SC4612HSTRT [SEMTECH]

40V Synchronous Buck Controller; 40V同步降压控制器
SC4612HSTRT
型号: SC4612HSTRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

40V Synchronous Buck Controller
40V同步降压控制器

控制器
文件: 总21页 (文件大小:532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC4612H  
40V Synchronous Buck Controller  
POWER MANAGEMENT  
Description  
Features  
SC4612H is a high performance synchronous buck  
controller that can be configured for a wide range of  
applications. The SC4612H utilizes synchronous rectified  
buck topology where high efficiency is the primary  
consideration. SC4612H can be used over a wide input  
voltage range with output voltage adjustable within limits  
set by the duty cycle boundaries.  
u Wide input voltage range, 4.75V to 40V  
u Internally regulated DRV  
u 1.7A gate drive capability  
u Low side RDS-ON sensing with hiccup OCP  
u Programmable current limit  
u Programmable frequency up to 1.2 MHz  
u Overtemperature protected  
u Pre-bias startup  
SC4612H comes with a rich set of features such as  
regulated DRV supply, programmable soft-start, high  
current gate drivers, shoot through protection, RDS-ON  
sensing with hiccup over current protection.  
u Reference accuracy ±1%  
u Available in MLPD-12 4 x 3 and SOIC-14 Pb-free  
packages. This product is fully WEEE and RoHS  
compliant  
Applications  
u Distributed power architectures  
u Telecommunication equipment  
u Servers/work stations  
u Mixed signal applications  
u Base station power management  
u Point of use low voltage high current applications  
Typical Application Circuit  
U1  
R1  
adj  
SC4612MLP  
D1  
1
2
3
4
5
6
12  
11  
10  
9
ILIM  
OSC  
SS/EN  
EAO  
FB  
PHASE  
DH  
C1  
C2  
BST  
DRV  
DL  
C3  
R2  
C8  
Q1  
Q2  
L1  
C7  
C4  
+
8
R3  
opt  
C10  
C11  
Vout  
C9  
7
+
VDD  
GND  
C5  
_
Cin  
Vin  
R5  
_
R4  
R6  
C6  
Revision: August 14, 2008  
1
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in  
the Electrical Characteristics section is not implied.  
Parameter  
Symbol  
Maximum  
Units  
Bias Supply Voltage to GND  
VDD  
VIN  
-0.3 to 45  
-2 to +55  
-0.3 to 10  
-0.3 to +5  
100  
V
V
PHASE to GND  
DRV, ILIM, DL to GND, BST, DH to PHASE  
EAO, SS/EN, FB, OSC to GND  
V
V
DRV Source Current (peak)  
mA  
°C/W  
°C/W  
°C/W  
°C/W  
°C  
Thermal Resistance Junction to Ambient (MLPD) (1)  
Thermal Resistance Junction to Case (MLPD)  
45.3  
qJA  
qJC  
11  
(1)  
Thermal Resistance Junction to Ambient (SOIC)  
115  
qJA  
Thermal Resistance Junction to Case (SOIC)  
Storage Temperature Range  
45  
qJC  
TSTG  
-65 to +150  
260  
Peak IR Reflow Temperature (10-40s)  
Lead Temperature (10s), (SOIC-14)  
T
°C  
IR Reflow  
TLEAD  
300  
°C  
All voltages with respect to GND. Positive currents are into, and negative currents are out of the specified terminal. Pulsed  
is defined as a less than 10% duty cycle with a maximum duration of 500ns. Consult Packaging Section of Data sheet for  
thermal limitations and considerations of packages.  
Note:  
(1). ThetaJA is calculated from a package in still air, mounted to a 3” x 4.5”, 4 layer FR4PCB with thermal vias (if applicable)  
per JESD51 standards.  
Recommended Operating Conditions  
Performance is not guaranteed if the conditions below are exceeded.  
Parameter  
Symbol  
VDD  
TA  
Conditions  
Min  
5
Typ  
Max  
40  
Units  
V
Supply Voltage Range  
Ambient Temperature Range  
Junction Temperature Range  
-40  
-40  
105  
125  
oC  
TJ  
oC  
ã 2008 Semtech Corp.  
2
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Electrical Characteristics  
Unless otherwise specified:  
VIN = VDD = 12V, FOSC = 600kHz, TA = TJ = 25°C.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Bias Supply  
Quiescent Current  
VDD Undervoltage Lockout  
Start Threshold  
UVLO Hysteresis  
Drive Regulator  
DRV  
VDD = 40V, No load, SS/EN = 0  
5
7
mA  
4.20  
7.3  
4.50  
400  
4.75  
V
mV  
10V £ VDD £ 40V, IOUT £ 1mA  
1mA £ IOUT £ 70mA  
7.8  
8.3  
V
Load Regulation  
Oscillator  
100  
mV  
Operation Frequency Range  
Initial Accuracy(1)  
100  
540  
1200  
660  
kHz  
kHz  
COSC = 160pF (Ref only)  
600  
Maximum Duty Cycle  
VDD = VDR = 8V; VOUT_NOM = 5V; IOUT = 0A  
VIN adjust down to VOUT = 0.99 · VOUT _NOM  
82  
90  
%
Ramp Peak to Valley (1)  
Oscillator Charge Current  
Current Limit (Low Side Rdson)  
Current Limit Threshold Voltage  
Error Amplifier  
850  
100  
mV  
µA  
VOSC = 1V  
110  
See Pg. 12 & 13 on OCP  
mV  
Feedback Voltage  
