SI5381A-D04991-GM [SILICON]

Processor Specific Clock Generator,;
SI5381A-D04991-GM
型号: SI5381A-D04991-GM
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator,

外围集成电路
文件: 总56页 (文件大小:907K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5381/82 Data Sheet  
Multi-DSPLL Wireless Jitter Attenuator / Clock Multiplier with  
Ultra-Low Noise  
KEY FEATURES  
• Supports simultaneous Ethernet, CPRI and  
general-purpose clocking in a single device  
The Si5381/82 is an ultra high performance wireless jitter attenuator with multiple  
DSPLLs, optimized for wireless BBU (Baseband Unit) and DU (Distribution Unit) ap-  
plications. The industry’s first multi-PLL wireless jitter attenuator device is capable of  
replacing multiple discrete, high performance, VCXO-based jitter attenuators with a  
fully integrated single chip solution. The featured multi-PLL architecture supports in-  
dependent timing paths for Ethernet and CPRI (Common Public Radio Interface)  
clock cleaning , and generates any low-jitter, general-purpose clocks. The fixed fre-  
quency oscillator provides frequency stability for free-run and holdover modes. This  
all-digital solution provides superior performance that is highly immune to external  
board disturbances such as power supply noise.  
• Input frequency range:  
• Differential: 8 kHz - 750 MHz  
• LVCMOS: 8 kHz to 250 MHz  
• Output frequency range:  
• CPRI: up to 2.94912 GHz  
• Other differential: up to 735 MHz  
• LVCMOS: up to 250 MHz  
• Ultra-low RMS jitter:  
• 72 fs typ (12 kHz–20 MHz)  
Applications:  
• Phase noise of 122.88MHz carrier frequency:  
• 118 dBc/Hz @ 100Hz offset  
• Wireless Infrastructure  
• eCPRI RRH (Remote Radio Head)  
• BBU (Baseband Unit)  
• DU (Distribution Unit)  
• Test and Measurement  
• ITU-T G.8262 compliant  
54 MHz  
OSC  
÷INT  
t
OUT0A  
IN_SEL  
t
÷INT  
OUT0  
OUT1  
OUT2  
DSPLL  
B
14.7456 GHz  
PLL  
IN0  
IN1  
IN2  
IN3  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
t
t
DSPLL  
A
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT9A  
Si5382  
DSPLL  
C
DSPLL  
D
Any-Rate  
PLLs  
Si5381  
NVM  
I2C/SPI  
Control  
Status  
Status Flags  
silabs.com | Building a more connected world.  
Rev. 0.96  
Table of Contents  
1. Features List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1 Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1.1 Si5381/82 CPRI Frequency Configuration . . . . . . . . . . . . . . . . . . . 6  
3.1.2 Si5381/82 Configuration for Wireless Clock Generation . . . . . . . . . . . . . . . 7  
3.2 DSPLL Loop Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.3 Fastlock Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.4.1 Initialization and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.4.2 Freerun Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.4.3 Lock Acquisition Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.4.4 Locked Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.4.5 Holdover Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.4.6 VCO Freeze Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.5 External Reference (XA/XB) . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.6 Inputs (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.6.1 Manual Input Switching (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . . . .12  
3.6.2 Automatic Input Selection (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . . .13  
3.6.3 Hitless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.6.4 Ramped Input Switching . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.6.5 Glitchless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.6.6 Input Configuration and Terminations . . . . . . . . . . . . . . . . . . . . .14  
3.7 Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.7.1 Input LOS Detection. . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.7.2 Reference Clock LOS Detection. . . . . . . . . . . . . . . . . . . . . . .15  
3.7.3 OOF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.7.4 LOL Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.7.5 Interrupt Pin (INTRb) . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.8 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.8.1 Output Crosspoint . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.8.2 Output Signal Format . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.8.3 Output Terminations. . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.8.4 Programmable Common Mode Voltage For Differential Outputs . . . . . . . . . . . .21  
3.8.5 LVCMOS Output Impedance and Drive Strength Selection. . . . . . . . . . . . . .22  
3.8.6 LVCMOS Output Signal Swing . . . . . . . . . . . . . . . . . . . . . . .22  
3.8.7 LVCMOS Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.8.8 Output Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.8.9 Output Disable During LOL . . . . . . . . . . . . . . . . . . . . . . . .22  
3.8.10 Output Disable During Reference LOS . . . . . . . . . . . . . . . . . . . .22  
3.8.11 Output Driver State When Disabled . . . . . . . . . . . . . . . . . . . . .22  
3.8.12 Synchronous Output Disable Feature . . . . . . . . . . . . . . . . . . . .23  
3.8.13 Zero Delay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
silabs.com | Building a more connected world.  
