurrent state  
6. Charge overcurrent state  
7. Short circuit state  
8. High temperature state  
Each state is described below, without cascade connection (CAS pin fixed to GND).  
1. Initial State  
The initial state refers to the period while the battery cells are being connected to the ML5233 and  
connection of all the battery cells specified by the CS0 and CS1 pins is completed, before transitioning  
to the normal state. In the initial state, when the VREG pin voltage reaches or exceeds the VREG drop  
detection threshold, the D_FET pin output is set to the "L" level and the C_FET pin output to the "H"  
level, where discharge is inhibited and charge is permitted.  
When the VREG pin level reaches or exceeds the VREG drop release threshold, individual cell  
voltage monitoring takes place. If all the battery cells specified by the CS0 and CS1 pins reach or  
exceed the undervoltage release threshold VUVR, the system transitions to the normal state. Overvoltage  
and overcurrent detection is also performed in parallel.  
PACK(+)  
VDD  
VRSI  
C_FET  
D_FET  
GND  
ISENSE  
PACK(-)  
OFF  
ON  
Figure 1 Initial State  
18/34  
FEDL5233-04  
ML5233  
2. Normal Operation State  
The normal state refers to the period where all the battery cell voltages do not reach or exceed the  
overvoltage/undervoltage detection threshold, the ISENSE pin voltage is below the overcurrent  
detection threshold, and the TSNS pin voltage is above the high temperature detection threshold. In the  
normal state, both the D_FET and C_FET pin outputs are set to the "H" level, where both charge and  
discharge is permitted.  
Individual cell voltages are monitored every 0.4 second for performing overvoltage/undervoltage  
detection, while the pack temperature is also monitored using an external thermistor every 0.4 second.  
The ISENSE pin voltage is always monitored to detect overcurrent in parallel.  
PACK(+)  
VDD  
VRSI  
C_FET  
D_FET  
GND  
ISENSE  
PACK(-)  
OFF  
Figure 2 Normal Operation State  
ON  
19/34  
FEDL5233-04  
ML5233  
3. Overvoltage State  
When any one or more battery cell voltages reach or exceed the overvoltage detection threshold VOV  
for longer than the overvoltage detection delay time tOV, the system enters the overvoltage state. In the  
overvoltage state, the C_FET pin output is set to "Hi-Z" to inhibit charge, while the D_FET pin output  
maintains the value in the previous state.  
Battery cell voltages decrease gradually by self-discharge or a connected light load. When all of them  
reach or exceed the overvoltage detection release threshold VOVR, the system recovers from the  
overvoltage state.  
PACK(+)  
VDD  
VRSI  
C_FET  
D_FET  
GND  
ISENSE  
PACK(-)  
Maintains the  
OFF  
previous value  
Figure 3 Overvoltage State  
20/34  
FEDL5233-04  
ML5233  
4. Undervoltage State  
When any one or more battery cell voltages reach or exceed the undervoltage detection threshold  
VUV for longer than the undervoltage detection delay time tUV, the system enters the undervoltage state.  
In the undervoltage state, the D_FET pin output is set to the "L" level to inhibit discharge, while the  
C_FET pin output maintains the value in the previous state.  
In the undervoltage state, a 500 kpull-up resistor is connected between the VRSI pin and VDD.  
When the VRSI pin voltage increases and reaches the charger removal VRSI threshold VPLD after  
turning off the external discharge FET, the system enters power-down mode to reduce current  
consumption. The VRSI pin voltage decreases when a charger is present. If it reaches or exceeds the  
charger detection voltage VPC, the system wakes up all the circuits to resume monitoring individual  
battery cell voltages.  
If the system was in the overvoltage, undervoltage, high temperature or any overcurrent state before  
entering power-down mode, these error flags are cleared during power-down. After wake-up, if these  
errors are detected again for longer than the specified detection delay time, the system reenters the  
corresponding error state.  
Battery cell voltages increase gradually while charging, and if all cell voltages reach or exceed the  