TJ = 0 to +70°C  
TJ = -40 to +85°C  
TJ = -40 to +125°C  
FB = 0.5V  
0.495  
0.492  
0.488  
0.500  
0.500  
0.500  
0.505  
0.508  
0.512  
200  
V
V
V
Input Bias Current  
nA  
dB  
MHz  
µA  
µA  
V/µs  
(1)  
Open Loop Gain  
60  
10  
Unity Gain Bandwidth (1)  
Output Sink Current  
Output Source Current  
Slew Rate (1)  
7
Open Loop, FB = 0V  
Open Loop, FB = 0.6V  
900  
1100  
1
ã 2008 Semtech Corp.  
3
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Unless otherwise specified:  
VIN = VDD = 12V, FOSC = 600kHz, TA = TJ = 25°C.  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
SS/EN  
Disable Threshold Voltage  
Soft Start Charge Current  
Soft Start Discharge Current (1)  
Disable Low to Shut Down (1)  
Hiccup  
500  
mV  
µA  
µA  
ns  
25  
1
50  
CSS = 0.1,  
current limit condition  
Hiccup duty cycle  
1
%
Gate Drive  
Gate Drive On-Resistance (H)(2)  
Gate Drive On-Resistance (L)(2)  
DL Source/Sink Peak Current(2)  
DH Source/Sink Peak Current(2)  
Output Rise Time(2)  
ISOURCE = 100mA  
ISINK = 100mA  
3
4
4
W
W
A
3
COUT = 2000pF  
COUT = 2000pF  
COUT = 2000pF  
COUT = 2000pF  
1.4  
1.4  
1.7  
1.7  
20  
20  
30  
A
ns  
ns  
ns  
ns  
Output Fall Time(2)  
Minimum Non-Overlap (1)  
Minimum On Time(2)  
110  
Thermal Shutdown  
Shutdown Temperature (2)  
Thermal Shutdown Hysteresis (2)  
Notes:  
165  
15  
°C  
°C  
(1) Guaranteed by design. Not production tested.  
(2) Guaranteed by characterization.  
(3) This device is ESD sensitive. Use of standard ESD handling precautions is required.  
ã 2008 Semtech Corp.  
4
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Pin Configurations  
Ordering Information  
Part Number(3)  
Package(2)  
Temp. Range (TJ)  
TOP VIEW  
SC4612HMLTRT MLPD-12 4 x 3  
-40°C to +125°C  
1
2
3
4
5
6
ILIM  
OSC  
SS/EN  
EAO  
FB  
12  
11  
10  
9
PHASE  
DH  
SC4612HSTRT  
SC4612HEVB(1)  
SOIC-14  
EVALUATION BOARD  
BST  
DRV  
DL  
Notes:  
(1) When ordering please specify MLPD or SOIC  
package.  
(2) Only available in tape and reel packaging. A reel  
contains 3000 devices for MLPD package and 2500 for  
SOIC package..  
8
VDD  
7
GND  
(12 Pin MLPD)  
TOP VIEW  
(3) Pb-free product. This product is fully WEEE and  
RoHS compliant.  
NC  
ILIM  
OSC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
PHASE  
DH  
BST  
DRV  
DL  
SS/EN  
EAO  
VDD  
NC  
GND  
FB  
8
(14 Pin SOIC)  
Marking Information - MLPD  
Marking Information - SOIC  
Top Mark  
Top Mark  
4612H  
yyww  
xxxxx  
SC4612H  
yyww  
xxxxxxxxx  
nnnn = Part Number (Example: SC4612H)  
yyww =Date Code (Example: 0752)  
nnnn  
= Part Number (Example: 1531)  
yyww = Date Code (Example: 0012)  
xxxxx = Semtech Lot No. (Example:A01E90101)  
xxxxx = Semtech Lot No. (Example:E9010)  
ã 2008 Semtech Corp.  
5
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Pin Descriptions  
Pin #  
Pin#  
Pin Name Pin Function  
MLPD  
SOIC  
1, 7  
2
NC  
No connection.  
1
ILIM  
The current limit programing resistor at this pin in conjunction with an internal current  
source programs the current limit threshold for the low side MOSFET RDS-ON sensing.  
Once the voltage drop across the bottom MOSFET is larger than the programmed value,  
current limit condition occurs, and the hiccup current limit protection is activated.  
2
3
3
4
OSC  
Oscillator Frequency set pin. An external capacitor to GND will program the oscillator  
frequency. See Table 1 "Frequency vs. COSC" to determine oscillator frequency.  
SS/EN  
Soft Start pin. Internal current source connected to a single external capacitor will  
determine the soft-start duration for the output. Inhibits the chip if pulled down.  
CSS X 1.2  
TSS  
»
ISS  
4
5
5
8
EAO  
FB  
Error Amplifier Output. A compensation network is connected from this pin to FB.  
The inverting input of the error amplifier. Feedback pin is used to sense the output  
voltage via a resistive divider.  
6
6
VDD  
Bias supply. Also, VDD pin is internally used to provide the base drive to the internal  
pass transistor regulating the DRV supply.  
7
8
9
9
GND  
DL  
Ground.  
10  
11  
Drive Low. Gate drive for bottom MOSFET.  
DRV  
DRV supplies the external MOSFETs gate drive and the chips internal circuitry. This pin  
should be bypassed with a ceramic capacitor to GND. DRV is internally regulated from  
the external supply connected to VDD. If VDD is below 10V, the supply should be directly  
connected to the DRV pin.  
10  
12  
BST  