Rev. 0.96 | 2  
3.8.14 Output Divider (R) Synchronization . . . . . . . . . . . . . . . . . . . . .23  
3.9 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.10 In-Circuit Programming. . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.11 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.12 Custom Factory Preprogrammed Parts . . . . . . . . . . . . . . . . . . . . .24  
3.13 Enabling Features and/or Configuration Settings Unavailable in ClockBuilder Pro for Factory  
Preprogrammed Devices . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4. Register Map  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.1 Addressing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.2 High-Level Register Map . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . 40  
7. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
8. Typical Operating Characteristics  
9. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
. . . . . . . . . . . . . . . . . . . . . .42  
10.1 Si5381/82 9x9 mm 64-QFN Package Diagram . . . . . . . . . . . . . . . . . . .50  
11. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
12. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13. Device Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
14. Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
14.1 Revision 0.96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
14.2 Revision 0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
14.3 Revision 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
silabs.com | Building a more connected world.  
Rev. 0.96 | 3  
Si5381/82 Data Sheet  
Features List  
1. Features List  
The Si5381/82 features are listed below:  
• ITU-T G.8262 compliant  
• Highly configurable outputs compatible with LVDS, LVPECL,  
LVCMOS, CML, and HCSL. CML outputs can be programmed  
to have 100-1600 mVpp single-ended swing.  
• Digital frequency synthesis eliminates external VCXO and ana-  
log loop filter components  
• Status monitoring (LOS, OOF, LOL)  
• DSPLL_B supports high-frequency, CPRI clocking. Remain-  
ing DSPLLs support Ethernet and general-purposing clock- • Pin controlled input switching  
ing  
• Optional zero delay mode  
• Input frequency range:  
• Hitless input clock switching: automatic or manual  
• Differential: 8 kHz to 750 MHz  
• LVCMOS: 8 kHz to 250 MHz  
• Output frequency range:  
• Automatic free-run and holdover modes  
• Fastlock feature  
• Core voltage:  
• CPRI: up to 2.94912 GHz with JESD204B support  
(DSPLL_B)  
• VDD: 1.8 V ±5%  
• VDDA: 3.3 V ±5%  
• Other differential: up to 735 MHz (DSPLL_A/C/D)  
• LVCMOS: up to 250 MHz  
• Independent output clock supply pins: 3.3 V, 2.5 V, or 1.8 V  
• Output-output skew: 75 ps max  
• Serial interface: I2C or SPI  
• Ultra-low RMS jitter (12kHz - 20MHz):  
• 72 fs typ at 122.88 MHz (DSPLL_B)  
• 88 fs typ at 156.25 MHz (DSPLL_A/C/D)  
• 79 fs typ at 322.265625 MHz (DSPLL_A/C/D)  
• In-circuit programmable with non-volatile OTP memory  
• ClockBuilder ProTM software simplifies device configuration  
• Temperature range: –40 to +85 °C  
• Pb-free, RoHS-6 compliant  
• Typical phase noise of 122.88 MHz carrier frequency  
(DSPLL_B):  
• -118 dBc/Hz @ 100 Hz offset  
• -133 dBc/Hz @ 1 kHz offset  
• -142 dBc/Hz @ 10 kHz offset  
• -149 dBc/Hz @ 100 kHz offset  
• -154 dBc/Hz @ 1 MHz offset  
silabs.com | Building a more connected world.  
