SC1185ACSW.TRT [SEMTECH]

Programmable Synchronous DC/DC; 可编程同步DC / DC
SC1185ACSW.TRT
型号: SC1185ACSW.TRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Programmable Synchronous DC/DC
可编程同步DC / DC

文件: 总14页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC1185 & SC1185A  
Programmable Synchronous DC/DC  
Converter, Dual LDO Controller  
POWER MANAGEMENT  
Features  
Description  
The SC1185 combines a synchronous voltage mode con-  
troller with two low-dropout linear regulators providing  
most of the circuitry necessary to implement three DC/  
DC converters for powering advanced microprocessors  
such as Pentium® II .  
Synchronous design, enables no heatsink solution  
95% efficiency (switching section)  
5 bit DAC for output programmability  
On chip power good function  
Designed for Intel Pentium® ll requirements  
1.5V, 2.5V @ 1.25% for linear section  
1.265V ± 1.5% Reference available  
24-lead SO package. Lead free option available.  
Lead free product is fully WEEE and RoHS  
compliant.  
The SC1185 switching section features an integrated 5  
bit D/A converter, pulse by pulse current limiting, inte-  
grated power good signaling, and logic compatible shut-  
down. The SC1185 switching section operates at a fixed  
frequency of 140kHz, providing an optimum compromise  
between size, efficiency and cost in the intended appli-  
cation areas. The integrated D/A converter provides pro-  
grammability of output voltage from 2.0V to 3.5V in  
100mV increments and 1.30V to 2.05V in 50mV incre-  
ments with no external components.  
Applications  
Pentium® ll microprocessor supplies  
Flexible motherboards  
1.3V to 3.5V microprocessor supplies  
Programmable triple power supplies  
The SC1185 linear sections are low dropout regulators  
supplying 1.5V for GTL bus and 2.5V for non-GTL I/O.  
The Reference voltage is made available for external lin-  
ear regulators.  
Typical Application Circuit  
12V  
5V  
+
4.7uF  
10  
+
0.1uF  
1500uF  
x4  
0.1uF  
5
7
9
VCC  
CS+  
CS-  
0.1uF  
PWRGOOD  
8
PWRGOOD  
VID0  
22  
21  
20  
19  
18  
16  
1
17  
15  
11  
14  
13  
10  
12  
6
IRLR3103N  
1.00k  
2.32k  
VID0  
VID1  
VID2  
VID3  
VID4  
EN  
VOSENSE  
VID1  
BSTH  
DH  
5mOhm  
2R2  
VCC_CORE  
VID2  
1.9uH  
IRLR3103N  
VID3  
BSTL  
DL  
VID4  
+
2R2  
0.1uF  
EN  
PGNDH  
PGNDL  
REF  
AGND  
LDOV  
GATE2  
LDOS2  
SC1185CS  
1k  
23  
24  
4
1500uF  
x6  
12V  
3.3V  
2
GATE1  
LDOS1  
3
8
3.3V  
3
2
+
1
IRLR024N  
VLIN3  
-
LM358  
+
4
1.5V  
2.5V  
330uF  
IRLR024N  
+
IRLR024N  
330uF  
+
+
330uF  
330uF  
1
www.semtech.com  
Revision: July 28, 2005  
SC1185 & SC1185A  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified  
in the Electrical Characteristics section is not implied. Exposure to Absolute Maximum rated conditions for extended periods of time may affect device  
reliability.  
Parameter  
Symbol  
Maximum  
Units  
VCC to GND  
VIN  
-0.3 to +7  
+1  
V
V
PGND to GND  
BST to GND  
-0.3 to +15  
0 to +70  
0 to +125  
-65 to +150  
300  
V
Operating Temperature Range  
Junction Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering) 10 Sec.  
Thermal Impedance Junction to Ambient  
Thermal Impedance Junction to Case  
TA  
TJ  
°C  
°C  
TSTG  
TL  
°C  
°C  
80  
°C/W  
°C/W  
θJA  
θJC  
25  
Electrical Characteristics  
