ML610Q305 [ROHM]

ML610Q305/ML610Q306是内置蓝碧石科技自有的RISC架构8位CPU“U8 Core”的、具有语音输出功能的高性能CMOS 8位微控制器。搭载了高音质的语音播放功能和高输出扬声器放大器,以单芯片实现了语音输出功能,非常适用于警报器和家电应用。 为了实现高音质的语音播放功能,利用新开发的高音质、高压缩比的语音压缩算法HQ-ADPCM,可以用比以往ADPCM更少的数据量来确保清晰的声音和宽广的音域,从而实现百听不厌、悦耳动听的声音。;
ML610Q305
型号: ML610Q305
厂家: ROHM    ROHM
描述:

ML610Q305/ML610Q306是内置蓝碧石科技自有的RISC架构8位CPU“U8 Core”的、具有语音输出功能的高性能CMOS 8位微控制器。搭载了高音质的语音播放功能和高输出扬声器放大器,以单芯片实现了语音输出功能,非常适用于警报器和家电应用。 为了实现高音质的语音播放功能,利用新开发的高音质、高压缩比的语音压缩算法HQ-ADPCM,可以用比以往ADPCM更少的数据量来确保清晰的声音和宽广的音域,从而实现百听不厌、悦耳动听的声音。

放大器 PC 控制器 微控制器 高压
文件: 总35页 (文件大小:1131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEDL610Q306-01  
Issue Date: Jun. 28, 2021  
ML610Q305/306  
8-bit Microcontroller with Voice Output Function  
GENERAL DESCRIPTION  
Equipped with a 8-bit CPU nX-U8/100, the ML610Q305/306 is a high-performance 8-bit CMOS microcontroller that integrates  
a wide variety of peripherals such as timer, synchronous serial port, successive approximation type 10-bit A/D converter and  
voice output function. The nX-U8/100 CPU is capable of executing instructions efficiently on a  
one-instruction-per-clock-pulse basis through parallel processing by the 3-stage pipelined architecture. The ML610Q305/306  
is also equipped with a flash memory* that has achieved low voltage and low power consumption (at read) equivalent to mask  
ROM, so it is best suited to battery-driven applications such as alarm and portable devices. In addition, it has an on-chip  
debugging function, which allows software debugging/rewriting with the LSI mounted on the board.  
*: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc. SuperFlash®  
is a registered trademark of Silicon Storage Technology, Inc.  
FEATURES  
CPU  
8-bit RISC CPU (CPU name: nX-U8/100)  
Instruction system: 16-bit instructions  
Instruction set:  
Transfer, arithmetic operations, comparison, logic operations, multiplication/division, bit  
manipulations, bit logic operations, jump, conditional jump, call return stack manipulations, arithmetic shift, and so on  
On-Chip debug function  
Minimum instruction execution time  
Approx 30.5 s (@32.768kHz system clock)  
Approx 0.244 s (@4.096 MHz system clock)@VDD=2.0 to 5.5V  
Approx 0.122 s (@8.192 MHz system clock)@VDD=2.2 to 5.5V  
Internal memory  
built in 96-Kbyte flash ROM(48K 16-bits) (1 K byte of test domain that it cannot be used is included)  
built in 2-Kbyte flash ROM (area in which self rewriting is possible (512byte 4))  
built in Internal 1Kbyte RAM (1K 8 bits)  
Interrupt controller  
2 non-maskable interrupt sources  
Internal source: 1(Watchdog timer)  
External source: 1(NMI)  
24 maskable interrupt sources  
Internal source: 16(SSIO0, SSIO1, UART, I2C bus master/slave interface, Timer 0, Timer 1, Timer 2, Timer 3,  
A/D converter, Voice sound reproduction, Speaker pin short detection, TBC128Hz, TBC32Hz,  
TBC16Hz, TBC2Hz)  
External source: 8(P80, P81, P82, P83, P84, P85, P86, P87)  
Time base counter  
Low-speed time base counter 1 channel  
High-speed time base counter 1 channel  
Watchdog timer  
Generates a non-maskable interrupt upon the first overflow and a system reset occurs upon the second  
Free running  
Overflow period: 4 types selectable (125ms, 500ms, 2s, and 8s at 32.768kHz)  
1/35  
FEDL610Q306-01  
ML610Q305/306  
Timers  
8 bits 4ch (16-bit configuration available)  
Voice output function  
Voice synthesis method: 4-bit ADPCM2 / non-linear 8-bit PCM / straight 8-bit PCM /  
straight 16-bit PCM / HQ-ADPCM  
Sampling frequency: 8kHz, 16kHz, 32 kHz, 10.7kHz, 21.3 kHz, 6.4kHz, 12.8kHz, 25.6 kHz  
Successive approximation type A/D converter  
10-bit A/D converter  
Input: 3ch (for ML610Q305)/4ch (for ML610Q306)  
Conversion time: 24.4 μs per channel at 4.096MHz VDD2.2V  
Conversion time: 12.2 μs per channel at 8.192MHz VDD2.5V  
Continuous conversion / Single conversion selectable  
Synchronous serial port  
2ch  
Master/slave selectable  
LSB first/MSB first selectable  
8-bit length/16-bit length selectable  
UART  
Half-duplex × 1ch  
TXD/RXD  
Bit length, parity/no parity, odd parity/even parity, 1 stop bit/2 stop bits  
Positive logic/negative logic selectable  
Built-in baud rate generator  
I2C bus interface  
Master function: standard mode (100 kbps) and Fast mode (400 kbps)  
Slave function: standard mode (100 kbps) and Fast mode (400 kbps)  
General-purpose ports  
Input-only port 1ch  
Output-only port 3ch (including secondary functions)  
Input/output port 12ch (including secondary functions)  
(P40 to P42 uses also as an A/D converter input port.) (for ML610Q305)  
15ch (including secondary functions)  
(P40 to P43 uses also as an A/D converter input port.) (for ML610Q306)  
Speaker amplifier(D-class) output power  
1.0W(at 5.0V)/0.45W(at 3.0V)  
Disconnection detection circuit  
Speaker pin short detection circuit  
Reset  
Reset through the RESET_N pin  
Power-on reset generation when powered on  
Reset by the watchdog timer (WDT) overflow  
PLL oscillation stop detection reset  
Low level detection (LLD) reset  
Clock  
Low-speed clock  
Built-in RC oscillation (32.768 kHz)  
High-speed clock  
Built-in PLL oscillation (Approx. 1.024MHz / 2.048MHz / 4.096MHz / 8.192MHz)  
2/35  
FEDL610Q306-01  
ML610Q305/306  
Power management  
STOP mode: Stop of oscillation (Operations of CPU and peripheral circuits are stopped.)  
HALT mode: Instruction execution by CPU is suspended (peripheral circuits are in operating states).  
Clock gear: The frequency of high-speed system clock can be changed by software (1/2, 1/4, 1/8, or 1/16 of the  
oscillation clock)  
Block control function: Operation of an intact functional block circuit is powerd down. (register reset and clock stop)  
Shipment  
32-pin WQFN  
ML610Q305-xxxGD (blank product: ML610Q305-NNNGD)  
32-pin TQFP  
ML610Q305-xxxTB (blank product: ML610Q305-NNNTB)  
36-pin WQFN  
ML610Q306-xxxGD (blank product: ML610Q306-NNNGD)  
xxx: ROM code number  
Guaranteed operating range  
Operating temperature: 40C to 85C  
Operating voltage: VDD = 2.0V to 5.5V, SPVDD = 2.0V to 5.5V  
3/35  
FEDL610Q306-01  
ML610Q305/306  
BLOCK DIAGRAM  
ML610Q305/306 Block Diagram  
CPU (nX-U8/100)  
EPSW13  
ELR13  
LR  
ECSR13  
DSR/CSR  
PC  
GREG  
015  
PSW  
EA  
Timing  
Controller  
Program Memory  
Flash)  
ALU  