BST signal. Supply for high side driver; can be directly connected to an external supply  
or to a bootstrap circuit.  
11  
12  
13  
14  
DH  
Drive High. Gate drive for top MOSFET.  
PHASE  
The return path for the high side gate drive, also used to sense the voltage at the phase  
node for adaptive gate drive protection and the low-side RDS-ON current sensing.  
THERMAL Pad for heatsinking purposes. Connect to ground plane using multiple vias.  
PAD (GND)  
X
N/A  
ã 2008 Semtech Corp.  
6
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Block Diagram  
CO_INT  
S
R
Q
BST  
EN  
S
R
Q
DH  
OTP  
PHASE  
DRV  
S_MOD  
DL  
+
-
S
R
Q
GND  
830mV  
OSC  
SPLSE  
OSC  
OSC  
DRV  
DRV  
VDD  
VREF  
S
R
Q
+
-
V+  
VDD  
DRV  
SS_3  
REG  
OUT  
& BG  
VREF  
VREF  
V-  
EAO  
12k  
0.6V  
VSS  
OVP  
-
FB  
+
OC DETECT  
OC  
ILIM  
SOFTSTART  
S
R
Q
S
R
Q
S
R
Q
S
R
Q
SSDN  
SSLO  
d
d
SSINT  
SS/EN  
SS SSHI  
ã 2008 Semtech Corp.  
7
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Typical Characteristics  
Typical Soft Start Current vs Temperature  
Typical Error Amp Output Current vs Temperature  
1.5  
1.0  
25  
24  
23  
22  
Source; VEAO=0V; VFB=0V  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
Sink; VEAO=1.5V; VFB=0.6V  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (OC)  
Temperature (OC)  
Typical DRV Voltage vs Load Current  
Typical UVLO vs Temperature  
8
4.5  
-40C  
25C  
VDD Rising  
4.4  
4.3  
4.2  
4.1  
4.0  
7
6
5
125C  
VDD Falling  
-50  
0
50  
100  
150  
0
20  
40  
60  
80  
100  
120  
140  
IDRV (mA)  
Temperature (OC)  
Typical VFB vs Temperature  
Typical Oscillator Charge Current vs Temperature  
503  
502  
501  
500  
499  
498  
497  
104  
102  
100  
98  
VDD=42V  
VDD=5V  
96  
94  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (OC)  
Temperature (OC)  
ã 2008 Semtech Corp.  
8
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
Start Up from VOUT = 0V  
Typical VDD Quiescent current vs Temperature  
5
VDD=42V  
4
3
VDD=12V  
2
1
0
-50  
0
50  
100  
150  
Temperature (OC)  
Start Up from VOUT = 2.5V  
First DH/DL Pulses  
Start Up from VOUT = 2.5V  
Short Circuit Applied  
Steady State Waveforms  
ã 2008 Semtech Corp.  
9
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Applications Information  
INTRODUCTION  
startup to discharge it, as a normal synchronous buck  
controller would do. An external capacitor on the SS/EN  
pin is used to set the Soft Start duration.  
The SC4612H is a versatile voltage mode synchronous  
rectified buck PWM convertor, with an input supply (VIN)  
ranging from 4.5V to 40V designed to control and drive  
N-channel MOSFETs.  
0.5 · CSS  
TSS  
»
25 · 10- 6  
Startup is inhibited until VDD input reaches the UVLO  
threshold (typically 4.5V). Once VDD rises above UVLO,  
the external soft start capacitor begins to charge from an  
internal 25uA current source. When the SS/EN pin reaches  
approximately 0.8V, top side switching is enabled.  
However, a top side pulse will not occur until SS/EN has  
charged up to the level appropriate for the existing output  
voltage (a pre bias condition). Once the first top side gate  
pulse actually occurs, the bottom side driver is enabled  
and the remainder of the startup is fully synchronous.  
In the event of an over current during startup, the SC4612H  
behaves in the same manner as an over current in steady  
state (see Over Current Protection).  
The power dissipation is controlled by allowing high speed  
and integration with the high drive currents to ensure low  
MOSFET switching loss. The synchronous buck configu-  
ration also allows converter sinking current from load with-  
out losing output regulation.  
The internal reference is trimmed to 500mV with ± 1%  
accuracy, and the output voltage can be adjusted by an  
external resistor divider.  
A fixed oscillator frequency (up to 1.2MHz) can be  
programmed by an external capacitor for design  
optimization.  
Other features of the SC4612H include:  
Wide input power voltage range (from 4.5V to 40V), low  
output voltages, externally programmable soft-start, hiccup  
over current protection, wide duty cycle range, thermal  
shutdown, and -40 to 125°C junction operating  
temperature range.  
Oscillator Frequency Selection  
The internal oscillator sawtooth signal is generated by  
charging an external capacitor with a current source of  
100µA charge current.  
See Table 1 “Frequency vs. COSC” to determine oscillator  
frequency.  
THEORY OF OPERATION  