Rev. 0.96 | 4  
Si5381/82 Data Sheet  
Ordering Guide  
2. Ordering Guide  
Table 2.1. Ordering Guide  
Number of Maximum Output Frequency  
Clock In-  
Ordering Part  
Number  
Refer-  
ence  
#
RoHS-6,  
Pb-Free  
Temperature  
Range  
Package  
Other  
DSPLL  
puts/  
CPRI Clocks  
Clocks  
Outputs  
Si5381A-E-GM  
Si5382A-E-GM  
XO  
XO  
4
2
4 / 12  
4 / 12  
2.94912 GHz  
2.94912 GHz  
735 MHz  
735 MHz  
64-Lead  
9x9 mm  
QFN  
Yes  
–40 to +85 °C  
Si5381A-E-EVB  
Si5382A-E-EVB  
Note:  
Evaluation Board  
Evaluation Board  
1. Add an “R” at the end of the device to denote tape and reel options.  
2. Custom, factory pre-programmed devices are available. Ordering part numbers are assigned by ClockBuilder Pro. Part number  
format is: Si5381E-Exxxxx-GM, where “xxxxx” is a unique numerical sequence representing the pre-programmed configuration.  
Figure 2.1. Ordering Part Number Fields  
silabs.com | Building a more connected world.  
Rev. 0.96 | 5  
Si5381/82 Data Sheet  
Functional Description  
3. Functional Description  
The Si5381/82 integrates four/two any-frequency DSPLLs in a monolithic IC for applications that require a combination of CPRI, Ether-  
net, and general-purpose clocking. Any clock input can be routed to any DSPLL. The output of any DSPLL can be routed to any of the  
device clock outputs. Based on 4th generation DSPLL technology, the Si5381/82 provides a clock-tree-on-a-chip solution for applica-  
tions that need a mix of different clock frequencies. DSPLL B acts as the high-frequency DSPLL, typically used for CPRI clocks while  
DSPLLs A/C/D act as Ethernet and general purpose DSPLLs.  
As shown in the figure below, the DSPLL_B of Si5381/82 is locked to it's reference input. The output is then supplied to DSPLLs A/C/D.  
The benefit is a more efficient and cost effective, lower-jitter yet frequency flexible clock-tree in a chip architecture. However, it should  
be noted that large transients or loss of lock on DSPLL_B could have some minor impact on DSPLLs A/C/D. It is recommended that  
DSPLLs A/C/D loop bandwidth be set to > 10 times DSPLL_B's loop bandwidth for optimal tracking. Please consult with Silicon Labs  
applications engineering for optimal settings for any given frequency plan.  
54 MHz  
OSC  
DSPLL_B  
Output  
DSPLL_B  
Input  
DSPLL_B  
DSPLLs  
A/C/D  
DSPLL A/C/D  
Outputs  
DSPLLs A/C/D  
Inputs  
Figure 3.1. High-frequency DSPLL  
3.1 Frequency Configuration  
The frequency configuration for each of the DSPLLs is programmable through the serial interface and can also be stored in non-volatile  
memory. DSPLL_B generates CPRI frequencies. For DSPLL_A/C/D, fractional frequency multiplication (Mn/Md) allows each of the  
DSPLLs to lock to any input frequency and generate virtually any output frequency. However, DSPLL_A,C,D are not recommended to  
generate CPRI clocks as the performance is not as good as when using DSPLL_B, which is optimized for its frequencies. All divider  
values for a specific frequency plan are easily determined using the ClockBuilder Pro utility. The Si5382 supports one Ethernet or gen-  
eral-purpose DSPLL (DSPLL_A).  
3.1.1 Si5381/82 CPRI Frequency Configuration  
The device’s frequency configuration is fully programmable through the serial interface and can also be stored in non-volatile memory.  
The combination of flexible integer dividers and a high frequency VCO allows the device to generate multiple output clock frequencies  
for applications that require ultra-low phase noise and spurious performance. The table below shows a list of possible output frequen-  
cies for wireless applications. Note that these CPRI frequencies may be generated with an Ethernet input clock to DSPLL_B. These  
frequencies are distributed to the output dividers using a configurable crosspoint mux. The R dividers allow further division for up to 10  
unique integer-ratio related frequencies on the Si5381/82. The ClockBuilder Pro software utility provides a simple means of automati-  
cally calculating the optimum divider values (P, M, N and R) for the frequencies listed in the table below.  