SP  
BUS  
96Kbyte  
Instruction  
Decoder  
Instruction  
Register  
Controller  
Data Flash  
2Kbyte  
On-Chip  
ICE  
VDD  
VSS  
INT  
2
Data-bus  
SCK0*  
SIN0*  
SSIO  
RESET_N  
SOUT0*  
RESET &  
TEST1_N  
TEST  
SCK1*  
SIN1*  
SOUT1*  
RAM  
1KByte  
TEST0  
LSCLK*  
OSC  
INT  
2
OUTCLK*  
Interrupt  
Controller  
I2C  
Master/Slave  
SDA*  
SCL*  
INT  
4
LLD  
INT  
1
TBC  
UART  
RXD0*  
TXD0*  
VDDL  
POWER  
INT  
4
8bit Timer  
INT  
9
NMI  
P90(Q305) or  
P90 to P92(Q306)  
INT  
1
INT  
2
WDT  
GPIO  
P20 to P22  
VOICECNT  
P40 to P42*1(Q305) or  
P40 to P431 (Q306)  
P80 to P87  
INT  
1
SPVDD  
SPVSS  
VREF  
AIN0 to AIN2*1 (Q305)  
or  
D-class  
10bit-ADC  
SPP  
SPM  
Speaker  
AIN0 to AIN3*1(Q306)  
Amplifier  
* : Secondary or tertiary function  
*1: Select I/O port or A/D converter input terminal  
4/35  
FEDL610Q306-01  
ML610Q305/306  
PIN CONFIGURATION  
Pin Layout of ML610Q305 32pin WQFN Package(Top View)  
16 SPM  
15 SPM  
14 SPP  
13 SPP  
VDD 25  
P42/AIN2/SOUT1/SOUT0 26  
P41/AIN1/SCK1/SCK0 27  
P40/AIN0/SIN1/SIN0 28  
VREF 29  
(TOP VIEW)  
WQFN32  
12 RESET_N  
11 P83/EXI3  
P86/EXI6/RXD0/SOUT1 30  
P87/EXI7/TXD0 31  
10 P82/EXI2/SOUT0  
9
TEST0  
NMI 32  
5/35  
FEDL610Q306-01  
ML610Q305/306  
Pin Layout of ML610Q305 32pin TQFP Package(Top View)  
24  
23  
22  
21  
20  
19  
18  
17  
25  
26  
27  
28  
16  
15  
14  
13  
12  
11  
10  
9
VDD  
P42/AIN2/SOUT1/SOUT0  
P41/AIN1/SCK1/SCK0  
P40/AIN0/SIN1/SIN0  
SPM  
SPM  
SPP  
SPP  
TOP VIEW)  
VREF 29  
TQFP32  
RESET_N  
P83/EXI3  
P82/EXI2/SOUT0  
TEST0  
30  
P86/EXI6/RXD0/SOUT1  
31  
32  
P87/EXI7/TXD0  
NMI  
1
2
3
4
5
6
7
8
6/35  
FEDL610Q306-01  
ML610Q305/306  
Pin Layout of ML610Q306 36pin WQFN Package(Top View)  
18 SPM  
VDD 28  
17 SPM  
16 SPP  
15 SPP  
P43/AIN3 29  
P42/AIN2/SOUT1/SOUT0 30  
P41/AIN1/SCK1/SCK0 31  
(TOP VIEW)  
WQFN36  
14 RESET_N  
13 P83/EXI3  
P40/AIN0/SIN1/SIN0 32  
VREF 33  
12 P82/EXI2/SOUT0  
11 TEST0  
P86/EXI6/RXD0/SOUT1 34  
P87/EXI7/TXD0 35  
10 (NC)  
NMI 36  
NC: No Connection  
7/35  
FEDL610Q306-01  
ML610Q305/306  
LIST OF PIN  
In the I/O column, “—” denotes a power pin, Ian input pin, Oan output pin, and I/Oan input/output pin.  
Primary function  
Secondary/Tertiary function  
32pin  
WQFN  
/TQFP  
36pin  
WQFN  
Secondary/  
Tertiary  
Pin name  
I/O  
Description  
Pin name  
I/O  
Description  
Positive output pin of the  
built-in speaker amplifier  
Negative output pin of the  
built-in speaker  
Negative power supply pin for  
built-in speaker amplifier  
Positive power supply pin for  
built-in speaker amplifier  
Negative power supply pin  
Power supply for internal logic  
(internally generated)  
15, 16  
17, 18  
19, 20  
13, 14  
15, 16  
17, 18  
SPP  
SPM  
O
O
SPVss  
21, 22  
4, 26  
27  
19, 20  
3, 23  
24  
SPVDD  
VSS  
VDDL  
VDD  
28  
25  
Positive power supply pin  
Reference power supply pin  
for successive-approximation  
type ADC  
33  
29  
VREF  
14  
11  
8
12  
9
7
RESET_N  
TEST0  
TEST1_N  
I
I/O  
I
Reset input pin  
Input/output pin for testing  
Input pin for testing  
Input port,  
36  
32  
NMI  
I
non-maskable interrupt  
Output port / LED port  
Output port / LED port  
Output port / LED port  
Input port/Output port  
Input port/Output port  
Input port/Output port  
Input port/Output port  
/Successive-approximation  
type ADC input0  
5
3
2
9
1
4
2
1
8
P20/LED0  
P21/LED1  
P22/LED2  
P90  
O
O
O
I/O  
I/O  
I/O  
Secondary  
Secondary  
LSCLK  
OUTCLK  
SIN1  
O
O
I
Low-speed clock output  
high-speed clock output  
P91  
P92  
25  
Secondary  
SSIO1 data input  
32  
31  
28  
P40/AIN0  
P41/AIN1  
I/O  
Tertiary  
SIN0  
I
SSIO0 data input  
SSIO1 synchronous  
clock input/output  
SSIO0 synchronous  
clock input/output  
SSIO1 data output  
Secondary  
SCK1  
I/O  
Input port/Output port  
/Successive-approximation  
type ADC input1  
27  
I/O  
Tertiary  
Secondary  
Tertiary  
SCK0  
SOUT1  
SOUT0  
I/O  
O
Input port/Output port  
/Successive-approximation  
type ADC input2  
Input port/Output port  
/Successive-approximation  
type ADC input3  
30  
29  
6
26  
5
P42/AIN2  
P43/AIN3  
P80/EXI0  
I/O  
I/O  
I/O  
O
SSIO0 data output  
I2C synchronous data  
input/ output  
SSIO0 data input  
I2C synchronous clock  
input/output  
Secondary  
Tertiary  
SDA  
SIN0  
SCL  
I/O  
I
Input port/Output port /  
External interrupt  
Secondary  
I/O  
Input port/Output port /  
External interrupt  
7
6
P81/EXI1  
I/O  
SSIO0 synchronous  
clock input/output  
Tertiary  
Tertiary  
SCK0  
I/O  
O
Input port/Output port /  
External interrupt  
12  
13  
10  
11  
P82/EXI2  
P83/EXI3  
I/O  
I/O  
SOUT0  
SSIO0 data output  
Input port/Output port /  
External interrupt  
Input port/Output port /  
External interrupt  
Input port/Output port /  
External interrupt  
Input port/Output port /  
External interrupt  
I
23  
24  
34  
35  
21  
22  
30  
31  
P84/EXI4  
P85/EXI5  
P86/EXI6  
P87/EXI7  
I/O  
I/O  
I/O  
I/O  
Tertiary  
Tertiary  
SIN1  
SCK1  
SSIO1 data input  
SSIO1 synchronous  
clock input/output  
UART0 data input  
SSIO1 data output  
I/O  
Secondary  
Tertiary  
RXD0  
SOUT1  
I
O
Input port/Output port /  
External interrupt  
Secondary  
TXD0  
O
UART0 data output  
Note:  
The function which is not chosen is lost when either a secondary function or a tertiary function is chosen. However, when  
using it as an input, read-out of an input data is possible at a port n data register (PnD).  
8/35  
FEDL610Q306-01  
ML610Q305/306  
PIN DESCRIPTION  
In the I/O column, “—” denotes a power pin, Ian input pin, Oan output pin, and I/Oan input/output pin.  
Primary/  
Pin name  
I/O  
Description  
Secondary/  
Tertiary  
Logic  
Power supply  
VSS  
Negative power supply pin  
Positive power supply pin  
VDD  
VDDL  
Positive power supply pin for internal logic (internally generated)  
Connect the capacitor CL(1uF)( Refer to Measuring circuit 1) to  
VSS  
SPVSS  
SPVDD  
VREF  
Negative power supply pin for built-in speaker amplifier  
Positive power supply pin for built-in speaker amplifier  
Reference power supply pin for successive-approximation type ADC  
Test  
TEST0  
TEST1_N  
System  
Input/output pin for testing. Has a pull-down resistor built in.  
