SC2443_08 [SEMTECH]

Dual-Phase Single or Two Output Synchronous Step-Down Controller; 双相单或双输出同步降压型控制器
SC2443_08
型号: SC2443_08
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Dual-Phase Single or Two Output Synchronous Step-Down Controller
双相单或双输出同步降压型控制器

控制器
文件: 总22页 (文件大小:1171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC2443  
Dual-Phase Single or Two Output  
Synchronous Step-Down Controller  
POWER MANAGEMENT  
Description  
Features  
The SC2443 is a high-frequency dual synchronous step-down  
switching power supply controller. It provides out-of-phase  
high-current output gate drives to all N-channel MOSFET power  
stages. The SC2443 operates in synchronous continuous-con-  
duction mode. Both phases are capable of maintaining regula-  
tion with sourcing or sinking load currents, making the SC2443  
suitable for generating both VDDQ and the tracking VTT for  
DDR applications.  
u Wide input voltage range: 4.7V to 16V  
u 0.5V feedback voltage for low-voltage outputs  
u Programmable frequency up to 1 MHz per phase  
u 2-Phase synchronous continuous conduction mode for  
high efficiency step-down converters  
u Out-of-phase operation for low input current ripples  
u Output source and sink currents  
u Fixed frequency peak current-mode control  
u 75mV/-110mV maximum current sense voltage  
u Inductor DCR current-sensing for low-cost applications  
u Dual outputs or 2-phase single output operation  
u Excellent current sharing between individual phases  
u Individual soft-start, overload shutdown and enable  
u External reference input for DDR applications  
u External synchronization  
The SC2443 employs fixed frequency peak current-mode con-  
trol for the ease of frequency compensation and fast transient  
response.  
The dual-phase step-down controllers of the SC2443 can be  
used to produce two individually controlled and regulated out-  
puts or a single output with shared current in each phase. The  
Step-down controllers operate from an input of at least 4.7V  
and are capable of regulating outputs as low as 0.5V  
u Industrial temperature range  
u 4mm X 4mm X1mm 24-lead MLPQ package  
Applications  
u Telecommunication power supplies  
u DDR memory power supplies  
u Graphic power supplies  
Individual soft-start and overload shutdown timer is included  
in each step-down controller. The SC2443 implements hiccup  
overload protection. In single output current share configura-  
tion, the master timer controls the soft-start and overload shut-  
down functions of both controllers.  
u Servers and base stations  
Typical Application Circuit  
VIN  
VIN  
VOUT1 VP1  
VIN  
VIN  
VOUT1 VP1  
VP1  
VOUT1  
VP1  
VOUT1  
IN1-  
U1  
IN1-  
U1  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
IN1-  
IN1-  
GDL1  
PVCC  
PGND  
GDL2  
GDH2  
BST2  
IN1-  
IN1-  
GDL1  
PVCC  
PGND  
GDL2  
GDH2  
BST2  
COMP1  
SYNC  
AGND  
REF  
COMP1  
SYNC  
AGND  
REF  
VIN  
VIN  
SC2443  
SC2443  
VOUT2  
IN2-  
REFIN  
REFIN  
VIN  
VIN  
IN2-  
Dual Independent Outputs  
Single Output With Current Sharing  
Aug. 2008  
1
SC2443  
Pin Configuration  
Ordering Information  
Top View  
Device  
Package  
SC2443MLTRT (1,2)  
SC2443EVB  
24-lead 4mm X 4mm X ꢀmm MLPQ  
Evaluation Board  
24  
19  
Notes:  
(ꢀ) Available in tape and reel only. A reel contains 3,000 devices.  
(2) Available in lead-free package only. Device is WEEE and RoHS  
compliant.  
18  
13  
IN1-  
COMP1  
SYNC  
1
GDL1  
PVCC  
PGND  
GDL2  
AGND  
GDH2  
BST2  
REF  
REFIN  
6
7
12  
(24-lead 4mm X 4mm X ꢀmm MLPQ)  
θJA = 29°C/W  
Marking Information  
Marking for the 4 X 4mm MLPQ-24 package:  
2
SC2443  
Absolute Maximum Ratings  
Recommended Operating Conditions  
AVCC, PVCC Voltage …………………………… -0.3 to 20V  
VBST1, VBST2 Voltage ……………………………… -0.3 to 32V  
Input Voltage Range ………………………… 4.75V to 16V  
……………………………… - 0.3 to 40V  
Thermal Information  
Junction to Ambient(1) ……………………………  
29°C/W  
(for <10ns @ freq. < 500kHz)  
Maximum Junction Temperature ……………………… 150°C  
Storage Temperature ………………………… -65 to +150°C  
SS1/EN1, SS2/EN2, SYNC Voltage ………………  
-0.3 to 6V  
IN1-, IN2-, REF Voltage ………………… -0.3 to AVCC+ 0.3V  
REFIN , COMP1, COMP2 Voltage ………… -0.3 to AVCC+ 0.3V  
CS1+, CS1-, CS2+, CS2- Voltage ………… -0.3 to AVCC+ 0.3V  
PGND to AGND ………………………………………  
0.3V  
Peak IR Reflow Temperature …………………………… 260°C  
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters  
specified in the Electrical Characteristics section is not recommended.  
NOTES-  
(1) Calculated from package in still air, mounted to 3x 4.5, 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.  
(2) This device is ESD sensitive. Use of standard ESD handing precautions is required  
Electrical Characteristics  
Unless otherwise specified: AVCC = PVCC = 12V, VBST1 = VBST2 = 12V, SYNC = 0V, -40°C < TA = TJ < 85°C, ROSC =51.1kW.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Undervoltage Lockout  
AVCCTH  
AVCCHYST  
ICC  
AVCC Start Threshold  
AVCC rising  
4.5  
170  
12  
4.7  
16  
V
AVCC Start Hysteresis  
mV  
mA  
mA  
AVCC Operating Current  
AVCC Quiescent Current in UVLO  
Iq  
AVCC = AVCCTH - 0.2V  
1.7  
Channel 1 Error Amplifier  
VIN1+  
VIN1+  
Non-inverting Input Voltage  
Non-inverting Input Voltage  
Non-inverting Input Line Regulation  
Input Offset Voltage  
0.49  
0.5  
0.5  
0.51  
0.5075  
0.02  
V
V
0°C < TA = TJ < 70°C  
0.4925  
AVCCTH < AVCC < 15V  
%/V  
mV  
µA  
µW-1  
dB  
1
-0.1  
260  
65  
5
IIN1-  
GM1  
AOL1  
Inverting Input Bias Current  
