SGM51652H8 [SGMICRO]

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADC with Bipolar Input Ranges;
SGM51652H8
型号: SGM51652H8
厂家: Shengbang Microelectronics Co, Ltd    Shengbang Microelectronics Co, Ltd
描述:

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADC with Bipolar Input Ranges

文件: 总43页 (文件大小:1449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SGM51652H4/SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel,  
Single Supply, SAR ADCs  
with Bipolar Input Ranges  
GENERAL DESCRIPTION  
FEATURES  
The SGM51652H4 and SGM51652H8 are 4-channel and  
8-channel, 16-bit resolution, high-precision successive  
approximation (SAR) analog-to-digital converters (ADCs).  
Supported Input Ranges:  
Bipolar Single-Ended Ranges: ±10.24V, ±5.12V, and  
±2.56V  
Unipolar Single-Ended Ranges: 0V to 10.24V and  
0V to 5.12V  
These ADCs are powered by a single unipolar 5V, and  
support true bipolar ±10.24V, ±5.12V, and ±2.56V inputs, as  
well as unipolar input ranges of 0V to 10.24V and 0V to 5.12V.  
The input range is configured by software.  
Bipolar Differential Ranges: ±10.24V, ±5.12V, and  
±2.56V  
Supply Voltage Ranges:  
These chips provide over-voltage protection up to ±20V at the  
input.  
Analog Supply: 5V  
I/O Supply: 1.65V to 5V  
On-Chip Reference: 4.096V  
These chips have an on-chip high accuracy and low drift  
10ppm reference.  
Differential Nonlinearity (DNL): -0.6/+0.9LSB (TYP)  
Integral Nonlinearity (INL): ±1.3LSB (TYP)  
Signal-to-Noise Ratio (SNR): 89.5dB (TYP)  
Total Harmonic Distortion (THD): -99dB (TYP)  
Alarm Features  
The input impedance of these chips is ~1MΩ and it is  
independent of input range selection.  
The digital interface is compatible to the traditional SPI  
protocol.  
Daisy-Chain Operation  
-40to +125Operating Temperature Range  
Available in a Green TSSOP-38 Package  
APPLICATIONS  
Power Automation  
Protection Relays  
PLC Analog Input Modules  
Factory Automation  
SG Micro Corp  
DECEMBER 2022REV. A  
www.sg-micro.com  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
ORDERING  
NUMBER  
PACKAGE  
MARKING  
PACKING  
OPTION  
MODEL  
SGM51652H4  
XTS38  
SGM51652H4XTS38G-S/TR  
Tape and Reel, 500  
Tape and Reel, 4000  
Tape and Reel, 500  
Tape and Reel, 4000  
XXXXX  
SGM51652H4  
TSSOP-38  
TSSOP-38  
-40to +125℃  
-40to +125℃  
SGM51652H4  
XTS38  
SGM51652H4XTS38G/TR  
SGM51652H8XTS38G-S/TR  
SGM51652H8XTS38G/TR  
XXXXX  
SGM51652H8  
XTS38  
XXXXX  
SGM51652H8  
SGM51652H8  
XTS38  
XXXXX  
MARKING INFORMATION  
NOTE: XXXXX = Date Code, Trace Code and Vendor Code.  
X X X X X  
Vendor Code  
Trace Code  
Date Code - Year  
Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If  
you have additional comments or questions, please contact your SGMICRO representative directly.  
ABSOLUTE MAXIMUM RATINGS  
RECOMMENDED OPERATING CONDITIONS  
Analog Supply Voltage Range, AVDD  
AIN_nP, AIN_nN to AGND (1).............................. -20V to 20V  
AIN_nP, AIN_nN to AGND (2).............................. -11V to 11V  
AVDD to AGND ................................................... -0.3V to 6V  
AUX_INP to AGND............................. -0.3V to AVDD + 0.3V  
AUX_INN to AGND............................. -0.3V to AVDD + 0.3V  
AGND to DGND............................................. -0.3V to + 0.3V  
REFCAP to REFGND or REFIO to REFGND... -0.3V to 5.7V  
REFGND to AGND ........................................... -0.3V to 0.3V  
DVDD to DGND..............................................-0.3V to AVDD  
Digital Input Pins to DGND ................. -0.3V to DVDD + 0.3V  
Digital Output Pins to DGND............... -0.3V to DVDD + 0.3V  
Junction Temperature.................................................+150℃  
Storage Temperature Range.......................-65to +150℃  
Lead Temperature (Soldering, 10s)............................+260℃  
ESD Susceptibility  
...................................................... 4.75V to 5.25V, 5V (TYP)  
Digital Supply Voltage Range, DVDD  
...................................................1.65V to AVDD, 3.3V (TYP)  
Operating Temperature Range.................... -40to +125℃  
OVERSTRESS CAUTION  
Stresses beyond those listed in Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods  
may affect reliability. Functional operation of the device at any  
conditions beyond those indicated in the Recommended  
Operating Conditions section is not implied.  
ESD SENSITIVITY CAUTION  
HBM (Analog Input Pins: AIN_nP, AIN_nN) ...............±7000V  
HBM (Other Pins) ......................................................±2000V  
CDM ............................................................................±500V  
This integrated circuit can be damaged if ESD protections are  
not considered carefully. SGMICRO recommends that all  
integrated circuits be handled with appropriate precautions.  
Failureto observe proper handlingand installation procedures  
can cause damage. ESD damage can range from subtle  
performance degradation tocomplete device failure. Precision  
integrated circuits may be more susceptible to damage  
because even small parametric changes could cause the  
device not to meet the published specifications.  
NOTES:  
1. AVDD = 5V or offers a low impedance of < 30kΩ.  
2. AVDD = floating with an impedance > 30kΩ.  
DISCLAIMER  
SG Micro Corp reserves the right to make any change in  
circuit design, or specifications without prior notice.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
2
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
PIN CONFIGURATIONS  
SGM51652H4 (TOP VIEW)  
SGM51652H8 (TOP VIEW)  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
1
2
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
SDI  
nCS  
SDI  
nRST/nPD  
DAISY  
nCS  
2
nRST/nPD  
SCLK  
SDO  
SCLK  
3
3
DAISY  
SDO  
4
4
nREFSEL  
DNC  
nREFSEL  
REFIO  
DNC  
5
5
REFIO  
DVDD  
DGND  
AGND  
AGND  
AVDD  
AGND  
AGND  
NC  
DVDD  
DGND  
AGND  
AGND  
AVDD  
AGND  
AGND  
AIN_5P  
AIN_5N  
AIN_4P  
AIN_4N  
AIN_3P  
AIN_3N  
AIN_2P  
AIN_2N  
6
6
REFGND  
REFGND  
REFCAP  
AGND  
7
7
REFCAP  
8
8
AGND  
9
9
AVDD  
AVDD  
10  
AUX_INP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
AUX_INP  
AUX_INN  
AIN_6P  
AIN_6N  
AIN_7P  
AIN_7N  
AIN_0P  
AIN_0N  
AIN_1P  
AIN_1N  
SGM51652H4  
SGM51652H8  
11  
AUX_INN  
12  
NC  
13  
NC  
NC  
14  
NC  
NC  
15  
NC  
NC  
16  
AIN_0P  
AIN_3P  
AIN_3N  
AIN_2P  
AIN_2N  
17  
AIN_0N  
18  
AIN_1P  
19  
AIN_1N  
TSSOP-38  
TSSOP-38  
PIN DESCRIPTION  
NAME  
PIN  
TYPE (1)  
FUNCTION  
SGM51652H4 SGM51652H8  
1
2
SDI  
DI  
DI  
DI  
DI  
AIO  
AI  
Serial Data Input.  
nRST/nPD  
DAISY  
Dual-Function Pin: Reset/Power-Down the Device. Active low.  
Chain the Serial Data Input in Daisy-Chain Mode.  
Active Low. When it is enabled, the internal reference is on.  
Internal Reference Output and External Reference Input Pin.  
Reference Ground Pin.  
3
4
nREFSEL  
REFIO  
5
6
REFGND  
REFCAP  
AGND  
7
AO  
P
ADC Reference Decoupling Capacitor Pin.  
Analog Ground.  
8
9
AVDD  
P
Analog Power Supply.  
10  
11  
AUX_INP  
AUX_INN  
AI  
Positive Auxiliary Input Pin.  
AI  
Negative Auxiliary Input Pin.  
SG Micro Corp  
DECEMBER 2022  
www.sg-micro.com  
3
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
PIN DESCRIPTION (continued)  
NAME  
PIN  
TYPE (1)  
FUNCTION  
Channel 6 Positive Analog Input.  
SGM51652H4 SGM51652H8  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
NC  
NC  
NC  
NC  
AIN_6P  
AIN_6N  
AIN_7P  
AIN_7N  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
Channel 6 Negative Analog Input.  
Channel 7 Positive Analog Input.  
Channel 7 Negative Analog Input.  
Channel 0 Positive Analog Input.  
Channel 0 Negative Analog Input.  
Channel 1 Positive Analog Input.  
Channel 1 Negative Analog Input.  
Channel 2 Negative Analog Input.  
Channel 2 Positive Analog Input.  
Channel 3 Negative Analog Input.  
Channel 3 Positive Analog Input.  
Channel 4 Negative Analog Input.  
Channel 4 Positive Analog Input.  
Channel 5 Negative Analog Input.  
Channel 5 Positive Analog Input.  
AIN_0P  
AIN_0N  
AIN_1P  
AIN_1N  
AIN_2N  
AIN_2P  
AIN_3N  
AIN_3P  
NC  
NC  
NC  
NC  
AIN_4N  
AIN_4P  
AIN_5N  
AIN_5P  
28, 29,  
31, 32  
AGND  
P
Analog Ground.  
30  
33  
34  
35  
36  
37  
38  
AVDD  
DGND  
DVDD  
DNC  
P
P
Analog Power Supply.  
Digital Ground.  
P
Digital Power Supply.  
Do Not Connect This Pin. Keep it floating.  
Serial Data Output.  
SDO  
DO  
DI  
DI  
SCLK  
nCS  
Serial Clock Input.  
Chip-Select Input Pin. Active low.  
NOTE:  
1. AI = Analog Input, AO = Analog Output, AIO = Analog Input and Output, DI = Digital Input, DO = Digital Output, DIO = Digital  
Input and Output, P = Power Supply.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
4
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
ELECTRICAL CHARACTERISTICS  
(AVDD = 5V, DVDD = 3V, VREF = 4.096V (internal), and fSAMPLE = 500kSPS, Full = -40to +125, typical values are at TA =  
+25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Analog Inputs  
Input range = ±2.5 × VREF  
Input range = ±1.25 × VREF  
-10.24  
-5.12  
-2.56  
0
10.24  
5.12  
AIN_nP-AGND Input range = ±0.625 × VREF  
Input range = 0 to 2.5 × VREF  
2.56  
V
(2)  
10.24  
5.12  
(2)  
(2)  
(2)  
Input range = 0 to 1.25 × VREF  
Input range = ±2.5 × VREF  
0
Absolute Input Voltage Range  
-10.24  
-5.12  
-2.56  
10.24  
5.12  
Input range = ±1.25 × VREF  
AIN_nN-AGND Input range = ±0.625 × VREF  
2.56  
V
V
(2)  
Input range = 0 to 2.5 × VREF  
Input range = 0 to 1.25 × VREF  
Input range = ±2.5 × VREF  
Input range = ±1.25 × VREF  
Input range = ±0.625 × VREF  
0
0
-10.24  
-5.12  
-2.56  
0
10.24  
5.12  
2.56  
10.24  
5.12  
10.24  
5.12  
2.56  
7.5  
AIN_nP-AIN_nN  
(AIN_nN = AGND)  
Or  
AIN_nP-AIN_nN  
(AIN_nP = AGND)  
Input Voltage Range (1)  
(Single-Ended Input)  
(2)  
Input range = 0 to 2.5 × VREF  
Input range = 0 to 1.25 × VREF  
Input range = ±2.5 × VREF  
0
-10.24  
-5.12  
-2.56  
-5.0  
AIN_nP-AIN_nN Input range = ±1.25 × VREF  
Input range = ±0.625 × VREF  
V
V
Input Voltage Range (1)  
(Bipolar Differential Input)  
(3)  
Input range = ±2.5 × VREF  
Common Mode  
Input Range  
(3)  
Input range = ±1.25 × VREF  
Input range = ±0.625 × VREF  
TA = +25, all input ranges  
All input ranges  
-2.5  
5.0  
(3)  
-1.2  
2.5  
Input Impedance  
RIN  
1
MΩ  
Input Impedance Drift  
15  
ppm/℃  
V
IN = 10.24V  
7.3  
2.8  
0.9  
With voltage at the  
AIN_nP pin = VIN  
Input Current  
IIN  
VIN = 5.12V  
VIN = 2.56V  
µA  
Input Over-Voltage Protection  
AVDD = 5V or offers low impedance  
< 30kΩ, all input ranges  
-20  
-11  
+20  
+11  
V
V
Over-Voltage Protection  
Voltage  
VOVP  
AVDD = floating with impedance  
> 30kΩ, all input ranges  
NOTES:  
1. Ideal input range. It does not consider gain and offset error.  
2. These two unipolar input ranges are only valid for unipolar single-ended input with AIN_nN = AGND.  
3. These input common mode voltage range is guaranteed by design, and tested by limited samples, and not covered by  
manufacture testing. When the input common mode voltage exceeds ±100mV, the critical DC and AC performance are not  
guaranteed.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
5
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
ELECTRICAL CHARACTERISTICS (continued)  
(AVDD = 5V, DVDD = 3V, VREF = 4.096V (internal), and fSAMPLE = 500kSPS, Full = -40to +125, typical values are at TA =  
+25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
System Performance (If without otherwise noted, the following parameters are tested with single-ended input)  
Resolution  
16  
16  
Bits  
Bits  
LSB (4)  
No Missing Codes  
Differential Nonlinearity  
NMC  
DNL  
-1  
-3  
-0.6/+0.9  
±1.3  
2.1  
3
TA = +25℃  
All bipolar range  
Integral Nonlinearity (5)  
INL  
-5.7  
±1.3  
5.1  
LSB  
TA = -40to +125℃  
All unipolar range  
-3.1/+1.2  
TA = +25,  
±0.07  
±0.07  
±0.2  
±0.14  
±0.34  
±0.68  
±0.16  
±0.45  
±0.15  
±0.15  
±0.3  
input range = ±2.5 × VREF  
TA = +25,  
input range = ±1.25 × VREF  
TA = +25,  
input range = ±0.625 × VREF  
Gain Error  
EG  
%FSR (6)  
TA = +25,  
input range = 0 to 2.5 × VREF  
±0.07  
±0.07  
±0.05  
±0.05  
±0.1  
TA = +25,  
input range = 0 to 1.25 × VREF  
TA = +25,  
input range = ±2.5 × VREF  
TA = +25,  
input range = ±1.25 × VREF  
Gain Error Matching  
(Channel-to-Channel)  
TA = +25,  
input range = ±0.625 × VREF  
%FSR  
TA = +25,  
±0.05  
±0.05  
±0.3  
±0.15  
±0.15  
±2.8  
input range = 0 to 2.5 × VREF  
TA = +25,  
input range = 0 to 1.25 × VREF  
TA = +25,  
input range = ±2.5 × VREF  
TA = +25,  
input range = ±1.25 × VREF  
±0.3  
±2.9  
TA = +25,  
input range = ±0.625 × VREF  
Offset Error  
EO  
±0.3  
±3.1  
mV  
TA = +25,  
input range = 0 to 2.5 × VREF  
±0.3  
±2.9  
TA = +25,  
input range = 0 to 1.25 × VREF  
±0.3  
±2.6  
TA = +25,  
input range = ±2.5 × VREF  
±0.5  
±2.5  
TA = +25,  
input range = ±1.25 × VREF  
±0.5  
±2.5  
Offset Error Matching  
(Channel-to-Channel)  
TA = +25,  
input range = ±0.625 × VREF  
±0.5  
±2.5  
mV  
TA = +25,  
input range = 0 to 2.5 × VREF  
±0.5  
±2.5  
TA = +25,  
input range = 0 to 1.25 × VREF  
±0.5  
±2.5  
NOTES:  
4. LSB = Least significant bit.  
5. This is best-fit INL.  
6. FSR = Full-scale range.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
6
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
ELECTRICAL CHARACTERISTICS (continued)  
(AVDD = 5V, DVDD = 3V, VREF = 4.096V (internal), and fSAMPLE = 500kSPS, Full = -40to +125, typical values are at TA =  
+25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Sampling Dynamics (If without otherwise noted, the following parameters are tested with single-ended input.)  
Conversion Time  
Acquisition Time  
tCONV  
tACQ  
1000  
ns  
ns  
1000  
Maximum Throughput Rate without  
Latency  
fS  
500  
kSPS  
Dynamic Characteristics (If without otherwise noted, the following parameters are tested with single-ended input.)  
Input range = ±2.5 × VREF  
Input range = ±1.25 × VREF  
Input range = ±0.625 × VREF  
Input range = 0 to 2.5 × VREF  
Input range = 0 to 1.25 × VREF  
84.6  
84.4  
83.7  
80.2  
79.7  
89.5  
89.3  
88.4  
84.4  
84.1  
Signal-to-Noise Ratio  
(VIN - 0.5dBFS at 1kHz)  
SNR  
THD  
dB  
dB  
dB  
Total Harmonic Distortion (7)  
(VIN - 0.5dBFS at 1kHz)  
All input ranges  
-99  
Input range = ±2.5 × VREF  
Input range = ±1.25 × VREF  
Input range = ±0.625 × VREF  
Input range = 0 to 2.5 × VREF  
Input range = 0 to 1.25 × VREF  
84.0  
83.6  
83.2  
79.4  
79.1  
89.1  
88.9  
88  
Signal-to-Noise Ratio  
(VIN - 0.5dBFS at 1kHz)  
SINAD  
SFDR  
84.2  
83.9  
Spurious-Free Dynamic Range  
(VIN - 0.5dBFS at 1kHz)  
All input ranges  
101  
120  
dB  
dB  
Aggressor channel input is overdriven to  
2 × maximum input voltage  
Crosstalk Isolation (8)  
Aggressor channel input is overdriven to  
2 × maximum input voltage  
Crosstalk Memory (9)  
94  
dB  
-3dB  
-0.1dB  
BW-3dB  
13  
TA = +25, all input ranges  
TA = +25, all input ranges  
Small-Signal Bandwidth  
kHz  
BW-0.1dB  
2.1  
Auxiliary Channel  
Resolution  
16  
Bits  
V
VAUX_INP  
VAUX_INN  
-
Input Voltage Range  
AUX_INP - AUX_INN  
AUX_INP  
-VREF  
+VREF  
2.5 -  
0.5 × VREF  
2.5 -  
2.5 +  
0.5 × VREF  
2.5 +  
Operating Input Range  
V
AUX_INN  
0.5 × VREF  
0.5 × VREF  
During sampling  
75  
5
Input Capacitance  
CI  
pF  
During conversion  
Input Leakage Current  
Differential Nonlinearity  
Integral Nonlinearity  
Gain Error  
IIKG(IN)  
DNL  
100  
nA  
LSB  
LSB  
% FSR  
mV  
-0.6/+0.9  
±1.3  
INL  
EG(AUX)  
EO(AUX)  
SNR  
±0.08  
±0.3  
±0.2  
±2  
TA = +25℃  
Offset Error  
TA = +25℃  
Signal-to-Noise Ratio  
Total Harmonic Distortion (7)  
Signal-to-Noise + Distortion  
VAUX_INP - VAUX_INN = -0.5dBFS at 1kHz  
VAUX_INP - VAUX_INN = -0.5dBFS at 1kHz  
VAUX_INP - VAUX_INN = -0.5dBFS at 1kHz  
VAUX_INP - VAUX_INN = -0.5dBFS at 1kHz  
83.2  
83.0  
88.1  
dB  
THD  
-99.1  
87.8  
dB  
SINAD  
SFDR  
dB  
Spurious-Free Dynamic Range  
100.7  
dB  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
7
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
ELECTRICAL CHARACTERISTICS (continued)  
(AVDD = 5V, DVDD = 3V, VREF = 4.096V (internal), and fSAMPLE = 500kSPS, Full = -40to +125, typical values are at TA =  
+25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Internal Reference Output  
Decoupling Capacitor on REFIO  
Initial Reference Voltage  
COUT_REFIO  
VREFCAP  
100  
nF  
V
4.093  
4.096  
4.099  
TA = +25℃  
Reference Buffer Output  
Impedance  
Reference Buffer Temperature  
Drift  
0.5  
9
Ω
ppm/℃  
Decoupling Capacitor on REFCAP COUT_REFCAP  
Turn-On Time  
22  
25  
μF  