Input pin for testing. Has a pull-up resistor built in.  
I/O  
I
Positive  
Negative  
Reset input pin. When this pin is set to a Llevel, the device is  
placed in system reset mode and the internal circuit is initialized.  
If after that this pin is set to a Hlevel, program execution starts.  
This pin has a pull-up resistor built in.  
RESET_N  
I
Negative  
Low-speed clock output. This function is allocated to the secondary  
function of the P20 pin.  
LSCLK  
O
O
Secondary  
Secondary  
High-speed clock output. This function is allocated to the secondary  
function of the P21 pin.  
OUTCLK  
General-purpose Output port  
General-purpose output ports.  
P20 to P22  
Provided with a secondary function. Cannot be used as ports if  
their secondary function is used.  
O
Primary  
Positive  
General-purpose Input/output port  
General-purpose input/output ports.  
P40 to P42  
Provided with a tertiary function. Cannot be used as ports if their  
tertiary function is used.  
I/O  
Primary  
Primary  
Positive  
Positive  
P43  
General-purpose input/output port. (built into ML610Q306)  
I/O  
General-purpose input/output ports.  
Provided with a secondary function or a tertiary function. Cannot  
be used as ports if their secondary function or tertiary function is  
used.  
P80 to P87  
I/O  
Primary  
Positive  
P90  
General-purpose input/output ports.  
I/O  
I/O  
Primary  
Primary  
Positive  
Positive  
P91 to P92  
General-purpose input/output port. (built into ML610Q306)  
9/35  
FEDL610Q306-01  
ML610Q305/306  
Primary/  
Secondary/  
Tertiary  
Pin name  
I/O  
Description  
Logic  
I2C bus interface  
I2C data input/output pin. This pin is used as the secondary  
function of the P80 pin. This pin has an NMOS open drain  
output. When using this pin as a function of the I2C, externally  
connect a pull-up resistor.  
I2C clock output pin. This pin is used as the secondary function  
of the P81 pin. This pin has an NMOS open drain output. When  
using this pin as a function of the I2C, externally connect a  
pull-up resistor.  
SDA  
SCL  
I/O  
I/O  
Secondary  
Secondary  
Positive  
Positive  
Synchronous serial (SSIO)  
Synchronous serial data input pin. Allocated to the tertiary  
function of the P40 pin and P80 pin.  
Synchronous serial clock input/output pin. Allocated to the  
tertiary function of the P41 pin and P81 pin.  
Synchronous serial data output pin. Allocated to the tertiary  
function of the P42 pin and P82 pin.  
SIN0  
I
Tertiary  
Tertiary  
Tertiary  
Positive  
SCK0  
SOUT0  
I/O  
O
Positive  
Synchronous serial data input pin. Allocated to the tertiary  
function of the P84 pin and the secondary function of the P40  
pin.  
Secondary/  
Tertiary  
SIN1  
I
Positive  
Synchronous serial clock input/output pin. Allocated to the  
Secondary/  
Tertiary  
SCK1  
SOUT1  
I/O tertiary function of the P85 pin and the secondary function of the  
P41 pin.  
Synchronous serial data output pin. Allocated to the tertiary  
function of the P86 pin and the secondary function of the P42  
pin.  
Secondary/  
Tertiary  
O
Positive  
UART  
TXD0  
UART data output pin. Allocated to the secondary function of the  
P87 pin.  
UART data input pin. Allocated to the secondary function of the  
P86 pin.  
O
I
Secondary  
Secondary  
Positive  
Positive  
RXD0  
External interrupt  
NMI  
External non-maskable interrupt input pin. The interrupt occurs  
on both the rising and falling edges.  
External maskable interrupt input pins. It is possible, for each bit,  
to specify whether the interrupt is enabled and select the  
interrupt edge by software. Allocated to the primary function of  
the P80 to P87 pins.  
Positive/  
Negative  
I
I
Primary  
Primary  
Positive/  
Negative  
EXI0 to 7  
LED drive  
Pins for LED driving. Allocated to the primary function of the P20  
to P22 pins.  
Positive/  
Negative  
LED0 to 2  
O
Primary  
Voice output function  
SPP  
SPM  
O
O
Positive output pin of the internal speaker amplifier.  
Negative output pin of the internal speaker amplifier.  
Successive-approximation type A/D converter  
Analog inputs to Ch0 to Ch2 of the successive-approximation  
AIN0 to 2  
I
type A/D converter. Allocated to the primary function of the P40  
to P42 pins.  
Analog inputs to Ch3 of the successive-approximation type A/D  
converter.(built into ML610Q306) Allocated to the primary  
function of the P43 pins.  
Primary  
Primary  
AIN3  
I
10/35  
FEDL610Q306-01  
ML610Q305/306  
TERMINATION OF UNUSED PINS  
How to Terminate Unused Pins  
Pin  
Recommended pin termination  
RESET_N  
Open  
Open  
TEST0  
TEST1_N  
Open or connect to VDD  
Connect to VDD  
Open  
*
VREF  
P40 to P42 (AIN0 to AIN2)  
P43(AIN3) (built into ML610Q306)  
Open  
SPVDD  
Connect to VDD  
Connect to VSS  
Open  
SPVSS  
SPP  
SPM  
Open  
P20 to P22  
Open  
P80 to P87  
Open  
P90  
Open  
P91 to P92(built into ML610Q306)  
NMI  
Open  
Open or connect to VDD  
*
*: TEST1_N pin (Typ.10k) and NMI pin (Typ.100k) have the built-in pull-up resistor. It is recommened to connect to VDD  
or be pulled up by around 1kresistor in a severe enviroment such as noise.  
Notes:  
The unused input ports or unused input/output ports should not be configured as high-impedance inputs and left open. If the  
corresponding pins are configured as high-impedance inputs and left open, because the input buffer of both Nch and Pch MOS  
transistor turn on, the supply current may become excessively large. Therefore, it is recommended to configure those pins as  
either inputs with a pull-down resistor/pull-up resistor or outputs.  
When the power is turned on, the state of the general-purpose port is undefined. Therefore, there is a possibility of outputting  
high-level or low-level.If the undefined state at the power-on is a problem, take measures with the peripheral components on the  
user board.  
11/35  
FEDL610Q306-01  
ML610Q305/306  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings  
(VSS= SPVSS=0V)  
Parameter  
Power supply voltage 1  
Power supply voltage 2  
Power supply voltage 3  
Reference supply voltage  
Input voltage  
Symbol  
VDD  
Condition  
Ta=25C  
Ta=25C  
Ta=25C  
Ta=25C  
Ta=25C  
Ta=25C  
Rating  
Unit  
V
0.3 to +6.5  
0.3 to +6.5  
0.3 to +2.0  
SPVDD  