Table 3.1. Example of Possible Wireless Clock Frequencies  
Device Clock Frequencies Fout (MHz)  
15.36  
19.20  
30.72  
38.40  
61.44  
76.80  
silabs.com | Building a more connected world.  
Rev. 0.96 | 6  
Si5381/82 Data Sheet  
Functional Description  
Device Clock Frequencies Fout (MHz)  
122.88  
153.60  
184.32  
245.76  
307.20  
368.64  
491.52  
614.40  
737.28  
983.04  
1228.80  
1474.56  
2949.12  
3.1.2 Si5381/82 Configuration for Wireless Clock Generation  
The Si5381/82 can be used as a high performance, fully integrated wireless jitter cleaner while eliminating the need for discrete VCXO  
and loop filter components. The Si5381/82 supports JESD204B subclass 0 and subclass 1 clocking by providing both device clocks  
(DCLK) and system reference clocks (SYSREF). The clock outputs can be independently configured as device clocks or SYSREF  
clocks to drive JESD204B converters, FPGAs, or other logic devices. An example frequency configuration is shown in the figure below.  
In this case, N and R dividers determine both device and sysref frequencies. The SYSREF clock is always periodic and can be control-  
led (on/off) without glitches by enabling or disabling its output through register writes.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 7  
Si5381/82 Data Sheet  
Functional Description  
Si5381/82  
VDDO3  
OUT3  
OUT3b  
÷R3  
÷R4  
VDDO4  
OUT4  
OUT4b  
Device  
Clocks  
&
SYSREF  
(Group 1)  
÷N1  
VDDO5  
OUT5  
OUT5b  
÷R5  
÷R6  
÷R7  
÷R8  
VDDO6  
OUT6  
OUT6b  
From  
DSPLL B  
VDDO7  
OUT7  
OUT7b  
VDDO8  
OUT8  
OUT8b  
Device  
Clocks  
&
÷N4  
SYSREF  
(Group 2)  
OUT9  
OUT9b  
÷R9  
OUT9A  
OUT9Ab  
÷R9A  
VDDO9  
VDDO1  
OUT1  
OUT1b  
÷R1  
÷R2  
VDDO2  
OUT2  
OUT2b  
From DSPLL  
A/C/D  
Ethernet,  
Processor  
Clocks  
VDDO0  
OUT0A  
OUT0Ab  
÷R0A  
÷R0  
OUT0  
OUT0b  
Figure 3.2. Example Divider Configuration for Generating JESD204B Subclass 1 Clocks  
3.2 DSPLL Loop Bandwidth  
The DSPLL loop bandwidth determines the amount of input clock jitter attenuation. Register configurable DSPLL loop bandwidth set-  
tings in the range of 1 Hz to 4 kHz are available for selection. Since the loop bandwidth is controlled digitally, the DSPLL will always  
remain stable with less than 0.1 dB of peaking regardless of the loop bandwidth selection.  
3.3 Fastlock Feature  
Selecting a low DSPLL loop bandwidth (e.g., 1 Hz) will generally lengthen the lock acquisition time. The fastlock feature allows setting a  
temporary Fastlock Loop Bandwidth that is used during the lock acquisition process. Higher fastlock loop bandwidth settings will enable  
the DSPLLs to lock faster. Fastlock Loop Bandwidth settings of in the range of 100 Hz to 4 kHz are available for selection. The DSPLL  
will revert to its normal loop bandwidth once lock acquisition has completed.  
3.4 Modes of Operation  
Once initialization is complete the DSPLL operates in one of four modes: Free-run Mode, Lock Acquisition Mode, Locked Mode, or  
Holdover Mode. A state diagram showing the modes of operation is shown in Figure 3.3 Modes of Operation on page 9. The follow-  
ing sections describe each of these modes in greater detail.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 8  
Si5381/82 Data Sheet  
Functional Description  
3.4.1 Initialization and Reset  
Once power is applied, the device begins an initialization period where it downloads default register values and configuration data from  
NVM and performs other initialization tasks. Communicating with the device through the serial interface is possible once this initializa-  
tion period is complete. No clocks are generated until the initialization is complete. There are two types of resets available. A hard reset  
is functionally similar to a device power-up. All registers are restored to the values stored in NVM, and all circuits including the serial  
interface is restored to their initial state. A hard reset is initiated using the RSTb pin or by asserting the hard reset register bit. A soft  
reset bypasses the NVM download. It is simply used to initiate register configuration changes.  
