ENA0967 [SANYO]

Bi-CMOS LSI PWM Constant-Current Control Stepping Motor Driver and Switching Regulator Controller; BI -CMOS大规模集成电路的PWM恒流控制步进电机驱动器和开关稳压器控制器
ENA0967
型号: ENA0967
厂家: SANYO SEMICON DEVICE    SANYO SEMICON DEVICE
描述:

Bi-CMOS LSI PWM Constant-Current Control Stepping Motor Driver and Switching Regulator Controller
BI -CMOS大规模集成电路的PWM恒流控制步进电机驱动器和开关稳压器控制器

驱动器 稳压器 开关 电机 控制器
文件: 总21页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number : ENA0967  
Bi-CMOS LSI  
PWM Constant-Current Control Stepping Motor  
Driver and Switching Regulator Controller  
LV8747T  
Overview  
The LV8747T is a PWM constant-current control stepping motor driver and switching regulator controller IC.  
Features  
Two circuits of PWM constant-current control stepping motor driver incorporated  
Two circuits of switching regulator controller incorporated  
Motor driver control power incorporated  
Control of the stepping motor to W1-2 phase excitation possible  
Chopping frequency selectable  
Output short-circuit protection circuit incorporated  
High-precision reference voltage circuit incorporated  
Output-stage push-pull composition enabling high-speed operation  
Timer latch type short-circuit protection circuit incorporated  
Upper and lower regenerative diodes incorporated  
Thermal shutdown circuit incorporated  
Specifications  
Absolute Maximum Ratings at Ta = 25°C  
Parameter  
Supply voltage  
Symbol  
Conditions  
Ratings  
Unit  
V
VM max  
38  
1.75  
1.5  
Driver output peak current 1  
Driver output continuous current 1  
Driver output peak current 2  
Driver output continuous current 2  
Regulator output current  
MDI peak1  
O
OUT1/OUT2 tw 10ms, duty 20%  
OUT1/OUT2  
A
MDI max1  
O
A
MDI peak2  
O
OUT3/OUT4 tw 10ms, duty 20%  
OUT3/OUT4  
0.8  
A
MDI max2  
O
0.5  
A
SWI max  
O
OUT5/OUT6 tw 1µs  
500  
mA  
Continued on next page.  
Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to  
"standard application", intended for the use as general electronics equipment (home appliances, AV equipment,  
communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be  
intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace  
instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety  
equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case  
of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee  
thereof. If you should intend to use our products for applications outside the standard applications of our  
customer who is considering such use and/or outside the scope of our intended standard applications, please  
consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our  
customer shall be solely responsible for the use.  
Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate  
the performance, characteristics, and functions of the described products in the independent state, and are not  
guarantees of the performance, characteristics, and functions of the described products as mounted in the  
customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent  
device, the customer should always evaluate and test devices mounted in the customer  
's products or  
equipment.  
O1007 MS PC 20071001-S00003 No.A0967-1/21  
LV8747T  
Continued from preceding page.  
Parameter  
Symbol  
Pd max1  
Pd max2  
Topr  
Conditions  
Ratings  
Unit  
W
Allowable power dissipation 1  
Allowable power dissipation 2  
Operating temperature  
Independent IC  
Our recommended four-layer substrate *1, *2  
0.4  
4.85  
W
-20 to +85  