SUPPLIES  
Frequency, vs. COSC  
Two pins (VDD and DRV) are used to power up the  
SC4612H. If input supply (Vin) is less than 10V, tie DRV  
and VDD together.  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
This DRV supply should be bypassed with a low ESR 2.2uF  
(or greater) ceramic capacitor directly at the DRV to GND  
pins of the SC4612H.  
The DRV supply also provides the bias for the low and the  
high side MOSFET gate drive.  
The maximum rating for DRV supply is 10V and for  
applications where input supply is below 10V, it should be  
connected directly to VDD.  
The internal pass transistor will regulate the DRV from an  
external supply connected to VDD to produce 7.8V typical  
at the DRV pin.  
0
100 200 300 400 500 600 700 800 900 1000 1100 1200  
Frequency, (kHz)  
Table 1  
Soft Start / Shut down  
The SC4612H performs a “pre-bias” type startup. This  
ensures that a pre-charged output capacitor will not  
cause the SC4612H to turn on the bottom FET during  
ã 2008 Semtech Corp.  
10  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Applications Information (Cont.)  
Under Voltage Lock Out  
to regulate the output voltage. The power stage of the  
synchronous rectified buck converter control-to-output  
transfer function is as shown below.  
Under Voltage Lock Out (UVLO) circuitry senses the VDD  
through a voltage divider. If this signal falls below 4.5V  
(typical) with a 400mV hysteresis (typical), the output driv-  
ers are disabled. During the thermal shutdown, the out-  
put drivers are disabled.  
æ
ç
ö
÷
V
1+ sESR C  
ç
ç
÷
÷
IN  
C
G
(s) =  
´
VD  
L
V
2
ç
ç
è
÷
÷
ø
1+ s  
+ s LC  
S
R
L
OVERCURRENT PROTECTION  
where,  
VIN – Input voltage  
L – Output inductance  
The SC4612H features low side MOSFET RDS(ON) current  
sensing and hiccup mode over current protection. The  
voltage across the bottom FET is sampled approximately  
150ns after it is turned on to prevent false tripping due to  
ringing of the phase node.  
ESRC – Output capacitor ESR  
VS – Peak to peak ramp voltage  
RL – Load resistance  
The internally set over current threshold is 100mV typical.  
This can be adjusted up or down by connecting a resistor  
between ILIM and DRV or GND respectively. When  
programming with an external resistor, threshold set point  
accuracy will be degraded to 30%. The FET RDS(ON) at  
temperature will typically be 150% or more of the room  
temperature value. Allowance should be made for these  
sources of error when programming a threshold value.  
When an over current event occurs, the SC4612H  
immediately disables both gate drives. The SS ramp  
continues to its final value, if not already there. Once at  
final value, the SS capacitor is discharged at approximately  
1uA until SS low value is reached (approx 0.8V). The SS/  
Hiccup cycle will then repeat until the fault condition is  
removed and the SC4612H starts up normally on the next  
SS cycle.  
C – Output capacitance  
The classical Type III compensation network can be built  
around the error amplifier as shown below:  
C3  
C2  
R3  
R2  
C1  
R1  
-
+
Vref  
Gate Drive/Control  
The SC4612H provides integrated high current drivers for  
fast switching of large MOSFETs. The higher gate current  
will reduce switching losses of the larger MOSFETs.  
Figure 1. Voltage mode buck converter compensation  
network. The transfer function of the compensation  
network is as follows:  
The low side gate drive is supplied directly from the DRV.  
The high side gate drive is bootstraped from the DRV pin.  
s
s
wZ2  
s
(1+  
)(1+  
)(1+  
)
)
w
wZ1  
s
I
GCOMP(s) =  
×
(1+  
Cross conduction prevention circuitry ensures a non over-  
lapping (30ns typical) gate drive between the top and bot-  
tom MOSFETs. This prevents shoot through losses which  
provides higher efficiency. Typical total minimum off time  
for the SC4612H is about 30ns.  
s
wP1  
wP2  
where,  
1
1
1
wZ1  
=
, wZ2  
=
, wo =  
R2C1  
(R1 + R3 )C2  
Lout ´ Cout  
ERROR AMPLIFIER DESIGN  
The SC4612H is a voltage mode buck controller that utilizes  
an externally compensated high bandwidth error amplifier  
1
1
1
w =  
,
wP1  
=
,
wP2  
=
I
C1C3  
2 C1 + C3  
R1(C1 + C3 )  
R3C2  
R
ã 2008 Semtech Corp.  
11  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Applications Information (Cont.)  
The design guidelines are as following:  
1. Set the loop gain crossover frequency wC for given  
switching frequency.  
2. Place an integrator at the origin to increase DC and low  