COUT_REFCAP = 22µF, COUT_REFIO = 100nF  
REFIO pin configured as an input  
ms  
External Reference Input  
External Reference Voltage on  
VREFIO_EXT  
4.046  
4.096  
4.146  
V
REFIO (10)  
Power-Supply Requirements  
Analog Power-Supply Voltage  
AVDD  
DVDD  
Analog supply  
4.75  
1.65  
2.7  
5
3.3  
3.3  
14.5  
11  
5.25  
AVDD  
AVDD  
19.5  
15.5  
15  
V
V
Digital supply range  
Digital Power-Supply Voltage  
Digital supply range for specified performance  
SGM51652H8  
AVDD = 5V, fS = maximum  
and internal reference  
Dynamic, AVDD  
IAVDD_DYN  
IAVDD_STC  
ISTDBY  
mA  
mA  
mA  
SGM51652H4  
AVDD = 5V, device not  
converting and internal  
reference  
AVDD = 5V, device in  
STDBY mode and internal  
reference  
SGM51652H8  
SGM51652H4  
SGM51652H8  
SGM51652H4  
10  
Static  
Analog Supply  
Current  
5
10.5  
12.5  
8.5  
8.5  
4.5  
4
Standby  
Power-Down  
IPWR_DOWN  
IDVDD_DYN  
AVDD = 5V, device in PWR_DOWN mode  
DVDD = 3.3V, output = 0000h  
20  
μA  
Digital Supply Current  
0.5  
mA  
Digital Inputs  
0.7 ×  
DVDD  
DVDD  
VIH  
VIL  
VIH  
VIL  
Digital Input Logic Levels  
Digital Input Logic Levels  
DVDD > 2.1V  
V
V
0.3 ×  
DVDD  
0
0.8 ×  
DVDD  
DVDD  
DVDD ≤ 2.1V  
0.15 ×  
DVDD  
0
Input Leakage Current  
Input Pin Capacitance  
Digital Outputs  
100  
5
nA  
pF  
0.8 ×  
DVDD  
DVDD  
VOH  
VOL  
IO = 100μA source  
Digital Output Logic Levels  
V
0.2 ×  
DVDD  
IO = 100μA sink  
0
Floating State Leakage Current  
Internal Pin Capacitance  
Only for SDO  
1
5
µA  
pF  
NOTES:  
7. Accumulated the first nine harmonics.  
8. A full-scale sinusoidal 10kHz signal is applied to a channel which is not selected in conversion sequence, and measures its  
effect on any selected channel.  
9. A full-scale sinusoidal 10kHz signal is applied to a channel which is selected in conversion sequence, and measures its effect  
on the next selected conversion channel.  
10. Limits set by characterization at room temperature only.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
8
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TIMING REQUIREMENTS: SERIAL INTERFACE  
(AVDD = 5V, DVDD = 3V, VREF = 4.096V (internal), SDO Load = 20pF, and fSAMPLE = 500kSPS, Full = -40to +125, typical  
values are at TA = +25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
500  
17  
UNITS  
Timing Specifications  
Sampling Frequency (fCLK = max)  
ADC Cycle Time Period (fCLK = max)  
Serial Clock Frequency (fS = max)  
Serial Clock Time Period (fS = max)  
Conversion Time  
fS  
tS  
kSPS  
µs  
2
fSCLK  
tSCLK  
t1  
MHz  
ns  
1/fSCLK  
1000  
13  
ns  
Delay Time: nCS Falling to Data Enable  
Delay Time: Last SCLK Falling to nCS Rising  
Delay Time: nCS Rising to SDO Going to 3-State  
Timing Requirements  
t9  
ns  
t8  
10  
15  
ns  
t12  
ns  
Acquisition Time  
t2  
t4  
t5  
t7  
t3  
1000  
0.4  
0.4  
30  
ns  
tSCLK  
tSCLK  
ns  
Clock High Time  
0.6  
0.6  
Clock Low Time  
nCS High Time  
Setup Time: nCS Falling to SCLK Falling  
30  
ns  
Hold Time: SCLK Falling to (Previous) Data Valid on  
SDO  
t10  
5
ns  
Setup Time: SDO Data Valid to SCLK Falling  
Setup Time: SDI Data Valid to SCLK Falling  
t11  
t13  
5
5
ns  
ns  
Hold Time: SCLK Falling to (Previous) Data Valid on  
SDI  
t14  
5
ns  
Sample  
N+1  
Sample N  
ts  
t2  
t1  
nCS  
t7  
t3  
1
t4  
t6  
t8  
SCLK  
SDO  
2
15  
16  
17  
18  
31  
32  
t5  
t12  
t11  
t10  
t9  
DO15  
XX  
DO14  
XX  
DO12  
DO1  
DO0  
t14  
t13  
DI14  
DI1  
DI0  
XX  
DI15  
XX  
SDI  
Figure 1. Serial Interface Timing Diagram  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
9
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input I-V Characteristic  
I-V Curve for an Input OVP Circuit (AVDD = 5V)  
10  
8
20  
15  
10  
5
6
4
2
0
0
-2  
-4  
-6  
-8  
-10  
-12  
-5  
Range = ±2.5 × VREF  
Range = ±2.5 × VREF  
-10  
-15  
-20  
-25  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
-20 -15 -10  
-5  
0
5
10  
15  
20  
Input Voltage (V)  
Input Voltage (V)  
Input Current vs. Temperature  
Offset Error vs. Temperature across Input Ranges  
10  
8
0.8  
0.6  
0.4  
0.2  
0
Range = ±2.5 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
-12  
-0.2  
-0.4  
-0.6  
T = -40℃  
T = +25℃  
T = +125℃  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
Input Voltage (V)  
Temperature ()  
Typical Histogram for Offset Error Drift  
Offset Error vs. Temperature across Channels  
12  
10  
8
0.2  
0.1  
Range = ±2.5 × VREF  
Range = ±2.5 × VREF  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
6
4
CH0, CH1, CH2,  
CH3, CH4, CH5,  
CH6, CH7  
2
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
Offset Drift (ppm/)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
10  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Gain Error vs. Temperature across Input Ranges  
Gain Error vs. Temperature across Channels  
0.04  
0.03  
0.02  
0.01  
0
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
Range = ±2.5 × VREF  
Range = 0 to 2.5 × VREF  
Range = ±2.5 × VREF  
Range = to 1.25 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
CH0, CH1, CH2,  
CH3, CH4, CH5,  
CH6, CH7  
-0.01  
-0.02  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
Temperature ()  
Typical Histogram for Gain Error Drift  
Gain Error vs. External Resistance (REXT)  
24  
20  
16  
12  
8
0.5  
0.0  
Range = ±2.5 × VREF  
-0.5  
-1.0  
-1.5  
-2.0  
Range = ±2.5 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
4
0
0
4
8
12  
External Resistance (kΩ)  
SNR, SINAD, SFDR and THD vs. Temperature (AUX Channel)  
16  
20  
Gain Drift (ppm/)  
Offset and Gain vs. Temperature (AUX Channel)  
108  
104  
100  
96  
-94  
-0.055  
-0.060  
-0.065  
-0.070  
-0.075  
-0.080  
0.05  
fIN = 1kHz  
SFDR  
-96  
0.00  
Gain Error  
-98  
-0.05  
-0.10  
-0.15  
-0.20  
-100  
-102  
-104  
-106  
THD  
92  
Offset Error  
SNR  
88  
SINAD  
84  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
Temperature ()  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
11  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
SNR vs. Input Frequency  
SNR vs. Temperature  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
90  
89  
88  
87  
86  
85  
84  
83  
82  
fIN = 1kHz  
Range = ±2.5 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = ±2.5 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
Range = 0 to 1.25 × VREF  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
0
0
0
2000  
4000  
6000  
8000  
10000  
Input Frequency (Hz)  
SINAD vs. Input Frequency  
Range = ±2.5 × VREF  
SINAD vs. Temperature  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
89  
88  
87  
86  
85  
84  
83  
82  
81  
fIN = 1kHz  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = ±2.5 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2000  
4000  
6000  
8000  
10000  
Input Frequency (Hz)  
Temperature ()  
SFDR vs. Input Frequency  
SFDR vs. Temperature  
120  
100  
80  
60  
40  
20  
0
104  
102  
100  
98  
fIN = 1kHz  
Range = ±2.5 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
96  
Range = ±2.5 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
94  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
92  
90  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2000  
4000  
6000  
8000  
10000  
Input Frequency (Hz)  
Temperature ()  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
12  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD vs. Input Frequency  
THD vs. Temperature  
-88  
-90  
-86  
-88  
fIN = 1kHz  
-92  
-90  
-94  
Range = ±2.5 × VREF  
-92  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
-96  
-98  
-94  
Range = ±2.5 × VREF  
-100  
-102  
-104  
-106  
-108  
-96  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
-98  
-100  
-102  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
2000  
4000  
6000  
8000  
10000  
5000  
5000  
Input Frequency (Hz)  
Temperature ()  
Memory Crosstalk vs. Input Frequency  
Memory Crosstalk vs. Input Frequency for Overrange Inputs  
-80  
-90  
-80  
Input = 2 × maximum  
input voltage  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
Range = ±2.5 × VREF  
Range = ±2.5 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
0.05  
0.5  
5
50  
500  
0.05  
0.5  
5
50  
500  
5000  
Input Frequency (kHz)  
Input Frequency (kHz)  
Isolation Crosstalk vs. Input Frequency  
Isolation Crosstalk vs. Input Frequency for Overrange Inputs  
-80  
-90  
-80  
Range = ±2.5 × VREF  
Input = 2 × maximum  
input voltage  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
Range = ±2.5 × VREF  
Range = ±1.25 × VREF  
Range = ±0.625 × VREF  
Range = 0 to 2.5 × VREF  
Range = 0 to 1.25 × VREF  
0.05  
0.5  
5
50  
500  
0.05  
0.5  
5
50  
500  
5000  
Input Frequency (kHz)  
Input Frequency (kHz)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
13  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
AVDD Current vs. Temperature (fS = 500kSPS)  
SGM51652H8  
AVDD Current vs. Temperature (fS = 500kSPS)  
SGM51652H4  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
Temperature ()  
AVDD Current vs. Temperature (During Sampling)  
SGM51652H8  
AVDD Current vs. Temperature (During Sampling)  
SGM51652H4  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
2
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
Temperature ()  
AVDD Current vs. Temperature (Standby Mode)  
SGM51652H8  
AVDD Current vs. Temperature (Standby Mode)  
SGM51652H4  
12  
10  
8
12  
10  
8
6
6
4
4
2
2
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
Temperature ()  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
14  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
AVDD Current vs. Temperature (Power-Down Mode)  
SGM51652H8  
AVDD Current vs. Temperature (Power-Down Mode)  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
SGM51652H4  
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature ()  
Temperature ()  
Variation of the Reference Buffer Output (REFCAP)  
across Supply and Temperature  
Reference Buffer Temperature Drift Histogram  
4.102  
10  
8
AVDD = 5.25V  
AVDD = 5V  
4.101  
4.100  
4.099  
4.098  
4.097  
4.096  
4.095  
4.094  
AVDD = 4.75V  
6
4
2
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
REFCAP Drift (ppm/)  
Temperature ()  
DC Histogram for Mid-Scale Inputs (±2.5 × VREF  
)
DC Histogram for Mid-Scale Inputs (±1.25 × VREF)  
25000  
20000  
15000  
10000  
5000  
0
12000  
10000  
8000  
6000  
4000  
2000  
0
Output Codes  
Output Codes  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
15  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
DC Histogram for Mid-Scale Inputs (±0.625 × VREF  
)
DC Histogram for Mid-Scale Inputs (2.5 × VREF)  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
Output Codes  
DC Histogram for Mid-Scale Inputs (1.25 × VREF  
Output Codes  
DC Histogram for Mid-Scale Inputs (AUX Channel)  
)
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
25000  
20000  
15000  
10000  
5000  
0
Output Codes  
Typical FFT Plot (±2.5 × VREF  
Output Codes  
Typical FFT Plot (±1.25 × VREF  
)
)
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
16  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Typical FFT Plot (±0.625 × VREF  
)
Typical FFT Plot (2.5 × VREF)  
Typical FFT Plot (1.25 × VREF  
)
Typical INL for All Codes (±2.5× VREF)  
Typical INL for All Codes (±1.25× VREF  
)
Typical INL for All Codes (±0.625× VREF)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
17  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Typical INL for All Codes (2.5 × VREF  
)
Typical INL for All Codes (1.25 × VREF)  
Typical DNL for All Codes (±2.5× VREF  
)
Typical DNL for All Codes (±1.25× VREF)  
Typical DNL for All Codes (±0.625× VREF  
)
Typical DNL for All Codes (2.5× VREF)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
18  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Typical DNL for All Codes (1.25 × VREF  
)
REFCAP Solder Heat Shift Distribution Histogram  
35  
30  
25  
20  
15  
10  
5
0
Error Voltage (mV)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
19  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
DVDD  
Input Floating  
Detection  
Input block0  
1MΩ  
OVP  
OVP  
AIN_0P  
AIN_0N  
2nd-Order ADC  
PGA  
LPF  
Driver  
1MΩ  
VBIAS  
AIN_1P  
AIN_1N  
Input block1  
Digital Logic  
& Interface  
nCS  
AIN_2P  
AIN_2N  
Input block2  
Input block3  
SCLK  
SDI  
AIN_3P  
AIN_3N  
SDO  
16-Bit  
SAR ADC  
DAISY  
Input Floating  
Detection  
Input block4  
nREFSEl  
1MΩ  
OVP  
AIN_4P  
AIN_4N  
2nd-Order ADC  
LPF  
Driver  
PGA  
Oscillator  
nRST/nPD  
OVP  
1MΩ  
VBIAS  
REFCAP  
REFIO  
Input block5  
AIN_5P  
AIN_5N  
AIN_6P  
AIN_6N  
Input block6  
Input block7  
4.096V  
Reference  
AIN_7P  
AIN_7N  
REFGND  
AUX_INP  
AUX_INN  
SGM51652H4  
SGM51652H8  
AGND  
DGND  
Figure 2. Block Diagram  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
20  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION  
Overview  
The input voltage range is configured by software, and it can  
be bipolar ±2.5 × VREF, ±1.25 × VREF, and ±0.625 × VREF or  
unipolar 0 to 2.5 × VREF, and 0 to 1.25 × VREF. If there is a  
reference voltage of 4.096V (internal or external), then the  
input ranges of the device can be configured to bipolar ranges  
of ±10.24V, ±5.12V, and ±2.56V, or unipolar ranges of 0V to  
10.24V and 0V to 5.12V.  
The SGM51652H4 has 4 channels inputs. The SGM51652H8  
has 8 channels inputs. They both have a 16-bit 500kSPS  
SAR ADC core. The interface is SPI-compatible serial  
interface and supports with daisy-chain (DAISY) features.  
Analog Inputs  
The chip supports bipolar single-ended input, bipolar  
Analog Input Impedance  
differential input, and unipolar single-ended input.  
The input impedance of each channel is 1MΩ.  
When it works in bipolar single-ended input, tie the AIN_nN to  
AGND (system ground), the signal applied to AIN_nP can be  
bipolar ±2.5 × VREF, ±1.25 × VREF, and ±0.625 × VREF. Another  
selection is that tie the AIN_nP to AGNG (system ground), the  
signal applied to AIN_nN can be bipolar ±2.5 × VREF, ±1.25 ×  
Input Over-Voltage Protection Circuit  
The chip has input over-voltage protection (OVP) circuit.  
Table 1 shows these characteristics.  
V
REF, and ±0.625 × VREF.  
Table 1. Input Over-Voltage Protection Limits when AVDD  
= 5V (1)  
When it works in unipolar single-ended input, tie the AIN_nN  
to AGND (system ground), the signal applied to AIN_nP can  
Input Condition  
(VOVP = ±20V)  
ADC  
Output  
Comments  
be unipolar 0 to 2.5 × VREF, and 0 to 1.25 × VREF  
.
|VIN| < |VRANGE  
|VRANGE| < |VIN| < |VOVP  
|VIN| > |VOVP  
|
Valid  
Work normally.  
ADC output is saturated, and  
When it works in bipolar differential input, then AIN_nN and  
AIN_nP are differential inputs referring to AGND. For each pin,  
the absolute voltage referring to AGND must be within the  
limited voltage specified in electrical characteristic table, at  
the same time, the differential voltage of AIN_nP-AIN_nN  
must be compatible with the according input ranges. The  
common mode voltage of AIN_nP and AIN_nN are limited in  
according input ranges. Please refer to electrical  
characteristic table. When the chip works in bipolar  
differential input, the valid input ranges are bipolar ±2.5 ×  
|
Saturated the internal protection circuits  
are on.  
|
Saturated This may damage the chip.  
NOTE: 1. AGND = 0V, |VRANGE| is the maximum input voltage  
for any selected input range, and |VOVP| is the break-down  
voltage for the internal OVP circuit. Assume that RS is  
approximately 0Ω.  
V
REF, ±1.25 × VREF, and ±0.625 × VREF. The illustrative input  
In the following condition, the input signal is applied before  
analog AVDD is powered on or the input signal is applied and  
keep analog AVDD is floating, the input OVP circuits will be  
on. And if the input voltage exceeds the |VOVP|, the chip will  
be damaged.  
signals are shown in Figure 3, as shown in this example, if  
input common mode voltage is not 0V, there will be some  
dynamic range (ADC conversion code) losing accordingly.  
VP-P = -5.12V ~ +5.12V  
VIN_P  
VIN_MAX = 10.24V  
VIN_P  
V
P-P = -2.74V ~ +2.74V (MAX)  
VCM = 7.5V (MAX)  
VIN_P - VIN_N  
VCM = AGND = 0V  
AGND = 0V  
VIN_P - VIN_N  
VP-P = -10.24V ~ +10.24V  
VCM = AGND = 0V  
VP-P = -5.48V ~ +5.48V  
VCM = AGND = 0V  
OR  
VIN_N  
VIN_MAX = 10.24V  
VIN_N  
VCM = 7.5V (MAX)  
VP-P = -2.74V ~ +2.74V (MAX)  
VCM = AGND = 0V  
AGND = 0V  
V
P-P = -5.12V ~ +5.12V  
NOTE: VCM means common mode voltage. VP-P means peak-to-peak voltage.  
Figure 3. Examples of Bipolar Differential ±10.24V Input  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
21  
 