Power-Up  
Reset and  
Initialization  
No valid  
input clocks  
selected  
Free-run  
Valid input clock  
selected  
An input is  
qualified and  
available for  
selection  
Lock Acquisition  
(Fast Lock)  
Phase lock on  
selected input  
clock is achieved  
An input is  
qualified and  
available for  
selection  
VCO Freeze  
State  
Locked  
Mode  
No valid input  
clocks available  
for selection  
Holdover  
Mode  
Input Clock  
Switch  
Selected input  
clock fails  
Yes  
No  
Other Valid  
Clock Inputs  
Available?  
Yes  
Holdover  
History  
Valid?  
No  
Figure 3.3. Modes of Operation  
3.4.2 Freerun Mode  
The DSPLL will automatically enter freerun mode once power is applied to the device and initialization is complete. The frequency ac-  
curacy of the generated output clocks in freerun mode is entirely dependent on the frequency accuracy of the reference clock on the  
XA/XB pins. For example, if the oscillator stability is ±50 ppm, then all the output clocks will be generated at their configured frequency  
with ±50 ppm stability in freerun mode. Any drift of the oscillator frequency is tracked at the output clock frequencies. Free run mode is  
maintained as long as no input clocks are valid.  
3.4.3 Lock Acquisition Mode  
The device monitors all inputs for a valid clock. If at least one valid clock is available for synchronization, the DSPLL automatically starts  
the lock acquisition process. If the fast lock feature is enabled, the DSPLL acquires lock using the Fastlock Loop Bandwidth setting and  
then transition to the DSPLL Loop Bandwidth setting when lock acquisition is complete. During lock acquisition, the output generates a  
clock that follows the VCO frequency change as it pulls in to the input clock frequency.  
3.4.4 Locked Mode  
Once locked, the DSPLL generates output clocks that are both frequency and phase locked to their selected input clocks. At this point,  
any oscillator frequency drift does not affect the output frequency. A loss of lock pin (LOL) and status bit indicate when lock is achieved.  
See 3.7.4 LOL Detection for more details on the operation of the loss-of-lock circuit.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 9  
Si5381/82 Data Sheet  
Functional Description  
3.4.5 Holdover Mode  
If holdover history is valid, the DSPLL automatically enters holdover mode when the selected input clock becomes invalid and no other  
valid input clocks are available for selection. The DSPLL uses an averaged input clock frequency as its final holdover frequency to mini-  
mize the disturbance of the output clock phase and frequency when an input clock suddenly fails. The holdover circuit for the DSPLL  
stores up to 120 seconds of historical frequency data while locked to a valid clock input. The final averaged holdover frequency value is  
calculated from a programmable window within the stored historical frequency data. Both the window size and the delay are program-  
mable as shown in the figure below. The window size determines the amount of holdover frequency averaging. The delay value allows  
ignoring frequency data that may be corrupt just before the input clock failure.  
Clock Failure and Entry  
into Holdover  
Historical Frequency Data Collected  
time  
Programmable historical data window used to  
determine the final holdover value  
Programmable delay  
120 seconds  
0
Figure 3.4. Programmable Holdover Window  
When entering holdover, the DSPLL pulls its output clock frequency to the calculated averaged holdover frequency. While in holdover,  
the output frequency drift is entirely dependent on the external reference clock connected to the XA/XB pins. If the clock input becomes  
valid, the DSPLL automatically exits the holdover mode and re-acquires lock to the new input clock. This process involves pulling the  
output clock frequency to achieve frequency and phase lock with the input clock. This pull-in process is glitchless and its rate is control-  
led by the DSPLL or the Fastlock bandwidth.  
