S3C9234XX-QT [SAMSUNG]

Microcontroller, 8-Bit, MROM, SAM88RCRI CPU, 8MHz, CMOS, PQFP64;
S3C9234XX-QT
型号: S3C9234XX-QT
厂家: SAMSUNG    SAMSUNG
描述:

Microcontroller, 8-Bit, MROM, SAM88RCRI CPU, 8MHz, CMOS, PQFP64

微控制器
文件: 总230页 (文件大小:770K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
21-S3-C9234/P9234-022004  
USER'S MANUAL  
S3C9234/P9234  
8-Bit CMOS  
Microcontroller  
Revision 1.0  
S3C9234/P9234  
8-BIT CMOS  
MICROCONTROLLERS  
USER'S MANUAL  
Revision 1.0  
Important Notice  
The information in this publication has been carefully  
"Typical" parameters can and do vary in different  
applications. All operating parameters, including  
"Typicals" must be validated for each customer  
application by the customer's technical experts.  
checked and is believed to be entirely accurate at  
the time of publication. Samsung assumes no  
responsibility, however, for possible errors or  
omissions, or for any consequences resulting from  
the use of the information contained herein.  
Samsung products are not designed, intended, or  
authorized for use as components in systems  
intended for surgical implant into the body, for other  
applications intended to support or sustain life, or for  
any other application in which the failure of the  
Samsung product could create a situation where  
personal injury or death may occur.  
Samsung reserves the right to make changes in its  
products or product specifications with the intent to  
improve function or design at any time and without  
notice and is not required to update this  
documentation to reflect such changes.  
This publication does not convey to a purchaser of  
semiconductor devices described herein any license  
under the patent rights of Samsung or others.  
Should the Buyer purchase or use a Samsung  
product for any such unintended or unauthorized  
application, the Buyer shall indemnify and hold  
Samsung and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all  
claims, costs, damages, expenses, and reasonable  
attorney fees arising out of, either directly or  
indirectly, any claim of personal injury or death that  
may be associated with such unintended or  
unauthorized use, even if such claim alleges that  
Samsung was negligent regarding the design or  
manufacture of said product.  
Samsung makes no warranty, representation, or  
guarantee regarding the suitability of its products for  
any particular purpose, nor does Samsung assume  
any liability arising out of the application or use of  
any product or circuit and specifically disclaims any  
and all liability, including without limitation any  
consequential or incidental damages.  
S3C9234/P9234 8-Bit CMOS Microcontrollers  
User's Manual, Revision 1.0  
Publication Number: 21-S3-C9234/P9234-022004  
© 2004 Samsung Electronics  
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in  
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior  
written consent of Samsung Electronics.  
Samsung Electronics' microcontroller business has been awarded full ISO-14001  
certification (BVQI Certificate No 9330) All semiconductor products are designed  
and manufactured in accordance with the highest quality standards and  
objectives.  
Samsung Electronics Co., Ltd.  
San #24 Nongseo-Ri, Kiheung-Eup  
Yongin-City, Kyunggi-Do, Korea  
C.P.O. Box #37, Suwon 449-900  
TEL: (82)-(331)-209-1907  
FAX: (82)-(331)-209-1889  
Home-Page URL: Http://www.samsungsemi.com  
Printed in the Republic of Korea  
Preface  
The S3C9234/P9234 Microcontrollers User's Manual is designed for application designers and programmers who  
are using the S3C9234/P9234 microcontrollers for application development. It is organized in two main parts:  
Part I Programming Model  
Part II  
Hardware Descriptions  
Part I contains software-related information to familiarize you with the microcontroller's architecture, programming  
model, instruction set, and interrupt structure. It has six chapters:  
Chapter 1  
Chapter 2  
Chapter 3  
Product Overview  
Address Spaces  
Addressing Modes  
Chapter 4  
Chapter 5  
Chapter 6  
Control Registers  
Interrupt Structure  
SAM88RCRI Instruction Set  
Chapter 1, "Product Overview," is a high-level introduction to the 100% with general product descriptions, as well  
as detailed information about individual pin characteristics and pin circuit types.  
Chapter 2, "Address Spaces," explains the 100% program and data memory, internal register file, and mapped  
control register, and explains how to address them. Chapter 2 also describes working register addressing, as well  
as system stack and user-defined stack operations.  
Chapter 3, "Addressing Modes," contains detailed descriptions of the addressing modes that are supported by the  
CPU.  
Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register  
values, as well as detailed one-page descriptions in standard format. You can use these easy-to-read,  
alphabetically organized, register descriptions as a quick-reference source when writing programs.  
Chapter 5, "Interrupt Structure," describes the 100% interrupt structure in detail and further prepares you for  
additional information presented in the individual hardware module descriptions in Part II.  
Chapter 6, "SAM88RCRI Instruction Set," describes the features and conventions of the instruction set used for  
all S3P9-series microcontrollers. Several summary tables are presented for orientation and reference. Detailed  
descriptions of each instruction are presented in a standard format. Each instruction description includes one or  
more practical examples of how to use the instruction when writing an application program.  
A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in  
Part II. If you are not yet familiar with the SAM8 product family and are reading this manual for the first time, we  
recommend that you first read chapters 1–3 carefully. Then, briefly look over the detailed information in chapters  
4, 5, and 6. Later, you can reference the information in Part I as necessary.  
Part II "hardware Descriptions," has detailed information about specific hardware components of the  
S3C9234/P9234 microcontrollers. Also included in Part II are electrical, mechanical, OTP, and development tools  
data. It has 12 chapters:  
Chapter 7  
Chapter 8  
Chapter 9  
Chapter 10  
Chapter 11  
Chapter 12  
Clock Circuits  
RESET and Power-Down  
I/O Ports  
Basic Timer  
Timer 1  
Chapter 13  
Chapter 14  
Chapter 15  
Chapter 16  
Chapter 17  
Chapter 18  
LCD Controller/Driver  
Serial I/O Interface  
Electrical Data  
Mechanical Data  
S3P9234 OTP  
Watch Timer  
Development Tools  
Two order forms are included at the back of this manual to facilitate customer order for S3C9234/P9234  
microcontrollers: the Mask ROM Order Form, and the Mask Option Selection Form. You can photocopy these  
forms, fill them out, and then forward them to your local Samsung Sales Representative.  
S3C9234/P9234 MICROCONTROLLERS  
iii  
Table of Contents  
Part I — Programming Model  
Chapter 1  
Product Overview  
SAM88RCRI Product Family......................................................................................................................... 1-1  
S3C9234/P9234 Microcontroller ................................................................................................................... 1-1  
OTP ............................................................................................................................................................... 1-1  
Features ........................................................................................................................................................ 1-2  
Block Diagram............................................................................................................................................... 1-3  
Pin Assignments............................................................................................................................................ 1-4  
Pin Descriptions ............................................................................................................................................ 1-5  
Pin Circuit Diagrams...................................................................................................................................... 1-7  
Chapter 2  
Address Spaces  
Overview........................................................................................................................................................ 2-1  
Program Memory (ROM)............................................................................................................................... 2-2  
Register Architecture..................................................................................................................................... 2-3  
Common Working Register Area (C0H–CFH) .............................................................................................. 2-4  
System Stack................................................................................................................................................. 2-5  
Stack Operations .................................................................................................................................. 2-5  
Stack Pointer (SP) ................................................................................................................................ 2-5  
Chapter 3  
Addressing Modes  
Overview........................................................................................................................................................ 3-1  
Register Addressing Mode (R) ............................................................................................................. 3-2  
Indirect Register Addressing Mode (IR) ............................................................................................... 3-3  
Indexed Addressing Mode (X).............................................................................................................. 3-7  
Direct Address Mode (DA).................................................................................................................... 3-10  
Relative Address Mode (RA)................................................................................................................ 3-12  
Immediate Mode (IM)............................................................................................................................ 3-12  
S3C9234/P9234 MICROCONTROLLERS  
v
Table of Contents (Continued)  
Chapter 4  
Control Registers  
Overview........................................................................................................................................................4-1  
Chapter 5  
Interrupt Structure  
Overview........................................................................................................................................................5-1  
Interrupt Processing Control Points......................................................................................................5-1  
Enable/Disable Interrupt Instructions (EI, DI) .......................................................................................5-1  
Interrupt Pending Function Types.........................................................................................................5-2  
Interrupt Priority.....................................................................................................................................5-2  
Interrupt Source Service Sequence......................................................................................................5-3  
Interrupt Service Routines ....................................................................................................................5-3  
Generating Interrupt Vector Addresses ................................................................................................5-3  
S3C9234/P9234 Interrupt Structure .....................................................................................................5-4  
Chapter 6  
SAM88RCRI Instruction Set  
Overview........................................................................................................................................................6-1  
Register Addressing..............................................................................................................................6-1  
Addressing Modes ................................................................................................................................6-1  
Flags Register (FLAGS)........................................................................................................................6-4  
Flag Descriptions ..................................................................................................................................6-4  
Instruction Set Notation.........................................................................................................................6-5  
Condition Codes ...................................................................................................................................6-9  
Instruction Descriptions.........................................................................................................................6-10  
vi  
S3C9234/P9234 MICROCONTROLLERS  
Table of Contents (Continued)  
Part II — Hardware Descriptions  
Chapter 7  
Clock Circuit  
Overview........................................................................................................................................................ 7-1  
System Clock Circuit ............................................................................................................................ 7-1  
CPU Clock Notation.............................................................................................................................. 7-1  
Main Oscillator Circuits......................................................................................................................... 7-2  
Sub Oscillator Circuits .......................................................................................................................... 7-2  
Clock Status During Power-Down Modes ............................................................................................ 7-3  
System Clock Control Register (CLKCON).......................................................................................... 7-4  
Clock Output Control Register (CLOCON)........................................................................................... 7-5  
Oscillator Control Register (OSCCON) ................................................................................................ 7-6  
Switching the CPU Clock...................................................................................................................... 7-7  
Stop Control Register (STPCON)......................................................................................................... 7-8  
Chapter 8  
RESET and Power-Down  
System Reset................................................................................................................................................ 8-1  
Overview............................................................................................................................................... 8-1  
Power-Down Modes...................................................................................................................................... 8-2  
Stop Mode ............................................................................................................................................ 8-2  
Idle Mode.............................................................................................................................................. 8-3  
Hardware Reset Values........................................................................................................................ 8-4  
Chapter 9  
I/O Ports  
Overview........................................................................................................................................................ 9-1  
Port Data Registers .............................................................................................................................. 9-2  
Port 0 .................................................................................................................................................... 9-3  
Port 1 .................................................................................................................................................... 9-4  
Port 2 .................................................................................................................................................... 9-8  
Port 3 .................................................................................................................................................... 9-12  
Port 4 .................................................................................................................................................... 9-14  
Port 5 .................................................................................................................................................... 9-15  
Port 6 .................................................................................................................................................... 9-16  
Chapter 10  
Basic Timer  
Overview........................................................................................................................................................ 10-1  
Basic Timer Control Register (BTCON) ............................................................................................... 10-2  
Basic Timer Function Description......................................................................................................... 10-3  
S3C9234/P9234 MICROCONTROLLERS  
vii  
Table of Contents(Continued)  
Chapter 11  
Timer 1  
One 16-Bit Timer Mode (Timer 1)..................................................................................................................11-1  
Overview ...............................................................................................................................................11-1  
Function Description .............................................................................................................................11-1  
Two 8-Bit Timers Mode (Timer A and B).......................................................................................................11-4  
Overview ...............................................................................................................................................11-4  
Function Description .............................................................................................................................11-7  
Chapter 12  
Watch Timer  
Overview........................................................................................................................................................12-1  
Watch Timer Control Register (WTCON) .............................................................................................12-2  
Watch Timer Circuit Diagram ........................................................................................................................12-3  
Chapter 13  
LCD Controller/Driver  
Overview........................................................................................................................................................13-1  
LCD Circuit Diagram.............................................................................................................................13-2  
LCD Ram Address Area .......................................................................................................................13-3  
LCD Control Register (LCON) ..............................................................................................................13-4  
LCD Voltage Dividing Resistor .............................................................................................................13-5  
Common (COM) Signals.......................................................................................................................13-6  
Segment (SEG) Signals........................................................................................................................13-6  
Chapter 14  
Serial I/O Interface  
Overview........................................................................................................................................................14-1  
Programming Procedure.......................................................................................................................14-1  
SIO Control Registers (SIOCON) .........................................................................................................14-2  
SIO Pre-Scaler Register (SIOPS).........................................................................................................14-3  
Sio Block Diagram .........................................................................................................................................14-3  
Serial I/O Timing Diagram (SIO)...........................................................................................................14-4  
viii  
S3C9234/P9234 MICROCONTROLLERS  
Table of Contents (Concluded)  
Chapter 15  
Electrical Data  
Overview........................................................................................................................................................ 15-1  
Chapter 16  
Mechanical Data  
Overview........................................................................................................................................................ 16-1  
Chapter 17  
S3P9234 OTP  
Overview........................................................................................................................................................ 17-1  
Operating Mode Characteristics........................................................................................................... 17-3  
Chapter 18  
Development Tools  
Overview........................................................................................................................................................ 18-1  
Shine..................................................................................................................................................... 18-1  
SAMA Assembler.................................................................................................................................. 18-1  
SASM86................................................................................................................................................ 18-1  
HEX2ROM............................................................................................................................................ 18-1  
Target Boards....................................................................................................................................... 18-1  
TB9234 Target Board........................................................................................................................... 18-3  
Idle LED................................................................................................................................................ 18-5  
Stop LED .............................................................................................................................................. 18-5  
S3C9234/P9234 MICROCONTROLLERS  
ix  
List of Figures  
Figure  
Title  
Page  
Number  
Number  
1-1  
1-2  
1-3  
1-4  
1-5  
1-6  
1-7  
1-8  
Block Diagram......................................................................................................................... 1-3  
S3C9234 64-QFP Pin Assignments........................................................................................ 1-4  
Pin Circuit Type A ................................................................................................................... 1-7  
Pin Circuit Type B ................................................................................................................... 1-7  
Pin Circuit Type E-4 (P1, P2).................................................................................................. 1-7  
Pin Circuit Type H-8 (P3) ........................................................................................................ 1-8  
Pin Circuit Type H-9 (P0, P4, P5, P6)..................................................................................... 1-8  
Pin Circuit Type H-4................................................................................................................ 1-9  
2-1  
2-2  
2-3  
2-4  
S3C9234/P9234 Program Memory Address Space............................................................... 2-2  
Internal Register File Organization ......................................................................................... 2-3  
16-Bit Register Pairs ............................................................................................................... 2-4  
Stack Operations..................................................................................................................... 2-5  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
Register Addressing................................................................................................................ 3-2  
Working Register Addressing ................................................................................................. 3-2  
Indirect Register Addressing to Register File ......................................................................... 3-3  
Indirect Register Addressing to Program Memory.................................................................. 3-4  
Indirect Working Register Addressing to Register File........................................................... 3-5  
Indirect Working Register Addressing to Program or Data Memory ...................................... 3-6  
Indexed Addressing to Register File....................................................................................... 3-7  
Indexed Addressing to Program or Data Memory with Short Offset....................................... 3-8  
Indexed Addressing to Program or Data Memory with Long Offset ....................................... 3-9  
Direct Addressing for Load Instructions.................................................................................. 3-10  
Direct Addressing for Call and Jump Instructions................................................................... 3-11  
Relative Addressing ................................................................................................................ 3-12  
Immediate Addressing ............................................................................................................ 3-12  
3-9  
3-10  
3-11  
3-12  
3-13  
4-1  
Register Description Format ................................................................................................... 4-4  
S3C9234/P9234 MICROCONTROLLERS  
xi  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
5-1  
5-2  
5-3  
S3C9-Series Interrupt Type.....................................................................................................5-1  
Interrupt Function Diagram......................................................................................................5-2  
S3C9234/P9234 Interrupt Structure........................................................................................5-5  
6-1  
System Flags Register (FLAGS).............................................................................................6-4  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
7-10  
7-11  
Crystal/Ceramic Oscillator (fx).................................................................................................7-2  
External Oscillator (fx) .............................................................................................................7-2  
RC Oscillator (fx) .....................................................................................................................7-2  
Crystal/Ceramic Oscillator (fxt)................................................................................................7-2  
External Oscillator (fxt) ............................................................................................................7-2  
System Clock Circuit Diagram.................................................................................................7-3  
System Clock Control Register (CLKCON).............................................................................7-4  
Clock Output Control Register (CLOCON)..............................................................................7-5  
Clock Output Block Diagram ...................................................................................................7-5  
Oscillator Control Register (OSCCON)...................................................................................7-6  
STOP Control Register (STPCON) .........................................................................................7-8  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
S3C9234/P9234 I/O Port Data Register Format.....................................................................9-2  
Port 0 Control Register (P0CON)............................................................................................9-3  
Port 1 High-Byte Control Register (P1CONH) ........................................................................9-5  
Port 1 Low-Byte Control Register (P1CONL)..........................................................................9-5  
Port 1 Pull-up Control Register (P1PUR)................................................................................9-6  
Port 1 Interrupt Control Register (P1INT)................................................................................9-6  
Port 1 Interrupt Pending Bits (INTPND.2-.0)...........................................................................9-7  
Port 2 High-byte Control Register (P2CONH).........................................................................9-9  
Port 2 Low-byte Control Register (P2CONL) ..........................................................................9-9  
Port 2 Pull-up Control Register (P2PUR)................................................................................9-10  
Port 2 Interrupt Control Register (P2INT)................................................................................9-11  
Port 2 Interrupt Pending Bits (INTPND.7-.4)...........................................................................9-11  
Port 3 High Byte Control Register (P3CONH).........................................................................9-12  
Port 3 Low Byte Control Register (P3CONL)..........................................................................9-13  
Port 3 Pull-up Control Register (P3PUR)................................................................................9-13  
Port 4 High-Byte Control Register (P4CONH) ........................................................................9-14  
Port 4 Low-Byte Control Register (P4CONL)..........................................................................9-14  
Port 5 High-Byte Control Register (P5CONH) ........................................................................9-15  
Port 5 Low-Byte Control Register (P5CONL)..........................................................................9-15  
Port 6 Control Register (P6CON)............................................................................................9-16  
9-9  
9-10  
9-11  
9-12  
9-13  
9-14  
9-15  
9-16  
9-17  
9-18  
9-19  
9-20  
xii  
S3C9234/P9234 MICROCONTROLLERS  
List of Figures (Continued)  
Figure  
Title  
Page  
Number  
Number  
10-1  
10-2  
Basic Timer Control Register (BTCON).................................................................................. 10-2  
Basic Timer Block Diagram..................................................................................................... 10-4  
11-1  
11-2  
11-3  
11-4  
11-5  
11-6  
Timer 1 Control Register (TACON)......................................................................................... 11-2  
Timer 1 Block Diagram (One 16-bit Mode)............................................................................. 11-3  
Timer A Control Register (TACON) ........................................................................................ 11-5  
Timer B Control Register (TBCON) ........................................................................................ 11-6  
Timer A Block Diagram(Two 8-bit Timers Mode).................................................................... 11-8  
Timer B Block Diagram (Two 8-bit Timers Mode)................................................................... 11-9  
12-1  
12-2  
Watch Timer Control Register (WTCON) ............................................................................... 12-2  
Watch Timer Circuit Diagram.................................................................................................. 12-3  
13-1  
13-2  
13-3  
13-4  
13-5  
13-6  
13-7  
13-8  
13-9  
13-10  
13-11  
LCD Function Diagram............................................................................................................ 13-1  
LCD Circuit Diagram ............................................................................................................... 13-2  
LCD Display Data RAM Organization..................................................................................... 13-3  
LCD Control Register (LCON) ................................................................................................ 13-4  
Internal Voltage Dividing Resistor Connection ....................................................................... 13-5  
Select/No-Select Signals in Static Display Mode.................................................................... 13-6  
Select/No-Select Signal in 1/2 Duty, 1/2 Bias Display Mode.................................................. 13-7  
Select/No-Select Signal in 1/3 Duty, 1/3 Bias Display Mode.................................................. 13-7  
LCD Signal and Wave Forms Example in 1/2 Duty, 1/2 Bias Display Mode.......................... 13-8  
LCD Signals and Wave Forms Example in 1/3 Duty, 1/3 Bias Display Mode........................ 13-9  
LCD Signals and Wave Forms Example in 1/4 Duty, 1/3 Bias Display Mode........................ 13-10  
14-1  
14-2  
14-3  
14-4  
14-5  
Serial I/O Module Control Register (SIOCON) ....................................................................... 14-2  
SIO Prescaler Register (SIOPS)............................................................................................. 14-3  
SIO Functional Block Diagram................................................................................................ 14-3  
Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.4 = 0)........................... 14-4  
Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON.4 = 1)............................ 14-4  
S3C9234/P9234 MICROCONTROLLERS  
xiii  
List of Figures (Concluded)  
Figure  
Title  
Page  
Number  
Number  
15-1  
15-2  
15-3  
15-4  
15-5  
15-6  
Stop Mode Release Timing When Initiated by an External Interrupt ......................................15-5  
Stop Mode Release Timing When Initiated by a RESET........................................................15-6  
Input Timing for External Interrupts.........................................................................................15-7  