VDDL  
VREF  
VIN  
V
V
0.3 to VDD+0.3  
0.3 to VDD+0.3  
0.3 to VDD+0.3  
V
V
V
Output voltage  
VOUT  
Output current 1  
(P40 to P42, P43*1, P80 to P87,  
P90, P91 to P92*1)  
IOUT1  
Ta=25C  
12 to +11  
12 to +20  
mA  
mA  
Ta=25C  
When setting Nch open drain  
mode.  
Output current 2  
(P20 to P22)  
IOUT2  
Power dissipation  
PD  
Ta=25C  
1.0  
W
Storage temperature  
TSTG  
55 to +150  
C  
*1 :P43, P91 to P92 are built into ML610Q306  
Recommended Operating Conditions  
(VSS= SPVSS=0V)  
Parameter  
Symbol  
TOP  
Condition  
Range  
Unit  
Operating temperature  
40 to +85  
2.0 to 5.5  
2.0 to 5.5  
C  
VDD  
Operating voltage  
V
SPVDD  
VREF  
Reference supply voltage  
Operating frequency (CPU)  
VDDVREF  
2.2 to VDD  
27k to 4.2M  
4.2M to 8.4M  
V
VDD = 2.0 to 5.5V  
VDD = 2.2 to 5.5V  
fOP  
CV  
CL  
Hz  
Capacitor externally connected to  
VDD pin  
Capacitor externally connected to  
VDDL pin  
More than 1.030%  
1.030%  
F  
F  
12/35  
FEDL610Q306-01  
ML610Q305/306  
Operating Conditions of Flash Memory  
(VSS= SPVSS=0V)  
Unit  
Parameter  
Symbol  
TOP  
Condition  
At write/erase  
(Data flash area)  
At write/erase  
Range  
-40 to +70  
Operating temperature  
C  
0 to +40  
(Program code area)  
At write/erase  
Data flash area(512Byte x 4)  
Program code area  
Operating voltage  
VDD  
CEPD  
CEPP  
2.2 to 5.5  
10,000  
100  
V
Maximum rewrite count*1  
cycles  
All program and data  
Chip erase  
area  
Erase unit  
Program area  
Block erase  
16  
KB  
Data area  
2
YDR  
Sector erase  
Chip/Block/Sector erase  
512  
50  
1word(2Bytes)  
B
ms  
μs  
years  
Erase time(Maximum)  
Program unit  
Program time(Maximum)  
Write cycles  
1word(2Bytes)  
40  
15  
*1 : It means one erase and one program. Even when erasing is interrupted, it counts as one time.  
DC Characteristics (Supply Current)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Measuring  
circuit  
Parameter  
Symbol  
IDD1  
Condition  
Unit  
Min.  
Typ.  
Max.  
3.0  
CPU: In STOP state.  
high-speed oscillation:  
stopped  
CPU: In HALT state  
(LTBC,WDT: Operating)  
High-speed oscillation:  
Stopped  
Ta+50C  
Ta+85C  
0.5  
0.5  
Supply current 1  
8.0  
5.0  
10  
Ta+50C  
2.0  
2.0  
15  
A  
Supply current 2  
Supply current 3  
IDD2  
IDD3  
Ta+85C  
CPU: Running at 32.768 kHz*1  
High-speed oscillation: Stopped  
30  
VDD=SPVDD  
=
=
=
1.0  
1.0  
2.0  
2.5  
2.5  
3.5  
3.0V  
VDD=SPVDD  
5.0V  
CPU: Running at 4.096MHz  
CR oscillating mode  
Supply current 4  
IDD4  
VDD=SPVDD  
3.0V  
1
CPU: Running at 8.192MHz  
CR oscillating mode  
VDD=SPVDD  
=
2.0  
3.5  
5.0V  
CPU: Running at 4.096MHz  
CR oscillating mode  
During voice playback of  
1KHz,2.98db,SIN-wave (no  
output load)  
mA  
VDD=SPVDD  
=
=
=
=
2.0  
4.0  
3.0  
5.0  
5.0  
8.0  
6.0  
9.0  
3.0V  
VDD=SPVDD  
5.0V  
Supply current 5  
IDD5  
CPU: Running at 8.192MHz  
CR oscillating mode  
During voice playback of  
1KHz,2.98db,SIN-wave (no  
output load)  
VDD=SPVDD  
3.0V  
VDD=SPVDD  
5.0V  
*1: Case when the CPU operating rate is 100% (no HALT state).  
13/35  
FEDL610Q306-01  
ML610Q305/306  
DC Characteristics (VOHL, IOHL, IIHL)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Measuring  
circuit  
Parameter  
Symbol  
VOH1  
Condition  
Unit  
Min.  
Typ.  
Max.  
Output voltage 1  
(P20 to P22)  
(P40 to P42,  
P43*1)  
(P80 to P87)  
(P90, P91 to  
P92*1)  
IOH1=0.5mA  
(When one port is selected as output mode)  
VDD  
0.5  
IOL1=+0.5mA  
(When one port is selected as output mode)  
VOL1  
VOL2  
0.5  
V
2
IOL2=+5mA  
0.5  
0.5  
(When one port is  
selected as Nch open  
drain mode)  
V
DD2.2V  
IOL2=+8mA  
DD2.3V  
Output voltage 2  
(P20 to P22)  
V
IOL3=+3mA  
Output voltage 3  
(P80 to P81)  
VOL3  
IOOH  
( I2C bus input/output mode,  
0.4  
1.0  
When one port is selected as output)  
Output leakage  
(P20 to P22)  
(P40 to P42,  
P43*1)  
VOH=VDD (in high-impedance state)  
A  
3
(P80 to P87)  
(P90, P91 to  
P92*1)  
IOOL  
VOL=VSS (in high-impedance state)  
1.0  
Input current 1  
(RESET_N)  
(TEST1_N)  
Input current 2  
(NMI)  
IIH1  
IIL1  
IIH2  
VIH1=VDD  
VIL1=VSS  
0
1500  
2
300  
30  
1.0  
20  
250  
VIH2=VDD (when pulled-down)  
IIL2  
VIL2=VSS (when pulled-up)  
−50  
30  
2  
(P40 to P42,  
P43*1)  
IIH2Z  
VIH2=VDD (in high-impedance state)  
1.0  
A  
4
(P80 to P87)  
(P90, P91 to  
P92*1)  
IIL2Z  
VIL2=VSS (in high-impedance state)  
1.0  
Input current 3  
(TEST0)  
*1 P43, P91 to P92 are built into ML610Q306  
IIH3  
IIL3  
VIH3=VDD  
VIL3=VSS  
20  
300  
1500  
1.0  
14/35  
FEDL610Q306-01  
ML610Q305/306  
DC Characteristics (VIHL)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Measuring  
circuit  
Parameter  
Symbol  
VIH1  
Condition  
Unit  
Min.  
Typ.  
Max.  
VDD  
Input voltage 1  
(RESET_N)  
(TEST0)  
(TEST1_N)  
(NMI)  
0.7VDD  
(P40 to P42,  
P43*1)  
VIL1  
0
0.3VDD  
(P80 to P87)  
(P90, P91 to  
P92*1)  
V
5
Hysteresis width  
(RESET_N)  
(TEST0)  
(TEST1_N)  
(NMI)  
(P40 to P42,  
P43*1)  
VT  
0.05VDD  
0.4VDD  
(P80 to P87)  
(P90, P91 to  
P92*1)  
Input pin  
capacitance  
(NMI)  
(P40 to P42,  
P43*1)  
(P80 to P87)  
(P90, P91 to  
P92*1)  
f=10kHz  
Vrms=50mV  
Ta=25C  
CIN  
10  
pF  
*1 : P43, P91 to P92 are built into ML610Q306  
Hysteresis Width  
VT  
VDD  
Input signal  
VSS  
VDDL  
VSS  
Internal signal  
15/35  
FEDL610Q306-01  
ML610Q305/306  
Measuring circuit  
Measuring circuit 1  
VDD VREF SPVDD  
VSS  
SPVSS  
VDDL  
CAV  
CL  
CSV  
CV  
1.0μF  
1.0μF  
1.0μF  
1.0μF  
A
CSV  
CAV  
CL  
CV  
Measuring circuit 2  
(* 2)  
VIH  
V
(* 1)  
VIL  
VDD VDDL  
VREF SPVDD VSS  
SPVSS  
(* 1) Input logic circuit to determine the specified measuring conditions.  
(* 2) Measured at the specified output pins.  
16/35  
FEDL610Q306-01  
ML610Q305/306  
Measuring circuit 3  
(* 2)  
VIH  
A
(* 1)  
VIL  
VREF SPV  
VDD VDDL  
DD VSS  
SPVSS  
(* 1) Input logic circuit to determine the specified measuring conditions.  
(* 2) Measured at the specified output pins.  
Measuring circuit 4  
(* 3)  
A
VDD VDDL  
VREF SPVDD  
SPVSS  
VSS  
(* 3) Measured at the specified output pins.  
Measuring circuit 5  
VIH  
(* 1)  
VIL  
VDD VDDL  
VREF SPV  
SPVSS  
DD VSS  
(* 1) Input logic circuit to determine the specified measuring conditions.  