-55 to +150  
°C  
°C  
Storage temperature  
Tstg  
*1 Specified circuit board : 100×100×1.6mm3 : 4-layer glass epoxy printed circuit board  
*2 For mounting to the backside by soldering, see the precautions.  
Allowable Operating Ratings at Ta = 25°C  
Parameter  
Symbol  
Conditions  
Ratings  
Unit  
V
Supply voltage  
VM  
10 to 35  
0 to 5  
Logic input voltage  
V
V
IN  
VREF input voltage  
Regulator output voltage  
Regulator output current  
Error amplifier input voltage  
Timing capacity  
VREF  
0 to 3  
V
V
VM-5 to VM  
0 to 200  
0 to 3  
V
O
I
mA  
V
O
V
A
O
CT  
RT  
100 to 15000  
5 to 50  
pF  
kΩ  
kHz  
Timing resistance  
Triangular wave oscillation  
frequency  
F
10 to 800  
OSC  
Electrical Characteristics at Ta = 25°C, VM = 24V, VREF = 1.5V  
Ratings  
typ  
Parameter  
Symbol  
Conditions  
Unit  
min  
max  
General  
VM current drain  
IM  
PS = “H”, no load  
6
8
mA  
°C  
°C  
V
Thermal shutdown temperature  
Thermal hysteresis width  
REG5 output voltage  
Motor Drivers [Charge pump block]  
Boost voltage  
TSD  
Design guarantee  
Design guarantee  
Ireg5 = -1mA  
180  
40  
TSD  
Vreg5  
4.5  
5.0  
5.5  
VGH  
tONG  
Fcp  
VM = 24V  
28.0  
90  
28.7  
50  
29.8  
100  
150  
V
Rise time  
VG = 10µF  
CHOP = 20kΩ  
ms  
kHz  
Oscillation frequency  
Output block (OUT1/OUT2)  
Output on resistance  
120  
RonU1  
RonD2  
I
I
= -1.5A, source side  
= 1.5A, sink side  
= 35V  
0.5  
0.5  
0.8  
0.8  
50  
O
O
Output leak current  
I
leak1  
V
µA  
V
O
O
Diode forward voltage  
Output block (OUT3/OUT4)  
Output on resistance  
VD1  
ID = -1.5A  
1.0  
1.3  
RonU2  
RonD2  
I
I
= -500mA, source side  
1.5  
1.1  
1.8  
1.4  
50  
O
O
= 500mA, sink side  
= 35V  
Output leak current  
Diode forward voltage  
Logic input block  
Logic pin input current  
I
leak2  
V
µA  
V
O
O
VD2  
ID = -500mA  
1.0  
1.3  
I
L
V
V
= 0.8V  
= 5V  
3
30  
8
15  
70  
µA  
µA  
V
IN  
IN  
I
H
50  
IN  
IN  
Logic high-level input voltage  
Logic low-level input voltage  
Current control block  
VREF input current  
V
H
2.0  
IN  
V
L
0.8  
V
IN  
IREF  
Fchop  
VHH  
VLH  
VREF = 1.5V  
-0.5  
45  
µA  
kHz  
V
Chopping frequency  
CHOP = 20kΩ  
62.5  
0.300  
0.200  
0.100  
75  
0.309  
0.209  
0.107  
Threshold voltage of current setting  
comparator  
VREF = 1.5V, I0 = H, I1 = H  
VREF = 1.5V, I0 = L, I1 = H  
VREF = 1.5V, I0 = H, I1 = L  
0.291  
0.191  
0.093  
V
VHL  
V
Continued on next page.  
No.A0695-2/21  
LV8747T  
Continued from preceding page.  
Ratings  
typ  
Parameter  
Symbol  
Conditions  
Unit  
min  
max  
Output short-circuit protection circuit  
Charge current  
IOCP  
VOCP = 0V  
15  
20  
25  
µA  
Threshold voltage  
VthOCP  
0.8  
1.0  
1.2  
V
Switching regulator Controller [Reference voltage block]  
REG25 output voltage  
Input stability  
Vreg25  
Ireg25 = -1mA  
2.475  
2.500  
2.525  
10  
V
V
I
VM = 10 to 35V  
mV  
mV  
DL  
Load stability  
V
O
Ireg25 = 0 to -3mA  
10  
DL  
Internal regulator block  
REGVM5 output voltage  
Triangular wave oscillator block  
Oscillation frequency  
Frequency fluctuation  
Current setting pin voltage  
Protective circuit block  
Threshold voltage of comparator  
Standby voltage  
VregVM5  
VregVM5 = 1mA  
VM-6.0  
72  
VM-5.0  
V
FOSC  
FDV  
RT = 20k, CT = 620pF  
VM = 10 to 35V  
RT = 20kΩ  
80  
1
88  
5
kHz  
%
VRT  
0.91  
1.40  
0.98  
1.05  
V
VthFB  
VstSCP  
ISCP  
FB5, FB6  
1.55  
1.70  
100  
3.4  
V
ISCP = 40µA  
VSCP = 0V  
mV  