Unless specified: VCC = 4.75V to 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; LDOV = 11.4V to 12.6V; TA = 0 to 70°C  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Switching Section  
Output Voltage  
IO = 2A in Application Circuit  
VCC  
See Output Voltage Table  
Supply Voltage  
4.5  
7
V
Supply Current  
VCC = 5.0V  
8
1
15  
mA  
%
Load Regulation  
IO = 0.8A to 15A  
Line Regulation  
+0.15  
70  
%
Current Limit Voltage  
Oscillator Frequency  
Oscillator Max Duty Cycle  
Peak DH Sink/Source Current  
60  
125  
90  
85  
mV  
kHz  
%
140  
95  
160  
BSTH - DH = 4.5V, DH - PGNDH = 3.1V  
DH - PGNDH = 1.5v  
1
A
100  
mA  
Peak DL Sink/Source Current  
BSTL - DL = 4.5V, DL - PGNDL = 3.1V  
DL - PGNDL = 1.5V  
1
A
100  
mA  
Gain (AOL)  
VOSENSE to VO  
VIDx < 2.4V  
VIDx < 2.4V  
35  
10  
dB  
µA  
µA  
%
VID Source Current  
VID Leakage  
1
10  
Power good threshold voltage  
Dead time  
88  
40  
100  
100  
112  
ns  
www.semtech.com  
2005 Semtech Corp.  
2
SC1185 & SC1185A  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Unless specified: VCC = 4.75V to 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; LDOV = 11.4V to 12.6V; TA = 0 to 70°C  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Linear Sections  
Quiescent current  
Output Voltage LDO1  
Output Voltage LDO2  
Reference Voltage  
Gain (AOL)  
LDOV = 12V  
Iref < 100µA  
5
mA  
V
2.469  
1.481  
1.246  
2.500  
1.500  
1.265  
90  
2.531  
1.519  
1.284  
V
V
LDOS (1, 2) to GATE (1, 2)  
IO = 0 to 8A  
dB  
%
%
Load Regulation  
0.3  
0.3  
1.5  
750  
Line Regulation  
Output Impedance  
Gate Pulldown Impedance  
VOSENSE Impedance  
NOTE:  
VGATE = 6.5V  
1
GATE (1,2)-AGND; VCC=LDOV=OV  
80  
10  
300  
kΩ  
kΩ  
(1) This device is ESD sensitive. Use of standard ESD handling precautions is required.  
www.semtech.com  
2005 Semtech Corp.  
3
SC1185 & SC1185A  
POWER MANAGEMENT  
Pin Configuration  
Ordering Information  
TOP VIEW  
Part Number  
Package (1)  
Linear  
Temp  
Voltage  
Range (TJ)  
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GATE2  
LDOV  
VID0  
VID1  
VID2  
SC1185CSW.TR  
SC1185CSW.TRT(3)  
SC1185ACSW.TR  
SC1185ACSW.TRT(3)  
SO-24  
SO-24  
1.5V2.5V 0° to 125°C  
1.5V2.5V 0° to 125°C  
REF  
PWRGOOD  
CS-  
VID3  
VID4  
VOSENSE  
EN  
BSTH  
BSTL  
DL  
Notes:  
CS+  
PGNDH  
DH  
9
10  
11  
12  
(1) Only available in tape and reel packaging. A reel contains  
1000 devices.  
PGNDL  
(2) SC1185A provides improved output tolerance. See Output  
Voltage Table.  
(24 Pin SOIC)  
(3). Lead free product. This product is fully WEEE and RoHS  
compliant.  
Pin Descriptions  
Pin #  
Pin Name  
Pin Function  
1
2
3
4
5
AGND  
GATE1  
LDOS1  
LSOS2  
VCC  
Small Signal Analog and Digital Ground  
Gate Drive Output LDO1  
Sense Input for LDO1  
Sense Input for LDO2  
Input Voltage  
6
7
8
9
REF  
Buffered Reference Voltge output  
Open collector logic output, high if VO within 10% of setpoint  
Current Sense Input (negative)  
Current Sense Input (positive)  
Power Ground for High Side Switch  
High Side Driver Output  
PWRGOOD(1)  
CS-  
CS+  
PGNDH  
DH  
PGNDL  
DL  
BSTL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Power Ground for Low Side Swtch  
Low side Driver Output  
Supply for Low Side Driver  
Supply for High Side Driver  