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
Table 2. Input Range Selection Bits Details  
Input Floating Detection Function  
The device features an input floating detection function, when  
this function is enabled by setting INPUT_FLOATING_  
DETECTION_EN register corresponding bit (see Table 16).  
Besides setting the INPUT_FLOATING_DETECTION_EN  
register, it also needs a pull-down resistor 10MΩ connected  
to system ground (AGND), please refer to typical connection  
in Figure 4. After setting INPUT_FLOATING_DETECTION  
_EN register (see Table 16), the host needs to send the  
manual mode command to continuously convert the channel  
that needs floating detection. When the detected input is  
floating, the corresponding bit in the INPUT_FLOATING_  
DETECTION_STATUS register is set to 1 (see Table 17).  
After the floating detection is completed, the bit in the  
INPUT_FLOATING_DETECTION_EN register is automatically  
set to 0 (see Table 16). If the detected input is given an input  
signal source later, please repeat the above floating detection  
steps. Then the INPUT_FLOATING_ DETECTION_STATUS  
register referred bit can be cleared.  
RANGE_CHn[3:0]  
Analog Input Range  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
±2.5 × VREF (default)  
±1.25 × VREF  
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
1
0
1
0
±0.625 × VREF  
(1)  
0 to 2.5 × VREF  
(1)  
0 to 1.25 × VREF  
NOTE: 1. These two unipolar input ranges are only valid for  
unipolar single-ended input with AIN_nN = AGND.  
Multiplexer (MUX)  
The maximum throughout data rate of scanning all channels  
is 500kSPS. For the SGM51652H4, it means the maximum  
data rate per channel is 125kSPS if all 4 channels are  
enabled. For the SGM51652H8, it means the maximum data  
rate per channel is 62.5kSPS if all 8 channels are enabled.  
Please refer to Table 6 for details of auto-scan mode and  
manual mode settings.  
Note that, to perform a complete input floating detection,  
there must be a consecutive 256 times conversions, which  
cannot be interrupted by normal input sampling. At same time,  
if there is still an input signal at input pin, the input floating  
detection will report an untrusted result.  
Reference  
The chip can be operated with an internal reference or an  
external voltage reference.  
Programmable Gain Amplifier (PGA)  
The chip has a programmable gain amplifier (PGA), and the  
PGA gain can be adjusted by setting the RANGE_CHn[3:0] (n  
= 0 to 3 or 0 to 7) bits in the configuration register (see the  
Channel n Input Range Registers).  
AVDD  
RFB  
AVDD  
D1P  
ESD  
10MΩ  
AIN_P  
1MΩ  
1MΩ  
V-  
D2P  
AVDD  
D1n  
Input  
Source  
VOUT  
V+  
AIN_N  
D2n  
ESD  
RDC  
VB  
AGND  
Figure 4. Input Floating Detection Connection  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
22  
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
Auxiliary Channel  
Device Functional Modes  
nRST/nPD (Input)  
nRST/nPD is a dual-function pin. The timing of this pin is  
shown in Figure 6, and Table 4 explains the usage of this pin.  
The chip has a true differential input channel (AUX_INP and  
AUX_INN). This AUX channel goes to ADC only through the  
MUX. There is no PGA, driver or low pass filter in the AUX  
channel.  
tPL_RST_PD  
The absolute input on AUX_INP and AUX_INN must be 0 to  
VREF. The differential input range of VAUX_INP - VAUX_INN is -VREF  
nRST/nPD  
to +VREF  
.
Figure 6. nRST/nPD Pin Timing  
ADC Description  
The chip output code is in straight-binary format.  
Table 4. nRST/nPD Pin Functionality  
Condition  
Device Mode  
40ns < tPL_RST_PD ≤ 100ns The device goes into RESET mode.  
FFFFh  
8000h  
0001h  
The device is in RESET mode and has  
the possibility to go into PWR_DOWN  
mode. Note that this setting is not  
100ns < tPL_RST_PD < 400ns  
recommended.  
The device goes into PWR_DOWN  
tPL_RST_PD ≥ 400ns  
mode and the program registers are  
reset to default value.  
The chip can be powered down by pulling nRST/nPD pin for  
at least 400ns. And this operation is asynchronous to chip's  
operation clock and working status. In power-down mode, the  
chip has no response to any digital inputs except operating on  
nRST/nPD pin.  
1LSB  
FSR/2  
FSR - 1LSB  
NFS  
PFS  
Analog Input (AIN_nP AIN_nN)  
Figure 5. Device Transfer Function (Straight-Binary  
Format)  
When chip goes into RESET mode and PWR_DOWN mode,  
the program registers are reset to default value.  
When the nRST/nPD pin is pulled high again, the chip wakes  
up and goes into a default state. To let the chip work correctly,  
it must re-configure the program registers accordingly.  
Table 3. ADC LSB Values for Different Input Ranges (VREF  
= 4.096V)  
Positive Negative  
Full-Scale Full-Scale  
Full-Scale  
Range (V)  
LSB  
(µV)  
Input Range  
(V)  
(V)  
-10.24  
-5.12  
-2.56  
0
±2.5 × VREF  
±1.25 × VREF  
±0.625 × VREF  
10.24  
5.12  
2.56  
10.24  
5.12  
20.48  
10.24  
5.12  
312.5  
156.25  
78.125  
156.25  
78.125  
(1)  
0 to 2.5 × VREF  
0 to 1.25 × VREF  
10.24  
5.12  
(1)  
0
NOTE: 1. These two unipolar input ranges are only valid for  
unipolar single-ended input with AIN_nN = AGND.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
23  
 