µA  
V
Source current  
1.6  
2.5  
1.8  
Threshold voltage  
VthSCP  
VltSCP  
1.65  
1.95  
100  
Latch voltage  
ISCP = 40µA  
mV  
Soft start circuit block  
Source current  
ISOFT  
VSOFT = 0V  
1.3  
1.6  
1.9  
µA  
Latch voltage  
VltSOFT  
ISOFT = 40µA  
100  
mV  
Low-input malfunction preventive circuit block  
Threshold voltage  
VUT  
8.3  
8.7  
9.1  
V
Hysteresis voltage  
VHIS  
240  
340  
440  
mV  
Error amplifier block  
Input offset voltage  
V O  
i
6
30  
mV  
nA  
nA  
dB  
V
Input offset current  
I O  
i
Input bias current  
I b  
i
100  
OPEN open gain  
AV  
85  
Common-phase input voltage range  
Common phase removal ratio  
Max output voltage  
VCM  
VM = 10 to 35V  
3.0  
CMRR  
80  
5.0  
0.2  
600  
75  
dB  
V
V
H
L
4.5  
O
Min output voltage  
V
0.5  
1000  
105  
V
O
Output sink current  
Isi  
FB = 2.5V  
FB = 2.5V  
300  
45  
µA  
µA  
Output source current  
PWM comparator block  
Iso  
Input threshold voltage  
(Fosc = 10kHz)  
VT100  
VT0  
Duty cycle = 100%  
Duty cycle = 0%  
DT6 = 0.4V  
0.95  
0.49  
1.01  
0.52  
1.07  
0.55  
1
V
V
Input bias current  
IBDT  
Don1  
µA  
%
MAX duty cycle 1  
(Fosc = 80kHz)  
MAX duty cycle 2  
(Fosc = 160kHz)  
MAX duty cycle 3  
(Fosc = 10kHz)  
Output block  
5ch  
Internally fixed  
95  
93  
56  
Don2  
Don3  
5ch  
Internally fixed  
%
%
6ch  
65  
74  
VREG25 divided by 17kand 8kΩ  
Output ON resistance  
RonU3  
RonD3  
ILEAK  
I
I
= -200mA, source side  
= 200mA, sink side  
= 35V  
10  
6
12  
8
O
O
Leak current  
V
5
µA  
O
No.A0695-3/21  
LV8747T  
Package Dimensions  
unit : mm (typ)  
3337  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
9.0  
7.0  
(4.4)  
64  
1
2
0.125  
0.4  
0.16  
(0.5)  
SIDE VIEW  
SANYO : TQFP64K(7X7)  
No.A0695-4/21  
LV8747T  
Pd max Ta  
6.0  
*1 With Exposed Die-Pad substrate  
*2 Without Exposed Die-Pad  
Four-layer substrate *1  
4.85  
4.0  
Four-layer substrate *2  
2.52  
1.25  
2.40  
2.0  
0
20  
0
20  
40  
60  
80  
100  
Ambient temperature, Ta – °C  
Substrate Specifications (Substrate recommended for operation of LV8747T)  
Size  
Material  
: 100mm × 100mm × 1.6mm (four-layer substrate [2S2P])  
: Glass epoxy  
Copper wiring density : L1 = 85% / L4 = 90%  
L1 : Copper wiring pattern diagram  
L4 : Copper wiring pattern diagram  
Cautions  
1) The data for the case with the Exposed Die-Pad substrate mounted shows the values when 80% or more of the  
Exposed Die-Pad is wet.  
2) For the set design, employ the derating design with sufficient margin.  
Stresses to be derated include the voltage, current, junction temperature, power loss, and mechanical stresses such as  
vibration, impact, and tension.  
Accordingly, the design must ensure these stresses to be as low or small as possible.  
The guideline for ordinary derating is shown below :  
(1)Maximum value 80% or less for the voltage rating  
(2)Maximum value 80% or less for the current rating  
(3)Maximum value 80% or less for the temperature rating  
3) After the set design, be sure to verify the design with the actual product.  
Confirm the solder joint state and verify also the reliability of solder joint for the Exposed Die-Pad, etc.  
Any void or deterioration, if observed in the solder joint of these parts, causes deteriorated thermal conduction,  
possibly resulting in thermal destruction of IC.  
No.A0695-5/21  
LV8747T  
Pin Assignment  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
3
4
5
6
7
8
9
GND  
DT6 48  
RT 47  