Logic low shuts down the converter. High or open for normal operation.  
Top end of internal feedback chain  
Programming Input (MSB)  
Programming Input  
Programming Input  
Programming Input  
Programming Input (LSB)  
BSTH  
EN (1)  
VOSENSE  
VID4 (1)  
VID3 (1)  
VID2 (1)  
VID1 (1)  
VID0 (1)  
LDOV  
GATE2  
+12V for LDO section  
Gate Drive Output LDO2  
Note:  
(1) All logic level inputs and outputs are open collector TTL compatible.  
www.semtech.com  
2005 Semtech Corp.  
4
SC1185 & SC1185A  
POWER MANAGEMENT  
Block Diagram  
CS- CS+  
VCC  
EN  
CURRENT LIMIT  
BSTH  
REF  
-
70mV  
+
LEVEL SHIFT  
AND HIGH SIDE  
VID4  
VID3  
VID2  
VID1  
VID0  
DH  
MOSFET DRIVE  
D/A  
R
S
Q
OSCILLATOR  
PGNDH  
SHOOT-THRU  
CONTROL  
VOSENSE  
-
OPEN  
+
-
COLLECTORS  
BSTL  
+
+
PWRGOOD  
-
ERROR  
AMP  
SYNCHRONOUS  
MOSFET DRIVE  
DL  
+
-
AGND  
PGNDL  
LDOS1  
2.5V FET  
CONTROLLER  
1.5V FET  
1.265V  
REF  
CONTROLLER  
GATE1  
AGND  
LDOV  
REF  
GATE2 LDOS2 AGND  
www.semtech.com  
2005 Semtech Corp.  
5
SC1185 & SC1185A  
POWER MANAGEMENT  
Output Voltage Table  
Unless specified: 4.75V < VCC < 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; = 0°C < Tj < 85°C  
Parameter  
Standard  
Typ  
"A" Version  
Typ  
Vid  
Min  
Max  
Min  
Max  
Units  
43210  
Output Voltage  
01111  
01110  
01101  
01100  
01011  
01010  
01001  
01000  
00111  
00110  
00101  
00100  
00011  
00010  
00001  
00000  
11111  
11110  
11101  
11100  
11011  
11010  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
1.277  
1.326  
1.375  
1.424  
1.478  
1.527  
1.576  
1.625  
1.675  
1.724  
1.782  
1.832  
1.881  
1.931  
1.980  
2.030  
1.970  
2.069  
2.167  
2.266  
2.364  
2.463  
2.561  
2.660  
2.758  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.000  
2.100  
2.200  
2.300  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.500  
1.323  
1.374  
1.425  
1.476  
1.523  
1.573  
1.624  
1.675  
1.726  
1.818  
1.869  
1.919  
1.970  
2.020  
2.020  
2.071  
2.030  
2.132  
2.233  
2.335  
2.436  
2.538  
2.639  
2.741  
2.842  
58  
1.287  
1.337  
1.386  
1.436  
1.485  
1.535  
1.584  
1.634  
1.683  
1.733  
1.782  
1.832  
1.881  
1.931  
1.980  
2.030  
1.970  
2.069  
2.167  
2.266  
2.364  
2.463  
2.561  
2.660  
2.758  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.000  
2.100  
2.200  
2.300  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.500  
1.313  
1.364  
1.414  
1.465  
1.515  
1.566  
1.616  
1.667  
1.717  
1.768  
1.818  
1.869  
1.919  
1.970  
2.020  
2.071  
2.030  
2.132  
2.233  
2.335  
2.436  
2.538  
2.639  
2.741  
2.842  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
V
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
www.semtech.com  
2005 Semtech Corp.  
6
SC1185 & SC1185A  
POWER MANAGEMENT  
Layout Guidelines  
Careful attention to layout requirements are necessary for transition switching. Connections should be as wide and  
successful implementation of the SC1185 PWM control- as short as possible to minimize loop inductance. Mini-  
ler. High currents switching at 140kHz are present in the mizing this loop area will a) reduce EMI, b) lower ground  
application and their effect on ground plane voltage differ- injection currents, resulting in electrically “cleaner” grounds  
entials must be understood and minimized.  