frequency gains.  
3. Select wZ1 and wZ2 such that they are placed near wO to  
dampen peaking; the loop gain should cross 0dB at a rate  
of -20dB/dec.  
4. Cancel wESR with compensation pole wP1 (wP1 = wESR ).  
5. Place a high frequency compensation pole wP2 at half  
the switching frequency to get the maximum attenuation  
of the switching ripple and the high frequency noise with  
adequate phase lag at wC.  
T
wZ1  
Loop gain T(s)  
w o  
wZ2  
Gd  
wc  
0dB  
w p1  
w p2  
w ESR  
Figure 2. Simplified asymptotic diagram of buck power  
stage and its compensated loop gain.  
ã 2008 Semtech Corp.  
12  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Application Information (Cont.)  
COMPONENT SELECTION:  
The maximum inductor value may be calculated from:  
R ESR  
C
SWITCHING SECTION  
L £  
(
VIN - VO  
)
It  
OUTPUT CAPACITORS - Selection begins with the most  
critical component. Because of fast transient load current  
requirements in modern microprocessor core supplies, the  
output capacitors must supply all transient load current  
requirements until the current in the output inductor ramps  
up to the new level. Output capacitor ESR is therefore one  
of the most important criteria. The maximum ESR can be  
simply calculated from:  
The calculated maximum inductor value assumes 100%  
duty cycle, so some allowance must be made. Choosing  
an inductor value of 50 to 75% of the calculated maximum  
will guarantee that the inductor current will ramp fast  
enough to reduce the voltage dropped across the ESR at a  
faster rate than the capacitor sags, hence ensuring a good  
recovery from transient with no additional excursions. We  
must also be concerned with ripple current in the output  
inductor and a general rule of thumb has been to allow  
10% of maximum output current as ripple current. Note  
that most of the output voltage ripple is produced by the  
inductor ripple current flowing in the output capacitor ESR.  
Ripple current can be calculated from:  
Vt  
RESR  
£
It  
Where  
Vt = Maximum transient voltage excursion  
It = Transient current step  
VIN  
IL  
=
RIPPLE  
4×L× fOSC  
Ripple current allowance will define the minimum permitted  
inductor value.  
For example, to meet a 100mV transient limit with a 10A  
load step, the output capacitor ESR must be less than  
10mW. To meet this kind of ESR level, there are three  
available capacitor technologies.  
POWER FETS - The FETs are chosen based on several  
criteria with probably the most important being power  
dissipation and power handling capability.  
Each  
Total  
Capacitor  
Qty  
Rqd.  
TOP FET - The power dissipation in the top FET is a  
combination of conduction losses, switching losses and  
bottom FET body diode recovery losses.  
Technology  
C
ESR  
C
(uF)  
ESR  
(uF) (mW)  
(mW)  
2-10  
7.0  
Ceramic  
22  
2-10  
7
1
1
2
5
22  
a) Conduction losses are simply calculated as:  
SP Cap  
220  
680  
220  
PCOND = I2O ×RDS(on) ×D  
POS-CAP  
18  
44  
1360  
7500  
9.0  
where  
Low ESR Aluminum 1500  
8.8  
VO  
D = duty cycle »  
V
IN  
The choice of which to use is simply a cost/performance  
issue, with low ESR Aluminum being the cheapest, but  
taking up the most space.  
b) Switching losses can be estimated by assuming a  
switching time, If we assume 100ns then:  
100ns  
PSW = IO × V ×  
IN  
INDUCTOR - Having decided on a suitable type and value  
of output capacitor, the maximum allowable value of  
inductor can be calculated. Too large an inductor will  
produce a slow current ramp rate and will cause the output  
capacitor to supply more of the transient load current for  
longer - leading to an output voltage sag below the ESR  
excursion calculated above.  
TSW  
or more generally,  
IO × V ×(tr + tf )× fOSC  
IN  
PSW  
=
2
c) Body diode recovery losses are more difficult to estimate,  
but to a first approximation, it is reasonable to assume  
ã 2008 Semtech Corp.  
13  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Application Information (Cont.)  
Low Side RDS_ON Current Limit  
that the stored charge on the bottom FET body diode will  
be moved through the top FET as it starts to turn on. The  
resulting power dissipation in the top FET will be:  
PRR = QRR × V ×fOSC  
IN  
BOTTOM FET - Bottom FET losses are almost entirely due  
to conduction. The body diode is forced into conduction at  
the beginning and end of the bottom switch conduction  
period, so when the FET turns on and off, there is very little  