PHA4  
OUT4B  
RNF4  
CT 46  
REG25 45  
REG5 44  
SCP 43  
SOFT 42  
VMSW 41  
VREF12 40  
CHOP 39  
CP1 38  
OUT4A  
VM34  
OUT3B  
RNF3  
OUT3A  
10 PGND3  
11 I03  
Top View  
12 I13  
CP2 37  
13 PHA3  
14 I02  
VG 36  
I01 35  
15 I12  
I11 34  
16 PHA2  
PHA1 33  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
No.A0695-6/21  
LV8747T  
Block Diagram  
O u t p u t p r e a m p l i f i e r s t a g e  
O u t p u t p r e a m p l i f i e r s t a g e  
O u t p u t p r e a m p l i f i e r s t a g e  
O u t p u t p r e a m p l i f i e r s t a g e  
O u t p u t p r e a m p l i f i e r s t a g e  
O u t p u t p r e a m p l i f i e r s t a g e  
O u t p u t p r e a m p l i f i e r s t a g e  
O u t p u t p r e a m p l i f i e r s t a g e  
No.A0695-7/21  
LV8747T  
Pin Functions  
Pin No  
Pin  
Description  
24  
25  
30  
31  
26  
27  
28  
29  
22  
23  
18  
19  
20  
21  
35  
34  
33  
14  
15  
16  
40  
32  
17  
6
VM12  
Driver 1/2ch Pin to connect to power supply  
Driver 1ch OUTA output pin  
OUT1A  
OUT1B  
RNF1  
Driver 1ch OUTB output pin  
Driver 1ch Current sense resistor connection pin  
Driver 2ch OUTA output pin  
OUT2A  
OUT2B  
RNF2  
Driver 2ch OUTB output pin  
Driver 2ch Current sense resistor connection pin  
Driver 1ch Output current setting input pin  
I01  
I11  
PHA1  
I02  
Driver 1ch Output phase shift input pin  
Driver 2ch Output current setting input pin  
I12  
PHA2  
VREF12  
PGND1  
PGND2  
VM34  
OUT3A  
OUT3B  
RNF3  
OUT4A  
OUT4B  
RNF4  
I03  
Driver 2ch Output phase shift input pin  
Driver 1/2ch Output current setting reference voltage input pin  
Driver output Power GND  
Driver output Power GND  
Driver 3/4ch Power connection pin  
Driver 3ch OUTA output pin  
9
7
Driver 3ch OUTB output pin  
8
Driver 3ch Current sense resistor connection pin  
Driver 4ch OUTA output pin  
5
3
Driver 4ch OUTB output pin  
4
Driver 4ch Current sense resistor connection pin  
Driver 3ch Output current setting input pin  
11  
12  
13  
63  
64  
2
I13  
PHA3  
I04  
Driver 3ch Output phase shift input pin  
Driver 4ch Output current setting input pin  
I14  
PHA4  
VREF34  
PGND3  
OCP  
Driver 4ch Output phase shift input pin  
Driver 3/4ch Output current setting reference voltage input pin  
Driver output Power GND  
61  
10  
60  
59  
39  
62  
36  
38  
37  
41  
44  
56  
45  
46  
47  
42  
43  
54  
Pin to connect to the output short-circuit state detection time setting capacitor  
Over-current mode changeover pin  
OCPM  
CHOP  
PS  
Pin to connect to the resistor to set the chopping frequency  
Driver Power save input pin  
VG  
Charge pump capacitor connection pin  
Charge pump capacitor connection pin  
Charge pump capacitor connection pin  
Power connection pin  
CP1  
CP2  
VMSW  
REG5  
REGVM5  
REG25  
CT  
Internal regulator output pin  
Internal regulator output pin  
Regulator Reference voltage output pin  
Regulator Timing capacity external pin  
Regulator Timing resistor external pin  
Regulator Soft start setting pin  
RT  
SOFT  
SCP  
Regulator Timer and latch setting pin  
Regulator Error amplifier 5 input + pin  
NON5  
Continued on next page.  
No.A0695-8/21  
LV8747T  
Continued from preceding page.  
Pin No  
53  
Pin  
Description  
INV5  
FB5  
Regulator Error amplifier 5 input – pin  
52  
Regulator Error amplifier 5 output pin  
Regulator Output 5  
58  
OUT5  
NON6  
INV6  
FB6  
51  
Regulator Error amplifier 6 input + pin  
Regulator Error amplifier 6 input – pin  