for the rest of the system and c) minimize source ringing,  
resulting in more reliable gate switching signals.  
1). The high power parts of the circuit should be laid out  
first. A ground plane should be used, the number and 3). The connection between the junction of Q1, Q2 and  
position of ground plane interruptions should be such as the output inductor should be a wide trace or copper re-  
to not unnecessarily compromise ground plane integrity. gion. It should be as short as practical. Since this connec-  
Isolated or semi-isolated areas of the ground plane may tion has fast voltage transitions, keeping this connection  
be deliberately introduced to constrain ground currents to short will minimize EMI. The connection between the out-  
particular areas, for example the input capacitor and bot- put inductor and the sense resistor should be a wide trace  
tom FET ground.  
or copper area, there are no fast voltage or current transi-  
tions in this connection and length is not so important,  
2). The loop formed by the Input Capacitor(s) (Cin), the Top however adding unnecessary impedance will reduce effi-  
FET (Q1) and the Bottom FET (Q2) must be kept as small ciency.  
as possible. This loop contains all the high current, fast  
12V IN  
5V  
10  
1
2
24  
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
GATE2  
LDOV  
VID0  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2.32k  
3
Cin  
+
4
Q1  
Q2  
1.00k  
VID1  
0.1uF  
0.1uF  
5
5mOhm  
VID2  
Vout  
6
REF  
VID3  
L
+
7
PWRGOOD  
CS-  
VID4  
Cout  
8
VOSENSE  
EN  
9
CS+  
10  
11  
12  
PGNDH  
DH  
BSTH  
BSTL  
DL  
PGNDL  
SC1185  
Heavy lines indicate  
high current paths.  
3.3V  
Vo Lin1  
Q3  
+
+
Cout Lin1  
Cin Lin  
Layout Diagram  
SC1185(A)  
Vo Lin2  
Q4  
+
Cout Lin2  
www.semtech.com  
2005 Semtech Corp.  
7
SC1185 & SC1185A  
POWER MANAGEMENT  
Layout Guidelines  
4) The Output Capacitor(s) (Cout) should be located as supply through a 10resistor, the Vcc pin should be  
close to the load as possible, fast transient load cur- decoupled directly to AGND by a 0.1µF ceramic capacitor,  
rents are supplied by Cout only, and connections between trace lengths should be as short as possible.  
Cout and the load must be short, wide copper areas to  
minimize inductance and resistance.  
7) The Current Sense resistor and the divider across it  
should form as small a loop as possible, the traces run-  
5) The SC1185 is best placed over a quiet ground plane ning back to CS+ and CS- on the SC1185 should run  
area, avoid pulse currents in the Cin, Q1, Q2 loop flowing parallel and close to each other. The 0.1µF capacitor should  
in this area. PGNDH and PGNDL should be returned to be mounted as close to the CS+ and CS- pins as possible.  
the ground plane close to the package. The AGND pin  
should be connected to the ground side of (one of) the 8) Ideally, the grounds for the two LDO sections should be  
output capacitor(s). If this is not possible, the AGND pin returned to the ground side of (one of) the output  
may be connected to the ground path between the Output capacitor(s).  
Capacitor(s) and the Cin, Q1, Q2 loop. Under no circum-  
stances should AGND be returned to a ground inside the  
Cin, Q1, Q2 loop.  
6) Vcc for the SC1185 should be supplied from the 5V  
5V  
+
Vout  
+