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
starts to be shifted out on SDO at the 16th falling edge of  
Data Acquisition Example  
This section briefly introduces how the chip works and  
interfaces with the host controller. Figure 7 shows the timing  
marks.  
SCLK.  
T3: After the 16th falling edge of the SCLK, the chip doesn't  
read any more data on SDI. The host controller can read the  
ADC result at every falling edge of the SCLK cycle which is  
from 17th to 32nd. If there are more SCLK cycles, the SDO is  
filled with 0 until next conversion is initiated.  
As shown in Figure 7, there are four events T1 ~ T4.  
T1: The input signal is sampled at the moment of the nCS  
falling edge. The ADC conversion is driven by internal  
oscillator clock. The current ADC result is from the input  
channel selected by previous data frame. The current SDI  
data setting is for the next conversion. The SDO goes low  
because of there is no ADC conversion result during the first  
16 SCLK cycles.  
T4: The host controller stops the data frame by pulling nCS  
high. The SDO goes into 3-state until the next data frame  
starts.  
Daisy-Chain Topology  
A typical connection diagram showing multiple devices in  
daisy-chain mode is shown in Figure 8. The devices can enter  
daisy-chain mode without any special hardware or software  
configuration.  
T2: The conversion time is 16 SCLK cycles. Therefore, the  
maximum SCLK frequency must be compliance with the  
timing requirement (which is listed in Electrical Characteristics  
table). Otherwise, if the conversion time is not enough, the  
ADC conversion result is corrupt. The MSB of ADC result  
Sample  
N+1  
Sample N  
T1  
T2  
T3  
T4  
nCS  
SCLK  
SDO  
1
2
15  
16  
17  
18  
31  
32  
DO15  
XX  
DO14  
XX  
DO1  
DO0  
DO12  
DI14  
DI1  
DI0  
XX  
XX  
SDI  
DI15  
Figure 7. Timing Diagram of Device Operation Using the Serial Interface  
nCS_H  
SCLK_H  
SDO_H  
SDI  
SCLK  
nCS  
SDI  
SCLK  
nCS  
SDI  
SCLK  
nCS  
EOC/nINT  
DAISY  
SDO  
DAISY  
SDO  
DAISY  
SGM51652H4  
SGM51652H8  
#1  
SGM51652H4  
SGM51652H8  
#2  
SGM51652H4  
SGM51652H8  
#3  
SDO  
DGND  
SDI_H  
Figure 8. Daisy-Chain Connection Schematic  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
24  
 