Regulator Error amplifier 6 output pin  
Regulator Output 6  
50  
49  
57  
OUT6  
DT6  
48  
Regulator Output 6 MAX DUTY setting pin  
GROUND  
55  
GND  
GND  
1
GROUND  
No.A0695-9/21  
LV8747T  
Equivalent Circuits  
Pin No.  
Pin Name  
Equivalent Circuit  
2
PHA4  
I03  
REG5  
11  
12  
13  
14  
15  
16  
33  
34  
35  
59  
62  
63  
64  
I13  
PHA3  
I02  
I12  
PHA2  
PHA1  
I11  
10k  
I01  
100kΩ  
OCPM  
PS  
I04  
I14  
GND  
36  
37  
38  
VG  
CP2  
CP1  
VMSW  
38  
37  
36  
100  
REG5  
GND  
3
4
OUT4B  
RNF4  
6
5
OUT4A  
VM34  
6
REG5  
7
OUT3B  
RNF3  
8
9
OUT3A  
PGND3  
5
9
3 7  
10  
500  
4
8
GND  
10  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PGND2  
OUT2B  
OUT2B  
RNF2  
24  
25  
RNF2  
REG5  
OUT2A  
OUT2A  
VM12  
22 23  
30 31  
18 19  
26 27  
VM12  
OUT1B  
OUT1B  
RNF1  
500Ω  
RNF1  
OUT1A  
OUT1A  
PGND1  
20 28  
21 29  
GND  
17 32  
Continued on next page.  
No.A0695-10/21  
LV8747T  
Continued from preceding page.  
Pin No.  
Pin Name  
Equivalent Circuit  
40  
61  
VREF12  
VREF34  
REG5  
500Ω  
GND  
REG5  
39  
CHOP  
1k  
GND  
60  
OCP  
REG5  
500  
GND  
44  
REG5  
VMSW  
2kΩ  
26kΩ  
GND  
45  
REG25  
REG5  
VMSW  
5k  
GND  
Continued on next page.  
No.A0695-11/21  
LV8747T  
Continued from preceding page.  
Pin No.  
Pin Name  
Equivalent Circuit  
49  
50  
51  
52  
53  
54  
FB6  
INV6  
NON6  
FB5  
REG5  
VMSW  
VMSW  
2kΩ  
INV5  
NON5  
500Ω  
500Ω  
2kΩ  
50 53  
GND  
VMSW  
51  
54  
49  
52  
48  
DT6  
REG5  
VMSW  
500  
GND  
46  
47  
CT  
RT  
REG5  
500Ω  
500Ω  
500Ω  
GND  
VMSW  
46  
47  
57  
58  
OUT6  
OUT5  
VMSW  
REGVM5  
Continued on next page.  
No.A0695-12/21  
LV8747T  
Continued from preceding page.  
Pin No.  
56  
Pin Name  
REGVM5  
Equivalent Circuit  
VMSW  
150K  
65KΩ  
GND  
42  
SOFT  
REG5  
500Ω  
500Ω  
GND  
VMSW  
43  
SCP  
REG5  
500Ω  
GND  
VMSW  
No.A0695-13/21  
LV8747T  
Stepping Motor Driver OUT1/OUT2(OUT3/OUT4)  
(1) Output control logic  
Parallel input (Note)  
Output  
Current direction  
PS  
PHA  
*
OUTA  
Off  
OUTB  
Off  
Low  
High  
High  
Standby  
Low  
High  
Low  
High  
High  
Low  
OUTBOUTA  
OUTAOUTB  
(Note) : Enter either “H” or “L” externally for the logic input pin. Never use the input pin in the OPEN state.  
(2) Constant-current setting  
I0 (Note)  
I1 (Note)  
Output current  
High  
High  
I
I
I
I
= (VREF/5) /RNF  
= ((VREF/5) /RNF) × 2/3  
= ((VREF/5) /RNF) × 1/3  
= 0  
O
O
O
O
Low  
High  
High  
Low  
Low  
Low  
(Note) : Enter either “H” or “L” externally for the logic input pin. Never use the input pin in the OPEN state.  
Set current calculation method  
The constant-current control setting of STM driver is determined as follows from the setting of VREF voltage, and I0  
and I1, and resistor (RNF) connected between RNF and GND :  
Iconst [A] = ((VREF [V] /5) /RNF []) × attenuation factor  
(Example) For VREF = 1.5V, I0 = I1 = “H” and RNF = 1;  
Iconst = 1.5V/5/1Ω × 1 = 0.3A  
(3) Setting the chopping frequency  
For constant-current control, chopping operation is made with the frequency determined by the external resistor  
(connected to the CHOP pin).  
The chopping frequency to be set with the resistance connected to the CHOP pin (pin 39) is as shown below.  
Chopping frequency  
140  
120  
100  
80  
60  
40  
20  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
CHOP resistance (k)  
The recommended chopping frequency ranges from 30kHz to 120kHz.  
No.A0695-14/21  