Currents in various parts of the power section  
www.semtech.com  
2005 Semtech Corp.  
8
SC1185 & SC1185A  
POWER MANAGEMENT  
Layout Guidelines  
COMPONENT SELECTION  
SWITCHING SECTION  
The calculated maximum inductor value assumes 100%  
and 0% duty cycle, so some allowance must be made.  
OUTPUT CAPACITORS - Selection begins with the most Choosing an inductor value of 50 to 75% of the calculated  
critical component. Because of fast transient load current maximum will guarantee that the inductor current will ramp  
requirements in modern microprocessor core supplies, the fast enough to reduce the voltage dropped across the ESR  
output capacitors must supply all transient load current at a faster rate than the capacitor sags, hence ensuring a  
requirements until the current in the output inductor ramps good recovery from transient with no additional excursions.  
up to the new level. Output capacitor ESR is therefore one  
of the most important criteria. The maximum ESR can be We must also be concerned with ripple current in the out-  
simply calculated from:  
put inductor and a general rule of thumb has been to  
allow 10% of maximum output current as ripple current.  
Note that most of the output voltage ripple is produced by  
the inductor ripple current flowing in the output capacitor  
ESR. Ripple current can be calculated from:  
Vt  
It  
RESR  
Where  
Vt = Maximum transient voltage excursion  
It = Transient current step  
V
IN  
IL  
=
RIPPLE  
4 L fOSC  
Ripple current allowance will define the minimum permit-  
ted inductor value.  
For example, to meet a 100mV transient limit with a 10A  
load step, the output capacitor ESR must be less than  
10m. To meet this kind of ESR level, there are three  
available capacitor technologies.  
POWER FETS - The FETs are chosen based on several  
criteria with probably the most important being power dis-  
sipation and power handling capability.  
Each Cap.  
ESR  
Total  
ESR  
Qty.  
Technology  
TOP FET - The power dissipation in the top FET is a combi-  
nation of conduction losses, switching losses and bottom  
FET body diode recovery losses.  
C
C
Rqd.  
(µF) (m)  
(µF) (m)  
Low ESR Tantalum  
OS-CON  
330  
330  
60  
25  
44  
6
3
5
2000  
990  
10  
8.3  
8.3  
a) Conduction losses are simply calculated as:  
PCOND = IO2 RDS(on)  
δ
Low ESR Aluminum  
1500  
7500  
where  
The choice of which to use is simply a cost/performance  
issue, with Low ESR Aluminum being the cheapest, but  
taking up the most space.  
VO  
δ = duty cycle ≈  
V
IN  
b) Switching losses can be estimated by assuming a switch-  
ing time, if we assume 100ns then:  
INDUCTOR - Having decided on a suitable type and value  
of output capacitor, the maximum allowable value of in-  
ductor can be calculated. Too large an inductor will pro-  
duce a slow current ramp rate and will cause the output  
capacitor to supply more of the transient load current for  
longer - leading to an output voltage sag below the ESR  
excursion calculated above.  
2  
PSW = IO  
V
10  
IN  
or more generally,  
IO  
=
V
(tr + tf ) fOSC  
4
IN  
PSW  
c) Body diode recovery losses are more difficult to esti-  
mate, but to a first approximation, it is reasonable to as-  
sume that the stored charge on the bottom FET body di-  
ode will be moved through the top FET as it starts to turn  