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
A typical timing diagram for three devices connected in  
daisy-chain mode is shown in Figure 9.  
Continued Operation in the Selected Mode (NO_OP)  
If the chip receives a NO_OP command (0x0000), it will follow  
the same settings which are already in the program registers.  
The previous selected mode can be STDBY, PWR_DOWN,  
AUTO_SCAN and MAN_CH_n.  
As shown in the example, the three chips are connected in  
daisy-chain mode in Figure 9. Each chip samples its  
respective signal input on the falling edge of the nCS. At the  
first 16 SCLK cycles, SDO outputs keep low. At the second  
16 SCLK cycles, each chip outputs its ADC result to SDO,  
and receives the data from DAISY pin. On every  
subsequence SCLK cycle, the DAISY pin data is shifted in  
and stored in internal register, and the chip shifts out the  
internal shift register data to its SDO pin. In this example, 16 ×  
3 = 48 SCLK cycles are required to shift all data to the tail  
chip SDO pin. In total 64 SCLK cycles for all 3 chips to  
conversion and shift out all data.  
If the NO_OP command (0x0000) occurs during any other  
configure operation to the command register, the chip retains  
the old settings of the program registers. Then the chip goes  
back to IDLE state and waits for a new command.  
Frame Abort Condition (FRAME_ABORT)  
As shown in Data Acquisition Example section, a complete  
command is at least composed of 16 SCLK cycles, and the  
command is locked in at the falling of the 16th SCLK. If the  
SCLK is not accumulated to 16, the chip keeps waiting and  
the nCS must stay low all operation process. If the nCS goes  
high before the command transmission is completed, the chip  
goes to an invalid state. It will not skip out the invalid condition  
until a new proper command is performed.  
Device Modes  
After power-up, the SGM51652H4 and SGM51652H8 stay in  
IDLE state and don’t perform any function until a command  
from the host controller.  
Sample  
Sample  
N+1  
N
nCS#1  
nCS#2  
nCS#3  
1
16  
1
16  
1
16  
1
16  
SCLK#1  
SCLK#2  
SCLK#3  
From Device #1  
Conversion N  
SDO#1  
DAISY#2  
From Device #2  
Conversion N  
From Device #1  
Conversion N  
SDO#2  
DAISY#3  
From Device #3  
Conversion N  
From Device #2  
Conversion N  
From Device #1  
Conversion N  
SDO#3  
SDI#1  
SDI#2  
SDI#3  
Config  
Figure 9. Timing Diagram of Three Devices Connected in Daisy-Chain Mode  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
25  
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
STANDBY Mode (STDBY)  
But the chip doesn't do conversion, thus any conversion data  
read back is invalid (more details in Program Register  
Read/Write Operation section).  
The chip supports a low power consumption standby mode  
(STDBY). In STDBY mode, only parts of the circuits are  
powered off, and they will take the chip about 20μs to exit the  
STDBY mode. After getting out of the STDBY, the chip  
program registers retain its customer's setting value.  
Figure 11 shows the command AUTO_SCAN or MAN_CH_n  
can call the chip out of the STDBY mode. It is valid at the  
rising edge of the nCS. It will take the chip about 30μs to fully  
be ready to sample and do conversion after exiting STDBY  
mode. It is necessary to hold nCS high at least 30μs before a  
new data frame starting. On the next nCS falling edge, the  
chip samples the input channel which is selected by  
MAN_CH_n or the first channel of the AUTO_SCAN mode  
sequence (more details refer to Figure 7).  
As shown in Figure 10, issuing a STDBY command 0x8200,  
the command will be valid and the chip goes into STDBY  
mode on the rising edge of nCS. To exit STDBY mode, a valid  
command AUTO_SCAN or MAN_CH_n must be issued and it  
will be valid on the rising edge of nCS (see Figure 11). In the  
STDBY mode, the program registers can be read or written.  
Sample  
N
Enter STDBY Mode  
nCS  
1
1
16  
17  
18  
24  
32  
SCLK  
SDI  
If Write or Read Program Register  
Data of Program Register  
0x8200  
Do Not Care  
SDO  
Do Not Care  
Data of Sample N  
Figure 10. Timing Diagram for Entering and Remaining in STDBY Mode  
Exit STDBY Mode  
New Sample by MAN_CH_n or AUTO_SCAN  
nCS  
t7  
1
1
16  
32  
SCLK  
SDI  
AUTO_SCAN or MAN_CH_n  
NO_OP  
SDO  
Do Not Care  
Data of Conversion  
Figure 11. Timing Diagram for Exiting STDBY Mode  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
26  
 
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
Power-Down Mode (PWR_DOWN)  
edge of nCS (See Figure 13). Being in the PWR_DOWN  
mode, the program registers can be read or written. But the  
chip doesn't do conversion, thus any conversion data read  
back is invalid (more details in Program Register Read/Write  
Operation section).  
The chip supports both software and hardware power-down  
mode (PWR_DOWN). The hardware power-down mode is  
talked in the nRST/nPD section. When the chip is waked up  
from software power-down, all previous settings of program  
registers are retained. When the chip is waked up from  
hardware power-down mode, all the registers are reset to  
default values. It will take the chip about 15ms to fully power  
up and ready to work after receiving wake up command  
(AUTO_SCAN or MAN_CH_n).  
Figure 13 shows the command AUTO_SCAN or MAN_CH_n  
can call the chip out of the PWR_DOWN mode. It is valid at  
the rising edge of the nCS. It will take the chip about 15ms to  
fully be ready to sample and do conversion after exiting  
PWR_DOWN mode. It is necessary to hold nCS high at least  
15ms before a new data frame starting. On the next nCS  
falling edge, the chip samples the input channel which is  
selected by MAN_CH_n or the first channel of the  
AUTO_SCAN mode sequence (more details refer to Figure  
8).  
As shown in Figure 12, issuing a PWR_DOWN command  
0x8300, the command will be valid and the chip goes into  
PWR_DOWN mode on the rising edge of nCS. To exit  
PWR_DOWN mode, a valid command AUTO_SCAN or  
MAN_CH_n must be issued and it will be valid on the rising  
To enter PWR_DOWN mode,  
nCS can go high after 16th SCLK  
Sample  
Enter PWR_DOWN Mode  
N
if does not want read data.  
nCS  
1
1
16  
17  
18  
24  
32  
SCLK  
SDI  
If Write or Read Program Register  
Data of Program Register  
0x8300  
Do Not Care  
SDO  
Do Not Care  
Data of Sample N  
Figure 12. Timing Diagram for Entering and Remaining in PWR_DOWN Mode  
Exit PWR_DOWN Mode  
New Sample by MAN_CH_n or AUTO_SCAN  
nCS  
15ms  
1
1
16  
32  
SCLK  
SDI  
AUTO_SCAN or MAN_CH_n  
NO_OP  
SDO  
Do not care  
Data of Conversion  
Figure 13. Timing Diagram for Exiting PWR_DOWN Mode  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
27  
 