LV8747T  
(4) Constant-current control time chart (chopping operation)  
(Sine wave increasing direction)  
STEP  
Set current  
Set current  
Coil current  
Forced CHARGE  
section  
fchop  
Current mode CHARGE  
SLOW  
FAST  
CHARGE  
SLOW FAST  
(Sine wave decreasing direction)  
STEP  
Set current  
Coil current  
Forced CHARGE  
section  
Set current  
fchop  
Current mode CHARGE  
SLOW  
FAST  
Forced CHARGE FAST  
section  
CHARGE  
SLOW  
In each current mode, the operation sequence is as described below :  
At rise of chopping frequency, the CHARGTE mode begins.(The section in which the CHARGE mode is forced  
regardless of the magnitude of the coil current (ICOIL) and set current (IREF) exists for 1/16 of one chopping cycle.)  
The coil current (ICOIL) and set current (IREF) are compared in this forced CHARGE section.  
When (ICOIL<IREF) state exists in the forced CHARGE section ;  
CHARGE mode up to ICOIL IREF, then followed by changeover to the SLOW DECAY mode, and finally  
by the FAST DECAY mode for the 1/16 portion of one chopping cycle.  
When (ICOIL<IREF) state does not exist in the forced CHARGE section;  
The FAST DECAY mode begins. The coil current is attenuated in the FAST DECAY mode till one cycle of  
chopping is over.  
Above operations are repeated. Normally, the SLOW (+FAST) DECAY mode continues in the sine wave increasing  
direction, then entering the FAST DECAY mode till the current is attenuated to the set level and followed by the SLOW  
DECAY mode.  
No.A0695-15/21  
LV8747T  
(5) Output current vector locus (one step is normalized to 90 degrees)  
2-phase commutation position  
100.0  
66.7  
33.3  
0.0  
0.0  
33.3  
66.7  
100.0  
Channel 2 phase current ratio  
(6) Typical current waveform in each excitation mode  
Two-phase excitation (1/2ch, CW mode)  
I01,I11  
H
H
PHA1  
I02,I12  
PHA2  
(%) 100  
I 1  
OUT  
0
-100  
(%) 100  
I 2  
OUT  
0
-100  
No.A0695-16/21  
LV8747T  
1-2 phase excitation (1/2ch, CW mode)  
I01  
I11  
PHA1  
I02  
I12  
PHA2  
(%)  
100  
I
1
OUT  
0
-100  
(%)  
100  
0
I
2
OUT  
-100  
PCA01195  
W1-2 phase excitation (1/2ch, CW mode)  
I01  
I11  
PHA1  
I02  
I12  
PHA2  
(%)  
100  
I
1
OUT  
0
-100  
(%)  
100  
0
I
2
OUT  
-100  
PCA01196  
No.A0695-17/21  
LV8747T  
Output short-circuit protection circuit  
To protect IC from damage due to short-circuit of the output caused by lightening or ground fault, the output short-circuit  
protection circuit to put the output in the standby mode is incorporated.  
(1) Output short-circuit protection operation changeover function  
Changeover to the output short-circuit protection of IC is made by the setting of OCPM pin.  
OCPM  
“Low”  
“High”  
State  
Auto reset method  
Latch method  
(Auto reset method)  
When the output current is below the output short-circuit protection current, the output is controlled by the input signal.  
When the output current exceeds the detection current, the switching waveform as shown below appears instead.  
Exceeding the  
over-current  
detection  
current  
ON  
OFF  
ON  
OFF  
ON  
Output current  
1V  
OCP voltage  
0.5 to 1µs  
256µs (TYP)  
When detecting the output short-circuit state, the short-circuit detection circuit is activated.  
When the short-circuit detection circuit operation exceeds the timer latch time described later, the output is changed  
over to the standby mode and reset to the ON mode again in 256µs (TYP). In this event, if the over-current mode still  