voltage across it resulting in very low switching losses.  
Conduction losses for the FET can be determined by:  
PCOND = I2O ×RDS(on) ×(1- D)  
INPUT CAPACITORS - Since the RMS ripple current in the  
input capacitors may be as high as 50% of the output  
current, suitable capacitors must be chosen accordingly.  
Also, during fast load transients, there may be restrictions  
on input di/dt. These restrictions require useable energy  
storage within the converter circuitry, either as extra output  
capacitance or, more usually, additional input capacitors.  
Choosing low ESR input capacitors will help maximize ripple  
rating for a given size.  
1. Programming resistors Ra and Rb - Not installed:  
2.75V - 100mV 100mV - Vphase  
=
R3  
R2  
solving for: VPHASE = -100mV, therefore the circuit will trip @  
RDS_ON x ILOAD = 100mV  
2. To increase trip voltage - install Ra.  
- 772 - 20× VPHASE  
Ra =  
1+10× VPHASE  
solving for double the current limit: VPHASE = -200mV.  
Ra = 768kW.  
3. To decrease trip voltage - install Rb  
8 - 20× VPHASE  
Rb =  
1+10× VPHASE  
solving for half the current limit: VPHASE = -50mV.  
Rb = 18kW.  
NOTE! Allow for tempco and RDS_ON variation of the MOS-  
FET - see “overcurrent protection” information on page 11  
in the datasheet.  
ã 2008 Semtech Corp.  
14  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Application Information (Cont.)  
Application Circuit 1: Vin = 24V; Vout = 3.3V @ 20A, Fsw = 500kHz.  
+
Vin=24V  
C14  
470/ 35 V  
C15  
470/ 35 V  
R1  
adj  
_
U1  
D1  
MBR0530  
SC4612MLP  
1
2
3
4
5
6
12  
11  
10  
9
ILIM  
OSC  
SS/EN  
EAO  
FB  
PHASE  
C1  
200 p  
DH  
BST  
DRV  
DL  
C2  
0.1  
C8  
0.1  
C3  
3.9n  
R2  
10k  
L1  
1.5uH  
Q1  
Q2  
C7  
2.2  
C4  
300 p  
+
8
R3  
Vout=3.3@20A  
1 0  
C9  
7
C10  
C11  
C12  
C13  
VDD  
GND  
180/ 4V 180/ 4V 180/ 4V 10/ 6.3V  
C5  
1
_
R5  
39.2 k  
R4  
6.98 k  
Fsw=500kHz  
C6  
750 p  
R6  
887  
Vin=24V, Vout_nom=3.3V, Fsw=500kHz  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Current, (A)  
ã 2008 Semtech Corp.  
15  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Application Information (Cont.)  
Application Circuit 2: Vin = 12V; Vout = 3.3V @ 10A, Fsw = 1MHz  
+
Vin=12V  
C12  
220/ 16 V  
R1  
adj  
_
U1  
D1  
MBR0520  
SC4612MLP  
1
2
3
4
5
6
12  
11  
10  
9
ILIM  
OSC  
SS/EN  
EAO  
FB  
PHASE  
C1  
82p  
DH  
BST  
DRV  
DL  
C2  
0.1  
C8  
0.1  
C3  
2.7n  
R2  
13.7 k  
L1  
1uH  
Q1  
Q2  
C7  
2.2  
C4  
1 n  
+
8
R3  
1 0  
Vout=3.3@10A  
C9  
7
C10  
680/ 4V  
C11  
1 0  
VDD  
GND  
C5  
1
_
R5  
21.5 k  
R4  
3.83 k  
Fsw=1000kHz  
C6  
1.2n  
R6  
267  
Vin=12V, Vout_nom=3.3V, Fsw=1MHz  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
0
1
2
3
4
5
6
7
8
9
10  
Current, (A)  
ã 2008 Semtech Corp.  
16  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Application Information (Cont.)  
Application Circuit 3: Vin = 5V; Vout = 1.25V @ 12A, Fsw = 1MHz.  
+
C12  
Vin=5V  
100 / 6.3V  
R1  
adj  
_
U1  
D1  
SD107WS  
SC4612MLP  
1
2
3
4
5
6
12  
11  
10  
9
ILIM  
OSC  
SS/EN  
EAO  
FB  
PHASE  
C1  
82p  
DH  
BST  
DRV  
DL  
C2  
0.1  
C8  
0.1  
C3  
1 n  
R2  
10k  
L1  
0.47uH  
Q1  
Q2  
C7  
2.2  
C4  
33p  
+
8
R3  
0
Vout=1.25@12A  
C9  
7
C10  
C11  
1
VDD  
GND  
100/ 4V  
C5  
1
_
R5  
13.3 k  
R4  
8.87 k  
Fsw=1000kHz  
C6  
510 p  
R6  
649  
Vin=5V, Vout_nom=1.25V, Fsw=1MHz  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
Current, (A)  
ã 2008 Semtech Corp.  
17  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Application Information (Cont.)  
Evaluation Board:  
Top layer and components view  
Bottom Layer:  
ã 2008 Semtech Corp.  
18  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
PCB Layout Guidelines  
Careful attention to layout is necessary for successful  
implementation of the SC4612H PWM controller. High  
switching currents are present in the application and their  
effect on ground plane voltage differentials must be  
understood and minimized.  
VIN  
I (Input Capacitor)  
Vout  
Ids (Top Fet)  
I (Inductor)  
Vphase  
1) The high power section of the circuit should be laid out  
first. A ground plane should be used. The number and  
position of ground plane interruptions should not  
unnecessarily compromise ground plane integrity. Isolated  
or semi-isolated areas of the ground plane may be  
deliberately introduced to constrain ground currents to  
particular areas; for example, the input capacitor and  