undervoltage detection release threshold VUVR, the system recovers from the undervoltage state and  
the pull-up resistor between VRSI pin and VDD is disconnected.  
PACK(+)  
VDD  
VRSI  
C_FET  
D_FET  
GND  
ISENSE  
PACK(-)  
Maintains the previous value  
* OFF in power-down mode  
OFF  
Figure 4 Undervoltage State (Power-down mode)  
21/34  
FEDL5233-04  
ML5233  
5. Discharge Overcurrent State  
When the load is connected and ISENSE pin voltage reaches or exceeds the discharge overcurrent  
detection threshold VOCU for longer than the discharge overcurrent detection delay time tOCU, the system  
enters the discharge overcurrent state, regardless of the individual battery cell voltages. In the discharge  
overcurrent state, the D_FET pin output is set to the "L" level to inhibit discharge, while the C_FET pin  
output is set to "Hi-Z" to monitor load removal.  
In the discharge overcurrent state, the VRSI pin is pulled-down with a 2 Mresistor and a backflow  
prevention diode. If the load is released, the VRSI pin level approaches the GND level. The system  
recovers from the discharge overcurrent state when the VRSI pin level reaches or exceeds the load  
disconnection detection threshold VRL for longer than the load disconnection detection delay time tORL  
.
PACK(+)  
VDD  
VRSI  
C_FET  
D_FET  
GND  
ISENSE  
PACK(-)  
OFF  
Figure 5 Discharge Overcurrent State  
OFF  
22/34  
FEDL5233-04  
ML5233  
6. Charge Overcurrent State  
When the charger is connected and ISENSE pin voltage reaches or exceeds the charge overcurrent  
detection threshold VOCO for longer than the charge overcurrent detection delay time tOCO, the system  
enters the charge overcurrent state, regardless of the individual battery cell voltages. In the charge  
overcurrent state the C_FET pin output is set to "Hi-Z" to inhibit charge, while the D_FET pin output  
maintains the value in the previous state.  
In the charge overcurrent state, a 500 kpull-up resistor is connected between the VRSI pin and  
VDD pin to detect charger removal. If the charger is removed, the VRSI pin level increases. The system  
recovers from the charge overcurrent state when the VRSI pin voltage reaches or exceeds the charger  
removal detection threshold VPLU for longer than the charger removal delay time tOCHG  
.
PACK(+)  
VDD  
VRSI  
C_FET  
D_FET  
GND  
ISENSE  
PACK(-)  
Maintains the  
OFF  
previous value  
Figure 6 Charge Overcurrent State  
23/34  
FEDL5233-04  
ML5233  
7. Short Circuit State  
When the pack is overloaded and the ISENSE pin voltage reaches or exceeds the short circuit  
detection threshold VSHRT, the capacitor connected to the CDLY pin is started to charge, regardless of  
the battery cell voltages. When the CDLY pin voltage is increased to a specific level, the system enters  
the short circuit state. In the short circuit state, the D_FET pin output is set to "L" level to inhibit  
discharge, while the C_FET pin output is set to "Hi-Z" to detect load removal. Also, a 2 Mpull-down  
resistor is connected between the VRSI pin and the GND pin through a backflow prevention diode.  
If the load is removed, the VRSI pin level approaches the GND level. The system recovers from the  
short circuit state when the VRSI pin level reaches or exceeds the load removal detection threshold VRL  
for longer than the load removal detection delay time tORL  
.
PACK(+)  
VDD  
VRSI  
C_FET  
D_FET  
GND  
ISENSE  
PACK(-)  
OFF  
OFF  
Figure 7 Short Circuit State  
24/34  
FEDL5233-04  
ML5233  
8. High Temperature State  
Pack temperature is monitored using an external thermistor every 0.4 seconds when the ML5233 is  
not in power-down mode, regardless of battery cell voltages. When the TSNS pin voltage reaches or  
exceeds the high temperature charge inhibition detection threshold VCHD, the C_FET pin output is set to  
the "Hi-Z" state to inhibit charge.  
As temperature increases further, if the TSNS pin voltage reaches or exceeds the high temperature  
discharge inhibition detection threshold VDHD, the D_FET pin output is set to the "L" level to inhibit  