Amplifier Transconductance  
Amplifier Open Loop Gain  
-0.25  
Amplifier Unity Gain Bandwidth  
COMP1 Switching Threshold  
Amplifier Output Sink Current  
Amplifier Output Source Current  
MHz  
V
VCS1+=VCS1- = 0, VSS1 Rising  
VIN1- = 1V, VCOMP1 = 2.5V  
VIN1- = 0V, VCOMP1 = 2.5V  
2.2  
16  
12  
µA  
µA  
3
SC2443  
Electrical Characteristics (continued)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Channel 2 Error Amplifier  
Input Common-mode Range(ꢀ)  
Inverting Input Voltage Range(ꢀ)  
Input Offset Voltage  
0
0
3
V
V
AVCC  
ꢀ.5  
mV  
nA  
nA  
IIN2+  
IIN2-  
Non-inverting Input Bias Current  
Inverting Input Bias Current  
-ꢀ50  
-ꢀ00  
-380  
-250  
Inverting Input Voltage for 2 phases  
Single Output Operation  
2.5  
V
GM2  
Amplifier Transconductance  
Amplifier Open Loop Gain  
260  
65  
5
µW-1  
dB  
AOL2  
Amplifier Unity Gain Bandwidth  
COMP2 Switching Threshold  
Amplifier Output Sink Current  
Amplifier Output Source Current  
MHz  
V
VCS2+=VCS2- = 0, VSS2 Rising  
VCOMP2 = 2.5V  
2.2  
ꢀ6  
ꢀ2  
µA  
VCOMP2 = 2.5V  
µA  
Oscillator  
fCHꢀ, fCH2  
Channel Frequency  
450  
2.ꢀfCH  
ꢀ.5  
500  
550  
kHz  
kHz  
V
Synchronizing Frequency(ꢀ)  
SYNC Input High Voltage  
SYNC Input Low Voltage  
Channel Maximum Duty Cycle  
Channel Minimum Duty Cycle  
0.5  
0
V
DMAXꢀ, DMAX2  
DMINꢀ, DMIN2  
88  
%
%
Current Limit Comparator  
Input Common Mode Range  
0
AVCC-ꢀ  
90  
V
VILIMꢀ+ , VILIM2+  
VILIMꢀ- , VILIM2-  
Cycle by cycle Peak Currentr Limit  
VCSꢀ- = VCS2- = 0.5V, Sourcing  
VCSꢀ- = VCS2- = 0.5V, Sinking  
60  
75  
mV  
Valley Current Overload Shutdown  
Threshold  
-85  
-ꢀꢀ0  
-ꢀ30  
-2  
mV  
µA  
Positive Current sense  
Input Bias Current  
VCSꢀ+ = VCSꢀ- = 0  
VCS2+ = VCS2- = 0  
ICSꢀ+ , ICS2+  
-0.7  
-0.7  
Negative Current sense  
Input Bias Current  
VCSꢀ+ = VCSꢀ- = 0  
VCS2+ = VCS2- = 0  
ICSꢀ- , ICS2-  
-2  
µA  
4
SC2443  
Electrical Characteristics (continued)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Gate Drivers  
High side Gate Driver  
Peak Source Current  
VBSTꢀ, VBST2 = ꢀ2V  
VBSTꢀ, VBST2 = ꢀ2V  
ꢀ.5  
A
A
A
A
High side Gate Driver  
Peak Sink Current  
Low side Gate Driver  
Peak Source Current  
AVCC = PVCC = ꢀ2V  
AVCC = PVCC = ꢀ2V  
ꢀ.5  
Low side Gate Driver  
Peak Sink Current  
CL = 2200pF  
CL = 2200pF  
Gate Drive Rise Time  
Gate Drive Fall Time  
20  
20  
ns  
ns  
Low side Gate Driver to High side  
Gate Driver Non-overlapping delay  
CL = 0  
90  
ns  
High side Gate Driver to Low side  
Gate Driver Non-overlapping delay  
CL = 0  
90  
ns  
ns  
TA = 25°C  
Minimum On Time  
ꢀ50  
Soft Start, Overload Latchoff and Enable  
ISSꢀ , ISS2  
VSSꢀ = VSS2 = ꢀ.5V  
VSSꢀ and VSS2 Rising  
VSSꢀ = 3.8V, VINꢀ- falling  
VSS2 = 3.8V, VIN2- falling  
VSSꢀ = VSS2 = 3.8V  
Soft Start Charging Current  
Overload Enabling Soft Start Voltage  
Overload INꢀ- Threshold  
2
3.2  
µA  
V
0.75VREF  
0.72 X  
ꢀ.4  
V
Overload IN2- Threshold  
V
ISSꢀ _DIS , ISS2_DIS  
VSSRCVꢀ  
VSSRCV2  
Soft Start Discharge Current  
µA  
,
Overload Recovery Soft Start Voltage  
VSSꢀ and VSS2 Falling  
0.3  
0.7  
0.5  
0.7  
V
Gate Driver Disable SS/EN Voltage  
Gate Driver Enable SS/EN Voltage  
0.9  
ꢀ.2  
V
V
ꢀ.5  
Internal 0.5V Reference Buffer  
VREF  
Output Voltage  
Load Regulation  
IREF = -ꢀmA  
490  
500  
5ꢀ0  
mV  
0 < IREF <-5mA  
0.05  
%/mA  
Notes:  
(ꢀ) Guaranteed by design.  
5
SC2443  
Typical Characteristics  
AVCC operation current vs.  
Temperature  
AVCC current in UVLO vs.  
UVLO Threshold vs. Temperature  
Temperature  
4.55  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
4.54  
4.53  
4.52  
4.51  
4.50  
4.49  
-40  
25  
85  
-40  
25  
Temperature (OC)  
85  
-40  
25  
Temperature (OC)  
85  
Temperature (OC)  
COMP Sink/Source current vs.  
Temperature  
VREF vs. Temperature  
E/A GM vs. Temperature  
502.0  
501.5  
501.0  
500.5  
500.0  
499.5  
499.0  
20  
15  
10  
5
290  
280  
270  
260  
250  
240  
230  
220  
SINK  
0
-5  
SOURCE  
-10  
-15  
-40  
25  
85  
-40  
25  
85  
-40  
25  
85  
Temperature (OC)  
Temperature (OC)  
Temperature (OC)  
Switching Frequency setting vs.  
Temperature  
COMP switching Threshold vs.  
Temperature  
Cycle by Cycle OCP threshold vs.  
Temperature  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
512  
510  
508  
506  
504  
502  
500  
498  
496  
75.0  
74.5  
74.0  
73.5  
73.0  
72.5  
72.0  
71.5  
71.0  
ROSC = 5ꢀ.ꢀKW  
-40  
25  
85  
-40  
25  
85  
-40  
25  
85  
Temperature (OC)  
Temperature (OC)  
Temperature (OC)  
SS/EN Threshold for Overload Hiccup vs.  
SS/EN Threshold for Gate Driver  
Enable / Disable vs. Temperature  
SS/EN Threshold for Overload  
Hiccup Recovery vs. Temperature  
Temperature  
3.18  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.58  
0.56  
0.54  
0.52  
0.50  
0.48  
0.46  
0.44  
0.42  
3.17  
3.16  
3.15  
3.14  
3.13  
3.12  
3.11  
3.10  
Enable  
Disable  
-40  
25  
85  
-40  
25  
85  
-40  
25  
85  
Temperature (OC)  
Temperature (OC)  
Temperature (OC)  
6
SC2443  
Typical Application Circuit Performance  
Circuit Conditions : Single output current share configuration as shown in page ꢀ5  
Releasing SS/EN pin from GND  
Releasing SS/EN pin from GND  
Soft Start  
VIN  
5V/DIV  
VIN  
5V/DIV  
ENꢀ/SSꢀ  
2V/DIV  
COMPꢀ  
ꢀV/DIV  
COMPꢀ  
ꢀV/DIV  
ENꢀ/SSꢀ  
2V/DIV  
GDLꢀ  
5V/DIV  
ENꢀ/SSꢀ  
2V/DIV  
VIN  
2V/DIV  
VOUT  
ꢀV/DIV  
VOUT  
ꢀV/DIV  
VOUT  
ꢀV/DIV  
ꢀ0ms/DIV  
ꢀ0ms/DIV  
ꢀ0ms/DIV  
Gate Wavefroms  
Pulling SS/EN pin to GND  
Shuting down _ VIN ramp down  
VIN  