Input Timing for RESET...........................................................................................................15-8  
Serial Data Transfer Timing ....................................................................................................15-8  
Clock Timing Measurement at XIN ..........................................................................................15-10  
15-7  
15-8  
Clock Timing Measurement at XTIN ........................................................................................15-11  
Operating Voltage Range........................................................................................................15-12  
16-1  
64-Pin QFP Package Dimensions (64-QFP-1420F)...............................................................16-1  
17-1  
17-2  
S3P9234 Pin Assignments (64-QFP-1420F) ..........................................................................17-2  
Standard Operating Voltage Range........................................................................................17-5  
18-1  
18-2  
18-3  
18-4  
SMDS Product Configuration (SMDS2+) ................................................................................18-2  
TB9234 Target Board Configuration .......................................................................................18-3  
Connectors (J101, J102) for TB9234......................................................................................18-6  
S3C9234 Probe Adapter for 64-QFP Package .......................................................................18-6  
xiv  
S3C9234/P9234 MICROCONTROLLERS  
List of Tables  
Table  
Title  
Page  
Number  
Number  
1-1  
4-1  
Pin Descriptions ...................................................................................................................... 1-5  
System and Peripheral Control Registers............................................................................... 4-2  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
Instruction Group Summary.................................................................................................... 6-2  
Flag Notation Conventions...................................................................................................... 6-5  
Instruction Set Symbols .......................................................................................................... 6-5  
Instruction Notation Conventions............................................................................................ 6-6  
Opcode Quick Reference........................................................................................................ 6-7  
Condition Codes...................................................................................................................... 6-9  
8-1  
Register Values after RESET ................................................................................................. 8-4  
9-1  
9-2  
S3C9234/P9234 Port Configuration Overview ....................................................................... 9-1  
Port Data Register Summary.................................................................................................. 9-2  
13-1  
LCD Clock Signal Frame Frequency ...................................................................................... 13-3  
15-1  
15-2  
15-3  
15-4  
15-5  
15-6  
15-7  
15-8  
15-9  
Absolute Maximum Ratings .................................................................................................... 15-2  
D.C. Electrical Characteristics ................................................................................................ 15-2  
Data Retention Supply Voltage in Stop Mode ........................................................................ 15-5  
Input/Output Capacitance ....................................................................................................... 15-6  
A.C. Electrical Characteristics................................................................................................. 15-7  
Main Oscillation Characteristics.............................................................................................. 15-9  
Sub Oscillation Characteristics ............................................................................................... 15-9  
Main Oscillation Stabilization Time ......................................................................................... 15-10  
Sub Oscillation Stabilization Time........................................................................................... 15-11  
17-1  
17-2  
17-3  
17-4  
Descriptions of Pins Used to Read/Write the EPROM ........................................................... 17-3  
Comparison of S3P9234 and S3C9234 Features .................................................................. 17-3  
Operating Mode Selection Criteria.......................................................................................... 17-3  
D.C. Electrical Characteristics ................................................................................................ 17-4  
18-1  
18-2  
18-3  
Power Selection Settings for TB9234 ..................................................................................... 18-4  
The SMDS2+ Tool Selection Setting ...................................................................................... 18-5  
Using Single Header Pins as the Input Path for External Trigger Sources ............................ 18-5  
S3C9234/P9234 MICROCONTROLLERS  
xv  
List of Programming Tips  
Description  
Page  
Number  
Chapter 2: Address Spaces  
Addressing the Common Working Register Area ......................................................................................... 2-4  
Standard Stack Operations Using PUSH and POP...................................................................................... 2-6  
Chapter 5: Interrupt Structure  
How to clear an interrupt pending bit ............................................................................................................ 5-6  
Chapter 7: Clock Circuits  
Switching the CPU clock ............................................................................................................................... 7-7  
How to Use Stop Instruction.......................................................................................................................... 7-8  
S3C9234/P9234 MICROCONTROLLERS  
xvii  
List of Register Descriptions  
Register  
Identifier  
Full Register Name  
Page  
Number  
BTCON  
CLKCON  
CLOCON  
FLAGS  
Basic Timer Control Register..................................................................................... 4-5  
System Clock Control Register.................................................................................. 4-6  
Clock Output Control Register ................................................................................... 4-7  
System Flags Register............................................................................................... 4-8  
Interrupt Pending Register......................................................................................... 4-9  
LCD Control Register................................................................................................. 4-10  
Oscillator Control Register......................................................................................... 4-11  
Port 0 Control Register .............................................................................................. 4-12  
Port 1 Control Register High Byte.............................................................................. 4-13  
Port 1 Control Register Low Byte............................................................................... 4-14  
Port 1 Interrupt Enable Register ................................................................................ 4-15  
Port 1 Pull-up Resistors Enable Register .................................................................. 4-16  
Port 2 Control Register High Byte.............................................................................. 4-17  
Port 2 Control Register Low Byte............................................................................... 4-18  
Port 2 Interrupt Enable Register ................................................................................ 4-19  
Port 2 Pull-up Resistors Enable Register .................................................................. 4-20  
Port 3 Control Register High Byte.............................................................................. 4-21  
Port 3 Control Register Low Byte............................................................................... 4-22  
Port 3 Pull-up Resistors Enable Register .................................................................. 4-23  
Port 4 Control Register High Byte.............................................................................. 4-24  
Port 4 Control Register Low Byte............................................................................... 4-25  
Port 5 Control Register High Byte.............................................................................. 4-26  
Port 5 Control Register Low Byte............................................................................... 4-27  
Port 6 Control Register .............................................................................................. 4-28  
SIO Control Register.................................................................................................. 4-29  
Stop Control Register................................................................................................. 4-30  
System Mode Register............................................................................................... 4-31  
Timer 1/A Control Register ........................................................................................ 4-32  
Timer B Control Register ........................................................................................... 4-33  
Watch Timer Control Register.................................................................................... 4-34  
INTPND  
LCON  
OSCCON  
P0CON  
P1CONH  
P1CONL  
P1INT  
P1PUR  
P2CONH  
P2CONL  
P2INT  
P2PUR  
P3CONH  
P3CONL  
P3PUR  
P4CONH  
P4CONL  
P5CONH  
P5CONL  
P6CON  
SIOCON  
STPCON  
SYM  
TACON  
TBCON  
WTCON  
S3C9234/P9234 MICROCONTROLLERS  
xix  
List of Instruction Descriptions  
Instruction  
Mnemonic  
Full Instruction Name  
Page  
Number  
ADC  
ADD  
AND  
CALL  
CCF  
CLR  
COM  
CP  
Add With Carry........................................................................................................... 6-11  
Add............................................................................................................................. 6-12  
Logical AND ............................................................................................................... 6-13  
Call Procedure ........................................................................................................... 6-14  
Complement Carry Flag............................................................................................. 6-15  
Clear........................................................................................................................... 6-16  
Complement............................................................................................................... 6-17  
Compare .................................................................................................................... 6-18  
Decrement.................................................................................................................. 6-19  
Disable Interrupts....................................................................................................... 6-20  
Enable Interrupts........................................................................................................ 6-21  
Idle Operation............................................................................................................. 6-22  
Increment ................................................................................................................... 6-23  
Interrupt Return.......................................................................................................... 6-24  
Jump........................................................................................................................... 6-25  
Jump Relative ............................................................................................................ 6-26  
Load ........................................................................................................................... 6-27  
Load Memory ............................................................................................................. 6-29  
Load Memory and Decrement ................................................................................... 6-31  
Load Memory and Increment..................................................................................... 6-32  
No Operation.............................................................................................................. 6-33  
Logical OR ................................................................................................................. 6-34  
Pop From Stack ......................................................................................................... 6-35  
Push To Stack............................................................................................................ 6-36  
Reset Carry Flag........................................................................................................ 6-37  
Return......................................................................................................................... 6-38  
Rotate Left.................................................................................................................. 6-39  
Rotate Left Through Carry ......................................................................................... 6-40  
Rotate Right ............................................................................................................... 6-41  
Rotate Right Through Carry....................................................................................... 6-42  
Subtract With Carry.................................................................................................... 6-43  
Set Carry Flag............................................................................................................ 6-44  
Shift Right Arithmetic.................................................................................................. 6-45  
Stop Operation........................................................................................................... 6-46  
Subtract...................................................................................................................... 6-47  
Test Complement Under Mask .................................................................................. 6-48  
Test Under Mask........................................................................................................ 6-49  
Logical Exclusive OR ................................................................................................. 6-50  
DEC  
DI  
EI  
IDLE  
INC  
IRET  
JP  
JR  
LD  
LDC/LDE  
LDCD/LDED  
LDCI/LDEI  
NOP  
OR  
POP  
PUSH  
RCF  
RET  
RL  
RLC  
RR  
RRC  
SBC  
SCF  
SRA  
STOP  
SUB  
TCM  
TM  
XOR  
S3C9234/P9234 MICROCONTROLLERS  
xxi  
S3C9234/P9234  
PRODUCT OVERVIEW  
1
PRODUCT OVERVIEW  
SAM88RCRI PRODUCT FAMILY  
Samsung's SAM88RCRI family of 8-bit single-chip CMOS microcontrollers offer fast and efficient CPU, a wide range  
of integrated peripherals, and supports OTP device.  
A dual address/data bus architecture and bit- or nibble-configurable I/O ports provide a flexible programming  
environment for applications with varied memory and I/O requirements. Timer/counters with selectable operating  
modes are included to support real-time operations.  
S3C9234/P9234 MICROCONTROLLER  
The S3C9234 can be used for dedicated control functions in a variety of applications, and is especially designed for  
application with FRS or etc.  
The S3C9234/P9234 single-chip 8-bit microcontroller is fabricated using an advanced CMOS process. It is built  
around the powerful SAM88RCRI CPU core.  
Stop and Idle power-down modes were implemented to reduce power consumption. To increase on-chip register  
space, the size of the internal register file was logically expanded. The S3C9234/P9234 has 4K-byte of program  
ROM, and 208-byte of RAM (including 16-byte of working register and 16-byte LCD display RAM).  
Using the SAM88RCRI design approach, the following peripherals were integrated with the SAM88RCRI core:  
7 configurable I/O ports including ports shared with segment/common drive outputs  
7-bit programmable pins for external interrupts  
One 8-bit basic timer for oscillation stabilization and watch-dog functions  
Two 8-bit timer/counters with selectable operating modes  
Watch timer for real time  
8-bit serial I/O interface  
OTP  
The S3C9234 microcontroller is also available in OTP (One Time Programmable) version. S3P9234 microcontroller  
has an on-chip 4K-byte one-time-programmable EPROM instead of masked ROM.  
The S3P9234 is comparable to S3C9234, both in function and in pin configuration.  
1-1  
PRODUCT OVERVIEW  
S3C9234/P9234  
FEATURES  
CPU  
LCD Controller/Driver  
·
SAM88RCRI CPU core  
·
32 segments and 4 common terminals  
·
·
Static, 1/2 duty, 1/3 duty, and 1/4 duty selectable  
Internal resistor circuit for LCD bias  
Memory  
·
·
4K ´ 8 bits program memory (ROM)  
8-bit Serial I/O Interface  
208 ´ 8 bits data memory (RAM)  
(Including LCD data memory)  
·
·
·
·
8-bit transmit/receive mode  
8-bit receive mode  
Instruction Set  
LSB-first or MSB-first transmission selectable  
Internal or external clock source  
·
·
41 instructions  
Idle and Stop instructions added for power-down  
modes  
Two Power-Down Modes  
52 I/O Pins  
·
·
Idle mode: only CPU clock stops  
Stop mode: system clock and CPU clock stop  
·
·
I/O: 16 pins  
I/O: 36 pins (sharing with LCD signal outputs)  
Oscillation Sources  
Interrupts  
·
Crystal, ceramic, or RC for main clock  
Main clock frequency: 0.4 MHz - 8MHz  
·
·
·
·
11 interrupt source and 1 vector  
One interrupt level  
32.768 kHz crystal oscillation circuit for  
sub clock  
8-Bit Basic Timer  
Instruction Execution Times  
500nS at 8MHz fx(minimum)  
·
·
Watchdog timer function  
3 kinds of clock source  
·
Operating Voltage Range  
Two 8-Bit Timer/Counters  
·
·
2.0 V to 5.5 V at 0.4 - 4.2MHz  
2.7 V to 5.5 V at 0.4 - 8.0MHz  
·
·
·
The programmable 8-bit timer/counters  
External event counter function  
Configurable as one 16-bit timer/counters  
Operating Temperature Range  
-30 °C to +85 °C  
·
Watch Timer  
·
·
Interval time: 3.91mS, 0.25S, 0.5S, and 1S  
at 32.768 kHz  
Package Type  
64-pin QFP  
·
0.5/1/2/4 kHz Selectable buzzer output  
1-2  
S3C9234/P9234  
PRODUCT OVERVIEW  
BLOCK DIAGRAM  
TAOUT/P1.4  
T1CLK/P1.3  
8-Bit Timer/  
CounterA  
8-Bit Timer/  
CounterB  
16-Bit  
Timer/  
Counter1  
X
IN  
X
OUT  
RESET XTIN  
XTOUT  
TBOUT/P1.5  
Watchdog  
Timer  
Basic Timer  
P0.0-P0.3/  
COM0-COM3  
I/O Port 0  
I/O Port 1  
Port I/O and Interrupt  
Control  
P1.0/INT  
P1.1/INT  
P1.2/INT  
Watch Timer  
BUZ/P1.7  
P1.3/T1CLK  
P1.4/TAOUT  
P1.5/TBOUT  
P1.6/CLKOUT  
P1.7/BUZ  
COM0-COM3/P0.0-P0.3  
SEG0-SEG7/P6.7-P6.0  
SEG8-SEG15/P5.7-P5.0  
SEG16-SEG23/P4.7-P4.0  
SEG24-SEG31/P3.7-P3.0  
LCD  
Driver/  
SAM88RCRI CPU  
Controller  
P2.0/SCK  
P2.1/SO  
P2.2/SI  
P2.3  
I/O Port 2  
P2.4/INT  
P2.5/INT  
P2.6/INT  
P2.7/INT  
208-Byte  
Register  
File  
P2.0/SCK  
P2.1/SO  
P2.2/SI  
4-Kbyte  
ROM  
SIO  
P3.0-P3.7/  
SEG31-SEG24  
P6.0-P6.7/  
SEG7-SEG0  
I/O Port 3  
I/O Port 4  
I/O Port 6  
I/O Port 5  
P4.0-P4.7/  
SEG23-SEG16  
P5.0-P5.7/  
SEG15-SEG8  
Figure 1-1. Block Diagram  
1-3  
PRODUCT OVERVIEW  
S3C9234/P9234  
PIN ASSIGNMENTS  
COM0/P0.0  
1
2
3
4
5
6
7
8
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SEG13/P5.2  
SEG14/P5.1  
SEG15/P5.0  
SEG16/P4.7  
SEG17/P4.6  
SEG18/P4.5  
SEG19/P4.4  
SEG20/P4.3  
SEG21/P4.2  
SEG22/P4.1  
SEG23/P4.0  
SEG24/P3.7  
SEG25/P3.6  
SEG26/P3.5  
SEG27/P3.4  
SEG28/P3.3  
SEG29/P3.2  
SEG30/P3.1  
SEG31/P3.0  
COM1/P0.1  
COM2/P0.2  
COM3/P0.3  
BIAS  
VLC0  
VLC1  
VLC2  
S3C9234(S3P9234)  
V
DD  
SS  
OUT  
IN  
9
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
X
(64-QFP-1420F)  
X
TEST  
XTIN  
XTOUT  
RESET  
P1.0/INT  
P1.1/INT  
P1.2/INT  
Figure 1-2. S3C9234 64-QFP Pin Assignments  
1-4  
S3C9234/P9234  
PRODUCT OVERVIEW  
PIN DESCRIPTIONS  
Table 1-1. Pin Descriptions  
Pin Description  
Pin Names  
Pin  
Type  
Circuit  
Type  
Pin No.  
Shared  
Functions  
P0.0 - P0.3  
I/O  
I/O port with bit-programmable pins;  
H-9  
1 - 4  
COM0-COM3  
Input or push-pull output and software  
assignable pull-ups.  
P1.0 - P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
I/O  
I/O port with bit-programmable pins;  
Schmitt trigger input or push-pull, open-drain  
output and software assignable pull-ups;  
P1.0 – P1.2 are alternately used for external  
interrupt input(noise filters, interrupt enable and  
pending control).  
E-4  
17 – 19  
20  
21  
22  
23  
INT  
T1CLK  
TAOUT  
TBOUT  
CLKOUT  
BUZ  
P1.7  
24  
P2.0  
P2.1  
P2.2  
I/O  
I/O port with bit-programmable pins;  
Schmitt trigger input or push-pull, open-drain  
output and software assignable pull-ups.  
E-4  
25  
26  
27  
SCK  
SO  
SI  
P2.3  
28  
-
P2.4 – P2.7  
29 - 32  
INT  
P3.0 - P3.7  
P4.0 - P4.7  
P5.0 – P5.7  
P6.0 – P6.7  
RESET  
I/O I/O port with bit-programmable pins;  
Input or push-pull, open-drain output and  
software assignable pull-ups.  
H-8  
H-9  
H-9  
H-9  
33 - 40  
41 - 48  
49 - 56  
57 - 64  
SEG31-SEG24  
SEG23-SEG16  
SEG15-SEG8  
SEG7-SEG0  
I/O I/O port with bit-programmable pins;  
Input or push-pull output and software assignable  
pull-ups.  
I/O I/O port with bit-programmable pins;  
Input or push-pull output and software assignable  
pull-ups.  
I/O I/O port with 2bits-programmable pins;  
Input or push-pull output and software assignable  
pull-ups.  
I
System reset pin  
B
16  
XT ,XT  
Crystal oscillator pins for sub clock.  
14, 15  
IN OUT  
X ,X  
Main oscillator pins.  
12, 11  
IN OUT  
TEST  
I
Test input: it must be connected to V  
SS  
13  
V
,V  
Power input pins  
9, 10  
DD SS  
BAIS  
LCD power control pin  
5
VLC0–VLC2  
INT  
LCD power supply pin  
6 – 8  
I/O  
External interrupts input pins.  
E-4  
17 – 19  
29 – 32  
P1.0 – P1.2  
P2.4 – P2.7  
1-5  
PRODUCT OVERVIEW  
Pin Names  
S3C9234/P9234  
Table 1-1. Pin Descriptions (Continued)  
Pin  
Pin Description  
Circuit  
Pin No.  
Shared  
Type  
Type  
E-4  
E-4  
E-4  
E-4  
E-4  
E-4  
Functions  
T1CLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Timer 1/A external clock input.  
Timer 1/A clock output.  
Timer B clock output.  
20  
21  
P1.3  
P1.4  
TAOUT  
TBOUT  
CLKOUT  
BUZ  
22  
P1.5  
System clock output.  
23  
P1.6  
Output pin for buzzer signal.  
24  
P1.7  
SCK, SO, SI  
Serial clock, serial data output, and serial  
data input.  
25 – 27  
P2.0 – P2.2  
COM0-COM3  
I/O  
I/O  
LCD common signal outputs.  
LCD segment signal outputs.  
H-9  
H-9  
1 – 4  
P0.0 – P0.3  
SEG0 – SEG7  
SEG8 – SEG15  
SEG16 – SEG23  
64 – 57  
56 – 49  
48 – 41  
P6.7 – P6.0  
P5.7 – P5.0  
P4.7 – P4.0  
SEG24 – SEG31  
I/O  
LCD segment signal outputs.  
H-8  
40 – 33  
P3.7 – P3.0  
1-6  
S3C9234/P9234  
PRODUCT OVERVIEW  
PIN CIRCUIT DIAGRAMS  
VDD  
V
DD  
Pull-Up  
Resistor  
P-Channel  
N-Channel  
In  
In  
Noise Filter  
Schmitt Trigger  
Figure 1-3. Pin Circuit Type A  
Figure 1-4. Pin Circuit Type B  
VDD  
Pull-up  
Resistor  
V
DD  
Resistor  
Enable  
Open-Drain  
Data  
P-CH  
N-CH  
I/O  
Output  
Disable  
Figure 1-5. Pin Circuit Type E-4 (P1, P2)  
1-7  
PRODUCT OVERVIEW  
S3C9234/P9234  
VDD  
Pull-up  
Resistor  
VDD  
Resistor  
Enable  
Open-Drain  
Data  
P-CH  
I/O  
N-CH  
Output Disable 1  
SEG  
Output Disable 2  
Circuit  
Type H-4  
Figure 1-6. Pin Circuit Type H-8 (P3)  
VDD  
Pull-up  
Resistor  
VDD  
Resistor  
Enable  
P-CH  
I/O  
Data  
N-CH  
Output Disable 1  
COM/SEG  
Output Disable 2  
Circuit  
Type H-4  
Figure 1-7. Pin Circuit Type H-9 (P0, P4, P5, P6)  
1-8  
S3C9234/P9234  
PRODUCT OVERVIEW  
VLC0  
VLC1  
Out  
COM/SEG  
Output Disable  
VLC2  
VSS  
Figure 1-8. Pin Circuit Type H-4  
1-9  
PRODUCT OVERVIEW  
S3C9234/P9234  
NOTES  
1-10  
S3C9234/P9234  
ADDRESS SPACES  
2
ADDRESS SPACES  
OVERVIEW  
The S3C9234/P9234 microcontroller has three kinds of address space:  
— Program memory (ROM)  
— Internal register file  
— LCD display register file  
A 16-bit address bus supports program memory operations. Special instructions and related internal logic determine  
when the 16-bit bus carries addresses for program memory. A separate 8-bit register bus carries addresses and data  
between the CPU and the internal register file.  
The S3C9234 has 4K bytes of mask - programmable program memory on-chip. The S3C9234/P9234 microcontroller  
has 192 bytes general-purpose registers in its internal register file and the 16 bytes for LCD display memory is  
implemented in the internal register file too. 48 bytes in the register file are mapped for system and peripheral control  
functions.  
2-1  
ADDRESS SPACES  
S3C9234/P9234  
PROGRAM MEMORY (ROM)  
Program memory (ROM) stores program code or table data. The S3P9234 has 4K bytes of mask - programmable  
program memory. The program memory address range is therefore 0H-0FFFH. The first 2 bytes of the ROM (0000H–  
0001H) are an interrupt vector address. The program reset address in the ROM is 0100H.  
(Decimal)  
4,096  
(Hex)  
0FFFH  
4K bytes  
Internal  
Program  
Memory  
Area  
256  
Program Start  
0100H  
2
1
0
0002H  
0001H  
0000H  
Interrupt  
Vector  
Figure 2-1. S3C9234/P9234 Program Memory Address Space  
2-2  
S3C9234/P9234  
ADDRESS SPACES  
REGISTER ARCHITECTURE  
The upper 64 bytes of the S3C9234/P9234's internal register file are addressed as working registers, system control  
registers and peripheral control registers. The lower 192 bytes of internal register file (00H–BFH) is called the general  
purpose register space.  
For many SAM88RCRI microcontrollers, the addressable area of the internal register file is further expanded by the  
additional of one or more register pages at general purpose register space (00H–BFH).  
FFH  
Peripheral Control  
Registers  
E0H  
DFH  
64 Bytes of  
Common Area  
System Control  
Registers  
D0H  
CFH  
Working Registers  
C0H  
BFH  
LCD Display Registers and  
General Purpose Registers  
B0H  
AFH  
192 Bytes  
General Purpose  
Register File  
and Stack Area  
00H  
Byte  
Figure 2-2. Internal Register File Organization  
2-3  
ADDRESS SPACES  
S3C9234/P9234  
COMMON WORKING REGISTER AREA (C0H–CFH)  
The SAM88RCRI register architecture provides an efficient method of working register addressing that takes full  
advantage of shorter instruction formats to reduce execution time.  
This16-byte address range is called common area. That is, locations in this area can be used as working registers  
by operations that address any location on any page in the register file. Typically, these working registers serve as  
temporary buffers for data operations between different pages.  
The Register (R) addressing mode can be used to access this area  
Registers are addressed either as a single 8-bit register or as a paired 16-bit register. In 16-bit register pairs, the  
address of the first 8-bit register is always an even number and the address of the next register is an odd number.  
The most significant byte of the 16-bit data is always stored in the even-numbered register; the least significant byte  
is always stored in the next (+ 1) odd-numbered register.  
MSB  
Rn  
LSB  
n = Even address  
Rn + 1  
Figure 2-3. 16-Bit Register Pairs  
F
PROGRAMMING TIP — Addressing the Common Working Register Area  
As the following examples show, you should access working registers in the common area, locations C0H–CFH,  
using working register addressing mode only.  
Examples:  
1. LD  
0C2H,40H  
; Invalid addressing mode!  
Use working register addressing instead:  
LD  
R2,40H  
;
;
R2 (C2H) ¬ the value in location 40H  
2. ADD  
0C3H,#45H  
Invalid addressing mode!  
Use working register addressing instead:  
ADD R3,#45H R3 (C3H) ¬ R3 + 45H  
;
2-4  
S3C9234/P9234  
ADDRESS SPACES  
SYSTEM STACK  
S3C9-series microcontrollers use the system stack for subroutine calls and returns and to store data. The PUSH  
and POP instructions are used to control system stack operations. The S3C9234/P9234 architecture supports stack  
operations in the internal register file.  
STACK OPERATIONS  
Return addresses for procedure calls and interrupts and data are stored on the stack. The contents of the PC are  
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents of  
the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to their  
original locations. The stack address is always decremented before a push operation and incremented after a pop  
operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown in Figure  
2-4.  
High Address  
PCL  
PCL  
PCH  
Top of  
stack  
PCH  
Top of  
stack  
Flags  
Stack contents  
after a call  
instruction  
Stack contents  
after an  
Low Address  
interrupt  
Figure 2-4. Stack Operations  
STACK POINTER (SP)  
Register location D9H contains the 8-bit stack pointer (SP) that is used for system stack operations. After a reset,  
the SP value is undetermined.  
Because only internal memory space is implemented in the S3C9234/P9234, the SP must be initialized to an 8-bit  
value in the range 00H–AFH.  
NOTE  
In case a Stack Pointer is initialized to 00H, it is decreased to FFH when stack operation starts. This means  
that a Stack Pointer access invalid stack area.  
2-5  
ADDRESS SPACES  
S3C9234/P9234  
F
PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP  
The following example shows you how to perform stack operations in the internal register file using PUSH and POP  
instructions:  
LD  
SP,#0B8H  
;
;
SP ¬ B8H (Normally, the SP is set to 0B8H by the  
initialization routine)  
PUSH  
PUSH  
PUSH  
SYM  
WTCON  
20H  
;
;
;
;
Stack address 0B7H ¬ SYM  
Stack address 0B6H ¬ WTCON  
Stack address 0B5H ¬ 20H  
Stack address 0B4H ¬ R3  
PUSH  
R3  
POP  
POP  
POP  
POP  
R3  
20H  
WTCON  
SYM  
;
;
;
;
R3 ¬ Stack address 0B4H  
20H ¬ Stack address 0B5H  
WTCON ¬ Stack address 0B6H  
SYM ¬ Stack address 0B7H  
2-6  
S3C9234/P9234  
ADDRESSING MODES  
3
ADDRESSING MODES  
OVERVIEW  
Instructions that are stored in program memory are fetched for execution using the program counter. Instructions  
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to  
determine the location of the data operand. The operands specified in SAM88RCRI instructions may be condition  
codes, immediate data, or a location in the register file, program memory, or data memory.  
The SAM88RCRI instruction set supports six explicit addressing modes. Not all of these addressing modes are  
available for each instruction. The addressing modes and their symbols are as follows:  
— Register (R)  
— Indirect Register (IR)  
— Indexed (X)  
— Direct Address (DA)  
— Relative Address (RA)  
— Immediate (IM)  
3-1  
ADDRESSING MODES  
S3C9234/P9234  
REGISTER ADDRESSING MODE (R)  
In Register addressing mode, the operand is the content of a specified register (see Figure 3-1). Working register  
addressing differs from Register addressing because it uses a 16-byte working register space in the register file and  
a 4-bit register within that space (see Figure 3-2).  
Program Memory  
Register File  
OPERAND  
8-bit Register  
File Address  
dst  
Point to One  
Rigister in Register  
File  
OPCODE  
One-Operand  
Instruction  
(Example)  
Value used in  
Instruction Execution  
Sample Instruction:  
DEC CNTR  
;
Where CNTR is the label of an 8-bit register address  
Figure 3-1. Register Addressing  
Register File  
CFH  
.
.
.
.
Program Memory  
4-Bit  
Working Register  
4 LSBs  
dst  
src  
OPERAND  
Point to the  
Woking Register  
(1 of 16)  
OPCODE  
Two-Operand  
Instruction  
(Example)  
C0H  
Sample Instruction:  
ADD R1, R2  
;
Where R1 = C1H and R2 = C2H  
Figure 3-2. Working Register Addressing  
3-2  
S3C9234/P9234  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (IR)  
In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the  
operand. Depending on the instruction used, the actual address may point to a register in the register file, to  
program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).  
You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to  
indirectly address another memory location.  
Program Memory  
Register File  
ADDRESS  
8-Bit Register  
File Address  
dst  
Point to One  
Rigister in Register  
File  
OPCODE  
One-Operand  
Instruction  
(Example)  
Address of Operand  
used by Instruction  
OPERAND  
Value used in  
Instruction Execution  
Sample Instruction:  
RL  
@SHIFT  
;
Where SHIFT is the label of an 8-Bit register address  
Figure 3-3. Indirect Register Addressing to Register File  
3-3  
ADDRESSING MODES  
S3C9234/P9234  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
Program Memory  
Example  
REGISTER  
PAIR  
dst  
Instruction  
References  
Program  
Points to  
Rigister Pair  
OPCODE  
16-Bit  
Memory  
Address  
Points to  
Program  
Memory  
Program Memory  
OPERAND  
Sample Instructions:  
Value used in  
Instruction  
CALL  
JP  
@RR2  
@RR2  
Figure 3-4. Indirect Register Addressing to Program Memory  
3-4  
S3C9234/P9234  
ADDRESSING MODES  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
CFH  
.
.
.
.
Program Memory  
4-Bit  
4 LSBs  
Working  
Register  
Address  
dst  
src  
OPERAND  
Point to the  
Woking Register  
(1 of 16)  
OPCODE  
C0H  
Sample Instruction:  
OR R6, @R2  
Value used in  
Instruction  
OPERAND  
Figure 3-5. Indirect Working Register Addressing to Register File  
3-5  
ADDRESSING MODES  
S3C9234/P9234  
INDIRECT REGISTER ADDRESSING MODE (Concluded)  
Register File  
CFH  
.
.
.
.
Program Memory  
4-Bit Working  
Register Address  
dst  
src  
Register  
Pair  
Next 3 Bits Point  
to Working  
OPCODE  
Example Instruction  
References either  
Program Memory or  
Data Memory  
C0H  
Register Pair  
(1 of 8)  
16-Bit  
address  
points to  
program  
memory  
or data  
Program Memory  
or  
Data Memory  
LSB Selects  
memory  
Value used in  
Instruction  
OPERAND  
Sample Instructions:  
LCD  
LDE  
LDE  
R5,@RR6  
R3,@RR14  
@RR4, R8  
; Program memory access  
; External data memory access  
; External data memory access  
Figure 3-6. Indirect Working Register Addressing to Program or Data Memory  
3-6  
S3C9234/P9234  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (X)  
Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to  
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access locations  
in the internal register file or in external memory.  
In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range of  
–128 to +127. This applies to external memory accesses only (see Figure 3-8).  
For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained in  
a working register. For external memory accesses, the base address is stored in the working register pair  
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to the base address (see  
Figure 3-9).  
The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction (LD).  
The LDC and LDE instructions support Indexed addressing mode for internal program memory, external program  
memory, and for external data memory, when implemented.  