discharge. Temperature monitoring is continued every 0.4 second in the high temperature state, too, and  
if the TSNS pin voltage reaches or exceeds the high temperature release threshold, the system recovers  
from the high temperature state.  
PACK(+)  
VNTC  
VDD  
2.4 V  
TSNS  
VCHR  
VDHR  
VCHD  
VDHD  
C_FET  
D_FET  
GND  
ISENSE  
PACK(-)  
OFF  
Figure 8 High Temperature State  
OFF  
25/34  
FEDL5233-04  
ML5233  
Selecting the Number of Battery Cells  
Cell count is selectable from predefined 4 values using the CS0 and CS1 pins.  
Product code 001 supports 7, 8, 9 or 10 cells, and its configuration is given in the table below.  
CS1  
CS0  
Battery cell number  
Unused Vn pins  
GND  
GND  
VREG  
VREG  
GND  
VREG  
GND  
10 cell  
9 cell  
8 cell  
7 cell  
None  
V0  
V0, V1  
V0, V1, V2  
VREG  
All unused Vn pins should be tied to GND.  
Power-on/Power-off Sequence  
Battery cells can be connected in any order, but it is recommend that the GND and VDD pins are  
connected first, and then connection continues from lower to higher voltage cells. There are no  
restrictions on the power supply voltage rise time at power-on, and power-off sequence or power supply  
voltage fall time at power-off.  
After power-on, the system usually transitions to the normal state. However, it may transition to the  
undervoltage state due to chattering at power-on or other reasons. If it has transitioned to the  
undervoltage state and moved to power-down mode, apply the charger connection detection threshold  
VPC or lower level to the VRSI pin to power it up again.  
Handling VDD Pin and V0 to V10 Pins  
Since the VDD pin is the power supply input, put a noise elimination RC filter in front of the VDD  
input for stabilization. If the drive current on the external charge/discharge control FETs is large, the  
resistor value of this noise filter should be adjusted so that the voltage drop across the resistor is smaller  
than 1 V.  
The V0 to V10 pins are the monitor pins for individual cell voltages. Put a noise elimination RC filter  
in front of each battery cell to prevent false detection. On a system with less than 10 battery cells,  
unused Vn pins should be tied to GND.  
Handling VREG Pin  
The VREG pin is the power source of the built-in regulator which supplies power to the internal  
modules. Connect a 1 µF or larger capacitor between this pin and GND for stabilization. Do not use it as  
a power supply for external circuits since the supply current of the built-in regulator is limited.  
Setting Short Circuit Detection Delay  
The short circuit detection delay (tSC) depends on the charge time of the capacitor (CDLY) connected  
to the CDLY pin, which is described by the following equation.  
Short circuit detection delay tSC [ms] = CDLY [nF] × 0.1  
A 1 nF or larger capacitor is recommended for CDLY. For a smaller capacitance, 20 µs (typ.) should be  
added as a delay for the short current detection comparator. Note that the external CR filter on the  
ISENSE pin also comprises the total delay.  
External Control of Charge/Discharge Control FET  
The C_FET and D_FET pin output values can be directly controlled by the /CFOFF and /DFOFF pin  
inputs, regardless of the detected state on the ML5233.  
When the /CFOFF pin input is set to "L", the C_FET pin output is fixed to “Hi-Z”.  
When the /DFOFF pin input is set to "L", the D_FET pin output is fixed to GND.  
When the /CFOFF and /DFOFF pin inputs are set to "H", the C_FET and D_FET pin outputs depend on  
the detected state on the ML5233.  
26/34  
FEDL5233-04  
ML5233  
Output Pin Values in Each Detection State  
The output pin values in each detection state are shown in the table below.  
State  
D_FET  
GND  
14 V  
No change  
GND  
C_FET  
14 V  
14 V  
Hi-Z  
No change  
Hi-Z  
VRSI  
Hi-Z  
Hi-Z  
VREG  
4.3 V  
4.3 V  
4.3 V  
4.3 V  
0 V  
Initial state  
Normal operation state  
Overvoltage state  
Undervoltage state  
Power-down mode  
Discharge overcurrent  
state  
No change  
Pull-up  
Pull-up  
GND  
GND  
Hi-Z  
Pull-down  
4.3 V  
Charge overcurrent  
state  
No change  
GND  
Hi-Z  
Hi-Z  
Hi-Z  
Pull-up  