continues, the above switching mode is repeated till the over-current mode is canceled.  
(Latch method)  
Similarly to the case of automatic reset method, the short-circuit detection circuit is activated when it detects the  
output short-circuit state.  
When the short-circuit detection circuit operation exceeds the timer latch time described later, the output is changed  
over to the standby mode.  
In this method, latch is released by setting PS = “L”  
(2) OCP pin constant setting method (timer latch setting)  
Connect C between the OCP pin and GND, and the time up to the output OFF can be set in case of output short-circuit.  
The C value can be determined as follows :  
Timer latch : Tocp  
Tocp C × V/I [s]  
V : Threshold voltage TYP 1V  
I : OCP charge current TYP 20µA  
(C: Recommended constant value 100pF to 200pF)  
No.A0695-18/21  
LV8747T  
Switching Regulator Controller  
(1) Regulator block diagram  
MAXDUTY setting pin  
5ch internally fixed  
REG5  
VMSW  
DT  
CT  
RT  
VM  
1.0V  
Triangle  
wave  
Internal  
reference  
voltage  
5V  
REG25  
2.5V  
reference  
voltage  
0.5V  
2.5V  
5V  
Triangle wave  
oscillator  
5V  
Constant  
Current  
Error amplifier  
5V  
PWM comparator  
1.6µA  
5V  
+
-
-
NON  
FB  
OUT  
+
-
FB comparator  
+
High during  
LVS  
operation  
5V  
5V  
5V  
LVS  
5V  
-
Constant  
1.55V  
+
High during  
protection  
circuit  
+
-
Current  
REGOUT  
operation  
Short-circuit  
2.5µA  
protection circuit  
VM  
Internal  
reference  
voltage  
VM-5V  
SCP REGVM5  
SOFT INV  
Soft start setting pin  
Timer/latch setting pin  
(2) Timing chart  
Short-circuit protection comparator  
reference voltage  
Oscillator triangular wave output (CT)  
Max_Duty setting voltage (DT)  
Error amplifier output (FB)  
1.55V  
1.0V  
0.5V  
Output (OUT)  
Triangular wave conversion output  
(1) (2)  
1.8V  
SCP pin waveform  
Short-circuit protection  
comparator output  
Latch output  
SOFT pin waveform  
VMSW supply voltage  
9.1V  
No.A0695-19/21  
LV8747T  
(3) SOFT pin constant setting method (Soft start setting)  
The switching regulator can be set to soft-start by connecting C between the SOFT pin and GND.  
Determine the C value as follows :  
Soft start time : Tsoft  
Tsoft C × V/I [s]  
V : Error amplifier input + pin voltage (NON5/NON6)  
I : SOFT charge current TYP 1.6µA  
(4). SCP pin constant setting method (Timer latch setting)  
The time up to the output OFF in case of regulator output short-circuit can be set by connecting C between the SCP  
pin and GND.  
Determine the C value as follows :  
Timer latch : Tscp  
Tscp C × V/I [s]  
V : Threshold voltage TYP 1.8V  
I : SCP charge current TYP 2.5µA  
(5) RT pin constant setting method (Capacitor charge/discharge current setting)  
The CT pin capacitor charge/discharge current can be set for triangular wave generation by connecting R between the  
RT pin and GND.  
Determine the R value as follows :  
Charge/discharge current : Irt  
Irt V/R [A]  
V : R pin voltage TYP 0.98V  
(6) CT pin constant setting method (Triangular wave oscillation frequency setting)  
The triangular wave oscillation can be set (together with the setting of charge/discharge current setting of RT pin) by  
connecting C between the CT pin and GND.  
Determine the C value as follows :  
Triangular wave oscillation frequency : Fosc Fosc 1/{2×C×V/I} [Hz]  
V : Triangle wave amplitude TYP 0.5V (Fosc = 10kHz)  
*Note that the amplitude increases with the frequency.  