Register File  
~
~
~
~
Value used in  
Instruction  
OPERAND  
+
Program Memory  
Base Address  
4 LSBs  
dst  
src  
INDEX  
Two-Operand  
Instruction  
Example  
Point to One of the  
Woking Register  
(1 of 16)  
OPCODE  
Sample Instruction:  
LD R0, #BASE[R1]  
;
Where BASE is an 8-bit immediate value  
Figure 3-7. Indexed Addressing to Register File  
3-7  
ADDRESSING MODES  
S3C9234/P9234  
INDEXED ADDRESSING MODE (Continued)  
Program Memory  
Register File  
XS (OFFSET)  
4-Bit Working  
NEXT 3 Bits  
Register  
Pair  
dst  
src  
Register Address  
Point to Working  
Register Pair  
(1 of 8)  
OPCODE  
16-Bit  
address  
added to  
offset  
LSB Selects  
+
16-Bits  
8-Bits  
Program Memory  
or  
Data Memory  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
LDE  
R4, #04H[RR2]  
R4,#04H[RR2]  
; The values in the program address (RR2 + #04H)  
are loaded into register R4.  
; Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset  
3-8  
S3C9234/P9234  
ADDRESSING MODES  
INDEXED ADDRESSING MODE (Concluded)  
Program Memory  
Register File  
XL  
H
L
(OFFSET)  
(OFFSET)  
src  
XL  
Register  
Pair  
NEXT 3 Bits  
4-Bit Working  
Register Address  
dst  
Point to Working  
Register Pair  
(1 of 8)  
OPCODE  
16-Bit  
address  
added to  
offset  
LSB Selects  
+
16-Bits  
8-Bits  
Program Memory  
or  
Data Memory  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
R4, #1000H[RR2]  
; The values in the program address (RR2 +  
#1000H)  
are loaded into register R4.  
LDE  
R4, #1000H[RR2]  
; Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-9. Indexed Addressing to Program or Data Memory with Long Offset  
3-9  
ADDRESSING MODES  
S3C9234/P9234  
DIRECT ADDRESS MODE (DA)  
In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call  
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC  
whenever a JP or CALL instruction is executed.  
The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for Load  
operations to program memory (LDC) or to external data memory (LDE), if implemented.  
Program or  
Data Memory  
Memory  
Address  
Used  
Program Memory  
Upper Address Byte  
Lower Address Byte  
LSB Selects Program  
dst/src "0" or "1"  
OPCODE  
Memory or Data Memory:  
"0" = Program Memory  
"1" = Data Memory  
Sample Instructions:  
LDC  
LDE  
R5,1234H  
R5,1234H  
;
;
The values in the program address (1234H)  
are loaded into register R5.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-10. Direct Addressing for Load Instructions  
3-10  
S3C9234/P9234  
ADDRESSING MODES  
DIRECT ADDRESS MODE (Continued)  
Program Memory  
Next OPCODE  
Program  
Memory  
Address  
Used  
Lower Address Byte  
Upper Address Byte  
OPCODE  
Sample Instructions:  
JP  
CALL  
C,JOB1  
DISPLAY  
;
;
Where JOB1 is a 16-bit immediate address  
Where DISPLAY is a 16-bit immediate address  
Figure 3-11. Direct Addressing for Call and Jump Instructions  
3-11  
ADDRESSING MODES  
S3C9234/P9234  
RELATIVE ADDRESS MODE (RA)  
In Relative Address (RA) mode, a two's-complement signed displacement between – 128 and + 127 is specified in  
the instruction. The displacement value is then added to the current PC value. The result is the address of the next  
instruction to be executed. Before this addition occurs, the PC contains the address of the instruction immediately  
following the current instruction.  
The instructions that support RA addressing is JR.  
Program Memory  
Next OPCODE  
Program Memory  
Address Used  
Current  
PC Value  
+
Displacement  
OPCODE  
Current Instruction  
Signed  
Displacement Value  
Sample Instructions:  
JR  
ULT,$ + OFFSET  
;
Where OFFSET is a value in the range + 127 to - 128  
Figure 3-12. Relative Addressing  
IMMEDIATE MODE (IM)  
In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand  
field itself. Immediate addressing mode is useful for loading constant values into registers.  
Program Memory  
OPERAND  
OPCODE  
(The Operand value is in the instruction)  
Sample Instruction:  
LD R0,#0AAH  
Figure 3-13. Immediate Addressing  
3-12  
S3C9234/P9234  
CONTROL REGISTERS  
4
CONTROL REGISTERS  
OVERVIEW  
In this section, detailed descriptions of the S3C9234/P9234 control registers are presented in an easy-to-read  
format. These descriptions will help familiarize you with the mapped locations in the register file. You can also use  
them as a quick-reference source when writing application programs.  
System and peripheral registers are summarized in Table 4-1. Figure 4-1 illustrates the important features of the  
standard register description format.  
Control register descriptions are arranged in alphabetical order according to register mnemonic. More information  
about control registers is presented in the context of the various peripheral hardware descriptions in Part II of this  
manual.  
4-1  
CONTROL REGISTERS  
S3C9234/P9234  
Table 4-1. System and Peripheral Control Registers  
Register Name  
Mnemonic Address(Page 0)  
R/W  
RES ET Value(bit)  
Decimal  
208  
Hex  
D0H  
D1H  
D2H  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
7
0
0
0
0
x
0
0
0
x
0
6
0
0
0
0
x
0
0
0
x
0
5
0
0
0
0
x
0
0
0
x
0
4
0
0
0
0
x
0
0
0
x
0
3
0
0
0
0
0
0
0
x
2
0
0
0
0
0
0
0
0
x
1
0
0
0
0
0
0
x
0
0
0
0
0
0
0
0
0
x
SIO Control Register  
SIOCON  
SIODATA  
SIOPS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SIO Data Register  
209  
SIO Prescaler Register  
Oscillator Control Register  
System Clock Control Register  
System Flags Register  
Stop Control Register  
LCD Control Register  
Interrupt Pending Register  
Stack Pointer  
210  
OSCCON  
CLKCON  
FLAGS  
STPCON  
LCON  
211  
212  
213  
214  
215  
INTPND  
SP  
216  
217  
Watch Timer Control Register  
WTCON  
218  
0
0
0
0
Location DBH is not mapped.  
Basic Timer Control Register  
Basic Timer Counter  
BTCON  
BTCNT  
220  
221  
DCH  
DDH  
R/W  
R
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
Location DEH is not mapped.  
System Mode Register  
Port 0 Data Register  
Port 1 Data Register  
Port 2 Data Register  
Port 3 Data Register  
Port 4 Data Register  
Port 5 Data Register  
Port 6 Data Register  
Timer A Counter  
SYM  
P0  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
DFH  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
x
x
x
x
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
P1  
P2  
P3  
P4  
P5  
P6  
TACNT  
TBCNT  
TADATA  
TBDATA  
TACON  
TBCON  
Timer B Counter  
R
Timer A Data Register  
Timer B Data Register  
Timer 1/A Control Register  
Timer B Control Register  
R/W  
R/W  
R/W  
R/W  
4-2  
S3C9234/P9234  
CONTROL REGISTERS  
Table 4-1. System and Peripheral Control Registers (Continued)  
Register Name  
Mnemonic Address(Page 0)  
R/W  
RES ET Value(bit)  
Decimal  
237  
Hex  
EDH  
EEH  
EFH  
F0H  
7
0
0
0
0
6
0
0
0
0
5
0
0
0
0
4
0
0
0
0
3
0
0
0
0
2
0
0
0
0
1
0
0
0
0
0
0
0
0
0
Port 0 Control Register  
P0CON  
P1CONH  
P1CONL  
P1PUR  
R/W  
R/W  
R/W  
R/W  
Port 1 Control Register(High Byte)  
Port 1 Control Register(Low Byte)  
238  
239  
Port 1 Pull-up Resistor Enable  
Register  
240  
Port 1 Interrupt Control Register  
Port 2 Control Register (High Byte)  
Port 2 Control Register (Low Byte)  
P1INT  
P2CONH  
P2CONL  
P2PUR  
241  
242  
243  
244  
F1H  
F2H  
F3H  
F4H  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Port 2 Pull-up Resistor Enable  
Register  
Port 2 Interrupt Control Register  
Port 3 Control Register (High Byte)  
Port 3 Control Register (Low Byte)  
P2INT  
P3CONH  
P3CONL  
P3PUR  
245  
246  
247  
248  
F5H  
F6H  
F7H  
F8H  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Port 3 Pull-up Resistor Enable  
Register  
Port 4 Control Register (High Byte)  
Port 4 Control Register (Low Byte)  
Port 5 Control Register (High Byte)  
Port 5 Control Register (Low Byte)  
Port 6 Control Register  
P4CONH  
P4CONL  
P5CONH  
P5CONL  
P6CON  
249  
250  
251  
252  
253  
254  
F9H  
FAH  
FBH  
FCH  
FDH  
FEH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Clock Output Control Register  
CLOCON  
Location FFH is not mapped.  
NOTES:  
1. An "x" means that the bit value is undefined following reset.  
2. A dash("-") means that the bit is neither used nor mapped, but the bit is read as "0".  
4-3  
CONTROL REGISTERS  
S3C9234/P9234  
Bit number(s) that is/are appended to the  
register name for bit addressing  
Name of individual  
bit or bit function  
Register address  
(hexadecimal)  
Register  
Full Register name  
mnemonic  
D5H  
FLAGS - System Flags Register  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Bit Identifier  
RESET Value  
Read/Write  
x
R/W  
x
R/W  
x
R/W  
x
R/W  
x
R/W  
x
R/W  
0
R/W  
0
R/W  
.7  
Carry Flag (C)  
0
1
Operation dose not generate a carry or borrow condition  
Operation generates carry-out or borrow into high-order bit7  
.6  
Zero Flag  
0
1
Operation result is a non-zero value  
Operation result is zero  
.5  
Sign Flag  
0
1
Operation generates positive number (MSB = "0")  
Operation generates negative number (MSB = "1")  
R = Read-only  
W = Write-only  
R/W = Read/write  
' - ' = Not used  
Description of the  
effect of specific  
bit settings  
RESET value notation:  
'-' = Not used  
'x' = Undetermind value  
'0' = Logic zero  
'1' = Logic one  
Addressing mode or  
Bit number:  
MSB = Bit 7  
LSB = Bit 0  
modes you can use to  
modify register values  
(1-bit, 4-bit, or 8-bit)  
Figure 4-1. Register Description Format  
4-4  
S3C9234/P9234  
CONTROL REGISTERS  
BTCON— Basic Timer Control Register  
DCH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.4  
.3-.2  
Watchdog Timer Function Disable Code (for System Reset)  
1
0
1
0
Disable watchdog timer function  
Enable watchdog timer function  
Any other value  
Basic Timer Clock Selection Bits  
0
0
1
1
0
1
0
1
fxx/4096  
fxx/1024  
fxx/128  
fxx/16  
.1  
.0  
Basic Timer Counter Clear Bit  
0
1
No effect  
Clear the basic timer counter value  
(Automatically cleared to "0" after being cleared basic timer counter)  
Clock Frequency Divider Clear Bit for Basic Timer and Timer Counters  
0
1
No effect  
Clear clock frequency dividers  
(Automatically cleared to "0" after being cleared clock frequency dividers)  
NOTE: The fxx is the selected clock for system (main clock or sub clock).  
4-5  
CONTROL REGISTERS  
S3C9234/P9234  
CLKCON — System Clock Control Register  
D4H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
Oscillator IRQ Wake-up Function Enable Bit  
0
1
Enable IRQ for main oscillator wake-up function  
Disable IRQ for main oscillator wake-up function  
.6-.5  
.4-.3  
Bits 6-5  
0
Always logic zero  
CPU Clock (System Clock) Frequency Selection Bits  
0
0
1
1
0
1
0
1
Select fxx/16  
Select fxx/8  
Select fxx/2  
Non-divided clock (fxx)  
.2-.0  
Bits 2-0  
Always logic zero  
0
4-6  
S3C9234/P9234  
CONTROL REGISTERS  
CLOCON — Clock Output Control Register  
FEH  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
.7-.2  
.1-.0  
Bits 7-2  
0
Always logic zero  
Clock Output Frequency Selection Bits  
0
0
1
1
0
1
0
1
Select fxx/64  
Select fxx/16  
Select fxx/8  
Select fxx/4  
4-7  
CONTROL REGISTERS  
S3C9234/P9234  
FLAGS — System Flags Register  
D5H  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
.2  
.1  
.0  
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
.7  
Carry Flag (C)  
0
1
Operation does not generate a carry or borrow condition  
Operation generates a carry-out or borrow into high-order bit 7  
.6  
Zero Flag (Z)  
0
1
Operation result is a non-zero value  
Operation result is zero  
.5  
Sign Flag (S)  
0
1
Operation generates a positive number (MSB = "0")  
Operation generates a negative number (MSB = "1")  
.4  
Overflow Flag (V)  
0
1
Operation result is £ +127 or ³ –128  
Operation result is > +127 or < –128  
.3-.0  
Not used for S3C9234/P9234.  
4-8  
S3C9234/P9234  
CONTROL REGISTERS  
INTPND — Interrupt Pending Register  
D8H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
.6  
.5  
.4  
P2.7's Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
P2.6's Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
P2.5's Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
P2.4's Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
.3  
.2  
Not used for S3C9234/P9234.  
P1.2's Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
.1  
.0  
P1.1's Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
P1.0's Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
4-9  
CONTROL REGISTERS  
S3C9234/P9234  
LCON— LCD Control Register  
D7H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
Internal LCD Dividing Resistors Enable Bit  
0
1
Enable internal LCD dividing resistors  
Disable internal LCD dividing resistors  
.6-.5  
LCD Clock Selection Bits  
9
0
0
1
1
0
1
0
1
fw/2 (64 Hz)  
8
fw/2 (128 Hz)  
7
fw/2 (256 Hz)  
6
fw/2 (512 Hz)  
.4-.2  
LCD Duty and Bias Selection Bits  
0
0
0
0
1
0
0
1
1
x
0
1
0
1
x
1/4duty, 1/3bias  
1/3duty, 1/3bias  
1/3duty, 1/2bias  
1/2duty, 1/2bias  
Static  
.1  
.0  
Not used for S3C9234/P9234.  
LCD Display Control Bits  
0
1
All LCD signals are low (Turn off the P-Tr)  
Turn display on (Turn on the P-Tr)  
NOTE: "x" means don't care.  
4-10  
S3C9234/P9234  
CONTROL REGISTERS  
OSCCON— Oscillator Control Register  
D3H  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
0
.2  
0
.1  
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
.7-.4  
.3  
Not used for S3C9234/P9234.  
Main Oscillator Control Bit  
0
1
Main oscillator RUN  
Main oscillator STOP  
.2  
Sub Oscillator Control Bit  
0
1
Sub oscillator RUN  
Sub oscillator STOP  
.1  
.0  
Not used for S3C9234/P9234.  
System Clock Selection Bit  
0
1
Select main oscillator for system clock  
Select sub oscillator for system clock  
4-11  
CONTROL REGISTERS  
S3C9234/P9234  
P0CON– Port 0 Control Register  
EDH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P0.3/COM3 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (COM3)  
P0.2/COM2 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (COM2)  
P0.1/COM1 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (COM1)  
P0.0/COM0 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (COM0)  
4-12  
S3C9234/P9234  
CONTROL REGISTERS  
P1CONH— Port 1 Control Register High Byte  
EEH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P1.7/BUZ Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (BUZ)  
P1.6/CLKOUT Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (CLKOUT)  
P1.5/TBOUT Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (TBOUT)  
P1.4/TAOUT Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (TAOUT)  
4-13  
CONTROL REGISTERS  
S3C9234/P9234  
P1CONL – Port 1 Control Register Low Byte  
EFH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P1.3/T1CLK Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode (T1CLK)  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
P1.2/INT Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
P1.1/INT Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
P1.0/INT Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
4-14  
S3C9234/P9234  
CONTROL REGISTERS  
P1INT –Port 1 Interrupt Enable Register  
F1H  
Bit Identifier  
.7  
.6  
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
Not used for S3C9234/P9234.  
P1.2/INT External Interrupt Configuration Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
.3-.2  
P1.1/INT External Interrupt Configuration Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
.1-.0  
P1.0/INT External Interrupt Configuration Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
4-15  
CONTROL REGISTERS  
S3C9234/P9234  
P1PUR–Port 1 Pull-up Resistors Enable Register  
F0H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P1.7's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.6's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.5's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.4's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.3's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.2's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.1's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P1.0's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
NOTE: A pull-up resistor of port1 is automatically disabled when the corresponding pin is selected as push-pull  
output or alternative function.  
4-16  
S3C9234/P9234  
CONTROL REGISTERS  
P2CONH–Port 2 Control Register High Byte  
F2H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P2.7/INT Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
P2.6/INT Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
P2.5/INT Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
P2.4/INT Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
4-17  
CONTROL REGISTERS  
S3C9234/P9234  
P2CONL – Port 2 Control Register Low Byte  
F3H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P2.3 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
P2.2/SI Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode (SI)  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
P2.1/SO Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SO)  
P2.0/SCK Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode (SCK)  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SCK)  
4-18  
S3C9234/P9234  
CONTROL REGISTERS  
P2INT — Port 2 Interrupt Enable Register  
F5H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P2.7/INT External Interrupt Edge Selection Bit  
0
1
Select falling edge  
Select rising edge  
P2.7/INT External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P2.6/INT External Interrupt Edge Selection Bit  
0
1
Select falling edge  
Select rising edge  
P2.6/INT External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P2.5/INT External Interrupt Edge Selection Bit  
0
1
Select falling edge  
Select rising edge  
P2.5/INT External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
P2.4/INT External Interrupt Edge Selection Bit  
0
1
Select falling edge  
Select rising edge  
P2.4/INT External Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
4-19  
CONTROL REGISTERS  
S3C9234/P9234  
P2PUR–Port 2 Pull-up Resistors Enable Register  
F4H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P2.7's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.6's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.5's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.4's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.3's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.2's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.1's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P2.0's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
NOTE: A pull-up resistor of port 2 is automatically disabled when the corresponding pin is selected as push-pull output or  
alternative function.  
4-20  
S3C9234/P9234  
CONTROL REGISTERS  
P3CONH– Port 3 Control Register High Byte  
F6H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P3.7/SEG24 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SEG24)  
P3.6/SEG25 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SEG25)  
P3.5/SEG26 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SEG26)  
P3.4/SEG27 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SEG27)  
4-21  
CONTROL REGISTERS  
S3C9234/P9234  
P3CONL –Port 3 Control Register Low Byte  
F7H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P3.3/SEG28 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SEG28)  
P3.2/SEG29 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SEG29)  
P3.1/SEG30 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SEG30)  
P3.0/SEG31 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SEG31)  
4-22  
S3C9234/P9234  
CONTROL REGISTERS  
P3PUR–Port 3 Pull-up Resistors Enable Register  
F8H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P3.7's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P3.6's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P3.5's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P3.4's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P3.3's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P3.2's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P3.1's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
P3.0's Pull-up Resistor Enable Bit  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
NOTE: A pull-up resistor of port3 is automatically disabled when the corresponding pin is selected as push-pull  
output or alternative function.  
4-23  
CONTROL REGISTERS  
S3C9234/P9234  
P4CONH– Port 4 Control Register High Byte  
F9H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P4.7/SEG16 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG16)  
P4.6/SEG17 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG17)  
P4.5/SEG18 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG18)  
P4.4/SEG19 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG19)  
4-24  
S3C9234/P9234  
CONTROL REGISTERS  
P4CONL–Port 4 Control Register Low Byte  
FAH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P4.3/SEG20 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG20)  
P4.2/SEG21 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG21)  
P4.1/SEG22 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG22)  
P4.0/SEG23 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG23)  
4-25  
CONTROL REGISTERS  
S3C9234/P9234  
P5CONH– Port 5 Control Register High Byte  
FBH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P5.7/SEG8 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG8)  
P5.6/SEG9 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG9)  
P5.5/SEG10 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG10)  
P5.4/SEG11 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG11)  
4-26  
S3C9234/P9234  
CONTROL REGISTERS  
P5CONL – Port 5 Control Register Low Byte  
FCH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P5.3/SEG12 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG12)  
P5.2/SEG13 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG13)  
P5.1/SEG14 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG14)  
P5.0/SEG15 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG15)  
4-27  
CONTROL REGISTERS  
S3C9234/P9234  
P6CON– Port 6 Control Register  
FDH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.6  
.5-.4  
.3-.2  
.1-.0  
P6.7-P6.6/SEG0-SEG1 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG0-SEG1)  
P6.5-P6.4/SEG2-SEG3 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG2-SEG3)  
P6.3-P6.2/SEG4-SEG5 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG4-SEG5)  
P6.1-P6.0/SEG6-SEG7 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG6-SEG7)  
4-28  
S3C9234/P9234  
CONTROL REGISTERS  
SIOCON — SIO Control Register  
D0H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.1  
SIO Shift Clock Selection Bit  
0
1
Internal clock (P.S clock)  
External clock (SCK)  
Data Direction Control Bit  
0
1
MSB-first mode  
LSB-first mode  
SIO Mode Selection Bit  
0
1
Receive-only mode  
Transmit/Receive mode  
Shift Clock Edge Selection Bit  
0
1
Tx at falling edges, Rx at rising edges  
Tx at rising edges, Rx at falling edges  
SIO Counter Clear and Shift Start Bit  
0
1
No action  
Clear 3-bit counter and start shifting  
SIO Shift Operation Enable Bit  
0
1
Disable shifter and clock counter  
Enable shifter and clock counter  
SIO Interrupt Enable Bit  
0
1
Disable SIO interrupt  
Enable SIO interrupt  
SIO Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
4-29  
CONTROL REGISTERS  
S3C9234/P9234  
STPCON– Stop Control Register  
D6H  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7-.0  
Stop Control Bits  
1
0
1
0
0
1
0
1
Enable Stop instruction  
Disable Stop instruction  
Other values  
NOTE: Before executing the STOP instruction, the STPCON register must be set to "10100101B". Otherwise the STOP  
instruction will not execute.  
4-30  
S3C9234/P9234  
CONTROL REGISTERS  
SYM — System Mode Register  
DFH  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
.7-.4  
.3  
Not used for S3C9234/P9234.  
Global Interrupt Enable Bit  
0
1
Disable all interrupt (DI instruction)  
Enable all interrupt (EI instruction)  
.2-.0  
Page Selection Bits  
Page 0  
Other values Not available  
0
0
0
4-31  
CONTROL REGISTERS  
S3C9234/P9234  
TACON— Timer 1/A Control Register  
EBH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
Timer 1 Mode Selection Bit  
0
1
Two 8-bit timers mode (Timer A/B)  
One 16-bit timer mode (Timer 1)  
.6-.4  
Timer 1/A Clock Selection Bits  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
fxx/512  
fxx/256  
fxx/64  
fxx/8  
fxx (system clock)  
fxt (sub clock)  
T1CLK (external clock)  
Not available  
.3  
.2  
.1  
.0  
Timer 1/A Counter Clear Bit  
0
1
No effect  
Clear the timer 1/A counter (when write)  
Timer 1/A Counter Enable Bit  
0
1
Disable counting operation  
Enable counting operation  
Timer 1/A Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer 1/A Interrupt Pending Bit  
0
1
No interrupt pending bit (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
4-32  
S3C9234/P9234  
CONTROL REGISTERS  
TBCON— Timer B Control Register  
ECH  
Bit Identifier  
.7  
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
Not used for S3C9234/P9234.  
.6-.4  
Timer B Clock Selection Bits  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
fxx/512  
fxx/256  
fxx/64  
fxx/8  
fxt (sub clock)  
.3  
.2  
.1  
.0  
Timer B Counter Clear Bit  
0
1
No effect  
Clear the timer B counter (when write)  
Timer B Counter Enable Bit  
0
1
Disable counting operation  
Enable counting operation  
Timer B Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer B Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
4-33  
CONTROL REGISTERS  
S3C9234/P9234  
WTCON— Watch Timer Control Register  
DAH  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RES ET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
.7  
Watch Timer Clock Selection Bit  
7
0
1
Select main clock divided by 2 (fx/128)  
Select sub clock (fxt)  
.6  
Watch Timer Interrupt Enable Bit  
0
1
Disable watch timer interrupt  
Enable watch timer interrupt  
.5-.4  
Buzzer Signal Selection Bits  
0
0
1
1
0
1
0
1
0.5 kHz  
1 kHz  
2 kHz  
4 kHz  
.3-.2  
Watch Timer Speed Selection Bits  
0
0
1
1
0
1
0
1
Set watch timer interrupt to 1s  
Set watch timer interrupt to 0.5s  
Set watch timer interrupt to 0.25s  
Set watch timer interrupt to 3.91ms  
.1  
.0  
Watch Timer Enable Bit  
0
1
Disable watch timer; Clear frequency dividing circuits  
Enable watch timer  
Watch Timer Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending bit (when write)  
Interrupt is pending (when read)  
4-34  
S3C9234/P9234  
INTERRUPT STRUCTURE  
5
INTERRUPT STRUCTURE  
OVERVIEW  
The SAM88RCRI interrupt structure has two basic components: a vector, and sources. The number of interrupt  
sources can be serviced through a interrupt vector which is assigned in ROM address 0000H–0001H.  
VECTOR  
SOURCES  
S1  
S2  
S3  
Sn  
0000H  
0001H  
NOTES:  
1. The SAM88RCRI interrupt has only one vector address (0000H-0001H).  
2. The number of Sn value is expandable.  
Figure 5-1. S3C9-Series Interrupt Type  
INTERRUPT PROCESSING CONTROL POINTS  
Interrupt processing can be controlled in two ways: globally, or by specific interrupt level and source. The system-  
level control points in the interrupt structure are therefore:  
— Global interrupt enable and disable (by EI and DI instructions)  
— Interrupt source enable and disable settings in the corresponding peripheral control register(s)  
ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)  
The system mode register, SYM (DFH), is used to enable and disable interrupt processing.  
SYM.3 is the enable and disable bit for global interrupt processing, which you can set by modifying SYM.3. An  
Enable Interrupt (EI) instruction must be included in the initialization routine that follows a reset operation in order to  
enable interrupt processing. Although you can manipulate SYM.3 directly to enable and disable interrupts during  
normal operation, we recommend that you use the EI and DI instructions for this purpose.  
5-1  
INTERRUPT STRUCTURE  
S3C9234/P9234  
INTERRUPT PENDING FUNCTION TYPES  
When the interrupt service routine has executed, the application program's service routine must clear the appropriate  
pending bit before the return from interrupt subroutine (IRET) occurs.  
INTERRUPT PRIORITY  
Because there is not a interrupt priority register in SAM87RCRI, the order of service is determined by a sequence of  
source which is executed in interrupt service routine.  
"EI" Instruction  
S
R
Q
Interrupt Pending  
Register  
Execution  
RESET  
Source  
Interrupts  
Vector  
Interrupt  
Cycle  
Interrpt priority  
is determind by  
software polling  
method  
Source  
Interrupt  
Enable  
Global Interrupt  
Control (EI, Di instruction)  
Figure 5-2. Interrupt Function Diagram  
5-2  
S3C9234/P9234  
INTERRUPT STRUCTURE  
INTERRUPT SOURCE SERVICE SEQUENCE  
The interrupt request polling and servicing sequence is as follows:  
1. A source generates an interrupt request by setting the interrupt request pending bit to "1".  
2. The CPU generates an interrupt acknowledge signal.  
3. The service routine starts and the source's pending flag is cleared to "0" by software.  
4. Interrupt priority must be determined by software polling method.  
INTERRUPT SERVICE ROUTINES  
Before an interrupt request can be serviced, the following conditions must be met:  
— Interrupt processing must be enabled (EI, SYM.3 = "1")  
— Interrupt must be enabled at the interrupt's source (peripheral control register)  
If all of the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The  
CPU then initiates an interrupt machine cycle that completes the following processing sequence:  
1. Reset (clear to "0") the global interrupt enable bit in the SYM register (DI, SYM.3 = "0")  
to disable all subsequent interrupts.  
2. Save the program counter and status flags to stack.  
3. Branch to the interrupt vector to fetch the service routine's address.  
4. Pass control to the interrupt service routine.  
When the interrupt service routine is completed, an Interrupt Return instruction (IRET) occurs. The IRET restores the  
PC and status flags and sets SYM.3 to "1"(EI), allowing the CPU to process the next interrupt request.  
GENERATING INTERRUPT VECTOR ADDRESSES  
The interrupt vector area in the ROM contains the address of the interrupt service routine. Vectored interrupt  
processing follows this sequence:  
1. Push the program counter's low-byte value to stack.  
2. Push the program counter's high-byte value to stack.  
3. Push the FLAGS register values to stack.  
4. Fetch the service routine's high-byte address from the vector address 0000H.  
5. Fetch the service routine's low-byte address from the vector address 0001H.  
6. Branch to the service routine specified by the 16-bit vector address.  
5-3  
INTERRUPT STRUCTURE  
S3C9234/P9234  
S3C9234/P9234 INTERRUPT STRUCTURE  
The S3C9234/P9234 microcontroller has eleven peripheral interrupt sources:  
— Timer 1/A interrupt  
— Timer B interrupt  
— SIO interrupt  
— Watch Timer interrupt  
— Three external interrupts for port 1  
— Four external interrupts for port 2  
5-4  
S3C9234/P9234  
INTERRUPT STRUCTURE  
Vector  
Enable/Disable  
Pending  
Sources  
INTPND.0  
P1.0 External Interript  
P1.1 External Interript  
P1.2 External Interript  
P1INT.0  
P1INT.1  
P1INT.2  
INTPND.1  
INTPND.2  
INTPND.4  
INTPND.5  
P2.4 External Interript  
P2.5 External Interript  
P2.6 External Interript  
P2.7 External Interrupt  
Timer 1/A Interrupt  
P2INT.4  
P2INT.5  
P2INT.6  
P2INT.7  
TACON.1  
INTPND.6  
INTPND.7  
0000H  
0001H  
SYM.3  
(EI, DI)  
TACON.0  
TBCON.0  
SIOCON.0  
Timer B Interrupt  
SIO Interrupt  
TBCON.1  
SIOCON.1  
Watch Timer Interrupt  
WTCON.0  
WTCON.6  
Figure 5-3. S3C9234/P9234 Interrupt Structure  
5-5  
INTERRUPT STRUCTURE  
S3C9234/P9234  
F
Programming Tip — How to Clear an Interrupt Pending Bit  
As the following examples are shown, a load instruction should be used to clear an interrupt pending bit of INTPND  
register.  
Examples:  
1.  
LD  
INTPND, #11111011B  
WTCON, #11111110B  
; Clear P1.2's interrupt pending bit  
·
·
·
IRET  
2.  
AND  
; Clear watch timer interrupt pending bit  
·
·
·
IRET  
5-6  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
6
SAM88RCRI INSTRUCTION SET  
OVERVIEW  
The SAM88RCRI instruction set is designed to support the large register file. It includes a full complement of 8-bit  
arithmetic and logic operations. There are 41 instructions. No special I/O instructions are necessary because I/O  
control and data registers are mapped directly into the register file. Flexible instructions for bit addressing, rotate, and  
shift operations complete the powerful data manipulation capabilities of the SAM88RCRI instruction set.  
REGISTER ADDRESSING  
To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is  
specified. Paired registers can be used to construct 16-bit program memory or data memory addresses. For detailed  
information about register addressing, please refer to Section 2, "Address Spaces".  
ADDRESSING MODES  
There are six addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA), and  
Immediate (IM). For detailed descriptions of these addressing modes, please refer to Section 3, "Addressing Modes".  
6-1  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
Table 6-1. Instruction Group Summary  
Operands Instruction  
Mnemonic  
Load Instructions  
CLR  
dst  
Clear  
LD  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst  
Load  
LDC  
Load program memory  
Load external data memory  
LDE  
LDCD  
LDED  
LDCI  
LDEI  
POP  
PUSH  
Load program memory and decrement  
Load external data memory and decrement  
Load program memory and increment  
Load external data memory and increment  
Pop from stack  
src  
Push to stack  
Arithmetic Instructions  
ADC  
ADD  
CP  
dst,src  
dst,src  
dst,src  
dst  
Add with carry  
Add  
Compare  
DEC  
INC  
Decrement  
Increment  
Subtract with carry  
Subtract  
dst  
SBC  
SUB  
dst,src  
dst,src  
Logic Instructions  
AND  
COM  
OR  
dst,src  
dst  
Logical AND  
Complement  
dst,src  
dst,src  
Logical OR  
XOR  
Logical exclusive OR  
6-2  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
Table 6-1. Instruction Group Summary (Continued)  
Mnemonic  
Operands  
Instruction  
Program Control Instructions  
CALL  
IRET  
JP  
dst  
Call procedure  
Interrupt return  
cc,dst  
dst  
Jump on condition code  
Jump unconditional  
Jump relative on condition code  
Return  
JP  
JR  
cc,dst  
RET  
Bit Manipulation Instructions  
TCM  
TM  
dst,src  
dst,src  
Test complement under mask  
Test under mask  
Rotate and Shift Instructions  
RL  
dst  
dst  
dst  
dst  
dst  
Rotate left  
RLC  
RR  
Rotate left through carry  
Rotate right  
RRC  
SRA  
Rotate right through carry  
Shift right arithmetic  
CPU Control Instructions  
CCF  
DI  
Complement carry flag  
Disable interrupts  
Enable interrupts  
Enter Idle mode  
No operation  
EI  
IDLE  
NOP  
RCF  
SCF  
STOP  
Reset carry flag  
Set carry flag  
Enter Stop mode  
6-3  
SAM88RI INSTRUCTION SET  
FLAGS REGISTER (FLAGS)  
S3C9234/P9234  
The FLAGS register contains eight bits that describe the current status of CPU operations. Four of these bits,  
FLAGS.4 – FLAGS.7, can be tested and used with conditional jump instructions;  
FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load  
instruction. Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register.  
For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND  
instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write will occur  
to the Flags register producing an unpredictable result.  
System Flags Register (FLAGS)  
D5H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Carry flag (C)  
Not mapped  
Zero flag (Z)  
Sign flag (S)  
Overflow flag (V)  
Figure 6-1. System Flags Register (FLAGS)  
FLAG DESCRIPTIONS  
Overflow Flag (FLAGS.4, V)  
The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than – 128. It is  