The DSPLL output frequency when exiting holdover can be ramped (recommended). Just before the exit is initiated, the difference be-  
tween the current holdover frequency and the new desired frequency is measured. Using the calculated difference and a user-selecta-  
ble ramp rate, the output is linearly ramped to the new frequency. The ramp rate can be 0.2 ppm/s, 40,000 ppm/s, or any of about 40  
values in between. The DSPLL loop BW does not limit or affect ramp rate selections (and vice versa). CBPro defaults to ramped exit  
from holdover. The same ramp rate settings are used for both exit from holdover and ramped input switching. For more information on  
ramped input switching, see 3.6.4 Ramped Input Switching.  
Note: If ramped holdover exit is not selected, the holdover exit is governed either by (1) the DSPLL loop BW or (2) a user-selectable  
holdover exit BW.  
3.4.6 VCO Freeze Mode  
If there are no valid clock inputs available for selection and the holdover history is not valid, the DSPLL automatically enters VCO  
Freeze mode. The DSPLL uses the last measured input frequency to set the output frequencies in VCO Freeze mode. If a valid input  
clock appears, the DSPLL automatically exits VCO Freeze mode and reacquires a lock to the new input clock.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 10  
Si5381/82 Data Sheet  
Functional Description  
3.5 External Reference (XA/XB)  
An external crystal oscillator (XO) is required to set the reference for the Si5381/82. Only a 54 MHz XO is used as the reference to the  
wireless jitter attenuator. For the jitter and phase noise performance that is specified in this data sheet, only the recommended 54 MHz  
XO's specified for the Si5380/81/82/86 can be used in the Si534x/8x Jitter Attenuators Recommended Crystal, TCXO and OCXOs Ref-  
erence Manual.  
Place the XO as close to the XaXb pins as possible. See figure below for guidelines on how to connect the XO to the XaXb input. C1  
increases the slew rate to the Xa input, which is needed to get the jitter and phase noise performance that is specifed in this data sheet.  
XO/Clock  
XO/Clock  
Appro. Vpp @ XAInput  
XO VDD  
3.3V  
2.5V  
R1  
R2  
C1  
453 Ω  
274 Ω  
549 Ω  
732 Ω  
12 pf  
30 pf  
1.8V  
1.8V  
C1  
R1  
Note: 2.5 Vpp  
diff max  
0.1 uf  
0.1 uf  
0.1 uf  
0.1 uf  
R2  
Note: 2.0 Vpp_se max  
50  
50  
0.1 uf  
XB  
0.1 uf  
nc nc  
nc nc  
X1  
X1  
XB  
XA  
X2  
XA  
X2  
2xCL  
2xCL  
2xCL  
2xCL  
OSC  
OSC  
÷ PREF  
÷ PREF  
Differential XO/Clock  
Connection  
Single-Ended XO/Clock  
Connection  
Figure 3.5. XA/XB Input  
silabs.com | Building a more connected world.  
Rev. 0.96 | 11  
Si5381/82 Data Sheet  
Functional Description  
3.6 Inputs (IN0, IN1, IN2, IN3)  
There are four inputs that can be used to synchronize any of the DSPLLs. The inputs accept both differential and single-ended clocks.  
A crosspoint between the inputs and the DSPLLs allows any of the inputs to connect to any of the DSPLLs as shown in the figure  
below.  
Input Crosspoint  
IN0  
0
÷P0  
IN0b  
DSPLL  
1
2
A
3
0
IN1  
1
2
3
DSPLL  
B
÷P1  
÷P2  
÷P3  
IN1b  
0
1
2
3
DSPLL  
C
IN2  
IN2b  
0
1
2
3
DSPLL  
D
IN3/FB_IN  
IN3b/FB_INb  
Figure 3.6. DSPLL Input Selection Crosspoint  
3.6.1 Manual Input Switching (IN0, IN1, IN2, IN3)  
Input clock selection can be made manually using the IN_SEL[1:0] pins or through a register. A register bit determines input selection  
as pin selectable or register selectable. The IN_SEL pins are selected by default. If there is no clock signal on the selected input, the  
device automatically enters free-run or holdover mode. When the zero delay mode is enabled, IN3 becomes the feedback input (FB_IN)  
and is not available for selection as a clock input.  