17/35  
FEDL610Q306-01  
ML610Q305/306  
AC Characteristics (Oscillation Circuit)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Typ.  
Measuring  
Circuit  
Parameter  
Symbol  
fLCR  
Condition  
Unit  
Min.  
Typ  
-1.5%  
Typ  
-3.0%  
Typ  
-1.5%  
Typ  
Max.  
Typ  
+1.5%  
Typ  
+3.0%  
Typ  
+1.5%  
Typ  
Ta = 10 to +50°C  
Ta = 40 to +85°C  
Ta = 10 to +50°C  
Ta = 40 to +85°C  
Built-in RC oscillation frequency  
32.768  
kHz  
1
4.096  
or  
8.192  
Source oscillation frequency  
fHPLL  
MHz  
-3.0%  
+3.0%  
AC Characteristics (Speaker amp)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Symbol  
RLSP  
Condition  
Unit  
Parameter  
Min.  
6.4  
Typ.  
Max.  
SPM, SPP output load  
resistance  
8
SPVDD=3.0V, f=1kHz  
RSPO=8, THD10%  
PSPO1  
0.45  
1.0  
Speaker amp output power  
W
SPVDD=5.0V, f=1kHz  
RSPO=8, THD10%  
PSPO2  
18/35  
FEDL610Q306-01  
ML610Q305/306  
AC Characteristics (Power on, Reset Sequence)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Typ.  
Measuring  
circuit  
Parameter  
Symbol  
Condition  
Unit  
Min.  
0
Max.  
Time until it starts SPVDD after starting  
VDD  
tVDD  
ns  
Reset *1 pulse width  
PRST  
PNRST  
SPOR  
100  
0.1  
0.4  
1
s  
Reset *1 noise elimination pulse width  
Power-on rising slope  
V/ms  
*1 : reset from RESET_N pin  
VIL1  
VIL1  
PRST  
RESET_N  
RESET_N Pin Reset  
SPOR  
VDD  
Power-on rising slope  
19/35  
FEDL610Q306-01  
ML610Q305/306  
AC Characteristics (Low Level Detection Reset)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Measuring  
circuit  
Parameter  
Symbol  
Condition  
Unit  
Max.  
Typ.  
+5%  
Typ.  
+5%  
Typ.  
+5%  
Typ.  
+5%  
Min.  
Typ.  
-5%  
Typ.  
-5%  
Typ.  
-5%  
Typ.  
-5%  
Typ.  
LLD1-0=3H  
LLD1-0=2H  
LLD1-0=1H  
1.9  
2.1  
2.3  
Detection voltage  
Hysteresis width  
VTH  
V
LLD1-0=0H  
2.5  
0.1  
10  
1
ΔTH  
0.05  
0.15  
V
Output delay when power  
rising  
TPLH  
200  
s  
Output delay when power  
falling  
Low level detection reset  
operating voltage  
TPHL  
VMIN  
10  
200  
s  
1.0  
V
SPOR  
ΔVTH  
VTH  
VDD  
VMIN  
0V  
H”  
H”  
Low level  
Detection  
Reset  
TPLH  
TPLH  
TPHL  
TPHL  
L”  
(*)L”: reset  
Note:  
When the detection voltage of Low Level Detection Reset (VTH) is set to 1.9V(LLD1-0=3H), Low Level Detection Reset is not  
asserted in the voltage lange from lower minimum recommended operating volatge (VDD=2.0V) to upper detection voltage  
(VTH=1.9V). During power shutdown sequence, if this voltage lange is kept, depending on the LSI operationg condition, the  
internal regulated power supply circuit (VRL) can not keep the operationg votage, and the program may NOT operate properly.  
Therefore, please take measures, such as, setting Low Level Detection Reset (VTH) to except 1.9V (LLD1-0 =3H), and reset  
generation from RESET_N pin for fail-safe  
20/35  
FEDL610Q306-01  
ML610Q305/306  
Power-on/Shutdown Sequence  
When the power-on rising slope is 0.1V/ms(Min.) or more  
When Power-on  
When Shutdown  
VDD  
SPOR  
SPVDD  
When the power-on rising slope is less than 0.1V/ms(Min.)  
When Shutdown  
When Power-on  
90%  
VDD  
SPOR  
90%  
SPVDD  
10ms(min.)  
10ms(min.)  
VIL  
RESET_N  
Recommended power-on/shutdown sequence  
There are no ristrictions of order, slope time, time lag in turnning on/off VDD and SPVDD  
.
Notes:  
When the power is turned on, the state of the general-purpose port is undefined. Therefore, there is a possibility of outputting  
high-level or low-level.If the undefined state at the power-on is a problem, take measures with the peripheral components on the  
user board.  
When power-on reset is generated because of instantaneous power failure etc., or, when the glitch which is narrower than  
output delay when power falling (TPHL) is generated on VDD power, or, When VDD power is decreased below low level detection  
reset operating voltage (VMIN) before output delay when power falling (TPHL) is passed, the LSI may NOT get reset, and the  
program may NOT operate properly. Therefore, please take measures, such as, power voltage drop prevention by bypass  
capacitors, and reset generation from RESET_N pin for fail-safe.  
21/35  
FEDL610Q306-01  
ML610Q305/306  
AC Characteristics (Oscillation stable time after STOP release)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Typ.  
Parameter  
Symbol  
TPUP1  
Condition  
Unit  
ms  
Min.  
Max.  
2
Oscillation stable time  
after STOP release  
High-speed oscillation  
waveform  
High-speed oscillation waveform  
High-speed oscillation waveform  
TPUP1  
OSCLK, HSCLK  
OSCLK, HSCLK waveform  
OSCLK, HSCLK waveform  
HSCLK waveform  
SYSCLK  
HSCLK waveform  
Interruput request  
Program operation mode  
STOP mode  
Program operation mode  
AC Characteristics (External Interrupt)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Parameter  
Symbol  
TNUL  
Condition  
Unit  
Min.  
Typ.  
Max.  
Interrupt: Enabled (MIE=1)  
CPU: NOP operation  
External interrupt disable  
period  
2.5sysclk  
3.5sysclk  
s  
P80 to P87  
(Rising-edge interrupt)  
tNUL  
tNUL  
tNUL  
P80 to P87  
(Falling-edge interrupt)  
NMI, P80 to P87  
(Both-edge interrupt)  
22/35  
FEDL610Q306-01  
ML610Q305/306  
AC Characteristics (Synchronous Serial Port)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Parameter  
SCK input cycle  
Symbol  
tSCYC  
tSCYC  
tSW  
Condition  
Unit  
Min.  
10  
Typ.  
Max.  
When high-speed oscillation is not  
active  
s  
(slave mode)  
When high-speed oscillation is active  
500  
4
ns  
VDD2.4V  
SCK output cycle  
(master mode)  
MHz  
VDD2.0V  
When high-speed oscillation is not  
active  
2
4
s  
ns  
s
SCK input pulse width  
(slave mode)  
When high-speed oscillation is active  
200  
SCK*1  
0.4  
SCK*1  
0.5  
SCK*1  
0.6  
SCK output pulse width  
(master mode)  
tSW  
tSD  
tSD  
SOUT output delay time  
(slave mode)  
SOUT output delay time  
(master mode)  
SIN input  
180  
80  
ns  
ns  
setup time  
(slave mode)  
SIN input  
tSS  
50  
ns  
ns  
tSH  
50  
hold time  
*1: Clock period selected with SnCK30 of the serial port n mode register (SIOnMOD1) (n=0,1)  
tSCYC  
tSW  
tSW  
SCKn*  
SOUTn*  
SINn*  
tSD  
tSD  
tSS  
tSH  
*: Indicates the secondary function of the port. n=0, 1  