2V/DIV  
VIN  
5V/DIV  
GDHꢀ  
GDLꢀ  
ꢀ0V/DIV  
ENꢀ/SSꢀ  
2V/DIV  
ENꢀ/SSꢀ  
2V/DIV  
GDLꢀ  
ꢀ0V/DIV  
GDLꢀ  
ꢀ0V/DIV  
GDH2  
GDL2  
ꢀ0V/DIV  
VOUT  
ꢀV/DIV  
VOUT  
ꢀV/DIV  
ꢀms/DIV  
400us/DIV  
ꢀus/DIV  
Output Ripple _ IOUT = 40A  
Transient Response _ ꢀ0A ~ 30A  
OCP Trip _ IOUT = 56A  
SSꢀ/ENꢀ  
2V/DIV  
GDHꢀ  
GDH2  
ꢀ0V/DIV  
VOUT  
GDHꢀ  
50mV/DIV  
20V/DIV  
GDLꢀ  
ꢀ0V/DIV  
VOUT  
20mV/DIV  
VOUT  
0.5V/DIV  
200us/DIV  
ꢀus/DIV  
400us/DIV  
Efficiency (ꢀ2VIN to ꢀVOUT)  
OCP Recovery to 30A loading  
EFF (%)  
90  
80  
70  
60  
50  
40  
30  
SSꢀ/ENꢀ  
2V/DIV  
GDHꢀ  
20V/DIV  
GDLꢀ  
ꢀ0V/DIV  
VOUT  
0.5V/DIV  
20ms/DIV  
IOUT(A)  
40  
1
5
10  
15  
20  
25  
30  
35  
7
SC2443  
Typical Application Circuit Performance  
Circuit Conditions : Dual independent outputs configuration as shown in page ꢀ7  
Soft Start (VOUT2)  
Soft Start (VOUTꢀ)  
Soft Start (Both outputs)  
SSꢀ/ENꢀ  
2V/DIV  
VOUTꢀ  
0.5V/DIV  
COMP2  
ꢀV/DIV  
COMPꢀ  
ENꢀ/SSꢀ  
2V/DIV  
EN2/SS2  
2V/DIV  
SS2/EN2  
2V/DIV  
VIN  
2V/DIV  
VIN  
2V/DIV  
VOUTꢀ  
ꢀV/DIV  
VOUT2  
2V/DIV  
VOUT2  
2V/DIV  
20ms/DIV  
ꢀ0ms/DIV  
ꢀ0ms/DIV  
Output Ripple (VOUTꢀ_20A)  
Gate waveforms (VOUTꢀ_2 = 20A)  
Output Ripple (VOUT2_20A)  
GDHꢀ  
GDLꢀ  
ꢀ0V/DIV  
GDH2  
GDL2  
ꢀ0V/DIV  
GDHꢀ  
GDLꢀ  
ꢀ0V/DIV  
VOUT2  
50mV/DIV  
GDH2  
GDL2  
ꢀ0V/DIV  
VOUTꢀ  
50mV/DIV  
ꢀus/DIV  
ꢀus/DIV  
ꢀus/DIV  
Transient Response (VOUTꢀ _ 2A ~ ꢀ7A)  
Transient Response (VOUT2 _ 2A ~ ꢀ7A)  
OCP Trip (VOUTꢀ = 30A)  
SSꢀ/ENꢀ  
2V/DIV  
VOUT2  
50mV/DIV  
VOUTꢀ  
50mV/DIV  
GDHꢀ  
GDLꢀ  
20V/DIV  
VOUTꢀ  
0.5V/DIV  
200us/DIV  
200us/DIV  
400us/DIV  
Combined Efficiency (ꢀ2VIN to ꢀVOUT & 2.5VOUT)  
OCP Trip (VOUT2 = 28A)  
EFF (%)  
95  
90  
85  
80  
75  
70  
SS2/EN2  
2V/DIV  
GDH2  
20V/DIV  
GDL2  
ꢀ0V/DIV  
VOUT2  
ꢀV/DIV  
400us/DIV  
IOUT(A)  
1
5
10  
15  
20  
8
SC2443  
Pin Descriptions  
Pin #  
Pin Name  
Pin Function  
2
INꢀ-  
Inverting Input of the Error Amplifier for the Step-down Controller ꢀ.  
The Error Amplifier Output for Step-down Controller ꢀ.  
COMPꢀ  
Edge-triggered Synchronization Input. When not synchronized, tie this pin to a voltage above ꢀ.5V  
or the ground. An external clock (frequency > frequency set with ROSC) at this pin synchronizes the  
controllers.  
3
SYNC  
4
5
AGND  
REF  
Analog Signal Ground  
Buffered Output of the Internal 0.5V Reference. The non-inverting input of the error amplifier for the  
step-down converter ꢀ is internally connected to this pin  
An external Reference voltage is applied to this pin.The non-inverting input of the error amplifier for  
the step-down converter 2 is internally connected to this pin.  
6
7
8
REFIN  
COMP2  
IN2-  
The Error Amplifier Output for Step-down Controller 2.  
Inverting Input of the Error Amplifier for the Step-down Controller 2. Tie to AVCC for two-phase single  
output applications.  
9
CS2-  
The Inverting Input of the Current-sense Amplifier/Comparator for the Controller 2.  
The Non-inverting Input of the Current-sense Amplifier/Comparator for the Controller 2.  
ꢀ0  
CS2+  
An external capacitor tied to this pin sets (i) the soft-start time (ii) output overload latch off time for  
step-down converter 2. Pulling this pin below 0.7V shuts off the gate drivers for the second controller.  
Leave open for two-phase single output applications.  
ꢀꢀ  
SS2/EN2  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀ5  
ꢀ6  
ꢀ7  
ꢀ8  
ꢀ9  
20  
AVCC  
BST2  
Power Supply Voltage for the Analog Portion of the Controllers.  
Bootstrapped Supply for the High-side Gate Drive 2.  
GDH2  
GDL2  
PGND  
PVCC  
GDLꢀ  
GDHꢀ  
BSTꢀ  
Gate Drive Output for the High-side N-channel MOSFET of Output 2.  
Gate Drive Output for the Low-side N-channel MOSFET of Output 2.  
Ground Supply for All the Gate drivers.  
Power Supply Voltage for Low-side MOSFET Drivers.  
Gate Drive Output for the Low-side N-channel MOSFET of Output ꢀ.  
Gate Drive Output for the High-side N-channel MOSFET of Output ꢀ.  
Bootstrapped Supply for the High-side Gate Drive ꢀ.  
An external capacitor tied to this pin sets (i) the soft-start time (ii) output overload latch off time for  
buck converter ꢀ. Pulling this pin below 0.7V shuts off the gate drivers for the first controller.  
2ꢀ  
SSꢀ/ENꢀ  
22  
23  
24  
CSꢀ+  
CSꢀ-  
The Non-inverting Input of the Current-sense Amplifier/Comparator for the Controller ꢀ.  
The Inverting Input of the Current-sense Amplifier/Comparator for the Controller ꢀ  
An external resistor connected from this pin to GND sets the oscillator frequency  
Solder to the Analog ground plane of the PCB.  
ROSC  
THPAD  
9
SC2443  
Block Diagram  
SYNC  
3
AVCC  
12  
CLK2  
CLK1  
REFERENCE  
OSCILLATOR  
ROSC  
24  
COMP1  
2
IN1-  
1
REF/IN1+  
5
UVLO  
4.3/4.5V  
BST1  
20  
GDH1  
19  
-
+
R
S
EA1  
-
+
Q
PWM  
Non-Overlapping  
Conduction  
Control  
PVCC  
17  
GDL1  
18  
0.5V  
+
UVLO  
-
0.75 VREF  
PGND  
16  
SLOPE  
COMP  
CS1+  
22  
OL  
Soft-Start And  
Overload  
Hiccup  
+
+
-
+
DSBL  
CS1-  
23  
ISEN  
6
SS1/EN1  
21  
Control  
+
ILIM+  
-
75mV  
-
+
OCN  
ILIM-  
110mV  
COMP2  
7
IN2-  
8
-
+
REFIN/IN2+  
6
+
-
0.72 VREF  
AGND  
4
OUT  
SC2443 Block Diagram (Channel ꢀ PWM Control Only)  
Figure 1. SC2443 Block Diagram  
ꢀ0  
SC2443  
Applications Information  
Description  
The supply voltages for the high-side gate drivers are  
obtained from two diode-capacitor bootstrap circuits. If  
the bootstrap capacitor is charged from VCC, the high-  
side gate drive voltage swing will be from approximately  