on. The resulting power dissipation in the top FET will be:  
The maximum inductor value may be calculated from:  
RESR  
It  
C
L ≤  
VA  
PRR = QRR  
V
fOSC  
IN  
where VA is thelesser of VO or V VO  
( )  
IN  
To a first order approximation, it is convenient to only con-  
www.semtech.com  
2005 Semtech Corp.  
9
SC1185 & SC1185A  
POWER MANAGEMENT  
Layout Guidelines  
sider conduction losses to determine FET suitability. position, power dissipation will be approximately halved  
For a 5V in; 2.8V out at 14.2A requirement, typical FET and temperature rise reduced by a factor of 4.  
losses would be: Using 1.5X Room temp RDS(ON) to allow for  
temperature rise.  
INPUT CAPACITORS - since the RMS ripple current in the  
input capacitors may be as high as 50% of the output  
current, suitable capacitors must be chosen accordingly.  
Also, during fast load transients, there may be restrictions  
on input di/dt. These restrictions require useable energy  
storage within the converter circuitry, either as extra out-  
put capacitance or, more usually, additional input capaci-  
tors. Choosing low ESR input capacitors will help maximize  
ripple rating for a given size.  
FET type  
IRL34025  
IRL2203  
Si4410  
RDS(on) (m)  
PD (W)  
1.69  
Package  
D2Pak  
D2Pak  
S0-8  
15  
10.5  
20  
1.19  
2.26  
BOTTOM FET - Bottom FET losses are almost entirely due  
to conduction. The body diode is forced into conduction at  
the beginning and end of the bottom switch conduction  
period, so when the FET turns on and off, there is very  
little voltage across it, resulting in low switching losses.  
Conduction losses for the FET can be determined by:  
PCOND = IO2 RDS(on) (1− δ)  
For the example above:  
FET type  
IRL34025  
IRL2203  
Si4410  
RDS(on) (m)  
PD (W)  
1.33  
Package  
D2Pak  
D2Pak  
S0-8  
15  
10.5  
20  
0.93  
1.77  
Each of the package types has a characteristic thermal  
impedance, for the TO-220 package, thermal impedance  
is mostly determined by the heatsink used. For the sur-  
face mount packages on double sided FR4, 2 oz printed  
circuit board material, thermal impedances of 40oC/W for  
the D2PAK and 80oC/W for the SO-8 are readily achiev-  
able. The corresponding temperature rise is detailed be-  
low:  
Temperature rise (oC)  
FET type  
IRL34025  
IRL2203  
Si4410  
Top FET  
67.6  
Bottom FET  
53.2  
47.6  
37.2  
180.8  
141.6  
It is apparent that single SO-8 Si4410 are not adequate  
for this application, but by using parallel pairs in each  
www.semtech.com  
2005 Semtech Corp.  
10  
SC1185 & SC1185A  
POWER MANAGEMENT  
Typical Characteristics  
Typical Efficiency at Vo=3.5V  
Typical Efficiency at Vo=2.8V  
95%  
90%  
85%  
80%  
75%  
70%  
95%  
90%  
85%  
80%  
75%  
70%  
3.5V Std  
3.5V Sync  
3.5V Sync Lo Rds  
2.8V Std  
2.8V Sync  
2.8V Sync Lo Rds  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Io (Amps)  
Io (Amps)  
Typical Efficiency at Vo=2.5V  
Typical Efficiency at Vo=2.0V  
95%  
90%  
85%  
80%  
75%  
70%  
95%  
90%  
85%  
80%  
75%  
70%  
2.0V Std  
2.0V Sync  
2.0V Sync Lo Rds  
2.5V Std  
2.5V Sync  
2.5V Sync Lo Rds  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Io (Amps)  
Io (Amps)  
Typical Ripple, Vo=2.8V, Io=10A  
Transient Response Vo=2.8V, Io=300mA to 10A  
www.semtech.com  