23/35  
FEDL610Q306-01  
ML610Q305/306  
AC Characteristics (I2C Bus Interface: Standard Mode 100kbps)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Typ.  
Parameter  
Symbol  
fSCL  
Condition  
Unit  
kHz  
s  
Min.  
0
Max.  
100  
SCL clock frequency  
SCL hold time  
tHD:STA  
4.0  
(start/restart condition)  
SCL Llevel time  
SCL Hlevel time  
SCL setup time  
(restart condition)  
SDA hold time  
tLOW  
tHIGH  
4.7  
4.0  
s  
s  
tSU:STA  
4.7  
s  
tHD:DAT  
tSU:DAT  
0
s  
s  
SDA setup time  
SDA setup time  
(stop condition)  
Bus-free time  
0.25  
tSU:STO  
tBUF  
4.0  
4.7  
s  
s  
AC Characteristics (I2C Bus Interface: Fast Mode 400kbps)  
(VDD= 2.0 to 5.5V, SPVDD=2.0 to 5.5V, VSS= SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min.  
0
Typ.  
Max.  
400  
SCL clock frequency  
fSCL  
kHz  
SCL hold time  
tHD:STA  
0.6  
s  
(start/restart condition)  
SCL Llevel time  
SCL Hlevel time  
SCL setup time  
(restart condition)  
SDA hold time  
tLOW  
tHIGH  
1.3  
0.6  
s  
s  
tSU:STA  
0.6  
s  
tHD:DAT  
tSU:DAT  
0
0.1  
s  
s  
SDA setup time  
SDA setup time  
(stop condition)  
Bus-free time  
tSU:STO  
tBUF  
0.6  
1.3  
s  
s  
Start  
condition  
Restart  
condition  
Stop  
condition  
P80/SDA  
P81/SCL  
tBUF  
tSU:STO  
tHD:STA  
tLOW  
tHIGH  
tSU:STA tHD:STA  
tSU:DAT  
tHD:DAT  
24/35  
FEDL610Q306-01  
ML610Q305/306  
Electrical Characteristics of Successive Approximation Type A/D Converter  
(VDD=SPVDD=2.2 to 5.5V, VREF=2.2 to 5.5V, VSS=SPVSS=0V, Ta=40 to +85C, unless otherwise specified)  
Rating  
Parameter  
Symbol  
n
Condition  
Unit  
bit  
Min.  
4  
5  
3  
−  
4  
4  
Typ.  
Max.  
10  
+4  
Resolution  
2.7VVREF5.5V  
2.2VVREF2.7V  
2.7VVREF5.5V  
2.2VVREF2.7V  
RI5kΩ  
Integral non-linearity error  
IDL  
+5  
+3  
+4  
+4  
+4  
5k  
VDD  
Differential non-linearity error  
DNL  
LSB  
Zero-scale error  
Full-scale error  
Prefilter resistance  
Reference supply voltage  
VOFF  
FSE  
RI  
RI5kΩ  
Ω
VREF  
2.2  
V
Conversion time  
tCONV  
HSCLK=4M to 8.4MHz  
102  
/CH  
: Period of high-speed clock (HSCLK)  
VDD  
Reference  
supply voltage  
VREF  
VDDL  
1μF  
1μF  
A
RI5k  
AIN0  
to  
AIN2  
AIN3*  
1μF  
+
Analog input  
VSS  
0.1μF  
* AIN3 is built into ML610Q306  
25/35  
FEDL610Q306-01  
ML610Q305/306  
Example of Application Circuit  
Supply voltage  
CSV  
SPVDD  
SPVss  
EASE1000 V2  
I/F  
VDD  
3.3VOUT  
CV  
VTref  
RST_OUT/SCK  
SDATA  
TEST1_N  
TEST0  
Speaker  
Vss  
SPP  
SPM  
CL  
VDDL  
ML610Q305/306  
RESET_N  
NMI  
RXD0  
TXD0  
P86  
P87  
P40/AIN0 to P42/AIN2  
ANALOG  
VREF  
CAV  
VSS  
VSS  
P20 to P22  
CV  
CL  
CAV  
CSV  
: 1.0uF  
: 1.0uF  
: 1.0uF  
: 1.0uF  
LED  
VDD and SPVDD are supplied from same power supply  
Note:  
Design the PCB layout having the shortest wiring distance between VDDL pin and VDDL pin's external capacitor (CL), and  
between VDDL pin's external capacitor (CL) and VSS for noise reduction purpose.  
26/35  
FEDL610Q306-01  
ML610Q305/306  
Supply voltage  
IN  
DC-DC  
OUT  
GND  
CSV  
SPVDD  
SPVss  
EASE1000 V2  
I/F  
VDD  
CV  
3.3VOUT  
VTref  
RST_OUT/SCK  
SDATA  
Vss  
TEST1_N  
TEST0  
Speaker  
SPP  
SPM  
CL  
VDDL  
ML610Q305/306  
RESET_N  
NMI  
RXD0  
TXD0  
P86  
P87  
P40/AIN0 to P42/AIN2  
ANALOG  
VREF  
CAV  
VSS  
VSS  
P20-P22  
CV  
CL  
CAV  
CSV  
: 1.0uF  
: 1.0uF  
: 1.0uF  
: 1.0uF  
LED  
VDD is supplied through DC-DC converter from SPVDD  
Note:  
Design the PCB layout having the shortest wiring distance between VDDL pin and VDDL pin's external capacitor (CL), and  
between VDDL pin's external capacitor (CL) and VSS for noise reduction purpose.  
27/35  
FEDL610Q306-01  
ML610Q305/306  
PACKAGE DIMENSIONS (32pin WQFN)  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.  
Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin  
number, package code and desired mounting conditions (reflow method, temperature and times).  
The heat resistance (example) of this LSI is shown below. Heat resistance (θJa) changes with the size and the number of  
layers of a substrate.  
PCB  
W/L/t=76.2 / 114.3 / 1.6mm)  
JEDEC 4layers  
PCB Layer  
Air cooling conditions  
Heat resistanceθJa)  
Power consumption of Chip PMax  
Calm0m/sec)  
32.2[oC/W] (back diepad contact)  
0.300[W]  
TjMax of this LSI is 110 oC. TjMax is expressed with the following formulas.  
TjMax = TaMax + θJa × PMax  
28/35  
FEDL610Q306-01  
ML610Q305/306  
Figure of soldering department terminal existence range (32pin WQFN)  
Reference drawing  
Attention of the layout of a mounting board  
Please take into consideration enough that there are not ease of a mounting, the reliability of contact, leading about of a  
wiring, and a solder bridge generate in the case of layout of the foot pattern of a mounting board.  
The optimal layout of a foot pattern changes by the board quality of material, the solder paste category to be used,  
thickness, the soldering methodology, etc. Therefore, since the span where the terminator of this package may exist is  
shown as a "soldering part terminator extent drawing", please give as reference data of a foot pattern design.  
29/35  
FEDL610Q306-01  
ML610Q305/306  
PACKAGE DIMENSIONS (32pin TQFP)  
LAPIS Technology Co., Ltd.  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.  
Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin  
number, package code and desired mounting conditions (reflow method, temperature and times).  
PCB  
W/L/t=76.2 / 114.3 / 1.6mm)  
JEDEC 4layers  
Calm0m/sec)  
58.5 [oC/W]  
PCB Layer  
Air cooling conditions  
Heat resistanceθJa)  
Power consumption of Chip PMax  
0.300[W]  
TjMax of this LSI is 110 oC. TjMax is expressed with the following formulas.  
TjMax = TaMax + θJa × PMax  
30/35  
FEDL610Q306-01  
ML610Q305/306  
Figure of soldering department terminal existence range (32pin TQFP)  
Reference drawing  
Unit  
Attention of the layout of a mounting board  
Please take into consideration enough that there are not ease of a mounting, the reliability of contact, leading about of a  
wiring, and a solder bridge generate in the case of layout of the foot pattern of a mounting board.  
The optimal layout of a foot pattern changes by the board quality of material, the solder paste category to be used,  