2VCC to the ground. The power dissipated in the high-  
side gate driver is not higher with higher voltage swing  
because the gate-source voltage of the high-side MOSFET  
still swing from zero to VCC. The outputs of the low-side  
gate drivers swing from VCC to ground.  
The SC2443 is a constant frequency 2-phase current-mode  
step-downPWMswitchingcontrollerdrivingallN-channel  
MOSFET. The two channels of the controller operate at  
ꢀ80 degrees out-of-phase from each other. Since input  
currents are interleaved in a two-phase converter, input  
ripple current is lower and smaller input capacitor can  
be used for filtering. Also, with lower inductor current  
and smaller inductor ripple current per phase, overall I2R  
losses are reduced.  
The SC2443 has internal ramp-compensation to prevent  
sub-harmonic oscillation when operating above 50%  
duty cycle. There is enough ramp internally for a sensed  
voltage ripple between ꢀ/4 to ꢀ/3 of the full-scale sensed  
voltage limit of 75mV. The maximum sensed voltage limit  
is unaffected by the compensating ramp.  
The SC2443 operates in synchronous continuous-  
conduction mode. It can be configured either as two  
independent step-down controllers producing two  
separate outputs or as a dual-phase single-output  
controller by tying the IN2- pin to VCC. In single output  
operation, the channel one error amplifier controls both  
channels and the channel two error amplifier is disabled.  
Soft-start and overload hiccup of both channels is  
synchronized to channel one.  
Current-Sensing  
There are two ways to sense the inductor current for  
current-mode control with the SC2443. Since the peak  
inductor current corresponds to 75mV of sensed voltage  
(CS+ - CS-), resistor current sensing can be used at the  
output without resulting in excessive power dissipation.  
Although accurate and far easier to lay out than high-side  
resistor sensing, a pair of precision sense resistors adds  
cost to the converter.  
Frequency Setting and Synchronization  
The internal oscillator of the SC2443 runs at twice the  
phase frequency. The free-running frequency of the  
oscillator can be programmed with an external resistor  
from the ROSC pin to ground. The step-down controllers  
are capable of operating up to ꢀ MHz. It is necessary to  
consider the operating duty-ratio before deciding the  
switchingfrequency. SeeApplicationsInformationsection  
for more details.  
With proper RC filter, Inductor DCR sensing can also be  
used for SC2443 resulting in low cost and without extra  
power dissipation.  
Whensynchronizedexternally,theappliedclockfrequency  
should be twice the desired phase frequency. The  
synchronizing clock frequency should also be between 2  
- 2.6 times the set free-running channel frequency.  
Error Amplifiers  
In closed loop operation, the error amplifier output ranges  
from ꢀ.ꢀV to 3.5V. The upper output operating range  
of either error amplifier is reserved for positive current-  
sense voltage (CS+ - CS-) and corresponds to positive  
(sourcing) output current. If the amplifier swings to its  
lower operating range, the amplifier will still modulate the  
high-side gate drive duty-ratio. However the peak current-  
sense voltage (hence the peak inductor current) will be  
limited to a negative value. The error amplifier output  
is about 2.2V when the peak sense-voltage is zero. The  
built-in offset in the current sense amplifier together with  
synchronous continuous-conduction mode of operation  
allows the SC2443 to regulate the output irrespective of  
the direction of the load current.  
Control Loop  
The SC2443 uses peak current-mode control for fast  
transient response, ease of compensation and current  
sharing in single output operation. The low-side MOSFET  
of each channel is turned off at the falling-edge of the  
phase timing clock. After a brief non-overlapping time  
interval of 90ns, the high-side MOSFET is turned on.  
The phase inductor current ramps up. When the sensed  
inductor current reaches the threshold determined by  
the error amplifier output and compensation ramp, the  
high-side MOSFET is turned off. After a non-overlapping  
conduction time of 90ns, the low-side MOSFET is turned  
on.  
ꢀꢀ  
SC2443  
Applications Information (continued)  
current reaching its current limit and the instant the  
converter shuts down. This is due to cycle skipping(a  
consequence of inductor current sense) reduces the  
actual operating frequency.  
The non-inverting input of the first feedback amplifier is  
tied to the internal 0.5V voltage reference. Both the non-  
inverting and the inverting inputs of the second error  
amplifier are brought out as device pins so that the output  
of the second converter can be made to track the output  
of the first channel. For example in DDR applications,  
Channel ꢀ can be used to generate VDDQ (2.5V) from  
the input (5V or ꢀ2V) and channel 2 is used to produce a  
tracking VTT (ꢀ.25V) with VDDQ being its input.  
The SS/EN pin can also be used as the enable input for that  
channel. Both the high-side and the low-side MOSFETs  
will be turned off if the SS/EN pin is pulled below 0.7V.  
Operating Frequency (fs)  
The switching frequency in the SC2443 is user-  
programmable. The advantages of using constant  
frequency operation are simple passive component  
selection and ease of feedback compensation. Before  
setting the operating frequency, the following trade-offs  
should be considered.  
ꢀ) Passive component size  