2005 Semtech Corp.  
11  
SC1185 & SC1185A  
POWER MANAGEMENT  
Typical Application Circuit  
www.semtech.com  
2005 Semtech Corp.  
12  
SC1185 & SC1185A  
POWER MANAGEMENT  
Materials List  
Item  
1
Qty.  
5
Reference  
Value  
Notes  
C1, C4, C5, C10, C13  
0.1uF Ceramic  
C2, C3, C6, C7, C8, C9, C18, C19, C20,  
C21, C22, C23  
2
12  
1500uF  
Sanyo MV-GX or equiv. Low ESR  
3
4
8
1
C11, C12, C14, C15, C16, C17, C24, C25 330uF  
C26  
L1  
4.7uF  
1.9uH  
6 Turns 16AWG on MICROMETALS  
T50-52D core  
5
1
6
4
3
1
1
1
1
4
1
2
1
1
2
1
1
Q1, Q2, Q3, Q4  
IRLR3103N  
IRLR024N  
10  
7
Q5, Q6, Q7  
8
R1  
9
R3  
EMPTY  
1.00k  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
R4  
R5  
2.32k  
R6, R7, R9, R10  
2R2  
R8  
5mOhm  
See Table  
1k  
IRC OAR-1 Series  
R15, R11  
R12  
R16  
0
R17, R18  
U2  
See Table  
LM358  
SC1185CS  
U3  
SEMTECH  
www.semtech.com  
2005 Semtech Corp.  
13  
SC1185 & SC1185A  
POWER MANAGEMENT  
Outline Drawing - SO - 24  
DIMENSIONS  
A
D
E
INCHES  
MILLIMETERS  
e
DIM  
A
N
MIN NOM MAX MIN NOM MAX  
-
-
-
-
-
-
-
-
-
-
.093  
.104 2.35  
.012 0.10  
.100 2.05  
.020 0.31  
.013 0.20  
2.65  
0.30  
2.55  
0.51  
0.33  
A1 .004  
A2 .081  
2X E/2  
b
.012  
.008  
c
D
.602 .606 .610 15.30 15.40 15.50  
E1 .291 .295 .299 7.40 7.50 7.60  
E1  
E
e
.406 BSC  
10.30 BSC  
1.27 BSC  
R
.050 BSC  
-
-
h
J
.010  
.020  
.016  
.030 0.25  
.030 0.50  
.041 0.40  
0.75  
0.75  
1.04  
-
-
-
-
L
(.041)  
(1.04)  
L1  
N
24  
24  
1
2
3
ccc  
C
-
-
R
.024  
0°  
.035 0.60  
0.90  
8°  
-
-
2X N/2 TIPS  
01  
8°  
0°  
e/2  
aaa  
.004  
.010  
.013  
0.10  
0.25  
0.33  
B
bbb  
ccc  
D
h
aaa  
SEATING  
C
A2  
A
h
H
PLANE  
bxN  
bbb  
A1  
C
C
A-B D  
c
GAGE  
J
PLANE  
0.25  
L
(L1)  
01  
SEE DETAIL A  
DETAIL A  
SIDE VIEW  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-  
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS.  
4. REFERENCE JEDEC STD MS-013, VARIATION AD.  
Land Pattern - SO - 24  
X
DIMENSIONS  
DIM  
INCHES  
MILLIMETERS  
(.362)  
.276  
.050  
.024  
.087  
.449  
(9.20)  
7.00  
C
G
P
X
Y
Z
(C)  
G
Y
Z
1.27  
0.60  
2.20  
11.40  
P
NOTES:  
1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
2. REFERENCE IPC-SM-782A, RLP NO. 307A.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012-8790  
Phone: (805)498-2111 FAX (805)498-3804  
www.semtech.com  
2005 Semtech Corp.  
14  

相关型号:

SC1185CSW

PROGRAMMABLE SYNCHRONOUS DC/DC CONVERTER, DUAL LOW DROPOUT REGULATOR CONTROLLER
SEMTECH

SC1185CSW.TR

Programmable Synchronous DC/DC
SEMTECH

SC1185CSW.TRT

Programmable Synchronous DC/DC
SEMTECH

SC1185CSWT

暂无描述
SEMTECH

SC1185CSWTR

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, BIPolar, PDSO24, MO-013AD, SOIC-24
SEMTECH

SC1185CSWTRT

Switching Controller, Voltage-mode, 160kHz Switching Freq-Max, PDSO24, MO-013AD, SOIC-24
SEMTECH

SC1185_05

Programmable Synchronous DC/DC
SEMTECH

SC1186

PROGRAMMABLE SYNCHRONOUS DC/DC CONVERTER, DUAL LOW DROPOUT REGULATOR CONTROLLER
SEMTECH

SC1186CSW

PROGRAMMABLE SYNCHRONOUS DC/DC CONVERTER, DUAL LOW DROPOUT REGULATOR CONTROLLER
SEMTECH

SC1186CSW.TR

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSW.TRT

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSWT

Switching Controller, Voltage-mode, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24
SEMTECH