4.3 V  
4.3 V  
4.3 V  
Short circuit state  
High temperature  
charge inhibition state  
High temperature  
discharge inhibition  
state  
Pull-down  
No change  
No change  
GND  
Hi-Z  
No change  
4.3 V  
(Note) "No change" means that the previous pin value is maintained in a new state.  
Unused Pin Treatment  
The following table shows how to handle unused pins.  
Unused pins  
V0 to V5  
ISENSE  
CDLY  
Recommended treatment  
Pull down  
Pull down  
Open  
/CFOFF,/DFOFF  
VRSO  
Pull up  
Open  
TSNS  
VNTC  
PULLD  
Tied to the VNTC pin  
Pull down with a 100 kresistor  
Open  
Reducing Monitor Cycles and Detection Delays  
The cell monitor cycle and overvoltage/undervoltage detection delays are reduced to 100 ms (typ.) by  
applying the VREG level to the TSNS pin. The temperature monitor cycle is also reduced to 100 ms  
(typ.), but high temperature detection does not work because the TSNS pin is fixed to the VREG level.  
27/34  
FEDL5233-04  
ML5233  
Cascade Connection  
Cascade wiring for three ML5233 devices is shown below.  
1. Fix the CAS pin to the VREG level.  
2. Connect the higher C_FET pin and the lower /CFOFF pin through a resistor.  
3. Connect the higher D_FET pin and the lower /DFOFF pin through a resistor.  
4. Connect the highest /CFOFF and /DFOFF pins to VDD pin.  
5. Connect the lower VRSO pin and the higher VRSI pin through an NMOS-FET.  
6. Connect the lowest VRSI pin to Pack(-) through a diode and a resistor.  
7. Leave the top VRSO pin electrically open.  
8. Connect the lowest PULLD pin to the NMOS-FET gate, whose drain terminal should be tied to  
Pack(-) through a resistor.  
Pack(+)  
/DFOFF  
/CFOFF  
VREG  
CAS  
VDD  
ML5233-3  
ML5233-2  
ML5233-1  
VRSO  
VRSI  
GND  
ISENSE  
C_FET  
D_FET  
/DFOFF  
/CFOFF  
VREG  
CAS  
VDD  
VRSO  
GND  
VRSI  
ISENSE  
PULLD  
D_FET  
C_FET  
/DFOFF  
/CFOFF  
VREG  
CAS  
VDD  
VRSO  
GND  
VRSI  
ISENSE  
PULLD  
_D_FET  
C_FET  
Pack(-)  
It is recommended that a greater number of cells should be assigned to the lowest IC to drive the  
charge/discharge control FETs on the GND correctly. For example, when 7 cells and 10 cells are  
cascaded, the 10 cells should be assigned to the lower IC and the 7 cells to the higher one.  
28/34  
FEDL5233-04  
ML5233  
Redefinition of Battery Cell Number  
4 cell numbers can be redefined so that one of them is selectable with CS0 and CS1 in the range  
shown in the following table.  
CS1  
CS0  
Range of cell numbers  
GND  
GND  
VREG  
VREG  
GND  
VREG  
GND  
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
8
8
8
8
9
9
9
9
10  
10  
10  
10  
VREG  
Redefinition of Detection/Release Threshold Range and Step  
The detection/release thresholds can be redefined as shown in the following table.  
Since some combinations are unavailable, contact us for details.  
Detecting voltage  
Overvoltage detection  
threshold  
Threshold range  
3.65 V to 4.35 V  
3.5 V to 4.25 V  
1.6 V to 3 V  
Threshold step  
25 mV  
Overvoltage release threshold  
Undervoltage detection  
threshold  
Undervoltage release threshold  
Discharge overcurrent  
detection threshold  
Charge overcurrent detection  
threshold  
Short circuit detection  
threshold  
High temperature detection  
threshold  
25 mV  
100 mV  
100 mV  
10 mV  
2.3 V to 4.3 V  
50 mV to 200 mV  
-60 mV to -20 mV  
100 mV to 500 mV  
0.6 V to 1.2 V  
10 mV  
10 mV  
10 mV  
10 mV  
High temperature release  
threshold  
0.7 V to 1.3 V  
Redefinition of Detection Delay Time  
The detection delay times can be redefined as shown in the following table.  
Settable time  
Unit  
Detection delay time  
Overvoltage detection delay time  
Undervoltage detection delay time  
1
1
2
2
3
3
4
4
5
5
sec  
sec  
Discharge overcurrent detection  
delay time  
Charge overcurrent detection  
delay time  
25  
25  
50  
50  
100  
100  
200  
200  
400  
400  
ms  
ms  
29/34  
FEDL5233-04  
ML5233  
Application Circuit Example 1 (10-cell system)  
PACK(+)  
RVDD  
32  
1
VDD  
V10  
V9  
/DFOFF  
/CFOFF  
VREG  
VNTC  
TSNS  
CS0  
CVDD  
RCEL  
31  
30  
29  
28  
2
3
4
CCEL  
CREG  
V8  
RT  
V7  
5
6
7
27  
26  