I : Capacitor charge/discharge current. See the RT pin constant  
setting method of (5).  
No.A0695-20/21  
LV8747T  
Application Circuit  
Logic input  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
17k  
8kΩ  
1
2
3
4
5
6
7
8
9
GND  
DT6 48  
RT 47  
20kΩ  
PHA4  
OUT4B  
RNF4  
CT 46  
0.1µF  
1Ω  
1Ω  
620pF  
REG25 45  
REG5 44  
SCP 43  
SOFT 42  
VMSW 41  
VREF12 40  
CHOP 39  
CP1 38  
OUT4A  
VM34  
2.2µF  
0.1µF  
0.1µF  
OUT3B  
RNF3  
+
-
0.01µF  
20kΩ  
+
-
OUT3A  
10 PGND3  
11 I03  
1.5V  
0.1µF  
0.1µF  
12 I13  
CP2 37  
13 PHA3  
14 I02  
VG 36  
Logic input  
I01 35  
15 I12  
I11 34  
Logic input  
16 PHA2  
PHA1 33  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using  
products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition  
ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd.  
products described or contained herein.  
SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all  
semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or  
malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise  
to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt  
safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not  
limited to protective circuits and error prevention circuits for safe design, redundant design, and structural  
design.  
In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are  
controlled under any of applicable local export control laws and regulations, such products may require the  
export license from the authorities concerned in accordance with the above law.  
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or  
mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise,  
without the prior written consent of SANYO Semiconductor Co.,Ltd.  
Any and all information described or contained herein are subject to change without notice due to  
product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the  
SANYO Semiconductor Co.,Ltd. product that you intend to use.  
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed  
for volume production.  
Upon using the technical information or products described herein, neither warranty nor license shall be granted  
with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third  
party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's  
intellctual property rights which has resulted from the use of the technical information and products mentioned  
above.  
This catalog provides information as of October, 2007. Specifications and information herein are subject  
to change without notice.  
PS No.A0967-21/21  

相关型号:

ENA0968

Diffused Junction Silicon Diode Ultrahigh-Speed Switching Diode
SANYO

ENA0969

P-Channel Silicon MOSFET General-Purpose Switching Device Applications
SANYO

ENA0970B

CMOS IC 8K-byte FROM and 256-byte RAM integrated 8-bit 1-chip Microcontroller
SANYO

ENA0972

Monolithic Linear IC 2-Channel Power Amplifier
SANYO

ENA0973A

Bi-CMOS IC FM Transmitter IC with Stereo Modulation
SANYO

ENA0974A

Bi-CMOS IC FM Transmitter IC with Stereo Modulation
SANYO

ENA0975B

Monolithic Linear IC For Ultra-small illumination Sensor Photo IC
SANYO

ENA0976

Bi-CMOS IC Single chip Tuner IC for Car Radio
SANYO

ENA0977

N-Channel Silicon MOSFET General-Purpose Switching Device Applications
SANYO

ENA0979

Monolithic Linear IC For US TV BTSC Decoder
SANYO

ENA0981

P-Channel Silicon MOSFET General-Purpose Switching Device Applications
SANYO

ENA0981B

General-Purpose Switching Device Applications
SANYO