thickness, the soldering methodology, etc. Therefore, since the span where the terminator of this package may exist is  
shown as a "soldering part terminator extent drawing", please give as reference data of a foot pattern design.  
31/35  
FEDL610Q306-01  
ML610Q305/306  
PACKAGE DIMENSIONS (36pin WQFN)  
LAPIS Technology Co., Ltd.  
Notes for Mounting the Surface Mount Type Package  
The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.  
Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin  
number, package code and desired mounting conditions (reflow method, temperature and times).  
PCB  
W/L/t=76.2 / 114.3 / 1.6mm)  
JEDEC 4layers  
PCB Layer  
Air cooling conditions  
Heat resistanceθJa)  
Power consumption of Chip PMax  
Calm0m/sec)  
30.0 [oC/W] (back diepad contact)  
0.300[W]  
TjMax of this LSI is 110 oC. TjMax is expressed with the following formulas.  
TjMax = TaMax + θJa × PMax  
32/35  
FEDL610Q306-01  
ML610Q305/306  
Figure of soldering department terminal existence range (36pin WQFN)  
Reference drawing  
Attention of the layout of a mounting board  
Please take into consideration enough that there are not ease of a mounting, the reliability of contact, leading about of a  
wiring, and a solder bridge generate in the case of layout of the foot pattern of a mounting board.  
The optimal layout of a foot pattern changes by the board quality of material, the solder paste category to be used,  
thickness, the soldering methodology, etc. Therefore, since the span where the terminator of this package may exist is  
shown as a "soldering part terminator extent drawing", please give as reference data of a foot pattern design.  
33/35  
FEDL610Q306-01  
ML610Q305/306  
Revision History  
Page  
Previous  
Edition  
Document No.  
Date  
Description  
Current  
Edition  
FEDL610Q306-01  
Jun. 28, 2021  
Formal edition 1  
34/35  
FEDL610Q306-01  
ML610Q305/306  
Notes  
1) The information contained herein is subject to change without notice.  
2) When using LAPIS Technology Products, refer to the latest product information (data sheets, user’s manuals, application  
notes, etc.), and ensure that usage conditions (absolute maximum ratings, recommended operating conditions, etc.) are within  
the ranges specified. LAPIS Technology disclaims any and all liability for any malfunctions, failure or accident arising out of  
or in connection with the use of LAPIS Technology Products outside of such usage conditions specified ranges, or without  
observing precautions. Even if it is used within such usage conditions specified ranges, semiconductors can break down and  
malfunction due to various factors. Therefore, in order to prevent personal injury, fire or the other damage from break down  
or malfunction of LAPIS Technology Products, please take safety at your own risk measures such as complying with the  
derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures.  
You are responsible for evaluating the safety of the final products or systems manufactured by you.  
3) Descriptions of circuits, software and other related information in this document are provided only to illustrate the standard  
operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other  
use of the circuits, software, and information in the design of your product or system. And the peripheral conditions must be  
taken into account when designing circuits for mass production. LAPIS Technology disclaims any and all liability for any  
losses and damages incurred by you or third parties arising from the use of these circuits, software, and other related  
information.  
4) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Technology  
or any third party with respect to LAPIS Technology Products or the information contained in this document (including but  
not limited to, the Product data, drawings, charts, programs, algorithms, and application examplesetc.). Therefore LAPIS  
Technology shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising  
out of the use of such technical information.  
5) The Products are intended for use in general electronic equipment (AV/OA devices, communication, consumer systems,  
gaming/entertainment sets, etc.) as well as the applications indicated in this document. For use of our Products in applications  
requiring a high degree of reliability (as exemplified below), please be sure to contact a LAPIS Technology representative  
and must obtain written agreement: transportation equipment (cars, ships, trains, etc.), primary communication equipment,  
traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems,  
etc. LAPIS Technology disclaims any and all liability for any losses and damages incurred by you or third parties arising by  
using the Product for purposes not intended by us. Do not use our Products in applications requiring extremely high reliability,  
such as aerospace equipment, nuclear power control systems, and submarine repeaters, etc.  
6) The Products specified in this document are not designed to be radiation tolerant.  
7) LAPIS Technology has used reasonable care to ensure the accuracy of the information contained in this document. However,  
LAPIS Technology does not warrant that such information is error-free and LAPIS Technology shall have no responsibility  
for any damages arising from any inaccuracy or misprint of such information.  
8) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive.  
LAPIS Technology shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws  
or regulations.  
9) When providing our Products and technologies contained in this document to other countries, you must abide by the  
procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export  
Administration Regulations and the Foreign Exchange and Foreign Trade Act..  
10) Please contact a ROHM sales office if you have any questions regarding the information contained in this document or  
LAPIS Technology's Products.  
11) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Technology.  
(Note) LAPIS Technology” as used in this document means LAPIS Technology Co., Ltd.  
Copyright 2021 LAPIS Technology Co., Ltd.  
2-4-8 Shinyokohama, Kouhoku-ku,Yokohama 222-8575, Japan  
http://www.lapis-tech.com/en/  
35/35  