also cleared to "0" following logic operations.  
Sign Flag (FLAGS.5, S)  
Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the result. A logic  
zero indicates a positive number and a logic one indicates a negative number.  
Zero Flag (FLAGS.6, Z)  
For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For operations that  
test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is logic zero.  
Carry Flag (FLAGS.7, C)  
The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to the bit 7  
position (MSB). After rotate and shift operations, it contains the last value shifted out of the specified register.  
Program instructions can set, clear, or complement the carry flag.  
6-4  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
INSTRUCTION SET NOTATION  
Table 6-2. Flag Notation Conventions  
Flag  
Description  
Carry flag  
C
Z
S
V
0
1
*
Zero flag  
Sign flag  
Overflow flag  
Cleared to logic zero  
Set to logic one  
Set or cleared according to operation  
Value is unaffected  
Value is undefined  
x
Table 6-3. Instruction Set Symbols  
Symbol  
Description  
Destination operand  
dst  
src  
@
Source operand  
Indirect register address prefix  
Program counter  
PC  
FLAGS  
#
Flags register (D5H)  
Immediate operand or register address prefix  
Hexadecimal number suffix  
Decimal number suffix  
Binary number suffix  
H
D
B
opc  
Opcode  
6-5  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
Table 6-4. Instruction Notation Conventions  
Description Actual Operand Range  
Notation  
cc  
r
Condition code  
See list of condition codes in Table 6-6.  
Rn (n = 0–15)  
Working register only  
rr  
Working register pair  
RRp (p = 0, 2, 4, ..., 14)  
R
Register or working register  
Register pair or working register pair  
reg or Rn (reg = 0–255, n = 0–15)  
RR  
reg or RRp (reg = 0–254, even number only, where  
p = 0, 2, ..., 14)  
Ir  
IR  
Indirect working register only  
@Rn (n = 0–15)  
Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)  
Irr  
Indirect working register pair only  
@RRp (p = 0, 2, ..., 14)  
IRR  
Indirect register pair or indirect working  
register pair  
@RRp or @reg (reg = 0–254, even only, where  
p = 0, 2, ..., 14)  
X
Indexed addressing mode  
#reg[Rn] (reg = 0–255, n = 0–15)  
XS  
Indexed (short offset) addressing mode  
#addr[RRp] (addr = range –128 to +127, where  
p = 0, 2, ..., 14)  
xl  
Indexed (long offset) addressing mode  
#addr [RRp] (addr = range 0–8191, where  
p = 0, 2, ..., 14)  
da  
ra  
Direct addressing mode  
Relative addressing mode  
addr (addr = range 0–8191)  
addr (addr = number in the range +127 to –128 that is  
an offset relative to the address of the next instruction)  
im  
Immediate addressing mode  
#data (data = 0–255)  
6-6  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
Table 6-5. Opcode Quick Reference  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
1
2
3
4
5
6
7
U
P
P
E
R
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
DEC  
R1  
DEC  
IR1  
ADD  
r1,r2  
ADD  
r1,Ir2  
ADD  
R2,R1  
ADD  
IR2,R1  
ADD  
R1,IM  
RLC  
R1  
RLC  
IR1  
ADC  
r1,r2  
ADC  
r1,Ir2  
ADC  
R2,R1  
ADC  
IR2,R1  
ADC  
R1,IM  
INC  
R1  
INC  
IR1  
SUB  
r1,r2  
SUB  
r1,Ir2  
SUB  
R2,R1  
SUB  
IR2,R1  
SUB  
R1,IM  
JP  
IRR1  
SBC  
r1,r2  
SBC  
r1,Ir2  
SBC  
R2,R1  
SBC  
IR2,R1  
SBC  
R1,IM  
OR  
r1,r2  
OR  
r1,Ir2  
OR  
R2,R1  
OR  
IR2,R1  
OR  
R1,IM  
POP  
R1  
POP  
IR1  
AND  
r1,r2  
AND  
r1,Ir2  
AND  
R2,R1  
AND  
IR2,R1  
AND  
R1,IM  
N
I
COM  
R1  
COM  
IR1  
TCM  
r1,r2  
TCM  
r1,Ir2  
TCM  
R2,R1  
TCM  
IR2,R1  
TCM  
R1,IM  
PUSH  
R2  
PUSH  
IR2  
TM  
r1,r2  
TM  
r1,Ir2  
TM  
R2,R1  
TM  
IR2,R1  
TM  
R1,IM  
B
B
L
E
LD  
r1, x, r2  
RL  
R1  
RL  
IR1  
LD  
r2, x, r1  
CP  
r1,r2  
CP  
r1,Ir2  
CP  
R2,R1  
CP  
IR2,R1  
CP  
R1,IM  
LDC  
r1, Irr2, xL  
CLR  
R1  
CLR  
IR1  
XOR  
r1,r2  
XOR  
r1,Ir2  
XOR  
R2,R1  
XOR  
IR2,R1  
XOR  
R1,IM  
LDC  
r2, Irr2, xL  
RRC  
R1  
RRC  
IR1  
LDC  
r1,Irr2  
LD  
r1, Ir2  
H
E
X
SRA  
R1  
SRA  
IR1  
LDC  
r2,Irr1  
LD  
IR1,IM  
LD  
Ir1, r2  
RR  
R1  
RR  
IR1  
LDCD  
r1,Irr2  
LDCI  
r1,Irr2  
LD  
R2,R1  
LD  
R2,IR1  
LD  
R1,IM  
LDC  
r1, Irr2, xs  
CALL  
IRR1  
LD  
IR2,R1  
CALL  
DA1  
LDC  
r2, Irr1, xs  
6-7  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
Table 6-5. Opcode Quick Reference (Continued)  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
8
9
A
B
C
D
E
F
U
LD  
r1,R2  
LD  
r2,R1  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
P
P
E
R
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
¯
N
I
IDLE  
STOP  
DI  
B
B
L
E
EI  
RET  
IRET  
RCF  
SCF  
CCF  
NOP  
H
E
X
LD  
r1,R2  
LD  
r2,R1  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
6-8  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
CONDITION CODES  
The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under  
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal" after a  
compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.  
The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump  
instructions.  
Table 6-6. Condition Codes  
Binary  
0000  
Mnemonic  
Description  
Flags Set  
F
T
C
Always false  
Always true  
Carry  
1000  
(1)  
C = 1  
0111  
(1)  
NC  
Z
No carry  
Zero  
C = 0  
Z = 1  
Z = 0  
1111  
(1)  
0110  
(1)  
NZ  
Not zero  
1110  
1101  
0101  
0100  
1100  
PL  
MI  
Plus  
S = 0  
S = 1  
V = 1  
V = 0  
Z = 1  
Minus  
OV  
NOV  
EQ  
Overflow  
No overflow  
Equal  
(1)  
0110  
(1)  
NE  
Not equal  
Z = 0  
1110  
1001  
0001  
1010  
0010  
GE  
LT  
Greater than or equal  
Less than  
(S XOR V) = 0  
(S XOR V) = 1  
(Z OR (S XOR V)) = 0  
(Z OR (S XOR V)) = 1  
C = 0  
GT  
Greater than  
LE  
Less than or equal  
Unsigned greater than or equal  
(1)  
UGE  
1111  
(1)  
ULT  
Unsigned less than  
C = 1  
0111  
1011  
0011  
UGT  
ULE  
Unsigned greater than  
(C = 0 AND Z = 0) = 1  
(C OR Z) = 1  
Unsigned less than or equal  
NOTES:  
1. Indicate condition codes that are related to two different mnemonics but which test the same flag.  
For example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;  
after a CP instruction, however, EQ would probably be used.  
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.  
6-9  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
INSTRUCTION DESCRIPTIONS  
This section contains detailed information and programming examples for each instruction in the SAM88RCRI  
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The  
following information is included in each instruction description:  
— Instruction name (mnemonic)  
— Full instruction name  
— Source/destination format of the instruction operand  
— Shorthand notation of the instruction's operation  
— Textual description of the instruction's effect  
— Specific flag settings affected by the instruction  
— Detailed description of the instruction's format, execution time, and addressing mode(s)  
— Programming example(s) explaining how to use the instruction  
6-10  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
ADC — Add With Carry  
ADC  
dst,src  
Operation:  
dst ¨ dst + src + c  
The source operand, along with the setting of the carry flag, is added to the destination operand and  
the sum is stored in the destination. The contents of the source are unaffected. Two's-complement  
addition is performed. In multiple precision arithmetic, this instruction permits the carry from the  
addition of low-order operands to be carried into the addition of high-order operands.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the  
result is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if there is a carry from the most significant bit of the low-order four bits of the result;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
12  
13  
r
r
r
lr  
dst  
src  
3
3
6
6
14  
15  
R
R
R
IR  
dst  
6
16  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and register 03H  
= 0AH:  
ADC  
ADC  
ADC  
ADC  
ADC  
R1,R2  
®
®
®
®
®
R1 = 14H, R2 = 03H  
R1 = 1BH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 32H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#11H  
In the first example, destination register R1 contains the value 10H, the carry flag is set to "1", and  
the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds 03H and  
the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.  
6-11  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
ADD — Add  
ADD  
dst,src  
Operation:  
dst ¨ dst + src  
The source operand is added to the destination operand and the sum is stored in the destination.  
The contents of the source are unaffected. Two's-complement addition is performed.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the  
result is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if a carry from the low-order nibble occurred.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
02  
03  
r
r
r
lr  
dst  
src  
3
3
6
6
04  
05  
R
R
R
IR  
dst  
6
06  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
ADD  
ADD  
ADD  
ADD  
ADD  
R1,R2  
®
®
®
®
®
R1 = 15H, R2 = 03H  
R1 = 1CH, R2 = 03H  
Register 01H = 24H, register 02H = 03H  
Register 01H = 2BH, register 02H = 03H  
Register 01H = 46H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#25H  
In the first example, destination working register R1 contains 12H and the source working register R2  
contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in register R1.  
6-12  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
AND — Logical AND  
AND  
dst,src  
Operation:  
dst ¨ dst AND src  
The source operand is logically ANDed with the destination operand. The result is stored in the  
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits in  
the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the source  
are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
52  
53  
r
r
r
lr  
dst  
src  
3
3
6
6
54  
55  
R
R
R
IR  
dst  
6
56  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
AND  
AND  
AND  
AND  
AND  
R1,R2  
®
®
®
®
®
R1 = 02H, R2 = 03H  
R1 = 02H, R2 = 03H  
Register 01H = 01H, register 02H = 03H  
Register 01H = 00H, register 02H = 03H  
Register 01H = 21H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#25H  
In the first example, destination working register R1 contains the value 12H and the source working  
register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source operand 03H with  
the destination operand value 12H, leaving the value 02H in register R1.  
6-13  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
CALL — Call Procedure  
CALL  
dst  
Operation:  
SP  
@SP  
SP  
@SP  
PC  
¨
¨
¨
¨
¨
SP – 1  
PCL  
SP –1  
PCH  
dst  
The current contents of the program counter are pushed onto the top of the stack. The program  
counter value used is the address of the first instruction following the CALL instruction. The specified  
destination address is then loaded into the program counter and points to the first instruction of a  
procedure. At the end of the procedure the return instruction (RET) can be used to return to the  
original program flow. RET pops the top of the stack back into the program counter.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
opc  
dst  
3
14  
F6  
DA  
dst  
2
12  
F4  
IRR  
Examples:  
Given: R0 = 15H, R1 = 21H, PC = 1A47H, and SP = 0B2H:  
CALL  
1521H  
®
SP = 0B0H  
(Memory locations 00H = 1AH, 01H = 4AH, where 4AH  
is the address that follows the instruction.)  
SP = 0B0H (00H = 1AH, 01H = 49H)  
CALL  
@RR0  
®
In the first example, if the program counter value is 1A47H and the stack pointer contains the value  
0B2H, the statement "CALL 1521H" pushes the current PC value onto the top of the stack. The  
stack pointer now points to memory location 00H. The PC is then loaded with the value 1521H, the  
address of the first instruction in the program sequence to be executed.  
If the contents of the program counter and stack pointer are the same as in the first example, the  
statement "CALL @RR0" produces the same result except that the 49H is stored in stack location  
01H (because the two-byte instruction format was used). The PC is then loaded with the value  
1521H, the address of the first instruction in the program sequence to be executed.  
6-14  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
CCF — Complement Carry Flag  
CCF  
Operation:  
C ¨ NOT C  
The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic zero; if  
C = "0", the value of the carry flag is changed to logic one.  
Flags:  
C: Complemented.  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
EF  
Example:  
Given: The carry flag = "0":  
CCF  
If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H), changing  
its value from logic zero to logic one.  
6-15  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
CLR — Clear  
CLR  
dst  
Operation:  
dst ¨ "0"  
The destination location is cleared to "0".  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
B0  
B1  
R
IR  
Examples:  
Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:  
CLR  
CLR  
00H  
@01H  
®
®
Register 00H = 00H  
Register 01H = 02H, register 02H = 00H  
In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H value  
to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR) addressing  
mode to clear the 02H register value to 00H.  
6-16  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
COM — Complement  
COM  
dst  
Operation:  
dst ¨ NOT dst  
The contents of the destination location are complemented (one's complement); all "1s" are changed  
to "0s", and vice-versa.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
60  
61  
R
IR  
Examples:  
Given: R1 = 07H and register 07H = 0F1H:  
COM  
COM  
R1  
@R1  
®
®
R1 = 0F8H  
R1 = 07H, register 07H = 0EH  
In the first example, destination working register R1 contains the value 07H (00000111B). The  
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros, and  
vice-versa, leaving the value 0F8H (11111000B).  
In the second example, Indirect Register (IR) addressing mode is used to complement the value of  
destination register 07H (11110001B), leaving the new value 0EH (00001110B).  
6-17  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
CP — Compare  
CP  
dst,src  
Operation:  
dst – src  
The source operand is compared to (subtracted from) the destination operand, and the appropriate  
flags are set accordingly. The contents of both operands are unaffected by the comparison.  
Flags:  
C: Set if a "borrow" occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the  
sign of the result is of the same as the sign of the source operand; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
A2  
A3  
r
r
r
lr  
dst  
src  
3
3
6
6
A4  
A5  
R
R
R
IR  
dst  
6
A6  
R
IM  
Examples:  
1. Given: R1 = 02H and R2 = 03H:  
CP R1,R2  
®
Set the C and S flags  
Destination working register R1 contains the value 02H and source register R2 contains the value  
03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value  
(destination/minuend). Because a "borrow" occurs and the difference is negative, C and S are "1".  
2. Given: R1 = 05H and R2 = 0AH:  
CP  
JP  
INC  
LD  
R1,R2  
UGE,SKIP  
R1  
SKIP  
R3,R1  
In this example, destination working register R1 contains the value 05H which is less than the  
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1" and  
the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1" executes,  
the value 06H remains in working register R3.  
6-18  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
DEC — Decrement  
DEC  
dst  
Operation:  
dst ¨ dst – 1  
The contents of the destination operand are decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, dst value is –128(80H) and result value is  
+127(7FH); cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
00  
01  
R
IR  
Examples:  
Given: R1 = 03H and register 03H = 10H:  
DEC  
DEC  
R1  
@R1  
®
®
R1 = 02H  
Register 03H = 0FH  
In the first example, if working register R1 contains the value 03H, the statement "DEC R1"  
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the  
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by one,  
leaving the value 0FH.  
6-19  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
DI — Disable Interrupts  
DI  
Operation:  
SYM (2) ¨ 0  
Bit zero of the system mode register, SYM.2, is cleared to "0", globally disabling all interrupt  
processing. Interrupt requests will continue to set their respective interrupt pending bits, but the CPU  
will not service them while interrupt processing is disabled.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
8F  
Example:  
Given: SYM = 04H:  
DI  
If the value of the SYM register is 04H, the statement "DI" leaves the new value 00H in the register  
and clears SYM.2 to "0", disabling interrupt processing.  
6-20  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
EI — Enable Interrupts  
EI  
Operation:  
SYM (2) ¨ 1  
An EI instruction sets bit 2 of the system mode register, SYM.2 to "1". This allows interrupts to be  
serviced as they occur. If an interrupt's pending bit was set while interrupt processing was disabled  
(by executing a DI instruction), it will be serviced when you execute the EI instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
9F  
Example:  
Given: SYM = 00H:  
EI  
If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the statement  
"EI" sets the SYM register to 04H, enabling all interrupts (SYM.2 is the enable bit for global interrupt  
processing).  
6-21  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
IDLE — Idle Operation  
IDLE  
Operation:  
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle  
mode can be released by an interrupt request (IRQ) or an external reset operation.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
6F  
Example:  
The instruction  
IDLE  
stops the CPU clock but not the system clock.  
6-22  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
INC — Increment  
INC  
dst  
Operation:  
dst ¨ dst + 1  
The contents of the destination operand are incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is dst value is +127(7FH) and result is –128(80H);  
cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
dst | opc  
1
4
rE  
r
r = 0 to F  
opc  
dst  
2
4
4
20  
21  
R
IR  
Examples:  
Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:  
INC  
INC  
INC  
R0  
00H  
@R0  
®
®
®
R0 = 1CH  
Register 00H = 0DH  
R0 = 1BH, register 01H = 10H  
In the first example, if destination working register R0 contains the value 1BH, the statement "INC  
R0" leaves the value 1CH in that same register.  
The next example shows the effect an INC instruction has on register 00H, assuming that it contains  
the value 0CH.  
In the third example, INC is used in Indirect Register (IR) addressing mode to increment the value of  
register 1BH from 0FH to 10H.  
6-23  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
IRET — Interrupt Return  
IRET  
IRET  
Operation:  
FLAGS ¨ @SP  
SP ¨ SP + 1  
PC ¨ @SP  
SP ¨ SP + 2  
SYM(2) ¨ 1  
This instruction is used at the end of an interrupt service routine. It restores the flag register and the  
program counter. It also re-enables global interrupts.  
Flags:  
All flags are restored to their original settings (that is, the settings before the interrupt occurred).  
Format:  
IRET  
(Normal)  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
6
BF  
6-24  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
JP — Jump  
JP  
cc,dst  
dst  
(Conditional)  
JP  
(Unconditional)  
Operation:  
If cc is true, PC ¨ dst  
The conditional JUMP instruction transfers program control to the destination address if the condition  
specified by the condition code (cc) is true; otherwise, the instruction following the JP instruction is  
executed. The unconditional JP simply replaces the contents of the PC with the contents of the  
specified register pair. Control then passes to the statement addressed by the PC.  
Flags:  
No flags are affected.  
(1)  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(2)  
(3)  
8
cc | opc  
dst  
3
ccD  
DA  
cc = 0 to F  
opc  
dst  
2
8
30  
IRR  
NOTES:  
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.  
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the opcode are both four  
bits.  
Examples:  
Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H:  
JP  
JP  
C,LABEL_W  
@00H  
®
®
LABEL_W = 1000H, PC = 1000H  
PC = 0120H  
The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement  
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to that  
location. Had the carry flag not been set, control would then have passed to the statement  
immediately following the JP instruction.  
The second example shows an unconditional JP. The statement "JP @00" replaces the contents of  
the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.  
6-25  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
JR — Jump Relative  
JR  
cc,dst  
Operation:  
If cc is true, PC ¨ PC + dst  
If the condition specified by the condition code (cc) is true, the relative address is added to the  
program counter and control passes to the statement whose address is now in the program counter;  
otherwise, the instruction following the JR instruction is executed (See list of condition codes).  
The range of the relative address is +127, –128, and the original value of the program counter is  
taken to be the address of the first instruction byte following the JR statement.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(1)  
(2)  
6
cc | opc  
dst  
2
ccB  
RA  
cc = 0 to F  
NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each four  
bits.  
Example:  
Given: The carry flag = "1" and LABEL_X = 1FF7H:  
JR C,LABEL_X PC = 1FF7H  
®
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will pass  
control to the statement whose address is now in the PC. Otherwise, the program instruction  
following the JR would be executed.  
6-26  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
LD — Load  
LD  
dst,src  
dst ¨ src  
Operation:  
The contents of the source are loaded into the destination. The source's contents are unaffected.  
No flags are affected.  
Flags:  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
IM  
R
dst | opc  
src | opc  
opc  
src  
dst  
2
4
4
rC  
r8  
r
r
2
2
3
3
4
r9  
R
r
r = 0 to F  
dst | src  
4
4
C7  
D7  
r
lr  
r
Ir  
opc  
src  
dst  
src  
6
6
E4  
E5  
R
R
R
IR  
opc  
dst  
6
6
E6  
D6  
R
IM  
IM  
IR  
opc  
opc  
opc  
src  
dst  
x
3
3
3
6
6
6
F5  
87  
97  
IR  
r
R
x [r]  
r
dst | src  
src | dst  
x
x [r]  
6-27  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
LD — Load  
LD  
(Continued)  
Examples:  
Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H,  
register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH:  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
R0,#10H  
R0,01H  
01H,R0  
R1,@R0  
@R0,R1  
00H,01H  
02H,@00H  
00H,#0AH  
@00H,#10H  
@00H,02H  
®
®
®
®
®
®
®
®
®
®
R0 = 10H  
R0 = 20H, register 01H = 20H  
Register 01H = 01H, R0 = 01H  
R1 = 20H, R0 = 01H  
R0 = 01H, R1 = 0AH, register 01H = 0AH  
Register 00H = 20H, register 01H = 20H  
Register 02H = 20H, register 00H = 01H  
Register 00H = 0AH  
Register 00H = 01H, register 01H = 10H  
Register 00H = 01H, register 01H = 02, register 02H = 02H  
R0 = 0FFH, R1 = 0AH  
R0,#LOOP[R1]®  
#LOOP[R0],R1®  
Register 31H = 0AH, R0 = 01H, R1 = 0AH  
6-28  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
LDC/LDE — Load Memory  
LDC/LDE  
dst,src  
Operation:  
dst ¨ src  
This instruction loads a byte from program or data memory into a working register or vice-versa. The  
source values are unaffected. LDC refers to program memory and LDE to data memory. The  
assembler makes 'Irr' or 'rr' values an even number for program memory and an odd number for data  
memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
1.  
2.  
3.  
4.  
5.  
opc  
opc  
opc  
opc  
opc  
dst | src  
src | dst  
dst | src  
src | dst  
dst | src  
2
10  
C3  
D3  
E7  
F7  
A7  
r
Irr  
2
3
3
4
10  
12  
12  
14  
Irr  
r
XS  
XS  
r
XS [rr]  
r
XS [rr]  
r
XL  
XL  
XL [rr]  
L
H
6.  
7.  
opc  
opc  
opc  
opc  
opc  
src | dst  
dst | 0000  
src | 0000  
dst | 0001  
src | 0001  
XL  
XL  
4
4
4
4
4
14  
14  
14  
14  
14  
B7  
A7  
B7  
A7  
B7  
XL [rr]  
r
DA  
r
L
H
DA  
DA  
DA  
DA  
DA  
DA  
DA  
DA  
r
L
L
L
L
H
H
H
H
8.  
DA  
r
9.  
DA  
r
10.  
DA  
NOTES:  
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.  
2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one byte.  
3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two bytes.  
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second set of values, used  
in formats 9 and 10, are used to address data memory.  
6-29  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
LDC/LDE — Load Memory  
LDC/LDE  
(Continued)  
Examples:  
Given: R0 = 11H, R1 = 34H, R2 = 01H, R3 = 04H, R4 = 00H, R5 = 60H; Program memory locations  
0061 = AAH, 0103H = 4FH, 0104H = 1A, 0105H = 6DH, and 1104H = 88H. External data memory  
locations 0061H = BBH, 0103H = 5FH, 0104H = 2AH, 0105H = 7DH, and  
1104H = 98H:  
LDC  
R0,@RR2  
R0,@RR2  
@RR2,R0  
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
R0 ¨ contents of program memory location 0104H  
R0 = 1AH, R2 = 01H, R3 = 04H  
R0 ¨ contents of external data memory location 0104H  
R0 = 2AH, R2 = 01H, R3 = 04H  
11H (contents of R0) is loaded into program memory  
location 0104H (RR2),  
working registers R0, R2, R3 Æ no change  
11H (contents of R0) is loaded into external data memory  
location 0104H (RR2),  
working registers R0, R2, R3 Æ no change  
R0 ¨ contents of program memory location 0061H  
(01H + RR4),  
R0 = AAH, R2 = 00H, R3 = 60H  
R0 ¨ contents of external data memory location 0061H  
(01H + RR4), R0 = BBH, R4 = 00H, R5 = 60H  
LDE  
LDC *  
LDE  
LDC  
LDE  
@RR2,R0  
R0,#01H[RR4]  
R0,#01H[RR4]  
(note)  
LDC  
LDE  
LDC  
LDE  
LDC  
LDE  
#01H[RR4],R0  
#01H[RR4],R0  
R0,#1000H[RR2]  
R0,#1000H[RR2]  
R0,1104H  
;
;
;
;
;
;
;
;
;
;
;
;
11H (contents of R0) is loaded into program memory  
location 0061H (01H + 0060H)  
11H (contents of R0) is loaded into external data memory  
location 0061H (01H + 0060H)  
R0 ¨ contents of program memory location 1104H  
(1000H + 0104H), R0 = 88H, R2 = 01H, R3 = 04H  
R0 ¨ contents of external data memory location 1104H  
(1000H + 0104H), R0 = 98H, R2 = 01H, R3 = 04H  
R0 ¨ contents of program memory location 1104H,  
R0 = 88H  
R0,1104H  
R0 ¨ contents of external data memory location 1104H,  
R0 = 98H  
(note)  
LDC  
LDE  
1105H,R0  
;
;
;
11H (contents of R0) is loaded into program memory  
location 1105H, (1105H) ¨ 11H  
11H (contents of R0) is loaded into external data memory  
1105H,R0  
;
location 1105H, (1105H) ¨ 11H  
NOTE: These instructions are not supported by masked ROM type devices.  
6-30  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
LDCD/LDED — Load Memory and Decrement  
LDCD/LDED  
Operation:  
dst,src  
dst ¨ src  
rr ¨ rr – 1  
These instructions are used for user stacks or block transfers of data from program or data memory  
to the register file. The address of the memory location is specified by a working register pair. The  
contents of the source location are loaded into the destination location. The memory address is then  
decremented. The contents of the source are unaffected.  
LDCD references program memory and LDED references external data memory. The assembler  
makes ‘Irr’ an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E2  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and  
external data memory location 1033H = 0DDH:  
LDCD  
R8,@RR6  
;
;
;
;
;
;
0CDH (contents of program memory location 1033H) is  
loaded into R8 and RR6 is decremented by one  
R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 ¬ RR6 - 1)  
0DDH (contents of data memory location 1033H) is  
loaded into R8 and RR6 is decremented by one  
(RR6 ¬ RR6 - 1) R8 = 0DDH, R6 = 10H, R7 = 32H  
LDED  
R8,@RR6  
6-31  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
LDCI/LDEI — Load Memory and Increment  
LDCI/LDEI  
Operation:  
dst,src  
dst ¨ src  
rr ¨ rr + 1  
These instructions are used for user stacks or block transfers of data from program or data memory  
to the register file. The address of the memory location is specified by a working register pair. The  
contents of the source location are loaded into the destination location. The memory address is then  
incremented automatically. The contents of the source are unaffected.  
LDCI refers to program memory and LDEI refers to external data memory. The assembler makes 'Irr'  
even for program memory and odd for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E3  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and  
1034H = 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:  
LDCI  
R8,@RR6  
;
;
;
;
;
;
0CDH (contents of program memory location 1033H) is  
loaded into R8 and RR6 is incremented by one  
(RR6 ¨ RR6 + 1) R8 = 0CDH, R6 = 10H, R7 = 34H  
0DDH (contents of data memory location 1033H) is  
loaded into R8 and RR6 is incremented by one  
(RR6 ¨ RR6 + 1) R8 = 0DDH, R6 = 10H, R7 = 34H  
LDEI  
R8,@RR6  
6-32  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
NOP — No Operation  
NOP  
Operation:  
No action is performed when the CPU executes this instruction. Typically, one or more NOPs are  
executed in sequence in order to effect a timing delay of variable duration.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
FF  
Example:  
When the instruction  
NOP  
is encountered in a program, no operation occurs. Instead, there is a delay in instruction execution  
time.  
6-33  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
OR — Logical OR  
OR  
dst,src  
Operation:  
dst ¨ dst OR src  
The source operand is logically ORed with the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. The OR operation results in a "1" being  
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is  
stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
42  
43  
r
r
r
lr  
dst  
src  
3
3
6
6
44  
45  
R
R
R
IR  
dst  
6
46  
R
IM  
Examples:  
Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and register 08H  
= 8AH:  
OR  
OR  
OR  
OR  
OR  
R0,R1  
®
®
®
®
®
R0 = 3FH, R1 = 2AH  
R0,@R2  
00H,01H  
01H,@00H  
00H,#02H  
R0 = 37H, R2 = 01H, register 01H = 37H  
Register 00H = 3FH, register 01H = 37H  
Register 00H = 08H, register 01H = 0BFH  
Register 00H = 0AH  
In the first example, if working register R0 contains the value 15H and register R1 the value 2AH, the  
statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result (3FH) in  
destination register R0.  
The other examples show the use of the logical OR instruction with the various addressing modes  
and formats.  
6-34  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
POP — Pop From Stack  
POP  
dst  
Operation:  
dst ¨ @SP  
SP ¨ SP + 1  
The contents of the location addressed by the stack pointer are loaded into the destination. The  
stack pointer is then incremented by one.  
Flags:  
No flags affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
50  
51  
R
IR  
Examples:  
Given: Register 00H = 01H, register 01H = 1BH, SP (0D9H) = 0BBH, and stack register  
0BBH = 55H:  
POP  
POP  
00H  
@00H  
®
®
Register 00H = 55H, SP = 0BCH  
Register 00H = 01H, register 01H = 55H, SP = 0BCH  
In the first example, general register 00H contains the value 01H. The statement "POP 00H" loads  
the contents of location 0BBH (55H) into destination register 00H and then increments the stack  
pointer by one. Register 00H then contains the value 55H and the SP points to location 0BCH.  
6-35  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
PUSH — Push To Stack  
PUSH  
src  
Operation:  
SP ¨ SP – 1  
@SP ¨ src  
A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)  
into the location addressed by the decremented stack pointer. The operation then adds the new  
value to the top of the stack.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
src  
2
8
8
70  
71  
R
IR  
Examples:  
Given: Register 40H = 4FH, register 4FH = 0AAH, SP = 0C0H:  
PUSH  
PUSH  
40H  
®
®
Register 40H = 4FH, stack register 0BFH = 4FH,  
SP = 0BFH  
Register 40H = 4FH, register 4FH = 0AAH, stack register  
0BFH = 0AAH, SP = 0BFH  
@40H  
In the first example, if the stack pointer contains the value 0C0H, and general register 40H the value  
4FH, the statement "PUSH 40H" decrements the stack pointer from 0C0 to 0BFH. It then loads the  
contents of register 40H into location 0BFH. Register 0BFH then contains the value 4FH and SP  
points to location 0BFH.  
6-36  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
RCF — Reset Carry Flag  
RCF  
RCF  
Operation:  
C ¨ 0  
The carry flag is cleared to logic zero, regardless of its previous value.  
Flags:  
C: Cleared to "0".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
CF  
Example:  
Given: C = "1" or "0":  
The instruction RCF clears the carry flag (C) to logic zero.  
6-37  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
RET — Return  
RET  
Operation:  
PC ¨ @SP  
SP ¨ SP + 2  
The RET instruction is normally used to return to the previously executing procedure at the end of a  
procedure entered by a CALL instruction. The contents of the location addressed by the stack  
pointer are popped into the program counter. The next statement that is executed is the one that is  
addressed by the new program counter value.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
8
AF  
Example:  
Given: SP = 0BCH, (SP) = 101AH, and PC = 1234:  
RET PC = 101AH, SP = 0BEH  
®
The statement "RET" pops the contents of stack pointer location 0BCH (10H) into the high byte of  
the program counter. The stack pointer then pops the value in location 0BDH (1AH) into the PC's low  
byte and the instruction at location 101AH is executed. The stack pointer now points to memory  
location 0BEH.  
6-38  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
RL — Rotate Left  
RL  
dst  
Operation:  
C ¨ dst (7)  
dst (0) ¨ dst (7)  
dst (n + 1) ¨ dst (n), n = 0–6  
The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is  
moved to the bit zero (LSB) position and also replaces the carry flag.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
90  
91  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:  
RL  
RL  
00H  
@01H  
®
®
Register 00H = 55H, C = "1"  
Register 01H = 02H, register 02H = 2EH, C = "0"  
In the first example, if general register 00H contains the value 0AAH (10101010B), the statement "RL  
00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B) and setting  
the carry and overflow flags.  
6-39  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
RLC — Rotate Left Through Carry  
RLC  
dst  
Operation:  
dst (0) ¨ C  
C ¨ dst (7)  
dst (n + 1) ¨ dst (n), n = 0–6  
The contents of the destination operand with the carry flag are rotated left one bit position. The initial  
value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
10  
11  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":  
RLC  
RLC  
00H  
@01H  
®
®
Register 00H = 54H, C = "1"  
Register 01H = 02H, register 02H = 2EH, C = "0"  
In the first example, if general register 00H has the value 0AAH (10101010B), the statement "RLC  
00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag and the  
initial value of the C flag replaces bit zero of register 00H, leaving the value 55H (01010101B). The  
MSB of register 00H resets the carry flag to "1" and sets the overflow flag.  
6-40  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
RR — Rotate Right  
RR  
dst  
Operation:  
C ¨ dst (0)  
dst (7) ¨ dst (0)  
dst (n) ¨ dst (n + 1), n = 0–6  
The contents of the destination operand are rotated right one bit position. The initial value of bit zero  
(LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
E0  
E1  
R
IR  
Examples:  
Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:  
RR  
RR  
00H  
@01H  
®
®
Register 00H = 98H, C = "1"  
Register 01H = 02H, register 02H = 8BH, C = "1"  