2) Circuitry efficiency  
3) EMI condition  
Current-Limit  
The maximum current sense voltage of +75mV is the  
cycle-by-cycle peak current limit when the load is  
drawing current from the converter. There is no cycle-by-  
cycle current limiting when the inductor current flows in  
the negative direction. However once the valley of the  
current sense voltage exceeds -ꢀꢀ0mV, the corresponding  
channel will undergo shutdown and restart (hiccup).  
4) Minimum switch on time and  
5) Maximum duty ratio  
Soft-Start and Overload Protection  
The undervoltage lockout circuit discharges the SS/EN  
capacitors. AfterVCC rises above 4.5V, the SS/EN capacitors  
are slowly charged by internal 2mA current source. With  
internalPNPtransistors,theSS/ENvoltagesclamptheerror  
amplifier outputs. When the error amplifier output rises  
to 2.2V, the high-side MOSFET starts to switch. As the SS/  
EN capacitor continues to be charged, the COMP voltage  
follows. The converter gradually delivers increasing power  
to the output. The inductor current follows the COMP  
voltage envelope until the output goes into regulation.  
The SS/EN clamp on COMP is then released.  
For a given output power, the sizes of the passive  
components are inversely proportional to the switching  
frequency, whereas MOSFET and Diodes switching losses  
are proportional to the operating frequency. Other  
issues such as heat dissipation, packaging and the cost  
issues are also to be considered. The frequency bands  
for signal transmission should be avoided because of EM  
interference.  
Minimum Switch On Time Consideration  
In the SC2443 the falling edge of the clock turns on the  
top MOSFET. The inductor current and the sensed voltage  
ramp up. After the sensed voltage crosses a threshold  
determined by the error amplifier output, the top MOSFET  
is turned off. The propagation delay time from the turn-  
on of the controlling FET to its turn-off is the minimum  
switch on time. The SC2443 has a minimum on time of  
about ꢀ50ns at room temperature. This is the shortest on  
interval of the controlling FET. The controller either does  
not turn on the top MOSFET at all or turns it on for at least  
ꢀ50ns.  
After the SS/EN capacitor is charged above 3.2V (high  
enough for the error amplifier to provide full load current),  
the overload detection circuit is activated. If the output  
voltage falls below 70% of its set value or the valley  
current-sense voltage exceeds -ꢀꢀ0mV, an overload latch  
will be set and both the top and the bottom MOSFETs will  
be turned off. The SS/EN capacitor is slowly discharged  
with an internal ꢀ.4mA current sink. The overload latch  
is reset when the SS/EN capacitor is discharged below  
0.5V. The SS/EN capacitor is then recharged with the 2uA  
current source and the converter undergoes soft-start.  
If overload persists, the SC2443 will undergo repetitive  
shutdown and restart.  
For a synchronous step-down converter, the operating  
duty cycle is  
top MOSFET is  
. So the required on time for the  
VO /VIN  
VO /  
(
VIN × FS  
)
. If the frequency is set  
such that the required pulse width is less than ꢀ50ns,  
then the converter will start skipping cycles. Due to  
minimum on time limitation, simultaneously operating at  
If the output is short-circuited, the inductor current will  
not increase indefinitely between the time the inductor  
ꢀ2  
SC2443  
Applications Information (continued)  
very high switching frequency and very short duty cycle  
is not practical. If the voltage conversion ratio  
VO /VIN  
PC Board Layout Issues  
and hence the required duty cycle is higher, the switching  
frequency can be increased to reduce the sizes of passive  
components.  
There will not be enough modulation headroom if the  
on time is simply made equal to the minimum on time  
of the SC2443. For ease of control, we recommend the  
required pulse width to be at least ꢀ.5 times the minimum  
on time.  
Circuit board layout is very important for the proper  
operation of high frequency switching power converters.  
A power ground plane is required to reduce ground  
bounces. The following are suggested for proper layout:  
Power Stage  
ꢀ) Separate the power ground from the signal ground. In  
the SC2443, the power ground PGND should be tied to  
the source terminal of lower MOSFETs. The signal ground  
AGND should be tied to the negative terminal of the  
output capacitor.  
Setting the Switching Frequency  
The switching frequency is set with an external resistor  
connected from Pin 24 to ground. The set frequency is  
inversely proportional to the resistor value (Figure 2).  
2) Minimize the size of high pulse current loop. Keep the  
top MOSFET, bottom MOSFET and the input capacitors  
within a small area with short and wide traces. In addition  
to the aluminum energy storage capacitors, add multi-  
layer ceramic (MLC) capacitors from the input to the  
power ground to improve high frequency bypass.  
Figure 2. Free running frequency vs. ROSC.  
800  
700  
600  
500  
400  
300  
200  
100  
0
3) Reduce high frequency voltage ringing. Widen and  
shorten the drain and source traces of the MOSFET to  
reduce stray inductances. Add a small RC snubber if  
necessary to reduce the high frequency ringing at the  
phase node. Sometimes slowing down the gate drive  
signal also helps in reducing the high frequency ringing  
at the phase node.  
0
50  
100  
150  
200  
250  
4) Shorten the gate driver path. Integrity of the gate drive  