bottom FET ground.  
+
Vout  
I (Output Capacitor)  
+
2) The loop formed by the Input Capacitor(s) (Cin), the Top  
FET (M1), and the Bottom FET (M2) must be kept as small  
as possible. This loop contains all the high current, fast  
transition switching. Connections should be as wide and  
as short as possible to minimize loop inductance.  
Minimizing this loop area will a) reduce EMI, b) lower ground  
injection currents, resulting in electrically “cleaner” grounds  
for the rest of the system and c) minimize source ringing,  
resulting in more reliable gate switching signals.  
Ids (Bottom Fet)  
Voltage and current waveforms of buck power stage .  
3) The connection between the junction of M1, M2 and  
the output inductor should be a wide trace or copper region.  
It should be as short as practical. Since this connection  
has fast voltage transitions, keeping this connection short  
will minimize EMI. Also keep the Phase connection to the  
IC short. Top FET gate charge currents flow in this trace.  
4) The Output Capacitor(s) (Cout) should be located as  
close to the load as possible. Fast transient load currents  
are supplied by Cout only, and therefore, connections  
between Cout and the load must be short, wide copper  
areas to minimize inductance and resistance.  
5) The SC4612H is best placed over a quiet ground plane  
area. Avoid pulse currents in the Cin, M1, M2 loop flowing  
in this area. GND should be returned to the ground plane  
close to the package and close to the ground side of (one  
of) the output capacitor(s). If this is not possible, the GND  
pin may be connected to the ground path between the  
Output Capacitor(s) and the Cin, M1, M2 loop. Under no  
circumstances should GND be returned to a ground inside  
the Cin, M1, M2 loop.  
6) Allow adequate heat sinking area for the power  
components. If multiple layers will be used, provide  
sufficent vias for heat transfer.  
ã 2008 Semtech Corp.  
19  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Outline Drawing - MLPD - 12  
B
E
D
A
DIMENSIONS  
INCHES MILLIMETERS  
MIN NOM MAX MIN NOM MAX  
DIM  
A
.031  
.040  
0.90 1.00  
0.80  
.035  
.001  
PIN1  
INDICATOR  
(LASER MARK)  
0.02  
0.05  
A1 .000  
.002 0.00  
-
-
-
-
(.008)  
(0.20)  
A2  
b
D
0.25 0.30  
.007  
.010 .012 0.18  
.154 .157 .161 3.90 4.00 4.10  
D1  
E
.124 .130 .134 3.15  
3.40  
3.30  
.114 .118 .122 2.90 3.00 3.10  
1.70  
E1  
.061  
1.80  
.067 .071 1.55  
A2  
C
e
.020 BSC  
0.50 BSC  
L
N
aaa  
0.40  
12  
.012 .016 .020 0.30  
0.50  
12  
.003  
.004  
A
SEATING  
PLANE  
0.08  
0.10  
aaa C  
bbb  
A1  
D1  
D1/2  
1 2  
E1/2  
bxN  
E1  
LxN  
N
bbb  
C A B  
e
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2.  
COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.  
Land Pattern - MLPD - 12  
DIMENSIONS  
DIM  
INCHES  
MILLIMETERS  
(.114)  
.087  
.067  
.138  
.020  
.012  
.028  
.142  
(2.90)  
2.20  
1.70  
3.50  
0.50  
0.30  
0.70  
3.60  
C
G
H
K
P
X
Y
Z
NOTES:  
1.  
THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
ã 2008 Semtech Corp.  
20  
www.semtech.com  
SC4612H  
POWER MANAGEMENT  
Outline Drawing - SOIC - 14  
DIMENSIONS  
INCHES MILLIMETERS  
MIN NOM MAX MIN NOM MAX  
A
DIM  
A
D
E
e
-
-
-
-
-
-
-
-
-
-
.053  
.069 1.35  
.010 0.10  
.065 1.25  
.020 0.31  
.010 0.17  
1.75  
0.25  
1.65  
0.51  
0.25  
N
A1 .004  
A2 .049  
2X  
E/2  
b
c
D
.012  
.007  
.337 .341 .344 8.55 8.65 8.75  
E1 .150 .154 .157 3.80 3.90 4.00  
E1  
E
e
h
L
L1  
N
01  
aaa  
.236 BSC  
6.00 BSC  
1.27 BSC  
.050 BSC  
-
-
.010  
.020 0.25  
0.50  
1
2
3
ccc C  
2X N/2 TIPS  
.016 .028 .041 0.40 0.72 1.04  
B
(.041)  
14  
-
.004  
.010  
.008  
(1.04)  
14  
-
0.10  
0.25  
0.20  
0°  
8°  
0°  
8°  
bbb  
ccc  
D
aaa C  
h
A2 A  
SEATING  
PLANE  
h
C
A1  
A-B D  
H
bxN  
bbb  
C
c
GAGE  
PLANE  
0.25  
L
01  
(L1)  
SEE DETAIL A  
DETAIL A  
SIDE VIEW  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-  
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS.  
4. REFERENCE JEDEC STD MS-012, VARIATION AB.  
Land Pattern - SOIC - 14  
X
DIMENSIONS  
DIM  
INCHES  
(.205)  
.118  
.050  
.024  
MILLIMETERS  
(5.20)  
3.00  
1.27  
0.60  
2.20  
7.40  
C
G
P
X
Y
Z
(C)  
G
Y
Z
.087  
.291  
P
NOTES:  
1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
2. REFERENCE IPC-SM-782A, RLP NO. 302A.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805)498-2111 FAX (805)498-3804  
ã 2008 Semtech Corp.  
21  
www.semtech.com  