In the first example, if general register 00H contains the value 31H (00110001B), the statement "RR  
00H" rotates this value one bit position to the right. The initial value of bit zero is moved to bit 7,  
leaving the new value 98H (10011000B) in the destination register. The initial bit zero also resets the  
C flag to "1" and the sign flag and overflow flag are also set to "1".  
6-41  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
RRC — Rotate Right Through Carry  
RRC  
dst  
Operation:  
dst (7) ¨ C  
C ¨ dst (0)  
dst (n) ¨ dst (n + 1), n = 0–6  
The contents of the destination operand and the carry flag are rotated right one bit position. The initial  
value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7 (MSB).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0" cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
C0  
C1  
R
IR  
Examples:  
Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":  
RRC  
RRC  
00H  
@01H  
®
®
Register 00H = 2AH, C = "1"  
Register 01H = 02H, register 02H = 0BH, C = "1"  
In the first example, if general register 00H contains the value 55H (01010101B), the statement "RRC  
00H" rotates this value one bit position to the right. The initial value of bit zero ("1") replaces the carry  
flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new value 2AH (00101010B)  
in destination register 00H. The sign flag and overflow flag are both cleared to "0".  
6-42  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
SBC — Subtract With Carry  
SBC  
dst,src  
Operation:  
dst ¨ dst – src – c  
The source operand, along with the current value of the carry flag, is subtracted from the destination  
operand and the result is stored in the destination. The contents of the source are unaffected.  
Subtraction is performed by adding the two's-complement of the source operand to the destination  
operand. In multiple precision arithmetic, this instruction permits the carry ("borrow") from the  
subtraction of the low-order operands to be subtracted from the subtraction of high-order operands.  
Flags:  
C: Set if a borrow occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign  
f the result is the same as the sign of the source; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise, indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
32  
33  
r
r
r
lr  
dst  
src  
3
3
6
6
34  
35  
R
R
R
IR  
dst  
6
36  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register  
03H = 0AH:  
SBC  
SBC  
SBC  
SBC  
SBC  
R1,R2  
®
®
®
®
®
R1 = 0CH, R2 = 03H  
R1 = 05H, R2 = 03H, register 03H = 0AH  
Register 01H = 1CH, register 02H = 03H  
Register 01H = 15H,register 02H = 03H, register 03H = 0AH  
Register 01H = 95H; C, S, and V = "1"  
R1,@R2  
01H,02H  
01H,@02H  
01H,#8AH  
In the first example, if working register R1 contains the value 10H and register R2 the value 03H, the  
statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the  
destination (10H) and then stores the result (0CH) in register R1.  
6-43  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
SCF — Set Carry Flag  
SCF  
Operation:  
Flags:  
C ¨ 1  
The carry flag (C) is set to logic one, regardless of its previous value.  
C: Set to "1".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
DF  
Example:  
The statement  
SCF  
sets the carry flag to logic one.  
6-44  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
SRA — Shift Right Arithmetic  
SRA  
dst  
Operation:  
dst (7) ¨ dst (7)  
C ¨ dst (0)  
dst (n) ¨ dst (n + 1), n = 0–6  
An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the  
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit  
position 6.  
7
6
0
C
Flags:  
C: Set if the bit shifted from the LSB position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
D0  
D1  
R
IR  
Examples:  
Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":  
SRA  
SRA  
00H  
@02H  
®
®
Register 00H = 0CD, C = "0"  
Register 02H = 03H, register 03H = 0DEH, C = "0"  
In the first example, if general register 00H contains the value 9AH (10011010B), the statement "SRA  
00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C flag and bit  
7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the value 0CDH  
(11001101B) in destination register 00H.  
6-45  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
STOP — Stop Operation  
STOP  
Operation:  
The STOP instruction stops both the CPU clock and system clock and causes the microcontroller to  
enter Stop mode. During Stop mode, the contents of on-chip CPU registers, peripheral registers, and  
I/O port control and data registers are retained. Stop mode can be released by an external reset  
operation or External interrupt input. For the reset operation, the RESET pin must be held to Low  
level until the required oscillation stabilization interval has elapsed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
7F  
Example:  
The statement  
STOP  
halts all microcontroller operations.  
6-46  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
SUB — Subtract  
SUB  
dst,src  
Operation:  
dst ¨ dst – src  
The source operand is subtracted from the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. Subtraction is performed by adding the two's  
complement of the source operand to the destination operand.  
Flags:  
C: Set if a "borrow" occurred; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign  
of the result is of the same as the sign of the source operand; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
22  
23  
r
r
r
lr  
dst  
src  
3
3
6
6
24  
25  
R
R
R
IR  
dst  
6
26  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
R1,R2  
®
®
®
®
®
®
R1 = 0FH, R2 = 03H  
R1 = 08H, R2 = 03H  
Register 01H = 1EH, register 02H = 03H  
Register 01H = 17H, register 02H = 03H  
Register 01H = 91H; C, S, and V = "1"  
Register 01H = 0BCH; C and S = "1", V = "0"  
R1,@R2  
01H,02H  
01H,@02H  
01H,#90H  
01H,#65H  
In the first example, if working register R1 contains the value 12H and if register R2 contains the  
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination value  
(12H) and stores the result (0FH) in destination register R1.  
6-47  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
TCM — Test Complement Under Mask  
TCM  
dst,src  
Operation:  
(NOT dst) AND src  
This instruction tests selected bits in the destination operand for a logic one value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand (mask).  
The TCM statement complements the destination operand, which is then ANDed with the source  
mask. The zero (Z) flag can then be checked to determine the result. The destination and source  
operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
62  
63  
r
r
r
lr  
dst  
src  
3
3
6
6
64  
65  
R
R
R
IR  
dst  
6
66  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and register 02H  
= 23H:  
TCM  
TCM  
TCM  
TCM  
R0,R1  
®
®
®
®
R0 = 0C7H, R1 = 02H, Z = "1"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "1"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "1"  
TCM  
00H,#34  
®
Register 00H = 2BH, Z = "0"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1 the  
value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register for a "1"  
value. Because the mask value corresponds to the test bit, the Z flag is set to logic one and can be  
tested to determine the result of the TCM operation.  
6-48  
S3C9234/P9234  
SAM88RCRI INSTRUCTION SET  
TM — Test Under Mask  
TM  
dst,src  
Operation:  
dst AND src  
This instruction tests selected bits in the destination operand for a logic zero value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand (mask),  
which is ANDed with the destination operand. The zero (Z) flag can then be checked to determine the  
result. The destination and source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
72  
73  
r
r
r
lr  
dst  
src  
3
3
6
6
74  
75  
R
R
R
IR  
dst  
6
76  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register 02H  
= 23H:  
TM  
TM  
TM  
TM  
R0,R1  
®
®
®
®
R0 = 0C7H, R1 = 02H, Z = "0"  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"  
Register 00H = 2BH, register 01H = 02H, Z = "0"  
Register 00H = 2BH, register 01H = 02H,  
register 02H = 23H, Z = "0"  
TM  
00H,#54H  
®
Register 00H = 2BH, Z = "1"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1 the  
value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register for a "0"  
value. Because the mask value does not match the test bit, the Z flag is cleared to logic zero and  
can be tested to determine the result of the TM operation.  
6-49  
SAM88RI INSTRUCTION SET  
S3C9234/P9234  
XOR— Logical Exclusive OR  
XOR  
dst,src  
Operation:  
dst ¨ dst XOR src  
The source operand is logically exclusive-ORed with the destination operand and the result is stored  
in the destination. The exclusive-OR operation results in a "1" bit being stored whenever the  
corresponding bits in the operands are different; otherwise, a "0" bit is stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
B2  
B3  
r
r
r
lr  
dst  
src  
3
3
6
6
B4  
B5  
R
R
R
IR  
dst  
6
B6  
R
IM  
Examples:  
Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register 02H  
= 23H:  
XOR  
XOR  
XOR  
XOR  
R0,R1  
®
®
®
®
R0 = 0C5H, R1 = 02H  
R0,@R1  
00H,01H  
00H,@01H  
R0 = 0E4H, R1 = 02H, register 02H = 23H  
Register 00H = 29H, register 01H = 02H  
Register 00H = 08H, register 01H = 02H,  
register 02H = 23H  
XOR  
00H,#54H  
®
Register 00H = 7FH  
In the first example, if working register R0 contains the value 0C7H and if register R1 contains the  
value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0 value and  
stores the result (0C5H) in the destination register R0.  
6-50  
S3C9234/P9234  
CLOCK CIRCUITS  
7
CLOCK CIRCUITS  
OVERVIEW  
The S3C9234/P9234 microcontroller has two oscillator circuits: a main clock, and a sub clock circuit. The CPU and  
peripheral hardware operate on the system clock frequency supplied through these circuits. The maximum CPU  
clock frequency, is determined by CLKCON register settings.  
SYSTEM CLOCK CIRCUIT  
The system clock circuit has the following components:  
— Crystal, ceramic resonator, RC oscillation source (main clock only), or an external clock  
— Oscillator stop and wake-up functions  
— Programmable frequency divider for the CPU clock (fxx divided by 1, 2, 8, or 16)  
— Clock circuit control register, CLKCON  
— Oscillator control register, OSCCON  
— Clock output control register, CLOCON  
CPU CLOCK NOTATION  
In this document, the following notation is used for descriptions of the CPU clock:  
fx main clock  
fxt sub clock  
fxx selected system clock  
7-1  
CLOCK CIRCUITS  
S3C9234/P9234  
MAIN OSCILLATOR CIRCUITS  
SUB OSCILLATOR CIRCUITS  
XIN  
XTIN  
XOUT  
XTOUT  
32.768 kHz  
Figure 7-4. Crystal/Ceramic Oscillator (fxt)  
Figure 7-1. Crystal/Ceramic Oscillator (fx)  
XTIN  
XTOUT  
X
IN  
XOUT  
Figure 7-5. External Oscillator (fxt)  
Figure 7-2. External Oscillator (fx)  
XIN  
R
XOUT  
Figure 7-3. RC Oscillator (fx)  
7-2  
S3C9234/P9234  
CLOCK CIRCUITS  
CLOCK STATUS DURING POWER-DOWN MODES  
The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:  
— In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator started, by a reset  
operation, by an external interrupt, or by an internal interrupt if sub clock is selected as the clock source (When  
the fx is selected as system clock).  
— In Idle mode, the internal clock signal is gated away from the CPU, but continues to be supplied to the interrupt  
structure, timer A/B, and watch timer. Idle mode is released by a reset or by an external or  
internal interrupts.  
Stop Release  
INT  
Main-System  
Oscillator  
Circuit  
Sub-system  
Oscillator  
Circuit  
Watch Timer  
fX  
fXT  
LCD Controller  
Selector 1  
fXX  
Stop  
OSCCON.3  
OSCCON.0  
Stop  
OSCCON.2  
1/1-1/4096  
STOP OSC  
inst.  
Basic Timer  
Timer/Counters  
Frequency  
Dividing  
Circuit  
Watch Timer  
LCD Controller  
SIO  
STPCON  
1/1 1/2 1/8 1/16  
CLKCON.4-.3  
Selector 2  
CPU  
Figure 7-6. System Clock Circuit Diagram  
7-3  
CLOCK CIRCUITS  
S3C9234/P9234  
SYSTEM CLOCK CONTROL REGISTER (CLKCON)  
The system clock control register, CLKCON, is located in address D4H. It is read/write addressable and has the  
following functions:  
— Oscillator IRQ wake-up function enable/disable  
— Oscillator frequency divide-by value  
CLKCON register settings control whether or not an external interrupt can be used to trigger a Stop mode release  
(This is called the "IRQ wake-up" function). The IRQ "wake-up" enable bit is CLKCON.7.  
After a reset, the external interrupt oscillator wake-up function is enabled, the main oscillator is activated, and the  
fx/16 (the slowest clock speed) is selected as the CPU clock. If necessary, you can then increase the CPU clock  
speed to fx, fx/2, or fx/8 by setting the CLKCON, and you can change system clock from main clock to sub clock  
by setting the OSCCON.  
System Clock Control Register (CLKCON)  
D4H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Oscillator IRQ wake-up enable bit:  
0 = Enable IRQ for main oscillator  
wake-up function in power down  
mode  
1 = Disable IRQ for main oscillator  
wake-up function in power down  
mode  
Not used for S3C9234/P9234 (must keep always "0")  
Divide-by selection bits for  
CPU clock frequency:  
00 = fxx/16  
01 = fxx/8  
10 = fXx/2  
11 = fxx  
Not used for S3C9234/P9234 (must keep always "0")  
Figure 7-7. System Clock Control Register (CLKCON)  
7-4  
S3C9234/P9234  
CLOCK CIRCUITS  
CLOCK OUTPUT CONTROL REGISTER (CLOCON)  
The clock output control register, CLOCON, is located in address FEH. It is read/write addressable and has the  
following functions;  
— Clock Output Frequency Selection  
After a reset, fxx/64 is select for Clock Output Frequency because the reset value of CLOCON.1-.0 is "0".  
Clock Output Control Register (CLOCON)  
FEH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Clock Output Frequency Selection Bits:  
00 = Select fxx/64  
01 = Select fxx/16  
Not used for S3C9234/P9234.  
(Must keep always "0")  
10 = Select fxx/8  
11 = Select fxx/4  
Figure 7-8. Clock Output Control Register (CLOCON)  
CLOCON.1-.0  
P1CONH.5-.4  
fxx/64  
fxx/16  
fxx/8  
MUX  
CLKOUT  
fxx/4  
Figure 7-9. Clock Output Block Diagram  
7-5  
CLOCK CIRCUITS  
S3C9234/P9234  
OSCILLATOR CONTROL REGISTER (OSCCON)  
The oscillator control register, OSCCON, is located in address D3H. It is read/write addressable and has the  
following functions:  
— System clock selection  
— Main oscillator control  
— Sub oscillator control  
OSCCON.0 register settings select Main clock or Sub clock as system clock.  
After a reset, Main clock is selected for system clock because the reset value of OSCCON.0 is "0".  
The main oscillator can be stopped or run by setting OSCCON.3.  
The sub oscillator can be stopped or run by setting OSCCON.2.  
Oscillator Control Register (OSCCON)  
D3H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
System clock selection bit:  
0 = Main oscillator select  
1 = Sub oscillator select  
Not used for S3C9234/P9234  
Not used for S3C9234/P9234  
Sub oscillator control bit:  
0 = Sub oscillator RUN  
1 = Sub oscillator STOP  
Main oscillator control bit:  
0 = Main oscillator RUN  
1 = Main oscillator STOP  
Figure 7-10. Oscillator Control Register (OSCCON)  
7-6  
S3C9234/P9234  
CLOCK CIRCUITS  
SWITCHING THE CPU CLOCK  
Data loadings in the oscillator control register, OSCCON, determine whether a main or a sub clock is selected as  
the CPU clock, and also how this frequency is to be divided by setting CLKCON. This makes it possible to switch  
dynamically between main and sub clocks and to modify operating frequencies.  
OSCCON.0 select the main clock (fx) or the sub clock (fxt) for the system clock. OSCCON .3 start or stop main  
clock oscillation, and OSCCON.2 start or stop sub clock oscillation. CLKCON.4–.3 control the frequency divider  
circuit, and divide the selected fxx clock by 1, 2, 8, or 16.  
For example, you are using the default system clock (normal operating mode and a main clock of fx/16) and you  
want to switch from the fx clock to a sub clock and to stop the main clock. To do this, you need to set OSCCON.0  
to "1", take a delay, and OSCCON.3 to "1" sequently. This switches the clock from fx to fxt and stops main clock  
oscillation.  
The following steps must be taken to switch from a sub clock to the main clock: first, set OSCCON.3 to "0" to  
enable main system clock oscillation. Then, after a certain number of machine cycles has elapsed, select the main  
clock by setting OSCCON.0 to "0".  
F
PROGRAMMING TIP — Switching the CPU clock  
1. This example shows how to change from the main clock to the sub clock:  
MA2SUB OR  
CALL  
OSCCON,#01H  
DLY16  
OSCCON,#08H  
;
;
;
Switches to the sub clock  
Delay 16ms  
Stop the main clock oscillation  
OR  
RET  
2. This example shows how to change from sub clock to main clock:  
SUB2MA AND  
OSCCON,#0F7H  
DLY16  
OSCCON,#0FEH  
;
;
;
Start the main clock oscillation  
Delay 16 ms  
Switch to the main clock  
CALL  
AND  
RET  
DLY16  
DEL  
LD  
R0,#20H  
NOP  
DEC  
JR  
R0  
NZ,DEL  
RET  
7-7  
CLOCK CIRCUITS  
S3C9234/P9234  
STOP CONTROL REGISTER (STPCON)  
The STOP control register, STPCON, is located in address D6H. It is read/write addressable and has the following  
functions:  
— Enable/Disable STOP instruction  
After a reset, the STOP instruction is disabled, because the value of STPCON is "other values".  
If necessary, you can use the STOP instruction by setting the value of STPCON to "10100101B".  
Stop Control Register (STPCON)  
D6H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
STOP control bits:  
10100101 = Enable STOP instruction  
Other values = Disable STOP instruction  
Figure 7-11. STOP Control Register (STPCON)  
F
PROGRAMMING TIP — How to Use Stop Instruction  
This example shows how to go STOP mode when a main clock is selected as the system clock.  
LD  
STOPCON,#1010010B  
STOPCON,#00000000B  
;
;
Enable STOP instruction  
Enter STOP mode  
STOP  
NOP  
NOP  
NOP  
LD  
;
;
Release STOP mode  
Disable STOP instruction  
7-8  
S3C9234/P9234  
RES ET and POWER-DOWN  
8
RES ET and POWER-DOWN  
SYSTEM RESET  
OVERVIEW  
During a power-on reset, the voltage at V goes to High level and the RESET pin is forced to Low level. The RESET  
DD  
signal is input through a schmitt trigger circuit where it is then synchronized with the CPU clock. This procedure  
brings S3C9234/P9234 into a known operating status.  
To allow time for internal CPU clock oscillation to stabilize, the RESET pin must be held to Low level for a minimum  
time interval after the power supply comes within tolerance. The minimum required oscillation stabilization time for a  
reset operation is 1 millisecond.  
Whenever a reset occurs during normal operation (that is, when both V and RESET are High level), the RESET  
DD  
pin is forced Low and the reset operation starts. All system and peripheral control registers are then reset to their  
default hardware values (see Table 8-1).  
In summary, the following sequence of events occurs during a reset operation:  
— All interrupts are disabled.  
— The watchdog function (basic timer) is enabled.  
— Ports 0-6 are set to schmitt trigger input mode and all pull-up resistors are disabled for the I/O port pin circuits.  
— Peripheral control and data registers are disabled and reset to their default hardware values.  
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.  
— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM location  
0100H (and 0101H) is fetched and executed.  
NOTE  
To program the duration of the oscillation stabilization interval, you make the appropriate settings to the  
basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic  
timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can  
disable it by writing '1010B' to the upper nibble of BTCON.  
8-1  
RES ET and POWER-DOWN  
S3C9234/P9234  
POWER-DOWN MODES  
STOP MODE  
Stop mode is invoked by the instruction STOP. In Stop mode, the operation of the CPU and main oscillator is halted.  
All peripherals which the main oscillator is selected as a clock source stop also because main oscillator stops. But  
the watch timer and LCD controller will not halted in stop mode if the sub clock is selected as watch timer clock  
source. The data stored in the internal register file are retained in stop mode. Stop mode can be released in one of  
three ways: by a system reset, by an internal watch timer interrupt (when sub clock is selected as clock source of  
watch timer), or by an external interrupt.  
Example:  
LD  
STOPCON,#10100101B  
STOP  
NOP  
NOP  
NOP  
LD  
STOPCON,#00000000B  
NOTES  
1. Do not use stop mode if you are using an external clock source because X input must be restricted  
IN  
internally to V to reduce current leakage.  
SS  
2. In application programs, a STOP instruction must be immediately followed by at least three NOP  
instructions. This ensures an adequate time interval for the clock to stabilize before the next  
instruction is executed. If three or more NOP instructions are not used after STOP instruction,  
leakage current could be flown because of the floating state in the internal bus.  
3. To enable/disable STOP instruction, the STOPCON register should be written with  
10100101B/other values before/after stop instruction.  
Using RESET to Release Stop Mode  
Stop mode is released when the RESET signal goes active (Low level): all system and peripheral control registers  
are reset to their default hardware values and the contents of all data registers are retained. When the programmed  
oscillation stabilization interval has elapsed, the CPU starts the system initialization routine by fetching the program  
instruction stored in ROM location 0100H.  
Using an External Interrupt to Release Stop Mode  
External interrupts can be used to release stop mode. For the S3C9234 microcontroller, we recommend using the  
INT interrupt, P1 and P2.  
8-2  
S3C9234/P9234  
RES ET and POWER-DOWN  
Using an Internal Interrupt to Release Stop Mode  
An internal interrupt, watch timer, can be used to release stop mode because the watch timer operates in stop mode  
if the clock source of watch timer is sub clock. If system clock is sub clock, you can't use any interrupts to release  
stop mode. That is, you had better use the idle instruction instead of stop one when sub clock is selected as the  
system clock.  
Please note the following conditions for Stop mode release:  
— If you release stop mode using an internal or external interrupt, the current values in system and peripheral  
control registers are unchanged.  
— If you use an internal or external interrupt for stop mode release, you can also program the duration of the  
oscillation stabilization interval. To do this, you must make the appropriate control and clock settings before  
entering stop mode.  
— If you use an interrupt to release stop mode, the bit-pair setting for CLKCON.4/CLKCON.3 remains unchanged  
and the currently selected clock value is used.  
— The internal or external interrupt is serviced when the stop mode release occurs. Following the IRET from the  
service routine, the instruction immediately following the one that initiated stop mode is executed.  
IDLE MODE  
Idle mode is invoked by the instruction IDLE (opcode 6FH). In Idle mode, CPU operations are halted while some  
peripherals remain active. During Idle mode, the internal clock signal is gated away from the CPU and from all but  
the following peripherals, which remain active:  
— Interrupt logic  
— Basic timer  
— Timer 1 (Timer A and B)  
— Watch timer  
— LCD controller  
I/O port pins retain the mode (input or output) they had at the time Idle mode was entered.  
Idle Mode Release  
You can release Idle mode in one of two ways:  
1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents of  
all data registers are retained. The reset automatically selects the slowest clock (1/16) because of the hardware  
reset value for the CLKCON register. If all external interrupts are masked in the IMR register, a reset is the only  
way you can release Idle mode.  
2. Activate any enabled interrupt — internal or external. When you use an interrupt to release Idle mode,  
the 2-bit CLKCON.4/CLKCON.3 value remains unchanged, and the currently selected clock value is  
used. The interrupt is then serviced. When the return-from-interrupt condition (IRET) occurs, the  
instruction immediately following the one which initiated Idle mode is executed.  
8-3  
RES ET and POWER-DOWN  
S3C9234/P9234  
HARDWARE RES ET VALUES  
Table 8-1 list the values for CPU and system registers, peripheral control registers, and peripheral data registers  
following a RESET operation in normal operating mode. The following notation is used in these table to represent  
specific RESET values:  
— A "1" or a "0" shows the RESET bit value as logic one or logic zero, respectively.  
— An 'x' means that the bit value is undefined following RESET.  
— A dash ('–') means that the bit is either not used or not mapped.  
Table 8-1. Register Values after RES ET  
Register Name  
Mnemonic  
Address  
Bit Values after RES ET  
Dec Hex  
208 D0H  
209 D1H  
210 D2H  
211 D3H  
212 D4H  
213 D5H  
214 D6H  
215 D7H  
216 D8H  
217 D9H  
218 DAH  
7
0
0
0
0
x
0
0
0
x
0
6
0
0
0
0
x
0
0
0
x
0
5
0
0
0
0
x
0
0
0
x
0
4
0
0
0
0
x
0
0
0
x
0
3
0
0
0
0
0
0
0
x
2
0
0
0
0
0
0
0
0
x
1
0
0
0
0
0
0
x
0
0
0
0
0
0
0
0
0
x
SIO Control Register  
SIOCON  
SIODATA  
SIOPS  
SIO Data Register  
SIO Prescaler Register  
Oscillator Control Register  
System Clock Control Register  
System Flags Register  
Stop Control Register  
LCD Control Register  
OSCCON  
CLKCON  
FLAGS  
STPCON  
LCON  
Interrupt Pending Register  
Stack Pointer  
INTPND  
SP  
Watch Timer Control Register  
WTCON  
0
0
0
0
Locations DBH is not mapped.  
Basic Timer Control Register  
Basic Timer Counter  
BTCON  
BTCNT  
220 DCH  
221 DDH  
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
Locations DEH is not mapped.  
System Mode Register  
Port 0 Data Register  
Port 1 Data Register  
Port 2 Data Register  
Port 3 Data Register  
Port 4 Data Register  
Port 5 Data Register  
Port 6 Data Register  
SYM  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
223 DFH  
224 E0H  
225 E1H  
226 E2H  
227 E3H  
228 E4H  
229 E5H  
230 E6H  
x
0
0
0
0
0
0
0
x
0
0
0
0
0
0
0
x
0
0
0
0
0
0
0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8-4  
S3C9234/P9234  
RES ET and POWER-DOWN  
Table 8-1. Register Values after RES ET (Continued)  
Register Name  
Mnemonic  
Address  
Bit Values after RES ET  
Dec Hex  
231 E7H  
232 E8H  
233 E9H  
234 EAH  
235 EBH  
236 ECH  
237 EDH  
238 EEH  
239 EFH  
240 F0H  
241 F1H  
242 F2H  
243 F3H  
244 F4H  
245 F5H  
246 F6H  
247 F7H  
248 F8H  
249 F9H  
250 FAH  
251 FBH  
252 FCH  
253 FDH  
254 FEH  
7
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Timer A Counter  
TACNT  
TBCNT  
Timer B Counter  
Timer A Data Register  
TADATA  
TBDATA  
TACON  
TBCON  
P0CON  
P1CONH  
P1CONL  
P1PUR  
Timer B Data Register  
Timer 1/A Control Register  
Timer B Control Register  
Port 0 Control Register  
Port 1 Control Register(High Byte)  
Port 1 Control Register(Low Byte)  
Port 1 Pull-up Resistor Enable Register  
Port 1 Interrupt Control Register  
Port 2 Control Register(High Byte)  
Port 2 Control Register(Low Byte)  
Port 2 Pull-up Resistor Enable Register  
Port 2 Interrupt Control Register  
Port 3 Control Register(High Byte)  
Port 3 Control Register(Low Byte)  
Port 3 Pull-up Resistor Enable Register  
Port 4 Control Register(High Byte)  
Port 4 Control Register(Low Byte)  
Port 5 Control Register(High Byte)  
Port 5 Control Register(Low Byte)  
Port 6 Control Register  
P1INT  
P2CONH  
P2CONL  
P2PUR  
P2INT  
P3CONH  
P3CONL  
P3PUR  
P4CONH  
P4CONL  
P5CONH  
P5CONL  
P6CON  
CLOCON  
Clock Output Control Register  
Location FFH is not mapped.  
8-5  
RES ET and POWER-DOWN  
S3C9234/P9234  
NOTES  
8-6  
S3C9234/P9234  
I/O PORTS  
9
I/O PORTS  
OVERVIEW  
The S3C9234/P9234 microcontroller has seven bit-programmable I/O ports, P0-P6. Port 0 is 4-bit, port 1-port 6 are 8-  
bit ports. This gives a total of 52 I/O pins. Each port can be flexibly configured to meet application design  
requirements.  
The CPU accesses ports by directly writing or reading port registers. No special I/O instructions are required. All  
ports of the S3C9234/P9234 can be configured to input or output mode. P0 and P3-P6 are shared with LCD signals.  
Table 9-1 gives you a general overview of S3C9234/P9234 I/O port functions.  
Table 9-1. S3C9234/P9234 Port Configuration Overview  
Port  
Configuration Options  
0
1-bit programmable I/O port.  
Input or push-pull output and software assignable pull-ups.  
P0.0-P0.3 can alternately used as outputs for LCD common signals.  
1
2
1-bit programmable I/O port.  
Schmitt trigger input or push-pull, open-drain output and software assignable pull-ups.  
Alternatively P1.0-P1.2 can be used as input for external interrupts INT and P1.3-P1.7 can be  
used as T1CLK, TAOUT, TBOUT, CLKOUT, BUZ.  
1-bit programmable I/O port.  
Schmitt trigger input or push-pull, open-drain output and software assignable pull-ups.  
Alternatively P2.4-P2.7 can be used as input for external interrupts INT and P2.0-P2.2 can be  
used as SCK, SO, and SI.  
3
4
5
6
1-bit programmable I/O port.  
Input or push-pull, open-drain output and software assignable pull-ups.  
Alternatively P3 can be used as outputs for LCD segment signals.  
1-bit programmable I/O port.  
Input or push-pull output and software assignable pull-ups.  
Alternatively P4 can be used as outputs for LCD segment signals.  
1-bit programmable I/O port.  
Input or push-pull output and software assignable pull-ups.  
Alternatively P5 can be used as outputs for LCD segment signals.  
2-bit programmable I/O port.  
Input or push-pull output and software assignable pull-ups.  
Alternatively P6 can be used as outputs for LCD segment signals.  
9-1  
I/O PORTS  
S3C9234/P9234  
PORT DATA REGISTERS  
Table 9-2 gives you an overview of the register locations of all seven S3C9234/P9234 I/O port data registers. Data  
registers for ports 0, 1, 2, 3, 4, 5, and 6 have the general format shown in Figure 9-1.  
Table 9-2. Port Data Register Summary  
Register Name  
Port 0 data register  
Port 1 data register  
Port 2 data register  
Port 3 data register  
Port 4 data register  
Port 5 data register  
Port 6 data register  
Mnemonic  
Decimal  
224  
Hex  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
225  
226  
227  
228  
229  
230  
S3C9234/P9234 I/O Port Data Register Format (n = 0-6)  
.7 .6 .5 .4 .3 .2 .1 .0  
MSB  
LSB  
Pn.7 Pn.6 Pn.5 Pn.4 Pn.3 Pn.2 Pn.1 Pn.0  
Figure 9-1. S3C9234/P9234 I/O Port Data Register Format  
9-2  
S3C9234/P9234  
PORT 0  
I/O PORTS  
Port 0 is an 4-bit I/O port with individually configurable pins. Port 0 pins are accessed directly by writing or reading  
the port 0 data register, P0 at location E0H in page 0. P0.0-P0.3 can serve as inputs (with or without pull-up), as  
push-pull output. You can be configured the following alternative functions.  
— Low-nibble pins (P0.0-P0.3): COM0-COM3  
Port 0 Control register (P0CON)  
Port 0 has a 8-bit control register: P0CON for P0.0-P0.3. A reset clears the P0CON register to "00H", configuring  
pins to input mode. You use control register setting to select input (with or without pull-up) or push-pull output mode  
and enable the alternative functions.  
When programming this port, please remember that any alternative peripheral I/O function you configure using the  
port 0 control register must also be enabled in the associated peripheral module.  
Port 0 Control Register (P0CON)  
EDH, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.3/COM3 P0.2/COM2 P0.1/COM1 P0.0/COM0  
P0CON bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (CPM3-COM0)  
Figure 9-2. Port 0 Control Register (P0CON)  
9-3  
I/O PORTS  
PORT 1  
S3C9234/P9234  
Port 1 is an 8-bit I/O port with individually configurable pins. Port 1 pins are accessed directly by writing or reading  
the port 1 data register, P1 at location E1H in page 0. P1.0-P1.7 can serve as inputs (with or without pull-up), as  
outputs (push-pull or open-drain) or you can be configured the following functions.  
— Low-nibble pins (P1.0-P1.3): INT, T1CLK  
— High-nibble pins (P1.4-P1.7): TAOUT, TBOUT, CLKOUT, BUZ  
Port 1 Control Register (P1CONH, P1CONL)  
Port 1 has two 8-bit control register: P1CONH for P1.4-P1.7 and P1CONL for P1.0-P1.3. A reset clears the P1CONH  
and P1CONL register to "00H", configuring P1.0-P1.2 pins to input mode with interrupt and P1.3-P1.7 input mode.  
You use control register setting to select input or output mode (push-pull or open-drain) and enable the alternative  
functions.  
When programming this port, please remember that any alternative peripheral I/O function you configure using the  
port 1 control register must also be enabled in the associated peripheral module.  
Port 1 Pull-up Resistor Control Register (P1PUR)  
Using the port 1 pull-up resistor control register, P1PUR (F0H, page 0), you can configure pull-up resistors to  
individual port 1 pins.  
Port 1 Interrupt Control Registers (P1INT, INTPND.2-.0)  
To process external interrupts at the port 1 pins, two additional control registers are provided: the port 1 interrupt  
control register P1INT (F1H, page 0), the port 1 interrupt pending bits INTPND.2-.0 (D8H, page 0).  
The port 1 interrupt pending register bits lets you check for interrupt pending conditions and clear the pending  
condition when the interrupt service routine has been initiated. The application program detects interrupt requests by  
polling the INTPND.2-.0 register at regular intervals.  
When the interrupt enable bit of any port 1 pin is "1", a rising or falling edge at that pin will generate an interrupt  
request. The corresponding INTPND bit is then automatically set to "1" and the IRQ level goes low to signal the CPU  
that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application software must the  
clear the pending condition by writing a "0" to the corresponding INTPND bit.  
9-4  
S3C9234/P9234  
I/O PORTS  
Port 1 Control Register, High Byte (P1CONH)  
EEH, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.7/BUZ P1.6/CLKOUT P1.5/TBOUT P1.4/TAOUT  
P1CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function  
(BUZ, CLKOUT, TBOUT, TAOUT)  
Figure 9-3. Port 1 High-Byte Control Register (P1CONH)  
Port 1 Control Register, Low Byte (P1CONL)  
EFH, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.3/T1CLK P1.2/INT  
P1.1/INT  
P1.0/INT  
P1CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Schmitt trigger input mode (T1CLK)  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
Figure 9-4. Port 1 Low-Byte Control Register (P1CONL)  
9-5  
I/O PORTS  
S3C9234/P9234  
Port 1 Pull-up Control Register (P1PUR)  
F0H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.7 P1.6 P1.5 P1.4  
P1PUR bit configuration settings:  
P1.3 P1.2 P1.1 P1.0  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
NOTE:  
A pull-up resistor of port1 is automatically disabled when the  
corresponding pin is selected as push-pull output or alternative  
function.  
Figure 9-5. Port 1 Pull-up Control Register (P1PUR)  
Port 1 Interrupt Control Register (P1INT)  
F1H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used  
P1.2 (INT)  
P1.1 (INT)  
P1.0 (INT)  
P1INT bit configuration settings:  
00  
01  
10  
11  
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
Figure 9-6. Port 1 Interrupt Control Register (P1INT)  
9-6  
S3C9234/P9234  
I/O PORTS  
Port 1 Interrupt Pending Bits (INTPND.2-.0)  
D8H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.7 P2.6 P2.5 P2.4 Not P1.2 P1.1 P1.0  
(INT) (INT) (INT) (INT) used (INT) (INT) (INT)  
INTPND bit configuration settings:  
0
1