(voltage level, leading and falling edges) is important for  
circuit operation and efficiency. Short and wide gate drive  
traces reduce trace inductances. Bond wire inductance is  
about 2~3nH. If the length of the PCB trace from the gate  
driver to the MOSFET gate is ꢀ inch, the trace inductance  
will be about 25nH. If the gate drive current is 2A with  
ꢀ0ns rise and falling times, the voltage drops across  
the bond wire and the PCB trace will be 0.6V and 5V  
respectively. This may slow down the switching transient  
of the MOSFET. These inductances may also ring with the  
gate capacitance.  
Rosc (k Ohm)  
Setting the Output Voltage  
The non-inverting input of the channel-one error amplifier  
is internally tied the 0.5V voltage reference output (Pin 5).  
The non-inverting input of the channel-two error amplifier  
is brought out as a device pin (Pin 6) to which the user can  
connect Pin 5 or an external voltage reference. A simple  
voltage divider (Roꢀ at top and Ro2 at bottom) sets the  
converter output voltage. The voltage feedback gain  
h=0.5/Vo is related to the divider resistors value as  
5) Put the decoupling capacitor for the gate drive power  
supplies (BST and PVCC) close to the IC and power  
ground.  
h
Ro2  
=
Ro1.  
1- h  
Control Section  
6) The frequency-setting resistor Rosc should be placed  
close to Pin 3. Trace length from this resistor to the analog  
ꢀ3  
SC2443  
Applications Information (continued)  
ground should be minimized.  
7) Solder the bias decoupling capacitor right across the  
AVCC and analog ground AGND.  
8) Place the inductor DCR sense components away from  
the power circuit and close to the corresponding CS+  
and CS- pins. Use X7R type ceramic capacitor for the DCR  
sense capacitor because of their temperature stability.  
9) Use an isolated local ground plane underneath the  
controller and tie it to the negative side of output capacitor  
bank.  
ꢀ0) Comp pin is sensitive to noise. Place compensation  
network components away from noise signal (i.e. gate  
driver signals, phase node) and close to corresponding  
Comp pin .  
ꢀ4  
SC2443  
Evaluation Application Circuit _ Single Output, Current share configuration  
7
24  
23  
22  
21  
20  
19  
COMP2  
IN2-  
ROSC  
CS1-  
8
9
CS2-  
CS1+  
10  
11  
12  
CS2+  
SS1/EN1  
BST1  
SS2/EN2  
AVCC  
GDH1  
1 0 u F / 1 6 V  
1 0 u F / 1 6 V  
I P D 0 6 N 0 3 L A  
I P D 0 6 N 0 3 L A  
2 7 0 u F / 1 6 V / O S C O N  
2 7 0 u F / 1 6 V / O  
2 7 0 u F / 1 6 V / O  
1 0 u F / 6 . 3 V  
1 5 0 0 u F / 6 . 3 V / F L  
1 5 0 0 u F / 6 . 3 V / F L  
1 5 0 0 u F / 6 . 3 V / F L  
N . P .  
1 0 u F / 6 . 3 V  
ꢀ5  
SC2443  
Evaluation Board Bill of Materials  
Single Output Current Share Configuration  
Item  
Reference  
Quantity  
Description  
Package  
Part  
Vendor  
2
3
Cꢀ,Cꢀ0  
C2,C3,Cꢀꢀ  
2
3
4
ꢀ6V X5R ceramic capacitor  
ꢀ6V Aluminum solid capacitor _SEPC series  
ꢀ6V X5R ceramic capacitor  
ꢀ206  
8 X 9mm  
0603  
ꢀ0uF  
270uF  
ꢀuF  
Murata  
Sanyo  
C4,C9,C20,C25  
Murata  
4
5
C5,C2ꢀ,C23  
C6,C22  
C7  
3
2
2
2
3
2
ꢀ6V X7R ceramic capacitor  
25V X7R ceramic capacitor  
0603  
ꢀ00nF  
22pF  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Murata  
0603  
0603  
16V X7R  
6
ceramic capacitor  
22nF  
7
C8,C24  
Cꢀ2  
25V X7R ceramic capacitor  
25V X7R ceramic capacitor  
6.3V X7R ceramic capacitor  
6.3V Aluminum capacitor _ FL series  
Small signal diode  
0603  
0603  
2.2nF  
8
330pF  
ꢀ0uF  
9
Cꢀ4,Cꢀ9  
Cꢀ5,Cꢀ6,Cꢀ7  
Dꢀ,D2  
ꢀ206  
ꢀ0  
ꢀꢀ  
8 X ꢀꢀ.5mm  
SMD  
ꢀ000uF  
ꢀN4ꢀ48  
Panasonic  
Any  
ꢀ2.5 X ꢀ2.5 X  
ꢀ0mm  
ꢀ2  
Lꢀ,L2  
2
SMD inductor  
ꢀ.5uH/ꢀ.8mR  
TRIO  
ꢀ3  
ꢀ4  
Qꢀ,Q4  
2
4
30V N Channel MOSFET  
30V N Channel MOSFET  
D-pack  
D-pack  
IPD09N03LA  
IPD06N03LA  
Infineon  
Infineon  
Q2,Q3,Q5,Q6  
Rꢀ,R7,Rꢀꢀ,  
Rꢀ7,Rꢀ8  
ꢀ5  
5
5% SMD resistor  
0603  
0R  
Any  
ꢀ6  
ꢀ7  
ꢀ8  
ꢀ9  
20  
2ꢀ  
22  
23  
24  
25  
R2,Rꢀ2  
R3,Rꢀ3  
R5  
2
2
3
2
5% SMD resistor  
5% SMD resistor  
0603  
0603  
ꢀ0K  
ꢀR  
Any  
Any  
ꢀ% SMD resistor  
0603  
ꢀ24K  
ꢀ0R  
Any  
R6,Rꢀ6.R2ꢀ  
R8,Rꢀ9  
R9  
ꢀ% SMD resistor  
0603  
Any  
ꢀ% SMD resistor  
0603  
560R  
47K  
Any  
5% SMD resistor  
0603  
Any  
Rꢀ0  
5% SMD resistor  
0603  
2R2  
Any  
Rꢀ5  
ꢀ% SMD resistor  
0603  
ꢀ.05K  
ꢀK  
Any  
R20  
ꢀ% SMD resistor  
0603  
Any  
Uꢀ  
Dual phase Sync. step down controller  
MLPQ-24  
SC2443  
SEMTECH  
ꢀ6  
SC2443  
Evaluation Application Circuit_ Dual Independant Outputs  
24  
23  
22  
21  
20  
19  
7
ROSC  
CS1-  
COMP2  
IN2-  
N . P .  
8
9
CS1+  
CS2-  
10  
11  
12  
SS1/EN1  
BST1  
CS2+  
2 2 n F  
2 2 n F  
SS2/EN2  
AVCC  
GDH1  
I P D 0 9 N 0 3 L A  
1 0 u F / 1 6 V  
I P D 0 9 N 0 3 L A  
1 0 u F / 1 6 V  
1 5 0 0 u F / 1 6 V  
N . P .  
1 5 0 0 u F / 1 6 V / F L  
1 0 u F / 6 . 3 V  
2 2 u F / 1 0 V / X 7 R  
1 8 0 0 u F / 6 . 3 V / F L  
2 2 0 0 u F / 6 . 3 V / F L  
1 8 0 0 u F / 6 . 3 V / F L  
1 0 u F / 6 . 3 V  
2 2 0 0 u F / 6 . 3 V / F L  
2 2 u F / 1 0 V / X 7 R  
ꢀ7  
SC2443  
Evaluation Board Bill of Materials  
Dual Independent Output Configuration  
Item  
Reference  
Quantity  
Description  
Package  
Part  
Vendor  
2
Cꢀ,C4  
2
2
ꢀ6V X5R ceramic capacitor  
ꢀ206  
ꢀ0uF  
Murata  
C2,Cꢀ5  
ꢀ6V Aluminum capacitor _FL series  
ꢀ0 X 20mm  
ꢀ500uF  
Panasonic  
C4,Cꢀ3,Cꢀ8,  
C30  
3
4
ꢀ6V X5R ceramic capacitor  
0603  
0603  
ꢀuF  
Murata  
4
5
C5,Cꢀ9,C26  
C6  
3
2
2
2
2
2
2
2
2
2
2
2
ꢀ6V X7R ceramic capacitor  
25V X7R ceramic capacitor  
ꢀ00nF  
27pF  
Panasonic  
Panasonic  
Panasonic  
Murata  