25  
24  
V6  
RNTC  
V5  
CS1  
V4  
CAS  
8
9
V3  
PULLD  
CDLY  
GND  
23  
22  
V2  
10  
CDLY  
V1  
11  
12  
13  
21  
20  
V0  
TEST  
VRSO  
GND  
ISENSE  
CIS  
VRSI 19  
17  
C_FET  
15  
RIS  
16 D_FET  
RVRS  
RISIN  
RG  
RG  
PACK(-)  
RGS  
The wire length indicated by a dotted line should be minimized, because the voltage  
drop due to wire resistance may affect the current detection accuracy.  
Recommended Values for External Components  
Recommended  
value  
Recommended  
value  
Component  
Component  
RGS  
RG  
RVRS  
RIS  
RISIN  
RT  
1 MΩ  
10 kto 47 kΩ  
1 kΩ  
1 mto 5 mΩ  
1 kΩ  
RVDD  
CVDD  
RCEL  
CCEL  
CREG  
CIS  
510 Ω  
10 µF or more  
1 kto 10 kΩ  
0.1 µF or more  
1µF  
4.7 kΩ  
10 nF  
RNTC  
10 k, B3435  
CDLY  
1 nF to 10 nF  
(Note) This circuit example and the recommended values of external components are not always  
warranted. Evaluation on customers application is required and select circuit and parts  
depend on customers application.  
30/34  
FEDL5233-04  
ML5233  
Application Circuit Example 2 (15-cell system, 8 cells and 7 cells)  
PACK(+)  
RVDD  
32  
1
VDD  
V10  
V9  
/DFOFF  
/CFOFF  
VREG  
VNTC  
TSNS  
CS0  
CVDD  
RCEL  
31  
30  
29  
28  
2
3
4
5
6
7
CCEL  
CREG  
V8  
RT  
RVDD  
CVDD  
V7  
32  
1
VDD  
V10  
V9  
/DFOFF  
/CFOFF  
VREG  
VNTC  
TSNS  
CS0  
RFON  
RFON  
27  
26  
25  
24  
V6  
RNTC  
RCEL  
31  
30  
29  
28  
2
3
4
V5  
CS1  
CCEL  
CREG  
V4  
CAS  
8
9
V8  
V3  
PULLD  
CDLY  
GND  
RT  
V7  
5
6
7
23  
22  
V2  
10  
27  
26  
25  
24  
V6  
RNTC  
V1  
11  
12  
13  
V5  
CS1  
21  
20  
V0  
TEST  
VRSO  
V4  
CAS  
8
9
ROR  
GND  
ISENSE  
V3  
PULLD  
CDLY  
GND  
VRSI 19  
15  
23  
22  
21  
20  
V2  
10  
CDLY  
17  
16 D_FET  
C_FET  
V1  
11  
12  
13  
RCF  
V0  
TEST  
VRSO  
RGU  
GND  
ISENSE  
CIS  
VRSI 19  
17  
C_FET  
15  
RIS  
16 D_FET  
RVRS  
RISIN  
RG  
RG  
PACK(-)  
RGS  
Recommended Values for External Components  
Recommended  
value  
Recommended  
value  
Component  
Component  
RG  
RVRS  
RIS  
RISIN  
RT  
10 kto 47 kΩ  
1 kΩ  
1 mto 5 mΩ  
1 kΩ  
4.7 kΩ  
10 k, B3435  
5.1 MΩ  
RVDD  
CVDD  
RCEL  
CCEL  
CREG  
CIS  
510 Ω  
10 µF or more  
1 kto 10 kΩ  
0.1 µF or more  
1 µF  
10 nF  
1 nF to 10 nF  
1 MΩ  
RNTC  
RGU ,RFON  
ROR  
CDLY  
RGS  
1 MΩ  
RCF  
1.2 MΩ  
(Note) This circuit example and the recommended values of external components are not always  
warranted. Evaluation on customers application is required and select circuit and parts  
depend on customers application.  
31/34  
FEDL5233-04  
ML5233  
Package Dimensions  
Caution regarding surface mount type packages  
Surface mount type packages are susceptible to heat applied in solder reflow and moisture absorbed during  
storage. Please contact your local ROHM sales representative for recommended mounting conditions (reflow  
sequence, temperature and cycles) and storage environment.  
32/34  
FEDL5233-04  
ML5233  
Revision History  
Page  
Before  
Document No.  
Issue date  
Revision description  
After  
revision  
revision  
FEDL5233-01  
FEDL5333-02  
FEDL5333-03  
14 Sep, 2015  
25 Dec, 2015  
25 Mar, 2016  
-
-
Initial release, based on FJDL5233-01.  
Cascade connection, pin name is corrected.  
High temperature charge inhibition detection  
threshold (Ta=25) is 0.97(min)->0.99(min)  
High Temperature Detection and Recovery,  
note2 is added.  
28  
28  
6
6
17  
17  
Application Circuit examples; capacitor  
connection of lowest cell is modified.  
Note is added  
30,31  
30,31  
Application Circuit example 2; the value of RGU  
is modified.  
31  
31  
FEDL5333-04  
1 Dec, 2020  
-
-
Changed Company name  
34  
34  
Changed Notes”  
33/34  
FEDL5233-04  
ML5233  
Notes  
1) The information contained herein is subject to change without notice.  
2) When using LAPIS Technology Products, refer to the latest product information (data sheets, user’s manuals,  
application notes, etc.), and ensure that usage conditions (absolute maximum ratings, recommended operating  
conditions, etc.) are within the ranges specified. LAPIS Technology disclaims any and all liability for any  