相关型号:

SC4612H_09

40V Synchronous Buck Controller
SEMTECH

SC4612MLTRT

Wide Input Range High Performance Synchronous Buck Switching Controller
SEMTECH

SC4612STRT

Wide Input Range High Performance Synchronous Buck Switching Controller
SEMTECH

SC4614

500kHz Voltage Mode PWM Controller
SEMTECH

SC4614EVB

500kHz Voltage Mode PWM Controller
SEMTECH

SC4614MSTRT

500kHz Voltage Mode PWM Controller
SEMTECH

SC46166

300mA ,500KHZ HIGH EFFICIENCY STEP-UP DC/DC CONVERTER
SILAN

SC46166S

300mA ,500KHZ HIGH EFFICIENCY STEP-UP DC/DC CONVERTER
SILAN

SC4620

Low Input Voltage, High Efficiency, 2.5A Integrated FET Synchronous Step down DC/DC Regulator
SEMTECH

SC46208

1.25MHz, 600mA, HIGH EFFICIENCY SYNCHRONOUS STEP-DOWN DC-DC CONVERTER
SILAN

SC4620810

1.25MHz, 600mA, HIGH EFFICIENCY SYNCHRONOUS STEP-DOWN DC-DC CONVERTER
SILAN

SC4620812

1.25MHz, 600mA, HIGH EFFICIENCY SYNCHRONOUS STEP-DOWN DC-DC CONVERTER
SILAN