0603  
0603  
16V X7R  
6
C7,C29  
C8,Cꢀꢀ  
C9,Cꢀ0  
Cꢀ2,C25  
Cꢀ6,C27  
C2ꢀ,C24  
C22,C23  
Dꢀ,D2  
ceramic capacitor  
22nF  
7
6.3V X7R ceramic capacitor  
6.3V Aluminum capacitor _ FL series  
25V X7R ceramic capacitor  
25V X7R ceramic capacitor  
ꢀ0V X7R ceramic capacitor  
6.3V Aluminum capacitor _ FL series  
Small signal diode  
ꢀ206  
ꢀ0 X ꢀ6mm  
0603  
ꢀ0uF  
8
ꢀ800uF  
2.2nF  
Panasonic  
Panasonic  
Panasonic  
Murata  
9
ꢀ0  
ꢀꢀ  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀ5  
ꢀ6  
0603  
470pF  
ꢀ206  
ꢀ0uF  
ꢀ0 X 20mm  
SMD  
2200uF  
ꢀN4ꢀ48  
2.2uH/2mR  
IPD09N03LA  
IPD06N03LA  
Panasonic  
Any  
Lꢀ,L2  
Through hole inductor  
Any  
Qꢀ,Q4  
30V N Channel MOSFET  
D-pack  
D-pack  
Infineon  
Infineon  
Q2,Q5  
30V N Channel MOSFET  
Rꢀ,R7,Rꢀꢀ,Rꢀ3,  
Rꢀ8,Rꢀ9,R24  
R25  
ꢀ7  
8
5% SMD resistor  
0603  
0R  
Any  
ꢀ8  
ꢀ9  
20  
2ꢀ  
22  
23  
24  
25  
26  
27  
28  
29  
R2  
R3,Rꢀ5  
R5  
2
2
5% SMD resistor  
5% SMD resistor  
0603  
0603  
ꢀ5K  
ꢀR  
Any  
Any  
ꢀ% SMD resistor  
0603  
ꢀ.05K  
ꢀ24K  
ꢀK  
Any  
R6  
ꢀ% SMD resistor  
0603  
Any  
Rꢀ0,R22  
Rꢀꢀ  
ꢀ% SMD resistor  
0603  
Any  
5% SMD resistor  
0603  
47K  
Any  
Rꢀ2  
5% SMD resistor  
0603  
2R2  
Any  
Rꢀ4  
5% SMD resistor  
0603  
20K  
Any  
Rꢀ7  
ꢀ% SMD resistor  
0603  
4.ꢀ2K  
ꢀ00K  
ꢀ0R  
Any  
R20  
5% SMD resistor  
0603  
Any  
R23  
5% SMD resistor  
0603  
Any  
Uꢀ  
Dual phase Sync. step down controller  
MLPQ-24  
SC2443  
SEMTECH  
ꢀ8  
SC2443  
Evaluation Application Circuit_ Dual Independant Outputs (Lower power application)  
7
24  
23  
22  
21  
20  
19  
COMP2  
IN2-  
ROSC  
CS1-  
N . P .  
8
9
CS2-  
CS1+  
10  
11  
12  
CS2+  
SS1/EN1  
BST1  
F n 2 2  
F n 2 2  
SS2/EN2  
AVCC  
GDH1  
V 6 1 / F u 0 1  
V 6 1 / F u 0 1  
L F / V 6 1 / F u 0 8 6  
L F / V 6 1 / F u 0 8 6  
R 7 X / V 3 . 6 / F u 0 1  
L F / V 3 . 6 / F u 0 0 0 1  
V 3 . 6 / F u 0 1  
L F / V 3 . 6 / F u 0 0 0 1  
P .  
P .  
N
N
P .  
P .  
N
N
ꢀ9  
SC2443  
Evaluation Board Bill of Materials  
Dual Independent Output Configuration  
Item  
Reference  
Quantity  
Description  
Package  
Part  
Vendor  
2
Cꢀ,Cꢀ4  
C2,Cꢀ5  
2
2
ꢀ6V X5R ceramic capacitor  
ꢀ206  
ꢀ0uF  
Murata  
ꢀ6V Aluminum capacitor _FL series  
ꢀ0 X ꢀ2.5mm  
680uF  
Panasonic  
C4,Cꢀ3,Cꢀ8,  
C30  
3
4
ꢀ6V X5R ceramic capacitor  
0603  
0603  
ꢀuF  
Murata  
4
5
C5,Cꢀ9,C26  
C6  
3
2
2
2
2
2
2
2
2
ꢀ6V X7R ceramic capacitor  
25V X7R ceramic capacitor  
ꢀ00nF  
27pF  
Panasonic  
Panasonic  
Panasonic  
Murata  
0603  
0603  
16V X7R  
6
C7,C29  
C8,C2ꢀ  
C9,C22  
Cꢀ2,C25  
Cꢀ6,C27  
C20  
ceramic capacitor  
22nF  
7
6.3V X7R ceramic capacitor  
6.3V Aluminum capacitor _ FL series  
25V X7R ceramic capacitor  
25V X7R ceramic capacitor  
25V X7R ceramic capacitor  
Small signal diode  
ꢀ206  
ꢀ0 X ꢀ2.5mm  
0603  
ꢀ0uF  
8
ꢀ000uF  
2.2nF  
Panasonic  
Panasonic  
Panasonic  
Murata  
9
ꢀ0  
ꢀꢀ  
ꢀ2  
ꢀ3  
ꢀ4  
0603  
470pF  
0603  
ꢀ8pF  
Dꢀ,D2  
Lꢀ,L2  
SMD  
ꢀN4ꢀ48  
ꢀ.9uH/3.9mR  
FDS6982  
Any  
Through hole inductor  
Any  
Qꢀ,Q2  
30V N Channel MOSFET  
SO-8  
0603  
Fairchild  
Rꢀ,R8,Rꢀ3,  
Rꢀ9,R24,R25  
ꢀ5  
6
5% SMD resistor  
0R  
Any  
ꢀ6  
ꢀ7  
ꢀ8  
ꢀ9  
20  
2ꢀ  
22  
23  
24  
25  
26  
R2,Rꢀ4  
R3,Rꢀ5  
R5  
2
2
3
2
2
2
5% SMD resistor  
5% SMD resistor  
0603  
0603  
4.87K  
ꢀR  
Any  
Any  
ꢀ% SMD resistor  
0603  
2.05K  
ꢀ02K  
ꢀ0R  
Any  
R6  
ꢀ% SMD resistor  
0603  
Any  
R7,Rꢀ8,R23  
R9,R2ꢀ  
Rꢀ0,R22  
Rꢀꢀ,R20  
Rꢀ2  
5% SMD resistor  
0603  
Any  
5% SMD resistor  
0603  
604R  
ꢀK  
Any  
ꢀ% SMD resistor  
0603  
Any  
5% SMD resistor  
0603  
47K  
Any  
5% SMD resistor  
0603  
2R2  
Any  
Rꢀ7  
ꢀ% SMD resistor  
0603  
2.6ꢀK  
SC2443  
Any  
Uꢀ  
Dual phase Sync. step down controller  
MLPQ-24  
SEMTECH  
20  
SC2443  
Outline Drawing - MLPQ-24  
A
D
B
E
DIMENSIONS  
INCHES MILLIMETERS  
MIN NOM MAX MIN NOM MAX  
DIM  
A
.031  
.039  
0.90 1.00  
.035  
.001  
(.008)  
0.80  
A1 .000  
.002 0.00 0.02 0.05  
-
-
-
-
(0.20)  
0.25 0.30  
A2  
b
D
D1  
E
PIN 1  
INDICATOR  
(LASER MARK)  
.007  
.010 .012 0.18  
.152 .157 .163 3.85 4.00 4.15  
2.70  
.100 .106 .110 2.55  
.152 .157 .163 3.85 4.00 4.15  
2.70 2.80  
2.80  
E1 .100  
.106 .110 2.55  
e
L
N
aaa  
bbb  
.020 BSC  
0.50 BSC  
.012 .016 .020 0.30 0.40 0.50  
24  
24  
.004  
.004  
0.10  
0.10  
A2  
A
SEATING  
PLANE  
aaa C  
A1  
C
D1  
LxN  
E/2  
E1  
2
1
N
bxN  
bbb  
C A B  
e
D/2  
NOTES:  
1.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.  
2.  
© Semtech, Inc. All Rights Reserved. An ISO-registered company. Semtech cannot assume responsibility for use of any circuitry other than  
circuitry entirely embodied in a Semtech product. No circuit patent licenses are implied. Semtech reserves the right to change the circuitry and  
specifications without notice at any time. Trademarks and Copyrights belong to their respective holders.  
© 2007 Semtech Corporation  
2ꢀ  
SC2443  
Land Pattern - MLPQ-24  
K
DIMENSIONS  
INCHES MILLIMETERS  
DIM  
(.156)  
.122  
.106  
.106  
.020  
.010  
.033  
.189  
(3.95)  
3.10  
2.70  
2.70  
0.50  
0.25  
0.85  
4.80  
C
G
H
K
P
X
Y
Z
G
Z
(C)  
H
X
P
NOTES:  
1.  
THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
2.  
THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD  
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.  
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR  
FUNCTIONAL PERFORMANCE OF THE DEVICE.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 930ꢀ2  
Phone: (805) 498-2ꢀꢀꢀ Fax: (805) 498-3804  
www.semtech.com  
22  