No interrupt pending (when read), clear pending bit (when write)  
Interrupt is pending (when read)  
Figure 9-7. Port 1 Interrupt Pending Bits (INTPND.2-.0)  
9-7  
I/O PORTS  
PORT 2  
S3C9234/P9234  
Port 2 is an 8-bit I/O port with individually configurable pins. Port 2 pins are accessed directly by writing or reading  
the port 2 data register, P2 at location E2H in page 0. P2.0-P2.7 can serve as inputs (with or without pull-up), as  
outputs (push-pull or open-drain) or you can be configured the following functions.  
— Low-nibble pins (P2.0-P2.3): SCK, SO, SI  
— High-nibble pins (P2.4-P2.7): INT  
Port 2 Control Register (P2CONH, P2CONL)  
Port 2 has two 8-bit control register: P2CONH for P2.4-P2.7 and P2CONL for P2.0-P2.3. A reset clears the  
P2CONH/P2CONL register to "00H", configuring P2.4-P2.7 pins to input mode with interrupt and P2.0-P2.3 input  
mode. You use control register setting to select input or output mode (push-pull or open-drain) and enable the  
alternative functions.  
When programming this port, please remember that any alternative peripheral I/O function you configure using the  
port 2 control register must also be enabled in the associated peripheral module.  
Port 2 Pull-up Resistor Control Register (P2PUR)  
Using the port 2 pull-up resistor control register, P2PUR (F4H, page 0), you can configure pull-up resistors to  
individual port 2 pins.  
Port 2 Interrupt Control Registers (P2INT, INTPND.4-.7)  
To process external interrupts at the port 2 pins, two additional control registers are provided: the port 2 interrupt  
control register P2INT (F5H, page 0), the port 2 interrupt pending bits INTPND.4-.7 (D8H, page 0).  
The port 2 interrupt pending register bits lets you check for interrupt pending conditions and clear the pending  
condition when the interrupt service routine has been initiated. The application program detects interrupt requests by  
polling the INTPND.4-.7 register at regular intervals.  
When the interrupt enable bit of any port 2 pin is "1", a rising or falling edge at that pin will generate an interrupt  
request. The corresponding INTPND bit is then automatically set to "1" and the IRQ level goes low to signal the CPU  
that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application software must the  
clear the pending condition by writing a "0" to the corresponding INTPND bit.  
9-8  
S3C9234/P9234  
I/O PORTS  
Port 2 Control Register, High Byte (P2CONH)  
F2H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.7 (INT)  
P2.6 (INT)  
P2.5 (INT)  
P2.4 (INT)  
P2CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Schmitt trigger input mode  
N-channel open-drain output mode  
Push-pull output mode  
Not available  
Figure 9-8. Port 2 High-byte Control Register (P2CONH)  
Port 2 Control Register, Low Byte (P2CONL)  
F3H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.3  
P2.2/SI  
P2.1/SO  
P2.0/SCK  
P2CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Schmitt trigger input mode (SI,SCK)  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SCK, SO)  
Figure 9-9. Port 2 Low-byte Control Register (P2CONL)  
9-9  
I/O PORTS  
S3C9234/P9234  
Port 2 Pull-up Control Register (P2PUR)  
F4H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0  
P2PUR bit configuration settings:  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
NOTE:  
A pull-up resistor of port2 is automatically disabled when the  
corresponding pin is selected as push-pull output or alternative  
function.  
Figure 9-10. Port 2 Pull-up Control Register (P2PUR)  
9-10  
S3C9234/P9234  
I/O PORTS  
Port 2 Interrupt Control Register (P2INT)  
F5H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
EDG INT EDG INT EDG INT EDG INT  
INT bit configuration settings:  
0
1
Disable interrupt  
Enable interrupt  
EDG bit configuration settings:  
0
1
Select falling edge  
Select rising edge  
Figure 9-11. Port 2 Interrupt Control Register (P2INT)  
Port 2 Interrupt Pending Bits (INTPND.7-.4)  
D8H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.7 P2.6 P2.5 P2.4 Not P1.2 P1.1 P1.0  
(INT) (INT) (INT) (INT) used (INT) (INT) (INT)  
INTPND bit configuration settings:  
0
1
No interrupt pending (when read), clear pending bit (when write)  
Interrupt is pending (when read)  
Figure 9-12. Port 2 Interrupt Pending Bits (INTPND.7-.4)  
9-11  
I/O PORTS  
PORT 3  
S3C9234/P9234  
Port 3 is an 8-bit I/O port with individually configurable pins. Port 3 pins are accessed directly by writing or reading  
the port 3 data register, P3 at location E3H in page 0. P3.0-P3.7 can serve as inputs (with or without pull-up), as  
outputs (push-pull or open-drain) or you can be configured the following functions.  
— Low-nibble pins (P3.0-P3.3): SEG31-SEG28  
— High-nibble pins (P3.4-P3.7): SEG27-SEG24  
Port 3 Control Register (P3CONH, P3CONL)  
Port 3 has two 8-bit control register: P3CONH for P3.4-P3.7 and P3CONL for P3.0-P3.1. A reset clears the P3CON  
register to "00H", configuring all pins to input mode. You use control register setting to select input or output mode  
(push-pull or open-drain).  
When programming this port, please remember that any alternative peripheral I/O function you configure using the  
port 3 control register must also be enabled in the associated peripheral module.  
Port 3 Pull-up Resistor Control Register (P3PUR)  
Using the port 3 pull-up resistor control register, P3PUR (F8H, page 0), you can configure pull-up resistors to  
individually port 3 pins.  
Port 3 Control Register, High Byte (P3CONH)  
F6H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P3.7/SEG24 P3.6/SEG25 P3.5/SEG26 P3.4/SEG27  
P3CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative fumction (SEG24-SEG27)  
Figure 9-13. Port 3 High Byte Control Register (P3CONH)  
9-12  
S3C9234/P9234  
I/O PORTS  
Port 3 Control Register, Low Byte (P3CONL)  
F7H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P3.3/SEG28 P3.2/SEG29 P3.1/SEG30 P3.0/SEG31  
P3CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
N-channel open-drain output mode  
Push-pull output mode  
Alternative function (SEG28-SEG31)  
Figure 9-14. Port 3 Low Byte Control Register (P3CONL)  
Port 3 Pull-up Control Register (P3PUR)  
F8H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0  
P3PUR bit configuration settings:  
0
1
Disable pull-up resistor  
Enable pull-up resistor  
NOTE:  
A pull-up resistor of port3 is automatically disabled when the  
corresponding pin is selected as push-pull output or alternative  
function.  
Figure 9-15. Port 3 Pull-up Control Register (P3PUR)  
9-13  
I/O PORTS  
PORT 4  
S3C9234/P9234  
Port 4 is an 8-bit I/O port with individually configurable pins. Port 4 pins are accessed directly by writing or reading  
the port 4 data register, P4 at location E4H in page 0. P4.0-P4.7 can serve as inputs (with or without pull-up), as  
push-pull outputs:  
— Low-nibble pins (P4.0-P4.3): SEG23-SEG20  
— High-nibble pins (P4.4-P4.7): SEG19-SEG16  
Port 4 Control Registers (P4CONH, P4CONL)  
Port 4 has two 8-bit control registers: P4CONH for P4.4-P4.7 and P4CONL for P4.0-P4.3. A reset clears the  
P4CONH and P4CONL registers to "00H", configuring all pins to input mode. You use control registers setting to  
select input or output mode.  
Port 3 Control Register, High Byte (P4CONH)  
F9H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P4.7/SEG16 P4.6/SEG17 P4.5/SEG18 P4.4/SEG19  
P4CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG16-SEG19)  
Figure 9-16. Port 4 High-Byte Control Register (P4CONH)  
Port 4 Control Register, Low Byte (P4CONL)  
FAH, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P4.3/SEG20 P4.2/SEG21 P4.1/SEG22 P4.0/SEG23  
P4CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG20-SEG23)  
Figure 9-17. Port 4 Low-Byte Control Register (P4CONL)  
9-14  
S3C9234/P9234  
PORT 5  
I/O PORTS  
Port 5 is an 8-bit I/O port with individually configurable pins. Port 5 pins are accessed directly by writing or reading  
the port 5 data register, P5 at location E5H in page 0. P5.0-P5.7 can serve as inputs (with or without pull-up), as  
push-pull outputs.  
— Low-nibble pins (P5.0-P5.3): SEG15-SEG12  
— High-nibble pins (P5.4-P5.7): SEG11-SEG8  
Port 5 Control Registers (P5CONH, P5CONL)  
Port 5 has two 8-bit control registers: P5CONH for P5.4-P5.7 and P5CONL for P5.0-P5.3. A reset clears the  
P5CONH and P5CONL registers to "00H", configuring all pins to input mode. You use control registers setting to  
select input or output mode.  
Port 5 Control Register, High Byte (P5CONH)  
FBH, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P5.7/SEG8 P5.6/SEG9 P5.5/SEG10 P5.4/SEG11  
P5CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG8-SEG11)  
Figure 9-18. Port 5 High-Byte Control Register (P5CONH)  
Port 5 Control Register, Low Byte (P5CONL)  
FCH, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P5.3/SEG12 P5.2/SEG13 P5.1/SEG14 P5.0/SEG15  
P5CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG12-SEG15)  
Figure 9-19. Port 5 Low-Byte Control Register (P5CONL)  
9-15  
I/O PORTS  
PORT 6  
S3C9234/P9234  
Port 6 is an 8-bit I/O port with bit-pair configurable pins. Port 6 pins are accessed directly by writing or reading the  
port 6 data register, P6 at location E6H in page 0. P6.0-P6.7 can serve as inputs or as push-pull outputs:  
— Low-nibble pins (P6.0-P6.3): SEG7-SEG4  
— High-nibble pins (P6.4-P6.7): SEG3-SEG0  
Port 6 Control Register (P6CON)  
Port 6 has a 8-bit control register: P6CON for P6.0-P6.7. A reset clears the P6CON registers to "00H", configuring all  
pins to input mode. You use control registers setting to select input or output mode.  
Port 6 Control Register (P6CON)  
FDH, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P6.7-P6.6/  
P6.5-P6.4/ P6.3-P6.2/  
P6.1-P6.0/  
SEG0-SEG1 SEG2-SEG3 SEG4-SEG5 SEG6-SEG7  
P6CON bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Input with pull-up resistor  
Push-pull output mode  
Alternative function (SEG0-SEG7)  
Figure 9-20. Port 6 Control Register (P6CON)  
9-16  
S3C9234/P9234  
BASIC TIMER  
10 BASIC TIMER  
OVERVIEW  
Basic timer (BT) can be used in two different ways:  
— As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction.  
— To signal the end of the required oscillation stabilization interval after a reset or a stop mode release.  
The functional components of the basic timer block are:  
— Clock frequency divider (fxx divided by 4096, 1024, 128, or 16) with multiplexer  
— 8-bit basic timer counter, BTCNT (DDH, read-only)  
— Basic timer control register, BTCON (DCH, read/write)  
10-1  
BASIC TIMER  
S3C9234/P9234  
BASIC TIMER CONTROL REGISTER (BTCON)  
The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer counter  
and frequency dividers, and to enable or disable the watchdog timer function. It is located in page 0, address DCH,  
and is read/write addressable using Register addressing mode.  
A reset clears BTCON to "00H". This enables the watchdog function and selects a basic timer clock frequency of  
fxx/4096. To disable the watchdog function, you must write the signature code "1010B" to the basic timer register  
control bits BTCON.7–BTCON.4.  
The 8-bit basic timer counter, BTCNT (page 0, DDH), can be cleared at any time during normal operation by writing a  
"1" to BTCON.1. To clear the frequency dividers for the basic timer input clock and timer counters, you write a "1" to  
BTCON.0.  
Basic TImer Control Register (BTCON)  
DCH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Divider clear bit for basic timer  
and timer counters:  
0 = No effect  
Watchdog function enable bits:  
1010B = Disable watchdog timer  
Other Value = Enable watchdog timer  
1 = Clear divider  
Basic timer counter clear bit:  
0 = No effect  
1 = Clear BTCNT  
Basic timer input clock selection bits:  
00 = fXX /4096  
01 = fXX /1024  
10 = fXX /128  
11 = fXX /16  
Figure 10-1. Basic Timer Control Register (BTCON)  
10-2  
S3C9234/P9234  
BASIC TIMER  
BASIC TIMER FUNCTION DESCRIPTION  
Watchdog Timer Function  
You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7–BTCON.4 to any  
value other than "1010B". (The "1010B" value disables the watchdog function.) A reset clears BTCON to "00H",  
automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by the  
current CLKCON register setting), divided by 4096, as the BT clock.  
A reset whenever a basic timer counter overflow occurs. During normal operation, the application program must  
prevent the overflow, and the accompanying reset operation, from occurring. To do this, the BTCNT value must be  
cleared (by writing a "1" to BTCON.1) at regular intervals.  
If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation will  
not be executed and a basic timer overflow will occur, initiating a reset. In other words, during normal operation, the  
basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always broken by a BTCNT clear  
instruction. If a malfunction does occur, a reset is triggered automatically.  
Oscillation Stabilization Interval Timer Function  
You can also use the basic timer to program a specific oscillation stabilization interval following a reset or when stop  
mode has been released by an external interrupt.  
In stop mode, whenever a reset or an internal and an external interrupt occurs, the oscillator starts. The BTCNT value  
then starts increasing at the rate of fxx/4096 (for reset), or at the rate of the preset clock source (for an internal and  
an external interrupt). When BTCNT.3 overflows, a signal is generated to indicate that the stabilization interval has  
elapsed and to gate the clock signal off to the CPU so that it can resume normal operation.  
In summary, the following events occur when stop mode is released:  
1. During stop mode, a power-on reset or an internal and an external interrupt occurs to trigger the stop mode  
release and oscillation starts.  
2. If a power-on reset occurred, the basic timer counter will increase at the rate of fxx/4096. If an internal and an  
external interrupt is used to release stop mode, the BTCNT value increases at the rate of the preset clock  
source.  
3. Clock oscillation stabilization interval begins and continues until bit 3 of the basic timer counter overflows.  
4. When a BTCNT.3 overflow occurs, normal CPU operation resumes.  
10-3  
BASIC TIMER  
S3C9234/P9234  
RESET or STOP  
Bit 1  
Bits 3, 2  
Basic Timer Control Register  
(Write '1010xxxxB' to Disable)  
Data Bus  
f
f
f
f
XX /4096  
XX /1024  
XX /128  
XX /16  
Clear  
8-Bit Up Counter  
(BTCNT, Read-Only)  
f
XX  
DIV  
MUX  
OVF  
RESET  
Start the CPU (note)  
R
Bit 0  
NOTE:  
During a power-on reset operation, the CPU is idle during the required oscillation  
stabilization interval (until bit 4 of the basic timer counter overflows).  
Figure 10-2. Basic Timer Block Diagram  
10-4  
S3C9234/P9234  
TIMER 1  
11 TIMER 1  
ONE 16-BIT TIMER MODE (TIMER 1)  
The 16-bit timer 1 is used in one 16-bit timer or two 8-bit timers mode. If TACON.7 is set to "1", timer 1 is used as a  
16-bit timer. If TACON.7 is set to "0", timer 1 is used as two 8-bit timers.  
— One 16-bit timer mode (Timer 1)  
— Two 8-bit timers mode (Timer A and B)  
OVERVIEW  
The 16-bit timer 1 is an 16-bit general-purpose timer. Timer 1 has the interval timer mode by using the appropriate  
TACON setting.  
Timer 1 has the following functional components:  
— Clock frequency divider (fxx divided by 512, 256, 64, 8, or 1, fxt, and T1CLK: External clock) with multiplexer  
— 16-bit counter (TACNT, TBCNT), 16-bit comparator, and 16-bit reference data register (TADATA, TBDATA)  
— Timer 1 match interrupt generation  
— Timer 1 control register, TACON (page 0, EBH, read/write)  
FUNCTION DESCRIPTION  
Interval Timer Function  
The timer 1 module can generate an interrupt: the timer 1 match interrupt (T1INT).  
The T1INT pending condition should be cleared by software when it has been serviced. Even though T1INT is  
disabled, the application's service routine can detect a pending condition of T1INT by the software and execute it's  
sub-routine. When this case is used, the T1INT pending bit must be cleared by the application sub-routine by writing  
a "0" to the TACON.0 pending bit.  
In interval timer mode, a match signal is generated when the counter value is identical to the values written to the  
timer 1 reference data registers, TADATA and TBDATA. The match signal generates a timer 1 match interrupt and  
clears the counter.  
If, for example, you write the value 32H and 10H to TADATA and TBDATA, respectively, and 8EH to TACON, the  
counter will increment until it reaches 3210H. At this point, the timer 1 interrupt request is generated, the counter  
value is reset, and counting resumes.  
11-1  
TIMER 1  
S3C9234/P9234  
Timer 1 Control Register (TACON)  
You use the timer 1 control register, TACON, to  
— Enable the timer 1 operating (interval timer)  
— Select the timer 1 input clock frequency  
— Clear the timer 1 counter, TACNT and TBCNT  
— Enable the timer 1 interrupt  
TACON is located in page 0, at address EBH, and is read/write addressable using register addressing mode.  
A reset clears TACON to "00H". This sets timer 1 to disable interval timer mode, selects an input clock frequency of  
fxx/512, and disables timer 1 interrupt. You can clear the timer 1 counter at any time during normal operation by  
writing a "1" to TACON.3.  
To enable the timer 1 interrupt, you must write TACON.7, TACON.2, and TACON.1 to "1".  
To generate the exact time interval, you should write TACON.3 and TACON.0 to "10B", which cleared counter and  
interrupt pending bit. To detect an interrupt pending condition when T1INT is disabled, the application program polls  
pending bit, TACON.0. When a "1" is detected, a timer 1 interrupt is pending. When the T1INT sub-routine has been  
serviced, the pending condition must be cleared by software by writing a "0" to the timer 1 interrupt pending bit,  
TACON.0.  
Timer A Control Register (TACON)  
EBH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
One 16-bit timer or Two 8-bit timers  
mode:  
0 = Two 8-bit timers mode (Timer A/B)  
Timer 1 interrupt pending bit:  
0 = No interrupt pending (when read)  
Clear pending bit (when write)  
1 = Interrupt is pending (when read)  
No effect (when write)  
1 = One 16-bit timer mode (Timer 1)  
Timer 1/A interrupt enable bit:  
0 = Disable interrupt  
Timer 1/A clock selection bits:  
000 = fxx/512  
1 = Enable interrupt  
001 = fxx/256  
010 = fxx/64  
011 = fxx/8  
100 = fxx  
101 = fxt (sub clock)  
110 = T1CLK (external clock)  
111 = Not available  
Timer 1/A counter enable bit:  
0 = Disable counting operation  
1 = Enable counting operation  
Timer 1/A counter clear bit:  
0 = No affect  
1 = Clear the timer 1/A counter (when write)  
Figure 11-1. Timer 1 Control Register (TACON)  
11-2  
S3C9234/P9234  
TIMER 1  
BTCON.0  
TACON.6-.4  
1/512  
1/256  
1/64  
1/8  
R
TACON.3  
Data Bus  
TACON.2  
(XIN or XTIN  
)
LSB  
MSB  
M
U
X
DIV  
fxx  
Clear  
TBCNT TACNT  
R
TACON.1  
1/1  
Match  
TACON.0  
16-Bit Comparator  
LSB MSB  
fxt  
T1INT  
T1CLK  
TAOUT  
TBDATA TADATA  
Buffer Buffer  
Match Signal  
T1CLR  
TBDATA TADATA  
Data Bus  
NOTE:  
When one 16-bit timer mode (TACON.7 <- "1": Timer 1)  
Figure 11-2. Timer 1 Block Diagram (One 16-bit Mode)  
11-3  
TIMER 1  
S3C9234/P9234  
TWO 8-BIT TIMERS MODE (TIMER A and B)  
OVERVIEW  
The 8-bit timer A and B are the 8-bit general-purpose timers. Timer A and B have the interval timer mode by using  
the appropriate TACON and TBCON setting, respectively.  
Timer A and B have the following functional components:  
— Clock frequency divider with multiplexer  
– fxx divided by 512, 256, 64, 8 or 1, fxt, and T1CLK (External clock) for timer A  
– fxx divided by 512, 256, 64 or 8 and fxt for timer B  
— 8-bit counter (TACNT, TBCNT), 8-bit comparator, and 8-bit reference data register (TADATA, TBDATA)  
— Timer A have I/O pin for match output (TAOUT)  
— Timer A match interrupt generation  
— Timer A control register, TACON (page 0, EBH, read/write)  
— Timer B have I/O pin for match output (TBOUT)  
— Timer B match interrupt generation  
— Timer B control register, TBCON (page 0, ECH, read/write)  
Timer A and B Control Register (TACON, TBCON)  
You use the timer A and B control register, TACON and TBCON, to  
— Enable the timer A (interval timer mode) and B operating (interval timer mode)  
— Select the timer A and B input clock frequency  
— Clear the timer A and B counter, TACNT and TBCNT  
— Enable the timer A and B interrupt  
11-4  
S3C9234/P9234  
TIMER 1  
TACON and TBCON are located in page 0, at address EBH and ECH, and is read/write addressable using register  
addressing mode.  
A reset clears TACON to "00H". This sets timer A to disable interval timer mode, selects an input clock frequency of  
fxx/512, and disables timer A interrupt. You can clear the timer A counter at any time during normal operation by  
writing a "1" to TACON.3.  
A reset clears TBCON to "00H". This sets timer B to disable interval timer mode, selects an input clock frequency of  
fxx/512, and disables timer A interrupt. You can clear the timer B counter at any time during normal operation by  
writing a "1" to TBCON.3.  
To enable the timer A interrupt (TAINT) and timer B interrupt (TBINT), you must write TACON.7 to "0", TACON.2  
(TBCON.2) and TACON.1 (TBCON.1) to "1". To generate the exact time interval, you should write TACON.3  
(TBCON.3) and TACON.0 (TBCON.0), which cleared counter and interrupt pending bit. To detect an interrupt pending  
condition when TAINT and TBINT is disabled, the application program polls pending bit, TACON.0 and TBCON.0.  
When a "1" is detected, a timer A interrupt (TAINT) and timer B interrupt (TBINT) is pending. When the TAINT and  
TBINT sub-routine has been serviced, the pending condition must be cleared by software by writing a "0" to the timer  
A and B interrupt pending bit, TACON.0 and TBCON.0.  
Timer A Control Register (TACON)  
EBH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
One 16-bit timer or Two 8-bit timers  
mode:  
0 = Two 8-bit timers mode (Timer A/B)  
Timer A interrupt pending bit:  
0 = No interrupt pending (when read)  
Clear pending bit (when write)  
1 = Interrupt is pending (when read)  
No effect (when write)  
1 = One 16-bit timer mode (Timer 1)  
Timer A interrupt enable bit:  
0 = Disable interrupt  
Timer 1/A clock selection bits:  
000 = fxx/512  
1 = Enable interrupt  
001 = fxx/256  
010 = fxx/64  
011 = fxx/8  
100 = fxx  
101 = fxt (sub clock)  
110 = T1CLK (external clock)  
111 = Not available  
Timer A counter enable bit:  
0 = Disable counting operation  
1 = Enable counting operation  
Timer A counter clear bit:  
0 = No affect  
1 = Clear the timer 1/A counter (when write)  
Figure 11-3. Timer A Control Register (TACON)  
11-5  
TIMER 1  
S3C9234/P9234  
Timer B Control Register (TBCON)  
ECH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used  
Timer B interrupt pending bits:  
0 = No interrupt pending (when read)  
Clear pending bit (when write)  
1 = Interrupt is pending (when read)  
No effect (when write)  
Timer B clock selection bits:  
000 = fxx/512  
001 = fxx/256  
Timer B match interrupt enable bit:  
0 = Disable match interrupt  
1 = Enable match interrupt  
010 = fxx/64  
011 = fxx/8  
100 = fxt (sub clock)  
Timer B count enable bit:  
0 = Disable counting operating  
1 = Enable counting operating  
Timer B counter clear bit:  
0 = No effect  
1 = Clear the timer B counter (when write)  
Figure 11-4. Timer B Control Register (TBCON)  
11-6  
S3C9234/P9234  
TIMER 1  
FUNCTION DESCRIPTION  
Interval Timer Function (Timer A and Timer B)  
The timer A and B module can generate an interrupt: the timer A match interrupt (TAINT) and the timer B match  
interrupt (TBINT).  
The timer A match interrupt pending condition (TACON.0) and the timer B match interrupt pending condition  
(TBCON.0) must be cleared by software in the application's interrupt service by means of writing a "0" to the  
TACON.0 and TBCON.0 interrupt pending bit.  
Even though TAINT and TBINT are disabled, the application's service routine can detect a pending condition of  
TAINT and TBINT by the software and execute it's sub-routine. When this case is used, the TAINT and TBINT  
pending bit must be cleared by the application sub-routine by writing a "0" to the corresponding pending bit  
TACON.0 and TBCON.0.  
In interval timer mode, a match signal is generated when the counter value is identical to the values written to the  
timer A or timer B reference data registers, TADATA or TBDATA. The match signal generates corresponding match  
interrupt and clears the counter.  
If, for example, you write the value 20H to TADATA and 0EH to TACON, the counter will increment until it  
reaches 20H. At this point, the timer A interrupt request is generated, the counter value is cleared, and counting  
resumes and you write the value 10H to TBDATA, "0" to TACON.7, and 0EH to TBCON, the counter will increment  
until it reaches 10H. At this point, TB interrupt request is generated, the counter value is cleared and  
counting resumes.  
11-7  
TIMER 1  
S3C9234/P9234  
BTCON.0  
TACON.6-.4  
1/512  
1/256  
1/64  
1/8  
R
Data Bus  
TACNT  
TACON.3  
MSB  
TACON.2  
(XIN or XTIN  
)
LSB  
M
U
X
DIV  
fxx  
Clear  
(8-Bit Up-Counter)  
R
TACON.1  
1/1  
Match  
TACON.0  
8-Bit Comparator  
fxt  
TAINT  
T1CLK  
TAOUT  
LSB  
MSB  
TADATA Buffer  
Match Signal  
TACLR  
TADATA Register  
Data Bus  
NOTE:  
When two 8-bit timers mode (TACON.7 <- "0": Timer A)  
Figure 11-5. Timer A Block Diagram(Two 8-bit Timers Mode)  
11-8  
S3C9234/P9234  
TIMER 1  
BTCON.0  
TBCON.6-.4  
R
1/512  
1/256  
1/64  
1/8  
TBCON.3  
MSB  
Data Bus  
TBCNT  
TBCON.2  
M
U
X
(XIN or XTIN  
)
LSB  
DIV  
fxx  
Clear  
(8-Bit Up-Counter)  
R
TBCON.1  
Match  
TBCON.0  
8-Bit Comparator  
fxt  
TBINT  
TBOUT  
LSB  
MSB  
TBDATA Buffer  
Match Signal  
TBCLR  
TBDATA Register  
Data Bus  
NOTE:  
When two 8-bit timers mode (TACON.7 <- "0": Timer B)  
Figure 11-6. Timer B Block Diagram (Two 8-bit Timers Mode)  
11-9  
TIMER 1  
S3C9234/P9234  
NOTES  
11-10  
S3P9234 (Preliminary Spec)  
WATCH TIMER  
12 WATCH TIMER  
OVERVIEW  
Watch timer functions include real-time and watch-time measurement and interval timing for the system clock. To  
start watch timer operation, set bit 1 of the watch timer control register, WTCON.1 to "1".  
And if you want to service watch timer overflow interrupt, then set the WTCON.6 to "1".  
The watch timer overflow interrupt pending condition (WTCON.0) must be cleared by software in the application's  
interrupt service routine by means of writing a "0" to the WTCON.0 interrupt pending bit.  
After the watch timer starts and elapses a time, the watch timer interrupt pending bit (WTCON.0) is automatically  
set to "1", and interrupt requests commence in 3.91ms, 0.25, 0.5 and 1-second intervals by setting Watch timer  
speed selection bits (WTCON.3 – .2).  
The watch timer can generate a steady 0.5 kHz, 1 kHz, 2 kHz, or 4 kHz signal to BUZ output pin for Buzzer. By  
setting WTCON.3 and WTCON.2 to "11b", the watch timer will function in high-speed mode, generating an interrupt  
every 3.91 ms. High-speed mode is useful for timing events for program debugging sequences.  
Also, you can select watch timer clock source by setting the WTCON.7 appropriately value.  
The watch timer supplies the clock frequency for the LCD controller (f  
the LCD controller does not operate.  
). Therefore, if the watch timer is disabled,  
LCD  
Watch timer has the following functional components:  
— Real Time and Watch-Time Measurement  
7
— Using a Main or Sub Clock Source (Main clock divided by 2 (fx/128) or Sub clock(fxt))  
— Clock Source Generation for LCD Controller (f  
)
LCD  
— I/O pin for Buzzer Output Frequency Generator (P1.7, BUZ)  
— Timing Tests in High-Speed Mode  
— Watch timer overflow interrupt generation  
— Watch timer control register, WTCON (page 0, DAH, read/write)  
12-1  
WATCH TIMER  
S3P9234 (Preliminary Spec)  
WATCH TIMER CONTROL REGISTER (WTCON)  
The watch timer control register, WTCON is used to select the input clock source, the watch timer interrupt time and  
Buzzer signal, to enable or disable the watch timer function. It is located in page 0 at address DAH, and is  
read/write addressable using register addressing mode.  
A reset clears WTCON to "00H". This disable the watch timer and select fx/128 as the watch timer clock.  
So, if you want to use the watch timer, you must write appropriate value to WTCON.  
Watch Timer Control Register (WTCON)  
DAH, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Watch timer clock selection bit:  
0 = Main clock divided by  
27(fx/128)  
Watch timer interrupt pending bits:  
0 = No interrupt pending (when read)  
Clear pending bit (when write)  
1 = Interrupt is pending (when read)  
No effect (when write)  
1 = Sub clock (fxt)  
Watch timer INT Enable/Disable bit:  
0 = Disable watch timer INT  
1 = Enable watch timer INT  
Watch timer Enable/Disable bit:  
0 = Disable watch timer;  
clear frequency dividing circuits  
1 = Enable watch timer  
Buzzer signal selection bits:  
00 = 0.5 kHz  
01 = 1 kHz  
10 = 2 kHz  
11 = 4 kHz  
Watch timer speed selection bits:  
00 = Set watch timer interrupt to 1 s  
01 = Set watch timer interrupt to 0.5 s  
10 = Set watch timer interrupt to 0.25 s  
11 = Set watch timer interrupt to 3.91 ms  
Figure 12-1. Watch Timer Control Register (WTCON)  
12-2  
S3P9234 (Preliminary Spec)  
WATCH TIMER  
WATCH TIMER CIRCUIT DIAGRAM  
WTCON.7  
WTCON.6  
WT INT Enable  
BUZ (P1.7)  
WTCON.6  
WTCON.5  
WTCON.4  
MUX  
WTINT  
8
fW/64 (0.5 kHz)  
WTCON.3  
WTCON.2  
WTCON.1  
f
W
/32 (1 kHz)  
/16 (2 kHz)  
W/8 (4 kHz)  
fW  
f
Enable/Disable  
Selector  
Circuit  
WTCON.0  
WTCON.0  
(Pending Bit)  
fW  
/27  
/213  
/214  
/215  
fW  
Frequency  
Dividing  
Circuit  
Clock  
Selector  
f
W
fW  
f
W
(1 Hz)  
LCD = 2048 Hz  
32.768 kHz  
f
fxt fx/128  
f
X
= Main clock (where fx = 4.19 MHz)  
fxt = Sub clock (32,768 Hz)  
= Watch timer frequency  
fW  
Figure 12-2. Watch Timer Circuit Diagram  
12-3  
WATCH TIMER  
S3P9234 (Preliminary Spec)  
NOTES  
12-4  
S3C9234/P9234  
LCD CONTROLLER/DRIVER  
13 LCD CONTROLLER/DRIVER  
OVERVIEW  
The S3C9234/P9234 microcontroller can directly drive an up-to-128-dot (32 segments x 4 commons) LCD panel. Its  
LCD block has the following components:  
— LCD controller/driver  
— Display RAM (B0H-BFH of page 0) for storing display data  
— 32 segment output pins (SEG0–SEG31)  
— 4 common output pins (COM0–COM3)  
— Three LCD operating power supply pins (V  
-V  
)
LC0 LC2  
— Bias pin for controlling the driver and bias voltage  
— LCD bias by Internal/External register  
Bit setting in the LCD control register, LCON, determine the LCD frame, duty and bias.  
The LCD control register, LCON, is used to turn the LCD display on or off, to select LCD clock frequency, to select  
bias and duty, and switch the current to the dividing resistor for the LCD display. Data written to the LCD display  
RAM can be transferred to the segment signal pins automatically without program control.  
When a sub clock is selected as the LCD clock source, the LCD display is enabled even during main clock stop and  
idle modes.  
Bias  
1
V
LC0-VLC2  
LCD  
Controller/  
Driver  
3
4
COM0-COM3  
SEG0-SEG31  
8
32  
Figure 13-1. LCD Function Diagram  
13-1  
LCD CONTROLLER/DRIVER  
LCD CIRCUIT DIAGRAM  
S3C9234/P9234  
SEG31/P3.0  
Port  
Latch  
SEG/Port  
Driver  
SEG16/P4.7  
SEG15/P5.0  
SEG0/P6.7  
LCD  
Display  
RAM  
(0B0H-0BFH)  
COM2/P0.3  
COM1/P0.2  
COM/Port  
Driver  
f
LCD  
COM0/P0.1  
Timing  
Controller  
Bias  
LCON  
LCD  
Voltage  
Controller  
V
V
V
LC0  
LC1  
LC2  
Figure 13-2. LCD Circuit Diagram  
13-2  
S3C9234/P9234  
LCD CONTROLLER/DRIVER  
LCD RAM ADDRESS AREA  
RAM addresses of page 0 are used as LCD data memory. When the bit value of a display segment is "1", the LCD  
display is turned on; when the bit value is "0", the display is turned off.  
Display RAM data are sent out through segment pins SEG0–SEG31 using a direct memory access (DMA) method  
that is synchronized with the f  
signal. RAM addresses in this location that are not used for LCD  
LCD  
display can be allocated to general-purpose use.  
COM0 b0 b4 b0 b4 b0 b4 b0 b4 b0 b4  
COM1 b1 b5 b1 b5 b1 b5 b1 b5 b1 b5  
COM2 b2 b6 b2 b6 b2 b6 b2 b6 b2 b6  
COM3 b3 b7 b3 b7 b3 b7 b3 b7 b3 b7  
0B0H 0B1H 0B2H 0B3H 0B4H  
b0 b4 b0 b4 b0 b4  
b1 b5 b1 b5 b1 b5  
b2 b6 b2 b6 b2 b6  
b3 b7 b3 b7 b3 b7  
0BDH 0BEH 0BFH  
Figure 13-3. LCD Display Data RAM Organization  
Table 13-1. LCD Clock Signal Frame Frequency  
LCDCK Frequency (f  
)
Static  
1/2 Duty  
1/3 Duty  
1/4 Duty  
LCD  
64 Hz  
128 Hz  
256Hz  
512 Hz  
64  
32  
64  
21  
43  
16  
32  
128  
256  
512  
128  
256  
85  
64  
171  
128  
13-3  
LCD CONTROLLER/DRIVER  
S3C9234/P9234  
LCD CONTROL REGISTER (LCON)  
A LCON is located in page 0, at address D7H, and is read/write addressable using register addressing mode. It has  
the following control functions.  
— LCD duty and bias selection  
— LCD clock selection  
— LCD display control  
— Internal/External LCD dividing resistors selection  
The LCON register is used to turn the LCD display on/off, to select duty and bias, to select LCD clock and control  
the flow of the current to the dividing in the LCD circuit. Following a RESET, all LCON values are cleared to "0". This  
turns off the LCD display, select 1/4 duty and 1/3 bias, select 64Hz for LCD clock, and Enable internal LCD dividing  
resistors.  
The LCD clock signal determines the frequency of COM signal scanning of each segment output. This is also  
referred as the LCD frame frequency. Since the LCD clock is generated by watch timer clock (fw). The watch timer  
should be enabled when the LCD display is turned on.  
LCD Control Register (LCON)  
D7H, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Internal LCD dividing register enable bits:  
0 = Enable internal LCD dividing resistors  
1 = Disable internal LCD dividing resistors  
LCD display control bit:  
0 = All LCD signals are low  
(Turn off the R-Tr)  
1 = Turn display on  
(Turn on the P-Tr)  
LCD clock selection bits:  
00 = fw/29 (64 Hz)  
Not used  
01 = fw/28 (128 Hz)  
10 = fw/27 (256 Hz)  
11 = fw/26 (512 Hz)  
LCD duty and bias selection bits:  
000 = 1/4 duty, 1/3 bias  
001 = 1/3 duty, 1/3 bias  
010 = 1/3 duty, 1/2 bias  
011 = 1/2 duty, 1/2 bias  
1xx = static  
Figure 13-4. LCD Control Register (LCON)  
13-4  
S3C9234/P9234  
LCD CONTROLLER/DRIVER  
LCD VOLTAGE DIVIDING RESISTOR  
Static and 1/3 Bias (VLCD = 3V at VDD = 5V)  
1/2 Bias (VLCD = 2.5V at VDD = 5V)  
S3C9234  
S3C9234  
V
DD  
VDD  
LCON.0  
LCON.0  
Bias  
Bias  
2R LCON.7 = 0: Enable internal resistors  
2R LCON.7 = 0: Enable internal resistors  
V
V
V
LC0  
V
V
V
LC0  
R
R
R
R
LC1  
LC2  
LC1  
LC2  
V
LCD  
VLCD  
R
R
V
SS  
VSS  
Static and 1/3 Bias (VLCD = 5V at VDD = 5V)  
Voltage Dividing Resistor Adjustment  
S3C9234  
S3C9234  
V
DD  
VDD  
LCON.0  
LCON.0  
Bias  
Bias  
LCON.7 = 0: Enable internal resistors  
LCON.7 = 1: Disable internal resistors  
2R  
R''  
R'  
R'  
R'  
V
V
V
LC0  
V
V
V
LC0  
R
R
R
LC1  
LC2  
LC1  
LC2  
V
LCD  
VLCD  
V
SS  
VSS  
NOTES:  
1. R = Internal LCD dividing resistors. The resistors can be disconnected by LCON.7.  
2. R' = External LCD dividing resistors.  
3. R'' = External resistor to adjust VLCD  
.
Figure 13-5. Internal Voltage Dividing Resistor Connection  
13-5  
LCD CONTROLLER/DRIVER  
COMMON (COM) SIGNALS  
S3C9234/P9234  
The common signal output pin selection (COM pin selection) varies according to the selected duty cycle.  
— In 1/4 duty mode, COM0-COM3 pins are selected  
— In 1/3 duty mode, COM0-COM2 pins are selected  
— In 1/2 duty mode, COM0-COM1 pins are selected  
SEGMENT (SEG) SIGNALS  
The 31 LCD segment signal pins are connected to corresponding display RAM locations at page 0. Bits of the  
display RAM are synchronized with the common signal output pins.  