相关型号:

ML610Q306

ML610Q305/ML610Q306是内置蓝碧石科技自有的RISC架构8位CPU“U8 Core”的、具有语音输出功能的高性能CMOS 8位微控制器。搭载了高音质的语音播放功能和高输出扬声器放大器,以单芯片实现了语音输出功能,非常适用于警报器和家电应用。 为了实现高音质的语音播放功能,利用新开发的高音质、高压缩比的语音压缩算法HQ-ADPCM,可以用比以往ADPCM更少的数据量来确保清晰的声音和宽广的音域,从而实现百听不厌、悦耳动听的声音。
ROHM

ML610Q327

ML610Q327/ML610Q338/ML610Q339是内置蓝碧石科技自有的RISC架构8位CPU“U8 Core”的、具有语音输出功能的高性能8位微控制器。产品搭载了高音质的语音播放功能和高输出扬声器放大器,以单芯片实现了语音输出功能,非常适用于警报器和家电应用。为了实现高音质的语音播放功能,利用新开发的高音质、高压缩比的语音压缩算法HQ-ADPCM,可以用比以往ADPCM更少的数据量来确保清晰的声音和宽广的音域,从而实现百听不厌、悦耳动听的声音。ML610Q327的播放时间约为70秒*1,ML610Q338/ML610Q339的播放时间约为95秒*1。此外,还可以外接高达128Mbit的Flash存储器,因此也支持更长时间的播放。通过将这种出色的语音播放功能、低功耗高性能的U8 Core、支持3V/5V的电源以及丰富的外围控制功能集成于1枚芯片,为电池驱动和AC驱动的产品提供单芯片语音播放解决方案。*:程序区使用16KB、采样频率为6.4kHz、选择HQ-ADPCM时。
ROHM

ML610Q338

ML610Q327/ML610Q338/ML610Q339是内置蓝碧石科技自有的RISC架构8位CPU“U8 Core”的、具有语音输出功能的高性能8位微控制器。产品搭载了高音质的语音播放功能和高输出扬声器放大器,以单芯片实现了语音输出功能,非常适用于警报器和家电应用。为了实现高音质的语音播放功能,利用新开发的高音质、高压缩比的语音压缩算法HQ-ADPCM,可以用比以往ADPCM更少的数据量来确保清晰的声音和宽广的音域,从而实现百听不厌、悦耳动听的声音。ML610Q327的播放时间约为70秒*1,ML610Q338/ML610Q339的播放时间约为95秒*1。此外,还可以外接高达128Mbit的Flash存储器,因此也支持更长时间的播放。通过将这种出色的语音播放功能、低功耗高性能的U8 Core、支持3V/5V的电源以及丰富的外围控制功能集成于1枚芯片,为电池驱动和AC驱动的产品提供单芯片语音播放解决方案。*:程序区使用16KB、采样频率为6.4kHz、选择HQ-ADPCM时。
ROHM

ML610Q339

ML610Q327/ML610Q338/ML610Q339是内置蓝碧石科技自有的RISC架构8位CPU“U8 Core”的、具有语音输出功能的高性能8位微控制器。产品搭载了高音质的语音播放功能和高输出扬声器放大器,以单芯片实现了语音输出功能,非常适用于警报器和家电应用。为了实现高音质的语音播放功能,利用新开发的高音质、高压缩比的语音压缩算法HQ-ADPCM,可以用比以往ADPCM更少的数据量来确保清晰的声音和宽广的音域,从而实现百听不厌、悦耳动听的声音。ML610Q327的播放时间约为70秒*1,ML610Q338/ML610Q339的播放时间约为95秒*1。此外,还可以外接高达128Mbit的Flash存储器,因此也支持更长时间的播放。通过将这种出色的语音播放功能、低功耗高性能的U8 Core、支持3V/5V的电源以及丰富的外围控制功能集成于1枚芯片,为电池驱动和AC驱动的产品提供单芯片语音播放解决方案。*:程序区使用16KB、采样频率为6.4kHz、选择HQ-ADPCM时。
ROHM

ML610Q340

8-bit Microcontroller with Voice Output Function
ETC

ML610Q346

8-bit Microcontroller with Voice Output Function
ETC

ML610Q347

8-bit Microcontroller with Voice Output Function
ETC

ML610Q359

8-bit Microcontroller with Voice Output Function
ETC

ML610Q360

8-bit Microcontroller with Voice Output Function
ETC

ML610Q380

8-bit Microcontroller with Voice Output Function
ETC

ML610Q383

8-bit Microcontroller with Voice Output Function
ETC

ML610Q384

8-bit Microcontroller with Voice Output Function
ETC