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
Auto Channel Enable with Reset (AUTO_SCAN)  
In Figure 14, if a chip is set to work in AUTO_SCAN (0xA000)  
mode, it can scan all selected channels automatically. In  
order to read every selected channel conversion result  
correctly, each of the data frame must be at least 32 SCLK  
cycles.  
channels in ascending order from the lowest channel. When it  
scans all channels, it will repeat the cycle from the lowest  
channel. The input range of each channel can be configured  
separately in the Range Select Registers.  
An example is shown in Figure 15, during the AUTO_SCAN  
operation sequence, if an AUTO_SCAN command is inserted,  
the chip re-starts scanning from the lowest selected channel.  
Figure 14 shows a scan sequence from channel 1 to channel  
4 and an AUTO_SCAN command is inserted after channel 3  
conversion.  
The selected channels which the chip goes through in  
AUTO_SCAN mode is configured by the program register  
0x01 and register 0x02 (please see the Program Register  
Map section). In this mode, the chip goes through all selected  
After AUTO_SCAN command,  
nCS can go high after 16th SCLK  
if does not want read data.  
Enter AUTO_SCAN Mode  
Sample 1st Selected Channel  
In AUTO_SCAN Mode  
Sample 2nd Selected Channel  
Sample  
N
nCS  
1
1
16  
17  
18  
16  
17  
18  
32  
32  
SCLK  
SDI  
0xA000  
Do Not Care  
0x0000  
Do Not Care  
Data of 1st Selected Channel  
SDO  
Do Not Care  
Do Not Care  
Data of Sample N  
Figure 14. Timing Diagram for Entering AUTO_SCAN Mode  
Sample N  
Channel 1 Sample  
Channel 2 Sample  
Channel 3 Sample  
Channel 1 Sample  
nCS  
1
16 17  
32  
1
1617  
32  
1
16 17  
32  
1
16 17  
32  
1
1617  
32  
SCLK  
SDI  
AUTO_SCAN  
xxxx  
0x0000  
0x0000  
xxxx  
0x0000  
0x0000  
AUTO_SCAN  
xxxx  
0x0000  
0x0000  
xxxx  
xxxx  
Sample N Data  
Ch 1 Data  
Ch 2 Data  
0x0000  
Ch 3 Data  
Ch 1 Data  
SDO  
Previous XX Mode  
AUTO_SCAN Mode  
Channel 1 to Channel 4 are scanned in sequence  
AUTO_SCAN Mode  
Data of Sample N  
Channel scan sequence re-started  
Figure 15. Example of Device Operation in AUTO_SCAN Mode  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
28  
 
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
An example is shown in Figure 17, if there is no other new  
valid command, the chip will keep sampling the current  
channel selected by MAN_CH_n. The input range of each  
channel can be configured separately in the Range Select  
Registers. Figure 17 shows an example MAN_CH_3 to  
MAN_CH_1 in manual select mode.  
Manual Channel n Select (MAN_CH_n)  
As shown in Figure 16, the chip can work in manual channel  
mode (MAN_CH_n) and do conversion in a specified channel  
by manual mode command. In order to read every selected  
channel conversion result correctly, each of the data frame  
must be at least 32 SCLK cycles. Refer to Table 5 for a list of  
commands of MAN_CH_n mode.  
Enter MAN_CH_n Mode  
Sample  
In MAN_CH_n Mode  
1
st Selected Channel n  
Sample 2nd Selected Channel n  
Sample  
N
nCS  
1
1
16  
17  
18  
16  
17  
18  
32  
32  
SCLK  
SDI  
MAN_CH_n Command  
Do Not Care  
Do Not Care  
0x0000  
Do Not Care  
SDO  
Do Not Care  
Data of Sample N  
Data of Selected Channel n  
Figure 16. Timing Diagram for Entering MAN_CH_n Scan Mode  
Sample N  
Channel 3 Sample  
Channel 3 Sample  
Channel 3 Sample  
Channel 1 Sample  
nCS  
SCLK  
SDI  
1
16 17  
32  
1
1617  
32  
1
16 17  
32  
1
16 17  
32  
1
1617  
32  
MAN_CH_3  
xxxx  
0x0000  
0x0000  
xxxx  
0x0000  
0x0000  
MAN_CH_1  
xxxx  
0x0000  
0x0000  
xxxx  
xxxx  
Sample N Data  
Ch 3 Data  
Ch 3 Data  
0x0000  
Ch 3 Data  
Ch 1 Data  
SDO  
Previous XX Mode  
MAN_CH_n Mode  
Channel n is continuously sampled if no new command is input  
MAN_CH_n Mode  
Data of Sample N  
Channel switched from 3 to 1  
Figure 17. Example of Device Operation in MAN_CH_n Mode  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
29  
 
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
Channel Sequencing Modes  
selected channel is sampled in the next data frame. Figure 18  
shows an example channel sequence switching from  
AUTO_SCAN (channel 2, 3, 5 are selected) to MAN_CH_n  
(MAN_CH_4).  
The chip supports two kinds of channel sequence modes,  
auto channel scanning (AUTO_SCAN) and manual channel  
selection (MAN_CH_n).  
In AUTO_SCAN mode, the chip goes through all selected  
channels in ascending order from the lowest channel.  
Figure 19 shows an example channel sequence switching  
from MAN_CH_n (MAN_CH_5) to AUTO_SCAN (channel 2,  
3, 5 are selected). A new command is executed in the next  
operation frame.  
In MAN_CH_n mode, the chip samples the same input  
channel if there is no new command input. If a new input  
channel is selected by MAN_CH_n command, then the new  
Sample N  
Channel 2 Sample  
Channel 3 Sample  
Channel 5 Sample  
Channel 4 Sample  
nCS  
SCLK  
SDI  
1
16 17  
32  
1
1617  
32  
1
16 17  
32  
1
16 17  
32  
1
1617  
32  
AUTO_SCAN  
xxxx  
0x0000  
0x0000  
xxxx  
0x0000  
0x0000  
xxxx  
MAN_CH_4  
xxxx  
0x0000  
0x0000  
xxxx  
Sample N Data  
Ch 2 Data  
Ch 3 Data  
0x0000  
Ch 5 Data  
Ch 4 Data  
SDO  
Previous XX Mode  
Data of sample N  
AUTO_SCAN Mode  
Channel2, 3, 5 are selected  
MAN_CH_n Mode  
Figure 18. Transitioning from AUTO_SCAN to MAN_CH_n Mode  
Channel 4 Sample  
Channel 2 Sample  
Channel 3 Sample  
Channel 5 Sample  
Sample N  
nCS  
SCLK  
SDI  
1
16 17  
32  
1
1617  
32  
1
16 17  
32  
1
16 17  
32  
1
1617  
32  
MAN_Ch_4  
xxxx  
AUTO_SCAN  
xxxx  
0x0000  
0x0000  
xxxx  
MAN_CH_4  
xxxx  
0x0000  
0x0000  
xxxx  
Sample N Data  
0x0000  
Ch 4 Data  
Ch 2 Data  
0x0000  
Ch 3 Data  
Ch 5 Data  
SDO  
Previous XX Mode  
Data of Sample N  
AUTO_SCAN Mode  
Channel 2, 3, 5 are selected  
MAN_CH_n Mode  
Figure 19. Transitioning from MAN_CH_n to AUTO_SCAN Mode  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
30  
 
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
Reset Program Registers (RST)  
Step1: Change to manual mode, and selected target channel  
n by MAN_CH_n command.  
The chip supports both hardware and software reset (RST  
command 0x8500). In both cases, all program registers are  
reset to default values. The hardware reset is explained in  
nRST/nPD section.  
Step2: Write 0x80 to INPUT FLOATING_DETECTION_EN  
Register (address is 0x0D, see Table 16).  
Step3: Perform consecutive 256 times of conversions. Note  
that, to perform a complete input floating detection, there  
must be a consecutive 256 times conversions, it can’t be  
interrupted by normal input sampling. At same time, if there is  
still an input signal at input pin, the input floating detection will  
report an untrusted result.  
As shown in Figure 20, a valid RST command can be issued  
during any data frame. After receiving the RST command, the  
chip reset all program registers on the rising edge of nCS. In  
the RESET mode, the program registers can be read or  
written. But the chip doesn't do conversion, thus any  
conversion data read back is invalid (more details in Program  
Register Read/Write Operation section).  
Step4: Read INPUT FLOATING_DETECTION_STATUS  
Register (address is 0x0E, see Table 17). Note that the alarm  
bit in INPUT_FLOATING_DETECTION_STATUS register will  
not be cleared, until an input floating detection operation is  
performed again and the inputs of ADC are connected with an  
input signal source.  
An AUTO_SCAN command or a MAN_CH_n command can  
call the chip out of RESET mode. To initiate a conversion on  
a particular analog channel, a valid AUTO_SCAN or  
MAN_CH_n command must be executed using the default  
program register settings.  
For an example operation sequences of channel 1, please  
refer to Figure 23.  
Input Floating Detection Function Operating  
Sequences  
The device provides a function to detect input floating. To  
perform this function, it is necessary to follow the operations  
as bellow.  
Sample  
N
Enter RST mode, all program registers  
are reset to default value.  
To enter RST mode, nCS can go high after  
16th SCLK if does not want read data.  
nCS  
1
1
16  
17  
18  
24  
32  
SCLK  
SDI  
If Write or Read Program Register  
Data of Program Register  
0x8500  
Do Not Care  
Do Not Care  
Data of Sample N  
SDO  
Figure 20. Timing Diagram of Reset Program Registers (RST)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
31  
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
DETAILED DESCRIPTION (continued)  
MAN_CH_n  
Command  
Enable Floating  
Detection Reg  
Read  
Sample  
1st  
Sample  
256th  
Floating Status REG  
nCS  
SCLK  
SDI  
1
16 17  
32  
1
1617  
32  
1
16 17  
32  
1
16 17  
32  
1
1617  
32  
MAN_CH_1  
xxxx  
xxxx  
0x1B80  
0x0000  
xxxx  
0x0000  
xxxx  
0x0000  
0x0000  
xxxx  
0x1Cxx  
0x0000  
xxxx  
0x80xx  
0x0000  
1st Data  
256th Data  
Ch 1 Status  
SDO  
Channel 1  
Enable of  
INPUT_FLOATING_DETETION_EN  
Data of  
Manual Scan Mode  
INPUT_FLOATING_DETETION_  
STATUS  
Figure 21. Input Floating Detection Operating Sequences  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
32  
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
REGISTER MAPS  
The SGM51652H4 and SGM51652H8 have two kinds of  
internal registers, command registers and program registers.  
sequence, SDO output format, and input range settings of  
each individual channels.  
The command registers are listed in Table 5. They are used  
for working modes setting, including AUTO_SCAN,  
MAN_CH_n, STDBY, PWR_DOWN and RST.  
Command Register Description  
The command register is a 16-bit, write-only register which is  
used for setting SGM51652H4/SGM51652H8 working  
modes.  
The program registers are listed in Table 8. They are used for  
working conditions setting, including channels scanning  
Table 5. Command Register Maps  
MSB Byte  
Register  
LSB Byte  
Command  
Operation in Next Frame  
(Hex)  
B15 B14 B13 B12 B11 B10 B9  
B8  
0
B[7:0]  
Continued Operation  
Repeat operation in previous  
mode  
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0000 0000  
0000 0000  
0000 0000  
0000h  
8200h  
8300h  
(NO_OP)  
Standby (STDBY)  
0
Go to standby mode  
Power-Down  
1
Go to power-down mode  
(PWR_DOWN)  
Reset program registers  
(RST)  
Auto Ch. Sequence with  
Reset (AUTO_SCAN)  
Manual Ch 0 Selection  
(MAN_Ch_0)  
Manual Ch 1 Selection  
(MAN_Ch_1)  
Manual Ch 2 Selection  
(MAN_Ch_2)  
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
1
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
8500h  
A000h  
C000h  
C400h  
C800h  
CC00h  
D000h  
D400h  
D800h  
DC00h  
E000h  
Reset program register  
Auto mode enabled following a  
reset  
Select channel 0  
Select channel 1  
Select channel 2  
Select channel 3  
Select channel 4  
Select channel 5  
Select channel 6  
Select channel 7  
Select AUX channel  
Manual Ch 3 Selection  
(MAN_Ch_3)  
Manual Ch 4 Selection  
(MAN_Ch_4) (1)  
Manual Ch 5 Selection  
(MAN_Ch_5) (1)  
Manual Ch 6 Selection  
(MAN_Ch_6) (1)  
Manual Ch 7 Selection  
(MAN_Ch_7) (1)  
Manual AUX Selection  
(MAN_AUX)  
NOTE: 1. Only for the SGM51652H8.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
33  
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
REGISTER MAPS (continued)  
Program Register Description  
Table 7. The data bit DB[15:9] is register address. The data  
bit DB[8] is write or read instruction bit.  
The program registers are 16-bit, write and read available  
registers which are used for setting SGM51652H4/  
SGM51652H8 working condition setting.  
In a writing cycle, data on SDI pin DIN[7:0] is the data to be  
written to the target register. The data on SDO pin DIN[7:0] is  
the data readback from the target register. The readback data  
can be used to verify whether the writing is successful. An  
example timing diagram of writing cycle is shown in Figure  
22.  
The program registers are listed in Table 8. They are used for  
working conditions setting, including channels scanning  
sequence in AUTO_SCAN mode, set chip ID in daisy chain  
mode, SDO output format, and input range settings of each  
individual channels.  
In a reading cycle, the SDI data bit DB[8] is read instruction  
bit. The data on SDO DOUT[7:0] is the readback data from  
the target address program register. The readback data is  
MSB first. An example timing diagram of reading cycle is  
shown in Figure 23.  
Program Register Read/Write Operation  
The program register is a 16-bit read and write available  
register. The operation data frame must be at least 24 SCLK  
cycles. The operation data format is shown in Table 6 and  
Table 6. Write Cycle Command Word  
Write/Read  
Data (DB[7:0])  
(DB[8])  
Pin  
Register Address (DB[15:9])  
SDI  
ADDR[6:0]  
1
DIN[7:0]  
Table 7. Read Cycle Command Word  
Write/Read  
(DB[8])  
Pin  
SDI  
Register Address (DB[15:9])  
Data (DB[7:0])  
XXXXX  
ADDR[6:0]  
0
0000  
000  
SDO  
0
DOUT[7:0]  
Sample N  
nCS  
1
8
9
10  
24  
17  
16  
SCLK  
SDI  
WR  
DIN[7:0]  
DB[15:9] = ADDR[6:0]  
Do Not Care  
Do Not Care  
Data of Target Program Register  
DIN[7:0]  
SDO  
Do Not Care  
Figure 22. Timing Diagram of Program Register Write Cycle  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
34  
 