malfunctions, failure or accident arising out of or in connection with the use of LAPIS Technology Products  
outside of such usage conditions specified ranges, or without observing precautions. Even if it is used within  
such usage conditions specified ranges, semiconductors can break down and malfunction due to various factors.  
Therefore, in order to prevent personal injury, fire or the other damage from break down or malfunction of  
LAPIS Technology Products, please take safety at your own risk measures such as complying with the derating  
characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe  
procedures. You are responsible for evaluating the safety of the final products or systems manufactured by you.  
3) Descriptions of circuits, software and other related information in this document are provided only to illustrate  
the standard operation of semiconductor products and application examples. You are fully responsible for the  
incorporation or any other use of the circuits, software, and information in the design of your product or system.  
And the peripheral conditions must be taken into account when designing circuits for mass production. LAPIS  
Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising  
from the use of these circuits, software, and other related information.  
4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of  
LAPIS Technology or any third party with respect to LAPIS Technology Products or the information contained  
in this document (including but not limited to, the Product data, drawings, charts, programs, algorithms, and  
application examplesetc.). Therefore LAPIS Technology shall have no responsibility whatsoever for any  
dispute, concerning such rights owned by third parties, arising out of the use of such technical information.  
5) The Products are intended for use in general electronic equipment (AV/OA devices, communication, consumer  
systems, gaming/entertainment sets, etc.) as well as the applications indicated in this document. For use of our  
Products in applications requiring a high degree of reliability (as exemplified below), please be sure to contact a  
LAPIS Technology representative and must obtain written agreement: transportation equipment (cars, ships,  
trains, etc.), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical  
systems, servers, solar cells, and power transmission systems, etc. LAPIS Technology disclaims any and all  
liability for any losses and damages incurred by you or third parties arising by using the Product for purposes  
not intended by us. Do not use our Products in applications requiring extremely high reliability, such as  
aerospace equipment, nuclear power control systems, and submarine repeaters, etc.  
6) The Products specified in this document are not designed to be radiation tolerant.  
7) LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this  
document. However, LAPIS Technology does not warrant that such information is error-free and LAPIS  
Technology shall have no responsibility for any damages arising from any inaccuracy or misprint of such  
information.  
8) Please use the Products in accordance with any applicable environmental laws and regulations, such as the  
RoHS Directive. LAPIS Technology shall have no responsibility for any damages or losses resulting  
non-compliance with any applicable laws or regulations.  
9) When providing our Products and technologies contained in this document to other countries, you must abide  
by the procedures and provisions stipulated in all applicable export laws and regulations, including without  
limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act..  
10) Please contact a ROHM sales office if you have any questions regarding the information contained in this  
document or LAPIS Technology's Products.  
11) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS  
Technology.  
(Note) “LAPIS Technology” as used in this document means LAPIS Technology Co., Ltd.  
Copyright 2020 LAPIS Technology Co., Ltd.  
2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan  
https://www.lapis-tech.com/en/  
34/34  