When the bit value of a display RAM location is "1", a select signal is sent to the corresponding segment pin. When  
the display bit is "0", a 'no-select' signal to the corresponding segment pin.  
Select  
Non-Select  
FR  
1 Frame  
V
V
LC0  
SS  
COM  
SEG  
V
V
LC0  
SS  
V
V
LC0  
SS  
COM-SEG  
-VLC0  
Figure 13-6. Select/No-Select Signals in Static Display Mode  
13-6  
S3C9234/P9234  
LCD CONTROLLER/DRIVER  
Select  
Non-Select  
FR  
1 Frame  
V
V
V
LC 0  
LC1, 2  
ss  
COM  
V
V
V
LC 0  
LC1, 2  
ss  
SEG  
V
V
V
LC 0  
LC1, 2  
ss  
COM-SEG  
-VLC1, 2  
-VLC 0  
Figure 13-7. Select/No-Select Signal in 1/2 Duty, 1/2 Bias Display Mode  
Select  
Non-Select  
FR  
1 Frame  
V
VLC0  
VLC1  
VSLCS2  
COM  
V
VLC0  
VLC1  
VSLCS2  
SEG  
VLC0  
V
VLC1  
VSLCS2  
-V  
COM-SEG  
-VLC2  
-VLLCC01  
Figure 13-8. Select/No-Select Signal in 1/3 Duty, 1/3 Bias Display Mode  
13-7  
LCD CONTROLLER/DRIVER  
S3C9234/P9234  
0
1
0
1
SEG0.0 x C0  
SEG1.0 x C0  
SEG2.1 x C1  
1 Frame  
FR  
V
V
V
LC0  
LC1, 2  
SS  
COM0  
V
V
V
LC0  
LC1, 2  
SS  
COM1  
SEG0  
SEG1  
V
V
V
LC0  
LC1, 2  
SS  
V
V
V
LC0  
LC1, 2  
SS  
SEG3.1 x C1  
V
V
V
LC0  
LC1, 2  
SS  
COM0  
-SEG0  
-VLC0  
-VLC1, 2  
V
V
V
LC0  
LC1, 2  
SS  
COM0  
-SEG1  
-VLC1, 2  
-VLC0  
V
V
V
LC0  
LC1, 2  
SS  
COM1  
-SEG0  
-VLC1, 2  
-VLC0  
V
V
V
LC0  
LC1, 2  
SS  
COM1  
-SEG1  
-VLC1, 2  
-VLC0  
NOTE:  
VLC2 = VLC1  
Figure 13-9. LCD Signal and Wave Forms Example in 1/2 Duty, 1/2 Bias Display Mode  
13-8  
S3C9234/P9234  
LCD CONTROLLER/DRIVER  
0
1
2
0
1
2
SEG2.0 x C0  
SEG2.1 x C1  
SEG0.2 x C2  
1 Frame  
FR  
V
V
V
V
LC0  
LC1  
LC2  
SS  
COM0  
V
V
V
V
LC0  
LC1  
LC2  
SS  
COM1  
COM2  
V
V
V
V
LC0  
LC1  
LC2  
SS  
V
V
V
V
LC0  
LC1  
LC2  
SS  
SEG0  
SEG1  
SEG1.6 x C2  
V
V
V
V
LC0  
LC1  
LC2  
SS  
V
V
V
V
-VLC2  
-VLC1  
-VLC0  
LC0  
LC1  
LC2  
SS  
COM0  
-SEG0  
V
V
V
V
-VLC2  
-VLC1  
-VLC0  
LC0  
LC1  
LC2  
SS  
COM0  
-SEG1  
V
V
V
V
-VLC2  
-VLC1  
-VLC0  
LC0  
LC1  
LC2  
SS  
COM1  
-SEG0  
V
V
V
V
-VLC2  
-VLC1  
-VLC0  
LC0  
LC1  
LC2  
SS  
COM1  
-SEG1  
Figure 13-10. LCD Signals and Wave Forms Example in 1/3 Duty, 1/3 Bias Display Mode  
13-9  
LCD CONTROLLER/DRIVER  
S3C9234/P9234  
0
1
2
3
0
1
2
3
SEG1.4 x C0  
SEG0.1 x C1  
SEG0.3 x C3
FR  
1 Frame  
V
V
V
V
LC0  
LC1  
LC2  
SS  
COM0  
V
V
V
V
LC0  
LC1  
LC2  
SS  
COM1  
COM2  
COM3  
SEG0  
SEG1  
V
V
V
V
LC0  
LC1  
LC2  
SS  
V
V
V
V
LC0  
LC1  
LC2  
SS  
SEG1.7 x C3  
V
V
V
V
LC0  
LC1  
LC2  
SS  
V
V
V
V
LC0  
LC1  
LC2  
SS  
V
V
V
V
-VLC2  
-VLC1  
-VLC0  
LC0  
LC1  
LC2  
SS  
COM0  
-SEG0  
V
V
V
V
-VLC2  
-VLC1  
-VLC0  
LC0  
LC1  
LC2  
SS  
COM0  
-SEG1  
V
V
V
V
-VLC2  
-VLC1  
-VLC0  
LC0  
LC1  
LC2  
SS  
COM1  
-SEG0  
V
V
V
V
-VLC2  
-VLC1  
-VLC0  
LC0  
LC1  
LC2  
SS  
COM1  
-SEG1  
Figure 13-11. LCD Signals and Wave Forms Example in 1/4 Duty, 1/3 Bias Display Mode  
13-10  
S3C9234/P9234  
SERIAL I/O INTERFACE  
14 SERIAL I/O INTERFACE  
OVERVIEW  
Serial I/O modules, SIO can interface with various types of external device that require serial data transfer. The  
components of SIO function block are:  
— 8-bit control register (SIOCON)  
— Clock selector logic  
— 8-bit data buffer (SIODATA)  
— 8-bit prescaler (SIOPS)  
— 3-bit serial clock counter  
— Serial data I/O pins (SI, SO)  
— Serial clock input/output pin (SCK)  
The SIO module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control  
register settings. To ensure flexible data transmission rates, you can select an internal or external clock source.  
PROGRAMMING PROCEDURE  
To program the SIO module, follow these basic steps:  
1. Configure the I/O pins at port (SCK/SI/SO) by loading the appropriate value to the P2CON register if necessary.  
2. Load an 8-bit value to the SIOCON control register to properly configure the serial I/O module. In this operation,  
SIOCON.2 must be set to "1" to enable the data shifter.  
3. For interrupt generation, set the serial I/O interrupt enable bit (SIOCON) to "1".  
4. When you transmit data to the serial buffer, write data to SIODATA and set SIOCON.3 to 1, the shift operation  
starts.  
5. When the shift operation (transmit/receive) is completed, the SIO pending bit (SIOCON.0) are set to "1" and SIO  
interrupt request is generated.  
14-1  
SERIAL I/O INTERFACE  
S3C9234/P9234  
SIO CONTROL REGISTERS (SIOCON)  
The control register for serial I/O interface module, SIOCON, is located at D0H in page 0. It has the control setting  
for SIO module.  
— Clock source selection (internal or external) for shift clock  
— Interrupt enable  
— Edge selection for shift operation  
— Clear 3-bit counter and start shift operation  
— Shift operation (transmit) enable  
— Mode selection (transmit/receive or receive-only)  
— Data direction selection (MSB first or LSB first)  
A reset clears the SIOCON value to "00H". This configures the corresponding module with an internal clock source  
at the SCK, selects receive-only operating mode, and clears the 3-bit counter. The data shift operation and the  
interrupt are disabled. The selected data direction is MSB-first.  
Serial I/O Module Control Register (SIOCON)  
D0H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
SIO interrupt pending bit:  
SIO shift clock selection bit:  
0 = Internal clock (P.S Clock)  
1 = External clock (SCK)  
0 = No interrupt pending (when read)  
Clear pending bit (when write)  
1 = Interrupt is pending  
Data direction control bit:  
0 = MSB-first mode  
1 = LSB-first mode  
SIO interrupt enable bit:  
0 = Disable SIO interrupt  
1 = Enable SIO interrupt  
SIO mode selection bit:  
0 = Receive only mode  
1 = Transmit/receive mode  
SIO shift operation enable bit:  
0 = Disable shifter and clock counter  
1 = Enable shifter and clock counter  
Shift clock edge selection bit:  
SIO counter clear and shift start bit:  
0 = No action  
1 = Clear 3-bit counter and start shifting  
0 = tX  
at falling edeges, rx at rising edges.  
1 = tX  
at rising edeges, rx at falling edges.  
Figure 14-1. Serial I/O Module Control Register (SIOCON)  
14-2  
S3C9234/P9234  
SERIAL I/O INTERFACE  
SIO PRE-SCALER REGISTER (SIOPS)  
The prescaler register for serial I/O interface module, SIOPS, are located at D2H in page 0.  
The value stored in the SIO pre-scaler register, SIOPS, lets you determine the SIO clock rate (baud rate) as follows:  
Baud rate = Input clock (fxx/4)/(Prescaler value + 1), or SCK input clock.  
SIO Pre-scaler Register (SIOPS)  
D2H, Page 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Baud rate = (fXX/4)/(SIOPS + 1)  
Figure 14-2. SIO Prescaler Register (SIOPS)  
SIO BLOCK DIAGRAM  
SIO INT  
3-Bit Counter  
SIOCON.0  
Pending  
Clear  
CLK  
SIOCON.1  
(Interrupt Enable)  
SIOCON.3  
SIOCON.7  
SIOCON.4  
(Edge Select)  
SIOCON.2  
(Shift Enable)  
SIOCON.5  
(Mode Select)  
M
U
X
SCK  
fxx /2  
SIOPS (D2H, page 0)  
8-bit P.S. 1/2  
CLK  
8-Bit SIO Shift Buffer  
SO  
(SIODATA, D1H, page 0)  
SIOCON.6  
(LSB/MSB First  
Mode Select)  
8
SI  
Data Bus  
Figure 14-3. SIO Functional Block Diagram  
14-3  
SERIAL I/O INTERFACE  
S3C9234/P9234  
SERIAL I/O TIMING DIAGRAM (SIO)  
SCK  
SI  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
SO  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Transmit  
Complete  
SIO INT  
Set SIOCON.3  
Figure 14-4. Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.4 = 0)  
SCK  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
SI  
SO  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Transmit  
Complete  
SIO INT  
Set SIOCON.3  
Figure 14-5. Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON.4 = 1)  
14-4  
S3C9234/P9234  
ELECTRICAL DATA  
15 ELECTRICAL DATA  
OVERVIEW  
In this chapter, S3C9234/P9234 electrical characteristics are presented in tables and graphs. The information is  
arranged in the following order:  
Absolute maximum ratings  
D.C. electrical characteristics  
Data retention supply voltage in Stop mode  
Stop mode release timing when initiated by an external interrupt  
Stop mode release timing when initiated by a Reset  
I/O capacitance  
A.C. electrical characteristics  
Input timing for external interrupts  
Input timing for RESET  
Serial data transfer timing  
Oscillation characteristics  
Oscillation stabilization time  
Operating voltage range  
15-1  
ELECTRICAL DATA  
S3C9234/P9234  
Table 15-1. Absolute Maximum Ratings  
°
(T = 25 C)  
A
Parameter  
Symbol  
Conditions  
Rating  
– 0.3 to + 6.5  
Unit  
Supply voltage  
V
V
V
DD  
Input voltage  
V
Ports 0–6  
– 0.3 to V + 0.3  
DD  
I
O
Output voltage  
Output current High  
V
– 0.3 to V + 0.3  
DD  
V
I
One I/O pin active  
– 15  
mA  
OH  
All I/O pins active  
One I/O pin active  
– 60  
+ 30  
Output current Low  
I
mA  
OL  
Total pin current for ports  
+ 100  
°
Operating temperature  
Storage temperature  
T
– 30 to + 85  
C
A
°
T
– 65 to + 150  
C
STG  
Table 15-2. D.C. Electrical Characteristics  
°
°
(T = – 30 C to + 85 C, V  
= 2.0 V to 5.5 V)  
A
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Operating Voltage  
V
fx = 0 – 4.2MHz, fxt = 32.8kHz  
2.0  
5.5  
V
DD  
fx = 0 – 8.0MHz  
2.7  
5.5  
Input High  
voltage  
V
V
V
V
V
V
V
All input pins except for V , V  
IH2 IH3  
0.7 V  
V
V
V
V
V
IH1  
IH2  
IH3  
IL1  
IL2  
IL3  
OH  
DD  
DD  
DD  
DD  
DD  
Ports 1-2,  
0.8 V  
RESET  
and XT , XT  
X , X  
V
V
– 0.1  
IN OUT  
IN  
OUT  
DD  
DD  
Input Low voltage  
All input pins except for V , V  
IL2 IL3  
0.3 V  
0.2 V  
0.1  
DD  
DD  
Ports 1-2,  
RESET  
X , X , XT , XT  
OUT  
IN OUT  
IN  
Output High  
voltage  
V
= 4.5 to 5.5 V;  
– 1.0  
V
V
DD  
All output ports; I = –1 mA  
OH  
Output Low  
voltage  
V
V
I
= 4.5 to 5.5 V  
DD  
2.0  
2.0  
OL1  
OL2  
= 15mA  
OL  
Ports 1-2  
= 4.5 to 5.5 V  
V
V
V
DD  
I
= 10mA  
OL  
All output ports except for V  
OL1  
Input High leakage  
current  
I
V = V  
DD  
3
mA  
LIH1  
I
All input pins except for I  
LIH2  
I
V = V  
DD  
20  
LIH2  
I
X , X , XT , XT  
OUT  
IN OUT  
IN  
15-2  
S3C9234/P9234  
ELECTRICAL DATA  
Table 15-2. D.C. Electrical Characteristics (Continued)  
°
°
(T = – 30 C to + 85 C, V  
= 2.0 V to 5.5 V)  
A
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input Low  
I
V = 0 V;  
–3  
mA  
I
LIL1  
leakage current  
All input pins except  
, I  
RESET  
LIL2  
I
V = 0 V;  
I
–20  
LIL2  
X , X , XT , XT  
OUT  
IN OUT  
IN  
Output High  
leakage current  
I
V
= V  
DD  
3
LOH  
O
All output pins  
= 0 V  
Output Low  
I
V
–3  
LOL  
O
leakage current  
All output pins  
°
Pull-Up Resistor  
R
25  
50  
100  
kW  
V = 0 V; V = 5V, T = 25 C  
L1  
I
DD  
A
Ports 0–6  
°
50  
100  
250  
150  
400  
V
= 3V, T = 25 C  
A
DD  
°
R
150  
V = 0 V; V = 5V, T = 25 C  
L2  
I
DD  
A
RES ET  
°
= 3V, T = 25 C  
A
300  
300  
500  
600  
700  
V
DD  
Oscillator Feed  
back Resistors  
R
V
X
= 5 V, T = 25 °C  
1500  
kW  
OSC1  
DD  
A
= V , X  
= 0V  
IN  
DD OUT  
R
V
= 5 V, T = 25 °C  
1500  
3000  
4500  
OSC2  
DD  
A
XT = V , XT = 0 V  
OUT  
IN  
DD  
LCD Voltage  
Dividing Resistor  
R
T = 25 °C  
100  
150  
200  
120  
kW  
LCD  
A
V
V
- 15 mA per common pin  
- 15 mA per common pin  
mV  
½
-COMi½  
LCD  
DC  
DS  
Voltage Drop  
(i = 0-3)  
V
V
V
120  
½ LCD-SEGx½  
Voltage Drop  
(x = 0–31)  
Middle Output  
V
2.7 V to 5.5 V, 1/3 bias  
0.6V –0.2 0.6V  
DD  
0.6V +  
DD  
V
=
LC0  
DD  
DD  
(1)  
Voltage  
LCD clock = 0Hz, V  
= V  
0.2  
LC1  
DD  
V
V
0.4V –0.2 0.4V  
DD  
0.4V  
+
LC1  
DD  
DD  
0.2  
0.2V –0.2 0.2V  
0.2V  
+
LC2  
DD  
DD  
DD  
0.2  
NOTE: It is middle output voltage when the Bias pin and the V  
pin are opened.  
LC0  
15-3  
ELECTRICAL DATA  
S3C9234/P9234  
Table 15-2. D.C. Electrical Characteristics (Concluded)  
°
°
(T = – 30 C to + 85 C, V  
= 2.0 V to 5.5 V)  
A
DD  
Unit  
Parameter  
Symbol  
Conditions  
8.0 MHz  
Min  
Typ  
Max  
(1)  
(2)  
Run mode:  
= 5 V ± 10%  
6.0  
12.0  
mA  
Supply current  
I
DD1  
V
DD  
Crystal oscillator  
C1 = C2 = 22pF  
4.0 MHz  
8.0 MHz  
2.6  
2.5  
5.2  
5.0  
V
= 3 V ± 10%  
DD  
4.0 MHz  
8.0 MHz  
1.2  
1.3  
2.4  
3.0  
(2)  
Idle mode:  
= 5 V ± 10%  
I
DD2  
V
DD  
Crystal oscillator  
C1 = C2 = 22pF  
4.0 MHz  
0.9  
0.8  
1.8  
1.6  
V
= 3 V ± 10%  
8.0 MHz  
4.0 MHz  
DD  
0.4  
0.8  
(3)  
(3)  
(4)  
Run mode: V = 3 V ± 10%,  
15.0  
30.0  
mA  
I
DD  
DD3  
32 kHz crystal oscillator  
Idle mode: V = 3 V ± 10%,  
6.0  
0.5  
15.0  
3.0  
I
DD  
DD4  
32 kHz crystal oscillator  
Stop mode; V = 5 V ± 10%,  
I
DD  
DD5  
°
T = 25 C  
A
Stop mode; V = 3 V ± 10%,  
0.3  
2.0  
DD  
°
T = 25 C  
A
NOTES:  
1. Supply current does not include current drawn through internal pull-up resistors, LCD voltage dividing resistors, and  
external output current loads.  
2.  
3.  
4.  
I
I
I
and I  
include power consumption for subsystem clock oscillation.  
DD1  
DD3  
DD5  
DD2  
and I  
are current when main system clock oscillation stops and the subsystem clock is used.  
DD4  
is current when main system clock and subsystem clock oscillation stops.  
5. Every values in this table is measured when bits 4-3 of the system clock control register (CLKCON.4-.3) is set to 11B.  
15-4  
S3C9234/P9234  
ELECTRICAL DATA  
Table 15-3. Data Retention Supply Voltage in Stop Mode  
°
°
(T = – 30 C to + 85 C)  
A
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Data retention supply  
voltage  
V
2.0  
5.5  
V
DDDR  
°
Data retention supply  
current  
I
1
mA  
Stop mode, T = 25 C  
DDDR  
A
V
= 2.0 V  
DDDR  
Idle Mode  
(Basic Timer Active)  
Stop Mode  
Normal  
Operating Mode  
Data Retention Mode  
V
DD  
VDDDR  
Execution of  
STOP Instruction  
0.8 VDD  
tWAIT  
NOTE:  
tWAIT is the same as 16 x 1/BT clock.  
Figure 15-1. Stop Mode Release Timing When Initiated by an External Interrupt  
15-5  
ELECTRICAL DATA  
S3C9234/P9234  
Oscillation  
Stabilization  
TIme  
RESET  
Occurs  
Stop Mode  
Normal  
Operating Mode  
Data Retention Mode  
V
DD  
VDDDR  
Execution of  
STOP Instrction  
RESET  
0.8 VDD  
0.2 V DD  
tWAIT  
NOTE:  
tWAIT is the same as 16 ´ 1/BT clock.  
Figure 15-2. Stop Mode Release Timing When Initiated by a  
Table 15-4. Input/Output Capacitance  
RESET  
°
(T = 25 C, V = 0 V)  
A
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input  
C
IN  
f = 1 MHz; unmeasured pins  
10  
pF  
capacitance  
are connected to V  
SS  
Output  
C
OUT  
capacitance  
I/O capacitance  
C
IO  
15-6  
S3C9234/P9234  
ELECTRICAL DATA  
Table 15-5. A.C. Electrical Characteristics  
°
°
(T = – 30 C to + 85 C, V = 2.0 V to 5.5 V)  
A
DD  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
SCK cycle time  
t
External SCK source  
1,000  
ns  
KCY  
Internal SCK source  
External SCK source  
1,000  
500  
SCK high, low width  
t
, t  
KH KL  
Internal SCK source  
External SCK source  
t
/2–50  
KCY  
SI setup time to SCK  
high  
t
t
250  
SIK  
KSI  
Internal SCK source  
External SCK source  
250  
400  
SI hold time to SCK high  
Internal SCK source  
External SCK source  
400  
Output delay for SCK to  
SO  
t
300  
ns  
KSO  
Internal SCK source  
All interrupt  
250  
Interrupt input, High, Low  
width  
t
500  
10  
700  
ns  
,
INTH  
V
= 3 V  
t
DD  
INTL  
RSL  
input Low width  
t
Input  
= 3 V  
ms  
RESET  
V
DD  
tINTL  
tINTH  
External  
Interrupt  
0.8 V DD  
0.2 V DD  
NOTE:  
The unit t CPU means one CPU clock period.  
Figure 15-3. Input Timing for External Interrupts  
15-7  
ELECTRICAL DATA  
S3C9234/P9234  
tRSL  
RESET  
0.2 VDD  
Figure 15-4. Input Timing for  
RESET  
tKCY  
tKL  
tKH  
SCK  
0.8VDD  
0.2VDD  
tSIK  
tKSI  
0.8V DD  
SI  
0.2V DD  
tKSO  
SO  
Output Data  
Figure 15-5. Serial Data Transfer Timing  
15-8  
S3C9234/P9234  
ELECTRICAL DATA  
Table 15-6. Main Oscillation Characteristics  
°
°
(T = – 30 C to + 85 C)  
A
Oscillator  
Clock Configuration  
Parameter  
Test Condition  
Min  
Typ  
Max  
Units  
Crystal  
C1  
Main oscillation  
frequency  
2.7 V – 5.5 V  
0.4  
8
MHz  
X
X
IN  
OUT  
2.0 V – 5.5 V  
2.7 V – 5.5 V  
0.4  
0.4  
4.2  
8
Ceramic  
Oscillator  
C1  
Main oscillation  
frequency  
X
X
IN  
OUT  
2.0 V – 5.5 V  
2.7 V – 5.5 V  
0.4  
0.4  
4.2  
8
External  
Clock  
X input frequency  
IN  
XIN  
XOUT  
2.0 V – 5.5 V  
5.0 V  
0.4  
0.4  
4.2  
2
RC  
Oscillator  
Frequency  
Frequency  
MHz  
X
IN  
R
XOUT  
3.0 V  
0.4  
1
Table 15-7. Sub Oscillation Characteristics  
°
°
(T = – 30 C to + 85 C)  
A
Oscillator  
Clock Configuration  
Parameter  
Test Condition  
Min  
Typ  
32.768  
Max  
Units  
Crystal  
C1  
Sub oscillation  
frequency  
2.0 V – 5.5 V  
32  
35  
kHz  
X
X
IN  
OUT  
External  
clock  
XT input  
IN  
2.0 V – 5.5 V  
32  
100  
XIN  
frequency  
XOUT  
15-9  
ELECTRICAL DATA  
S3C9234/P9234  
Table 15-8. Main Oscillation Stabilization Time  
°
°
(T = – 30 C to + 85 C, V = 2.0 V to 5.5 V)  
A
DD  
Oscillator  
Test Condition  
Min  
Typ  
Max  
Unit  
ms  
Crystal  
fx > 1 MHz  
30  
10  
Ceramic  
Oscillation stabilization occurs when VDD is  
equal to the minimum oscillator voltage  
range.  
ms  
External clock  
X
input high and low width (t , t  
)
62.5  
1250  
ns  
IN  
XH XL  
1/fx  
tXL  
tX  
X
IN  
V
DD-0.1 V  
0.1 V  
Figure 15-6. Clock Timing Measurement at X  
IN  
15-10  
S3C9234/P9234  
ELECTRICAL DATA  
Table 15-9. Sub Oscillation Stabilization Time  
°
°
(T = – 30 C to + 85 C, V = 2.0 V to 5.5 V)  
A
DD  
Oscillator  
Test Condition  
Min  
Typ  
Max  
10  
Unit  
s
Crystal  
External clock  
XT input high and low width (t , t  
)
5
15  
ms  
IN  
XH XL  
1/fxt  
tXTL  
tXTH  
XTIN  
V
DD-0.1 V  
0.1 V  
Figure 15-7. Clock Timing Measurement at XT  
IN  
15-11  
ELECTRICAL DATA  
S3C9234/P9234  
Instruction Clock  
fx (Main/Sub oscillation frequency)  
2 MHz  
8 MHz  
4 MHz  
1.0 MHz  
400 kHz  
6.25 kHz (main)/8.2 kHz(sub)  
400 kHz (main)/32.8 kHz(sub)  
1
2
6
2.7  
5.5  
Supply Voltage (V)  
Instruction Clock = 1/4n x oscillator frequency (n = 1, 2, 8, 16)  
Figure 15-8. Operating Voltage Range  
15-12  
S3C9234/P9234  
MECHANICAL DATA  
16 MECHANICAL DATA  
OVERVIEW  
The S3C9234/P9234 microcontroller is currently available in a 64-QFP-1420F package.  
23.90  
20.00  
±
±
0.30  
0.20  
0-8  
+ 0.10  
0.15 - 0.05  
0.10 MAX  
64-QFP-1420F  
#64  
+ 0.10  
0.40 - 0.05  
#1  
0.05 MIN  
2.65  
3.00 MAX  
1.00  
0.15 MAX  
(1.00)  
±
0.10  
0.80 + 0.20  
NOTE: Dimensions are in millimeters.  
Figure 16-1. 64-Pin QFP Package Dimensions (64-QFP-1420F)  
16-1  
MECHANICAL DATA  
S3C9234/P9234  
NOTES  
16-2  
S3C9234/P9234  
S3P9234 OTP  
17 S3P9234 OTP  
OVERVIEW  
The S3P9234 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the S3C9234  
microcontroller. It has an on-chip OTP ROM instead of masked ROM. The EPROM is accessed by serial data  
format.  
The S3P9234 is fully compatible with the S3C9234, both in function and in pin configuration. Because of its simple  
programming requirements, the S3P9234 is ideal for use as an evaluation chip for the S3C9234.  
17-1  
S3P9234 OTP  
S3C9234/P9234  
COM0/P0.0  
COM1/P0.1  
COM2/P0.2  
COM3/P0.3  
BIAS  
VLC0  
SDAT/VLC1  
SCLK/VLC2  
1
2
3
4
5
6
7
8
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SEG13/P5.2  
SEG14/P5.1  
SEG15/P5.0  
SEG16/P4.7  
SEG17/P4.6  
SEG18/P4.5  
SEG19/P4.4  
SEG20/P4.3  
SEG21/P4.2  
SEG22/P4.1  
SEG23/P4.0  
SEG24/P3.7  
SEG25/P3.6  
SEG26/P3.5  
SEG27/P3.4  
SEG28/P3.3  
SEG29/P3.2  
SEG30/P3.1  
SEG31/P3.0  
S3P9234  
V
V
DD/VDD  
SS/VSS  
OUT  
IN  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
X
(64-QFP-1420F)  
X
V
PP/TEST  
XTIN  
XTOUT  
RESET/RESET  
P1.0/INT  
P1.1/INT  
P1.2/INT  
Figure 17-1. S3P9234 Pin Assignments (64-QFP-1420F)  
17-2  
S3C9234/P9234  
S3P9234 OTP  
Table 17-1. Descriptions of Pins Used to Read/Write the EPROM  
During Programming  
Main Chip  
Pin Name  
VLC1  
Pin Name  
Pin No.  
I/O  
Function  
SDAT  
7
I/O  
Serial data pin. Output port when reading and  
input port when writing. Can be assigned as a  
Input/push-pull output port.  
VLC2  
TEST  
SCLK  
8
I/O  
I
Serial clock pin. Input only pin.  
V
(TEST)  
13  
Power supply pin for EPROM cell writing  
(indicates that OTP enters into the writing mode).  
When 12.5 V is applied, OTP is in writing mode  
and when 5 V is applied, OTP is in reading mode.  
(Option)  
PP  
16  
I
I
Chip initialization  
RESET  
RESET  
/V  
V
/V  
V
9 / 10  
Logic power supply pin. V should be tied to  
DD  
DD SS  
DD SS  
+ 5 V during programming.  
NOTE: Parentheses indicate pin number for 64-pin-QFP-1420F package.  
Table 17-2. Comparison of S3P9234 and S3C9234 Features  
Characteristic  
Program Memory  
Operating Voltage (V  
S3P9234  
S3C9234  
4 Kbyte mask ROM  
2.0 V to 5.5 V  
4 Kbyte EPROM  
2.0 V to 5.5 V  
)
DD  
OTP Programming Mode  
V
= 5 V, V (TEST)=12.5V  
DD PP  
Pin Configuration  
64-QFP  
User Program 1 time  
64-QFP  
EPROM Programmability  
Programmed at the factory  
OPERATING MODE CHARACTERISTICS  
When 12.5 V is supplied to the V (TEST) pin of the S3P72C8, the EPROM programming mode is entered.  
PP  
The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in  
Table 17-3 below.  
Table 17-3. Operating Mode Selection Criteria  
V
V
(TEST)  
REG/  
MEM  
Address  
(A15-A0)  
R/W  
Mode  
DD  
PP  
5 V  
5 V  
0
0000H  
0000H  
0000H  
0E3FH  
1
0
1
0
EPROM read  
12.5 V  
0
0
1
EPROM program  
EPROM verify  
12.5 V  
12.5 V  
EPROM read protection  
NOTE: "0" means Low level; "1" means High level.  
17-3  
S3P9234 OTP  
S3C9234/P9234  
Table 17-4. D.C. Electrical Characteristics  
°
°
(T = – 30 C to + 85 C, V  
= 2.0 V to 5.5 V)  
A
DD  
Unit  
Parameter  
Symbol  
Conditions  
8.0 MHz  
Min  
Typ  
Max  
(1)  
I
Run mode:  
= 5 V ± 10%  
6.0  
12.0  
mA  
Supply current  
DD1  
V
DD  
Crystal oscillator  
C1 = C2 = 22pF  
4.0 MHz  
8.0 MHz  
2.6  
2.5  
5.2  
5.0  
V
= 3 V ± 10%  
DD  
4.0 MHz  
8.0 MHz  
1.2  
1.3  
2.4  
3.0  
I
Idle mode:  
= 5 V ± 10%  
DD2  
V
DD  
Crystal oscillator  
C1 = C2 = 22pF  
4.0 MHz  
0.9  
0.8  
1.8  
1.6  
V
= 3 V ± 10%  
8.0 MHz  
4.0 MHz  
DD  
0.4  
0.8  
I
Run mode: V = 3 V ± 10%,  
15.0  
30.0  
mA  
DD3  
DD  
32 kHz crystal oscillator  
I
Idle mode: V = 3 V ± 10%,  
6.0  
0.5  
15.0  
3.0  
DD4  
DD  
32 kHz crystal oscillator  
I
Stop mode; V = 5 V ± 10%,  
DD5  
DD  
°
T = 25 C  
A
Stop mode; V = 3 V ± 10%,  
0.3  
2.0  
DD  
°
T = 25 C  
A
NOTES:  
1. Supply current does not include current drawn through internal pull-up resistors, LCD voltage dividing resistors, and  
external output current loads.  
2.  
3.  
4.  
I
I
I
and I  
include power consumption for subsystem clock oscillation.  
DD1  
DD3  
DD5  
DD2  
and I  
are current when main system clock oscillation stops and the subsystem clock is used.  
DD4  
is current when main system clock and subsystem clock oscillation stops.  
5. Every values in this table is measured when bits 4-3 of the system clock control register (CLKCON.4-.3) is set to 11B.  
17-4  
S3C9234/P9234  
S3P9234 OTP  
Instruction Clock  
fx (Main/Sub oscillation frequency)  
2 MHz  
8 MHz  
4 MHz  
1.0 MHz  
400 kHz  
6.25 kHz (main)/8.2 kHz(sub)  
400 kHz (main)/32.8 kHz(sub)  
1
2
6
2.7  
5.5  
Supply Voltage (V)  
Instruction Clock = 1/4n x oscillator frequency (n = 1, 2, 8, 16)  
Figure 17-2. Standard Operating Voltage Range  
17-5  
S3P9234 OTP  
S3C9234/P9234  
NOTES  
17-6  
S3C9234/P9234  
DEVELOPMENT TOOLS  
18 DEVELOPMENT TOOLS  
OVERVIEW  
Samsung provides a powerful and easy-to-use development support system in turn key form. The development  
support system is configured with a host system, debugging tools, and support software. For the host system, any  
standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool  
including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for S3C7,  
S3C8, S3C9 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2. Samsung also  
offers support software that includes debugger, assembler, and a program for setting options.  
SHINE  
Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE  
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked help. It  
has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be sized, moved,  
scrolled, highlighted, added, or removed completely.  
SAMA ASSEMBLER  
The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates object  
code in standard hexadecimal format. Assembled program code includes the object code that is used for ROM data  
and required SMDS program control data. To assemble programs, SAMA requires a source file and an auxiliary  
definition (DEF) file with device specific information.  
SASM86  
The SASM86 is an relocatable assembler for Samsung's S3C9-series microcontrollers. The SASM86 takes a source  
file containing assembly language statements and translates into a corresponding source code, object code and  
comments. The SASM86 supports macros and conditional assembly. It runs on the MS-DOS operating system. It  
produces the relocatable object code only, so the user should link object file. Object files can be linked with other  
object files and loaded into memory.  
HEX2ROM  
HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be  
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by  
HEX2ROM, the value “FF” is filled into the unused ROM area up to the maximum ROM size of the target device  
automatically.  
TARGET BOARDS  
Target boards are available for all S3C9-series microcontrollers. All required target system cables and adapters are  
included with the device-specific target board.  
18-1  
DEVELOPMENT TOOLS  
S3C9234/P9234  
IBM-PC AT or Compatible  
RS-232C  
SMDS2+  
Target  
Application  
System  
PROM/OTP Writer Unit  
RAM Break/Display Unit  
Trace/Timer Unit  
Probe  
Adapter  
TB9234  
Target  
POD  
SAM8 Base Unit  
Board  
EVA  
Chip  
Power Supply Unit  
Figure 18-1. SMDS Product Configuration (SMDS2+)  
18-2  
S3C9234/P9234  
DEVELOPMENT TOOLS  
TB9234 TARGET BOARD  
The TB9234 target board is used for the S3C9234 microcontroller. It is supported by the SMDS2+ development  
system.  
REV.0  
To User_VCC  
TB9234  
'2003. 05. 28  
OFF  
ON  
RESET  
IDLE  
STOP  
7411  
U2  
U3  
B1  
Y1  
R7  
R8  
JP6  
CB  
+
25  
R5  
R4  
1
3
4
6
20  
J101  
J102  
40  
30  
20  
10  
1
64QFP  
64QFP  
1
9
2
1
9
2
160  
150  
140  
130  
B3  
CN1  
50  
60  
70  
80  
10  
10  
10  
19  
29  
20  
30  
19  
29  
20  
30  
90 100 110 120  
1
51  
76 26  
C14  
R9  
39  
40  
39  
40  
R10  
C11  
SMDS2  
SMDS2+  
Figure 18-2. TB9234 Target Board Configuration  
18-3  
DEVELOPMENT TOOLS  
S3C9234/P9234  
Table 18-1. Power Selection Settings for TB9234  
Operating Mode  
"To User_V  
"
Comments  
CC  
Settings  
The SMDS2/SMDS2+ supplies  
to the target board  
To User_VCC  
V
CC  
Off  
On  
Target  
System  
(evaluation chip) and the target  
system.  
TB9234  
V
CC  
SS  
V
V
CC  
SMDS2/SMDS2+  
The SMDS2/SMDS2+ supplies  
To User_VCC  
V
only to the target board  
CC  
External  
Off  
On  
Target  
System  
(evaluation chip). The target  
system must have its own  
power supply.  
V
CC  
TB9234  
V
SS  
V
CC  
SMDS2/SMDS2+  
NOTE: The following symbol in the "To User_V " Setting column indicates the electrical short (off) configuration:  
CC  
18-4  
S3C9234/P9234  
DEVELOPMENT TOOLS  
SMDS2+ Selection (SAM8)  
In order to write data into program memory that is available in SMDS2+, the target board should be selected to be for  
SMDS2+ through a switch as follows. Otherwise, the program memory writing function is not available.  
Table 18-2. The SMDS2+ Tool Selection Setting  
"SW1" Setting  
SMDS2 SMDS2+  
Operating Mode  
R/W  
SMDS2+  
R/W  
Target  
Board  
Table 18-3. Using Single Header Pins as the Input Path for External Trigger Sources  
Target Board Part  
Comments  
Connector from  
External Trigger  
Sources of the  
External  
Triggers  
Application System  
Ch1  
Ch2  
You can connect an external trigger source to one of the two external  
trigger channels (CH1 or CH2) for the SMDS2+ breakpoint and trace  
functions.  
IDLE LED  
The Green LED is ON when the evaluation chip (S3E9230) is in idle mode.  
STOP LED  
The Red LED is ON when the evaluation chip (S3E9230) is in stop mode.  
18-5  
DEVELOPMENT TOOLS  
S3C9234/P9234  
J101  
J102  
COM0/P0.0  
COM2/P0.2  
BIAS  
1
3
5
7
2
4
6
COM1/P0.1  
COM3/P0.3  
VLC0  
VLC2  
GND  
XIN  
XTIN  
RESET  
P1.1/INT  
P1.3/T1CLK  
P1.5/TBOUT  
P1.7/BUZ  
P2.1/SO  
P2.3  
P2.5/INT  
P2.7/INT  
N.C  
SEG31/P3.0  
SEG29/P3.2  
SEG27/P3.4  
SEG25/P3.6  
SEG23/P4.0  
SEG21/P4.2  
SEG19/P4.4  
SEG17/P4.6  
SEG15/P5.0  
SEG13/P5.2  
SEG11/P5.4  
SEG9/P5.6  
SEG7/P6.0  
SEG5/P6.2  
SEG3/P6.4  
SEG1/P6.6  
N.C  
1
3
5
7
2
4
6
SEG30/P3.1  
SEG28/P3.3  
SEG26/P3.5  
SEG24/P3.7  
SEG23/P4.1  
SEG20/P4.3  
SEG18/P4.5  
SEG16/P4.7  
SEG14/P5.1  
SEG12/P5.3  
SEG10/P5.5  
SEG8/P5.7  
SEG6/P6.1  
SEG4/P6.3  
SEG2/P6.5  
SEG0/P6.7  
N.C  
VLC1  
8
8
V
DD  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
X
OUT  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
TEST  
XTOUT  
P1.0/INT  
P1.2/INT  
P1.4/TAOUT  
P1.6/CLKOUT  
P2.0/SCK  
P2.2/SI  
P2.4/INT  
P2.6/INT  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
Figure 18-3. Connectors (J101, J102) for TB9234  
Target Board  
Target Board  
J101  
J102  
2 33 34  
J102  
J101  
1
33 34 1  
2
Target Cable for 40-pin Connector  
Part Name: AS40D-A  
Order Code: SM6306  
31 32 63 64  
63 64 31 32  
Figure 18-4. S3C9234 Probe Adapter for 64-QFP Package  
18-6  
S3C9 SERIES MASK ROM ORDER FORM  
Product description:  
Device Number: S3C9__________- ___________(write down the ROM code number)  
Product Order Form: Package Pellet Wafer  
Package Type: __________  
Package Marking (Check One):  
Standard  
Custom A  
(Max 10 chars)  
Custom B  
(Max 10 chars each line)  
@ YWW  
Device Name  
@ YWW  
@ YWW  
SEC  
Device Name  
@ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly  
Delivery Dates and Quantities:  
Deliverable  
ROM code  
Required Delivery Date  
Quantity  
Comments  
Not applicable  
See ROM Selection Form  
Customer sample  
Risk order  
See Risk Order Sheet  
Please answer the following questions:  
For what kind of product will you be using this order?  
F
New product  
Upgrade of an existing product  
Other  
Replacement of an existing product  
If you are replacing an existing product, please indicate the former product name  
(
)
F
What are the main reasons you decided to use a Samsung microcontroller in your product?  
Please check all that apply.  
Price  
Product quality  
Features and functions  
Delivery on time  
Development system  
Used same micom before  
Technical support  
Quality of documentation  
Samsung reputation  
Mask Charge (US$ / Won):  
Customer Information:  
____________________________  
Company Name:  
___________________  
________________________  
(Person placing the order)  
Telephone number  
_________________________  
Signatures:  
__________________________________  
(Technical Manager)  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  
S3C9 SERIES  
REQUEST FOR PRODUCTION AT CUSTOMER RISK  
Customer Information:  
Company Name:  
Department:  
Telephone Number:  
Date:  
________________________________________________________________  
________________________________________________________________  
__________________________  
__________________________  
Fax: _____________________________  
Risk Order Information:  
Device Number:  
S3C9________- ________ (write down the ROM code number)  
Package:  
Number of Pins: ____________  
Package Type: _____________________  
Intended Application:  
Product Model Number:  
________________________________________________________________  
________________________________________________________________  
Customer Risk Order Agreement:  
We hereby request SEC to produce the above named product in the quantity stated below. We believe our risk order  
product to be in full compliance with all SEC production specifications and, to this extent, agree to assume  
responsibility for any and all production risks involved.  
Order Quantity and Delivery Schedule:  
Risk Order Quantity:  
Delivery Schedule:  
_____________________ PCS  
Delivery Date (s)  
Quantity  
Comments  
Signatures:  
_______________________________  
(Person Placing the Risk Order)  
_______________________________________  
(SEC Sales Representative)  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  
S3C9234 MASK OPTION SELECTION FORM  
Device Number:  
S3C9234-__________(write down the ROM code number)  
Attachment (Check one):  
Diskette  
PROM  
Customer Checksum:  
Company Name:  
________________________________________________________________  
________________________________________________________________  
________________________________________________________________  
Signature (Engineer):  
Please answer the following questions:  
F
Application (Product Model ID: _______________________)  
Audio  
Video  
Telecom  
LCD Databank  
Caller ID  
LCD  
Game  
Industrials  
Home Appliance  
Office Automation  
Remocon  
Other  
Please describe in detail its application  
__________________________________________________________________________  
_
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  
S3P9 SERIES OTP FACTORY WRITING ORDER FORM (1/2)  
Product Description:  
Device Number:  
S3P9________-________(write down the ROM code number)  
Product Order Form:  
Package  
Package Type:  
Pellet  
Wafer  
If the product order form is package:  
_____________________  
Package Marking (Check One):  
Standard  
Custom A  
(Max 10 chars)  
Custom B  
(Max 10 chars each line)  
@ YWW  
Device Name  
@ YWW  
@ YWW  
SEC  
Device Name  
@ : Assembly site code, Y : Last number of assembly year, WW : Week of assembly  
Delivery Dates and Quantity:  
ROM Code Release Date  
Required Delivery Date of Device  
Quantity  
Please answer the following questions:  
F
What is the purpose of this order?  
New product development  
Upgrade of an existing product  
Other  
Replacement of an existing microcontroller  
If you are replacing an existing microcontroller, please indicate the former microcontroller name  
(
)
F
What are the main reasons you decided to use a Samsung microcontroller in your product?  
Please check all that apply.  
Price  
Product quality  
Features and functions  
Delivery on time  
Development system  
Used same micom before  
Technical support  
Quality of documentation  
Samsung reputation  
Customer Information:  
Company Name:  
___________________  
Telephone number  
_________________________  
Signatures:  
________________________  
(Person placing the order)  
__________________________________  
(Technical Manager)  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  
S3P9234 OTP FACTORY WRITING ORDER FORM (2/2)  
Device Number:  
S3P9234 - __________(write down the ROM code number)  
Customer Checksums:  
Company Name:  
_______________________________________________________________  
________________________________________________________________  
________________________________________________________________  
Signature (Engineer):  
Read Protection(1):  
Yes  
No  
Please answer the following questions:  
F
F
Are you going to continue ordering this device?  
Yes  
If so, how much will you be ordering?  
No  
_________________pcs  
Application (Product Model ID: _______________________)  
Audio  
Video  
Telecom  
LCD Game  
Office Automation  
LCD Databank  
Industrials  
Remocon  
Caller ID  
Home Appliance  
Other  
Please describe in detail its application  
__________________________________________________________________________  
NOTES  
1. Once you choose a read protection, you cannot read again the programming code from the EPROM.  
2. OTP Writing will be executed in our manufacturing site.  
3. The writing program is completely verified by a customer. Samsung does not take on any responsibility for errors  
occurred from the writing program.  
(For duplicate copies of this form, and for additional ordering information, please contact your local  
Samsung sales representative. Samsung sales offices are listed on the back cover of this book.)  