 
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
REGISTER MAPS (continued)  
Sample N  
nCS  
1
8
9
10  
24  
17  
16  
SCLK  
SDI  
RD  
Do Not Care  
Do Not Care  
DB[15:9] = ADDR[6:0]  
Do Not Care  
Do Not Care  
Data of Target Program Register  
DOUT[7:0]  
SDO  
Figure 23. Timing Diagram of Program Register Read Cycle  
Program Register Map  
Table 8. Program Register Map  
Register  
Default  
Value  
Register  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bits[15:9]  
Auto Scan Sequencing Control  
AUTO_SEQ_EN  
01h  
02h  
FFh  
00h  
CH7_EN (1)  
CH7_PD (1)  
CH6_EN CH5_EN CH4_EN CH3_EN CH2_EN CH1_EN CH0_EN  
CH6_PD CH5_PD CH4_PD CH3_PD CH2_PD CH1_PD CH0_PD  
Channel Power-Down  
Device Features Selection Control  
Feature Select  
03h  
00h  
DEV[1:0]  
0
0
0
SDO[2:0]  
Range Select Registers  
Channel 0 Input Range  
Channel 1 Input Range  
Channel 2 Input Range  
Channel 3 Input Range  
05h  
06h  
07h  
08h  
00h  
00h  
00h  
00h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Range Select Channel 0 [3:0]  
Range Select Channel 1 [3:0]  
Range Select Channel 2 [3:0]  
Range Select Channel 3 [3:0]  
Channel 4 Input  
09h  
0Ah  
0Bh  
0Ch  
00h  
00h  
00h  
00h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Range Select Channel 4 [3:0]  
Range Select Channel 5 [3:0]  
Range Select Channel 6 [3:0]  
Range Select Channel 7 [3:0]  
Range(1)  
Channel 5 Input  
Range(1)  
Channel 6 Input  
Range(1)  
Channel 7 Input  
Range(1)  
Command Read Back (Read-Only)  
Command Read Back 3Fh  
00h  
COMMAND_WORD[7:0]  
Input Floating Detection and Status  
INPUT_  
FLOATING_  
DETECTION_  
EN  
INPUT_FLOATING_  
0Dh  
00h  
00h  
0
0
0
0
0
0
0
DETECTION_EN  
INPUT_FLOATING_  
0Eh  
CH7_FT (1)  
CH6_FT CH5_FT CH4_FT CH3_FT CH2_FT CH1_FT CH0_FT  
DETECTION_STATUS  
NOTE:  
1. All the operations of channel 7 to channel 4 are not applicable to the 4-channel version chip. A write operation on any of these  
bits or registers has no effect on chip behavior. A read operation on any of these bits or registers outputs all 1's on the SDO line.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
35  
 
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
REGISTER MAPS (continued)  
Auto-Scan Sequence Enable Register (Address = 01h)  
The default value for this register is 0xFF. If no channels are  
included in the auto sequence (that is, the value for this  
register is set to 0x00), then channel 0 is selected for  
conversion by default.  
Program Register Descriptions  
Auto-Scan Sequencing Control Registers  
In AUTO_SCAN mode, the chip scans all the enabled  
channels in ascending order automatically. Each of all  
channels can be separately enabled or disabled. All the  
disabled channels can be powered down in the Power-Down  
register individually (details see Table 10).  
Table 9. AUTO_SEQ_EN Register Details  
BITS  
BIT NAME  
DEFAULT TYPE (2)  
DESCRIPTION  
0 = Channel 7 is not enabled in AUTO_SCAN mode  
1 = Channel 7 is enabled in AUTO_SCAN mode (default)  
D[7]  
CH7_EN (1)  
1
1
1
1
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0 = Channel 6 is not enabled in AUTO_SCAN mode  
1 = Channel 6 is enabled in AUTO_SCAN mode (default)  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
CH6_EN (1)  
CH5_EN (1)  
CH4_EN (1)  
CH3_EN  
0 = Channel 5 is not enabled in AUTO_SCAN mode  
1 = Channel 5 is enabled in AUTO_SCAN mode (default)  
0 = Channel 4 is not enabled in AUTO_SCAN mode  
1 = Channel 4 is enabled in AUTO_SCAN mode (default)  
0 = Channel 3 is not enabled in AUTO_SCAN mode  
1 = Channel 3 is enabled in AUTO_SCAN mode (default)  
0 = Channel 2 is not enabled in AUTO_SCAN mode  
1 = Channel 2 is enabled in AUTO_SCAN mode (default)  
CH2_EN  
0 = Channel 1 is not enabled in AUTO_SCAN mode  
1 = Channel 1 is enabled in AUTO_SCAN mode (default)  
CH1_EN  
0 = Channel 0 is not enabled in AUTO_SCAN mode  
1 = Channel 0 is enabled in AUTO_SCAN mode (default)  
CH0_EN  
NOTES:  
1. All the operations of channel 7 to channel 4 are not applicable to the 4-channel version chip. A write operation on any of these  
bits or registers has no effect on chip behavior. A read operation on any of these bits or registers outputs all '1' on the SDO line.  
2. R/W = Read/Write.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
36  
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
REGISTER MAPS (continued)  
Channel Power-Down Register (Address = 02h)  
In MAN-Ch_n mode, if the selected channel is powered down,  
the data output of the corresponding ADC channel is invalid,  
and it can also trigger a false alarm condition.  
The default value of this register is 0x00.  
In AUTO_SCAN mode, if all the channels are powered down  
(the value for this register is set to 0xFF), the output data of  
the ADC is invalid.  
Table 10. Channel Power-Down Register Details  
BITS  
BIT NAME  
DEFAULT  
TYPE  
DESCRIPTION  
0 = Channel 7 is not powered down (2) (default)  
1 = Channel 7 is powered down  
D[7]  
CH7_PD (1)  
0
R/W  
0 = Channel 6 is not powered down (default)  
1 = Channel 6 is powered down  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
CH6_PD(1)  
CH5_PD(1)  
CH4_PD(1)  
CH3_PD  
CH2_PD  
CH1_PD  
CH0_PD  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0 = Channel 5 is not powered down (default)  
1 = Channel 5 is powered down  
0 = Channel 4 is not powered down (default)  
1 = Channel 4 is powered down  
0 = Channel 3 is not powered down (default)  
1 = Channel 3 is powered down  
0 = Channel 2 is not powered down (default)  
1 = Channel 2 is powered down  
0 = Channel 1 is not powered down (default)  
1 = Channel 1 is powered down  
0 = Channel 0 is not powered down (default)  
1 = Channel 0 is powered down  
NOTES:  
1. All the operations of channel 7 to channel 4 are not applicable to the 4-channel version chip. A write operation on any of these  
bits or registers has no effect on chip behavior. A read operation on any of these bits or registers outputs all '1' on the SDO line.  
2. A channel is not powered down, if this channel is supposed to be scanned in AUTO_SCAN sequence, it is necessary to enable  
the corresponding bit in AUTO_SEQ_EN Register at same time.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
37  
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
REGISTER MAPS (continued)  
Device Features Selection Control Register (Address = 03h)  
This register is used for the chip ID setting in daisy chain connection and the output data format.  
Table 11. Feature Select Register Details  
BITS  
BIT NAME  
DEFAULT  
TYPE  
DESCRIPTION  
Device ID Bits  
00 = ID for device 0 in daisy-chain mode (default)  
01 = ID for device 1 in daisy-chain mode  
10 = ID for device 2 in daisy-chain mode  
11 = ID for device 3 in daisy-chain mode  
D[7:6]  
DEV[1:0]  
00  
R/W  
D[5:3]  
D[2:0]  
Reserved  
SDO[2:0]  
000  
000  
R (1)  
R/W  
Must be set to 0.  
Setting output data format on SDO pin. Refer to Table 12.  
NOTE: 1. R = Read only.  
Table 12. Program Register Bits Description for SDO Data Format  
Output Format  
Bits D[8:5]  
SDO Format  
SDO[2:0]  
Beginning of the Output Bit  
Stream  
Bits D[24:9]  
Bits D[4:3]  
Bits D[2:0]  
Conversion result for selected  
channel (MSB-first)  
000  
001  
010  
011  
16th SCLK falling edge, no latency  
16th SCLK falling edge, no latency  
16th SCLK falling edge, no latency  
16th SCLK falling edge, no latency  
SDO pulled low  
Conversion result for selected  
channel (MSB-first)  
Channel address (1)  
Channel address (1)  
Channel address (1)  
SDO pulled low  
Conversion result for selected  
channel (MSB-first)  
Device  
SDO pulled  
low  
address (1)  
Conversion result for selected  
channel (MSB-first)  
Device  
Input range (1)  
address (1)  
NOTE: 1. Table 3 lists descriptions for these channel addresses, chip address, and input range.  
Table 13. SDO Data Bit Description  
BITS  
DESCRIPTION  
D[24:9]  
16 bits of conversion result for the channel represented in MSB-first format.  
Four Bits of Channel Address  
0000 = Channel 0  
0001 = Channel 1  
0010 = Channel 2  
D[8:5]  
0011 = Channel 3  
0100 = Channel 4 (valid only for the SGM51652H8)  
0101 = Channel 5 (valid only for the SGM51652H8)  
0110 = Channel 6 (valid only for the SGM51652H8)  
0111 = Channel 7 (valid only for the SGM51652H8)  
D[4:3]  
D[2:0]  
Two bits of device address (mainly useful in daisy-chain mode).  
Three LSB bits of input voltage range (refer to the Range Select Registers section).  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
38  
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
REGISTER MAPS (continued)  
Range Select Registers (Addresses 05h - 0Ch)  
channel 6, address 0Ch is range setting for channel 7,  
address 0Ch is range setting for channel 7.  
Address 05h is range setting for channel 0, address 06h is  
range setting for channel 1, address 07h is range setting for  
channel 2, address 08h is range setting for channel 3,  
address 09h is range setting for channel 4, address 0Ah is  
range setting for channel 5, address 0Bh is range setting for  
Each channel input range can be selected by these registers  
individually. (n = 0 to 3 for the SGM51652H4 and n = 0 to 7 for  
the SGM51652H8). The default value of these registers is  
00h.  
Table 14. Channel n Input Range Register Details  
BITS  
BIT NAME  
DEFAULT  
TYPE  
DESCRIPTION  
D[7:4]  
Reserved  
0000  
R
Must always be set to 0.  
Input Range Selection Bits for Channel n  
(n = 0 to 3 for the SGM51652H4 and n = 0 to 7 for the SGM51652H8)  
0000 = Input range is set to ±2.5 × VREF (default)  
0001 = Input range is set to ±1.25 × VREF  
D[3:0]  
RANGE_CHn[3:0]  
0000  
R/W  
0010 = Input range is set to ±0.625 × VREF  
0101 = Input range is set to 0 to 2.5 × VREF  
0110 = Input range is set to 0 to 1.25 × VREF  
Command Read-Back Register (Address = 3Fh)  
command word on SDO is 8-bit MSB first format plus 8-bit '0'  
This register reports the chip current working mode. If this  
register is read, the chip feedback the previous command  
word executed in previous data frame. The feedback  
(see Table 15). It starts from the 16th falling edge of SCLK. A  
32 SCLK cycles operation is not necessary, 24 SCLK cycles  
are enough.  
Table 15. Command Read-Back Register Details  
BITS  
BIT NAME  
DEFAULT  
TYPE  
DESCRIPTION  
0000  
0000  
D[7:0] COMMAND_WORD[15:8]  
R
Command Executed in Previous Data Frame  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
39  
 