相关型号:

SC2446

Dual-Phase Single or Two Output Synchronous Step-Down Controllers
SEMTECH

SC2446A

Dual-Phase, Single or Dual Output Synchronous Step-Down Controller
SEMTECH

SC2446AEVB

Dual-Phase, Single or Dual Output Synchronous Step-Down Controller
SEMTECH

SC2446AITSTRT

Dual-Phase, Single or Dual Output Synchronous Step-Down Controller
SEMTECH

SC2446EVB

Dual-Phase Single or Two Output Synchronous Step-Down Controllers
SEMTECH

SC2446ITETRT

Dual-Phase Single or Two Output Synchronous Step-Down Controllers
SEMTECH

SC2446ITSTR

Dual Switching Controller, Current-mode, 3A, 1000kHz Switching Freq-Max, PDSO28, MO-153-AE, TSSOP-28
SEMTECH

SC2446ITSTRT

Dual Switching Controller, Current-mode, 3A, 1000kHz Switching Freq-Max, PDSO28, LEAD FREE, MO-153-AE, TSSOP-28
SEMTECH

SC2447

Dual-Phase, Single or Dual Output Synchronous Step-Down Controller
SEMTECH

SC2447EVB

Dual-Phase, Single or Dual Output Synchronous Step-Down Controller
SEMTECH

SC2447TSTRT

Dual-Phase, Single or Dual Output Synchronous Step-Down Controller
SEMTECH

SC2449

BI PHASE DUAL CONTROLLER
SEMTECH