相关型号:

S3C9404

SAM87Ri family of 8-bit single-chip CMOS microcontrollers
SAMSUNG

S3C9414

SAM87Ri family of 8-bit single-chip CMOS microcontrollers
SAMSUNG

S3C9414XX-AM

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PDIP24, 0.300 INCH, SDIP-24
SAMSUNG

S3C9414XX-SM

Microcontroller, 8-Bit, MROM, 10MHz, CMOS, PDSO24, 0.375 INCH, SOP-24
SAMSUNG

S3C9424

SAM87Ri family of 8-bit single-chip CMOS microcontrollers
SAMSUNG

S3C9424XX-SO

Microcontroller, 8-Bit, MROM, SAM87RI CPU, 16MHz, CMOS, PDSO32, 0.450 INCH, SOP-32
SAMSUNG

S3C9428

SAM87Ri family of 8-bit single-chip CMOS microcontrollers
SAMSUNG

S3C9428XX-AV

暂无描述
SAMSUNG

S3C9428XX-SN

Microcontroller, 8-Bit, MROM, SAM87RI CPU, 16MHz, CMOS, PDSO28, 0.375 INCH, SOP-28
SAMSUNG

S3C9432

SAM87Ri family of 8-bit single-chip CMOS microcontrollers
SAMSUNG

S3C9432XX-DI

Microcontroller, 8-Bit, MROM, SAM87RI CPU, 16MHz, CMOS, PDIP18, 0.300 INCH, DIP-18
SAMSUNG

S3C9432XX-SK

Microcontroller, 8-Bit, MROM, SAM87RI CPU, 16MHz, CMOS, PDSO20, 0.375 INCH, SOP-20
SAMSUNG