相关型号:

ML5236

电池电压、电流和温度测量短路电流检测过充检测内置高边NMOS-FET驱动器内置电池均衡开关MCU接口:SPI内置外部微控制器用电源
ROHM

ML5238

电池电压和电流测量短路电流检测内置FET驱动器内置电池均衡开关MCU接口:SPI内置外部微控制器用电源
ROHM

ML5239

电池电压和温度测量多级连接MCU接口:SPI电池均衡开关驱动引脚
ROHM

ML5241

电池电压检测断线检测警报输出睡眠功能省时测试模式
ROHM

ML5243

支持3~5节电池、具有电池电压、电流、温度和断线检测功能的电池监控保护LSI电池电压检测过电流检测温度检测断线检测充放电许可信号输出短路电流检测省时测试模式
ROHM

ML5245

电池电压监控器过充电和过放电电压检测充放电过电流检测短路电流检测内置FET驱动器高温、低温检测FET过热保护放电控制用FET强制关断
ROHM

ML5248

电池电压、电流和温度测量短路电流检测内置高边NMOS-FET驱动器MCU接口:I2C内置电池均衡开关内置外部微控制器用电源
ROHM

ML524PYA

High Reliability Power Inductors
COILCRAFT

ML524PYA102MLZ

High Reliability Power Inductors
COILCRAFT

ML524PYA103MLZ

High Reliability Power Inductors
COILCRAFT

ML524PYA153MLZ

High Reliability Power Inductors
COILCRAFT

ML524PYA182MLZ

High Reliability Power Inductors
COILCRAFT