SGM51652H4  
SGM51652H8  
16-Bit, 500kSPS, 4- and 8-Channel, Single-Supply,  
SAR ADCs with Bipolar Input Ranges  
REGISTER MAPS (continued)  
Input Floating Detection and Status (Address = 0Dh - 0Eh)  
Table 16. INPUT_FLOATING_DETECTION_EN Register Details (Address = 0Dh)  
BITS  
BIT NAME  
DEFAULT TYPE  
DESCRIPTION  
Floating Detection Enable  
0 = Disable FLOATING_DETECTION mode (default)  
1 = Enable FLOATING_DETECTION mode  
After the floating detection is completed, this bit is automatically set to 0.  
D[7] INPUT_FLOATING_DETECTION_EN  
0
R/W  
R
D[6:0]  
Reserved  
Reserved.  
Table 17. INPUT_FLOATING_DETECTION_STATUS Register Details (Address = 0Eh)  
BITS  
BIT NAME  
DEFAULT  
TYPE  
DESCRIPTION  
Channel 7 FLOATINT_STATUS  
0 = Channel 7 is not in FLOATING status (default)  
1 = Channel 7 is in FLOATING status  
D[7]  
CH7_FT (1)  
0
R/W  
Channel 6 FLOATINT_STATUS  
0 = Channel 6 is not in FLOATING status (default)  
1 = Channel 6 is in FLOATING status  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
CH6_FT (1)  
CH5_FT (1)  
CH4_FT (1)  
CH3_FT  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Channel 5 FLOATINT_STATUS  
0 = Channel 5 is not in FLOATING status (default)  
1 = Channel 5 is in FLOATING status  
Channel 4 FLOATINT_STATUS  
0 = Channel 4 is not in FLOATING status (default)  
1 = Channel 4 is in FLOATING status  
Channel 3 FLOATINT_STATUS  
0 = Channel 3 is not in FLOATING status (default)  
1 = Channel 3 is in FLOATING status  
Channel 2 FLOATINT_STATUS  
0 = Channel 2 is not in FLOATING status (default)  
1 = Channel 2 is in FLOATING status  
CH2_FT  
Channel 1 FLOATINT_STATUS  
0 = Channel 1 is not in FLOATING status (default)  
1 = Channel 1 is in FLOATING status  
CH1_FT  
Channel 0 FLOATINT_STATUS  
0 = Channel 0 is not in FLOATING status (default)  
1 = Channel 0 is in FLOATING status  
CH0_FT  
NOTE: 1. Only for the SGM51652H8.  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (DECEMBER 2022) to REV.A  
Page  
Changed from product preview to production data.............................................................................................................................................All  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
40  
 
 
PACKAGE INFORMATION  
PACKAGE OUTLINE DIMENSIONS  
TSSOP-38  
D
E1  
E
5.94  
1.78  
b
e
0.30  
0.50  
RECOMMENDED LAND PATTERN (Unit: mm)  
L
A
θ
A1  
H
c
A2  
Dimensions  
In Millimeters  
Dimensions  
In Inches  
Symbol  
MIN  
MAX  
MIN  
MAX  
A
A1  
A2  
b
1.200  
0.150  
1.000  
0.270  
0.200  
9.800  
4.500  
6.550  
0.047  
0.006  
0.039  
0.011  
0.008  
0.386  
0.177  
0.258  
0.050  
0.800  
0.170  
0.090  
9.600  
4.300  
6.250  
0.002  
0.031  
0.007  
0.004  
0.378  
0.169  
0.246  
c
D
E
E1  
e
0.500 BSC  
0.250 TYP  
0.020 BSC  
0.010 TYP  
H
L
0.450  
1°  
0.750  
7°  
0.018  
1°  
0.030  
7°  
θ
NOTES:  
1. Body dimensions do not include mode flash or protrusion.  
2. This drawing is subject to change without notice.  
SG Micro Corp  
TX00183.001  
www.sg-micro.com  
PACKAGE INFORMATION  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
P2  
P0  
W
Q2  
Q4  
Q2  
Q4  
Q2  
Q4  
Q1  
Q3  
Q1  
Q3  
Q1  
Q3  
B0  
Reel Diameter  
P1  
A0  
K0  
Reel Width (W1)  
DIRECTION OF FEED  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF TAPE AND REEL  
Reel Width  
Reel  
Diameter  
A0  
B0  
K0  
P0  
P1  
P2  
W
Pin1  
Package Type  
W1  
(mm)  
(mm) (mm) (mm) (mm) (mm) (mm) (mm) Quadrant  
TSSOP-38  
13″  
16.4  
6.80  
10.20  
1.60  
4.0  
8.0  
2.0  
16.0  
Q1  
SG Micro Corp  
TX10000.000  
www.sg-micro.com  
PACKAGE INFORMATION  
CARTON BOX DIMENSIONS  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF CARTON BOX  
Length  
(mm)  
Width  
(mm)  
Height  
(mm)  
Reel Type  
Pizza/Carton  
13″  
386  
280  
370  
5
SG Micro Corp  
www.sg-micro.com  
TX20000.000  

相关型号:

SGM5200

12-Bit, 1MSPS, 16 Channels, Single-Ended, Serial Interface ADC
SGMICRO

SGM5223

0.5ヘ Ultra Low ON-Resistance, Dual, SPDT Analog Switch
SGMICRO

SGM5223YWQ10/TR

0.5ヘ Ultra Low ON-Resistance, Dual, SPDT Analog Switch
SGMICRO

SGM5347-10

8 Channels, 10-Bit Digital-to-Analog Converter with Output Operational Amplifier
SGMICRO

SGM5347-12

8 Channels, 12-Bit Digital-to-Analog Converter with Output Operational Amplifier
SGMICRO

SGM5347-8

8 Channels, 8-Bit Digital-to-Analog Converter with Output Operational Amplifier
SGMICRO

SGM5348-10

8 Channels, 10-Bit Digital-to-Analog Converter with Output Operational Amplifier
SGMICRO

SGM5348-12

8 Channels, 12-Bit Digital-to-Analog Converter with Output Operational Amplifier
SGMICRO

SGM5348-8

8 Channels, 8-Bit Digital-to-Analog Converter with Output Operational Amplifier
SGMICRO

SGM5349-16

8 Channels, 16-Bit, SPI Interface, Voltage-Output Digital-to-Analog Converter
SGMICRO

SGM5351-16

16-Bit, Ultra-Low Glitch, Voltage-Output Digital-to-Analog Converter
SGMICRO

SGM5352-16

16-Bit, 4 Channels, Voltage-Output Digital-to-Analog Converter
SGMICRO