Table 3.2. Manual Input Selection Using IN_SEL[1:0] Pins  
IN_SEL[1:0]  
Selected Input  
Zero Delay Mode Disabled  
Zero Delay Mode Enabled  
0
0
1
1
0
1
0
1
IN0  
IN1  
IN2  
IN3  
IN0  
IN1  
IN2  
Reserved  
silabs.com | Building a more connected world.  
Rev. 0.96 | 12  
Si5381/82 Data Sheet  
Functional Description  
3.6.2 Automatic Input Selection (IN0, IN1, IN2, IN3)  
An automatic input selection state machine is available in addition to the manual switching option. In automatic mode, the selection  
criteria is based on input clock qualification, input priority, and the revertive option. Only input clocks that are valid can be selected by  
the automatic clock selection state machine. If there are no valid input clocks available the DSPLL will enter the holdover mode. With  
revertive switching enabled, the highest priority input with a valid input clock is always selected. If an input with a higher priority be-  
comes valid then an automatic switchover to that input is initiated. With non-revertive switching, the active input always remains  
selected while it is valid. If it becomes invalid an automatic switchover to a valid input with the highest priority is initiated.  
3.6.3 Hitless Input Switching  
Hitless switching is a feature that prevents a phase offset from propagating to the output when switching between two clock inputs that  
have a fixed phase relationship. A hitless switch can only occur when the two input frequencies are frequency locked meaning that they  
have to be exactly at the same frequency, or at a fractional frequency relationship to each other. When hitless switching is enabled, the  
DSPLL simply absorbs the phase difference between the two input clocks during a input switch. When disabled, the phase difference  
between the two inputs is propagated to the output at a rate determined by the DSPLL Loop Bandwidth. The hitless switching feature  
supports clock frequencies down to the minimum input frequency of 7.68 MHz.  
3.6.4 Ramped Input Switching  
When switching between two plesiochronous input clocks (i.e., the frequencies are "almost the same" but not quite), ramped input  
switching should be enabled to ensure a smooth transition between the two inputs. Ramped input switching avoids frequency transients  
and overshoot when switching between frequencies and so is the default switching mode in CBPro. The feature should be turned off  
when switching between input clocks that are always frequency locked (i.e., are always the same exact frequency). The same ramp  
rate settings are used for both holdover exit and clock switching. For more information on ramped exit from holdover see 3.4.5 Holdover  
Mode.  
3.6.5 Glitchless Input Switching  
The DSPLL has the ability of switching between two input clock frequencies that are up to 40 ppm apart. The DSPLL will pull-in to the  
new frequency using the DSPLL Loop Bandwidth or using the Fastlock Loop Bandwidth if enabled. The loss of lock (LOL) indicator will  
assert while the DSPLL is pulling-in to the new clock frequency. There will be no abrupt phase change at the output during the transi-  
tion.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 13  
Si5381/82 Data Sheet  
Functional Description  
3.6.6 Input Configuration and Terminations  
Each of the inputs can be configured as differential or single-ended LVCMOS. The recommended input termination schemes are in the  
figure below. Standard 50% duty cycle signals must be ac-coupled, while low duty cycle pulsed CMOS signals can be dc-coupled. Un-  
used inputs can be disabled and left unconnected when not in use.  
Standard AC-coupled Differential LVDS  
PULSED CMOS  
50  
INx  
100  
STANDARD  
LVCMOS  
INxb  
3.3 V, 2.5V  
50  
LVDS or CML  
Si5381/82  
Standard AC-coupled Differential LVPECL  
PULSED CMOS  
STANDARD  
50  
INx  
100  
INxb  
50  
3.3 V, 2.5 V  
LVPECL  
LVCMOS  
Si5381/82  
Standard AC-coupled Single-ended  
PULSED CMOS  
STANDARD  
50  
INx  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
INxb  
LVCMOS  
Si5381/82  
Pulsed CMOS DC-coupled Single-ended  
PULSED CMOS  
STANDARD  
R1  
INx  
50  
R2  
INxb  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
LVCMOS  
Si5381/82  
R1  
R2  
VDD  
1.8V  
2.5V  
3.3V  
324  
511  
634  
665  
475  
365  
Resistor values for  
fIN_PULSED < 1 MHz  
LVCMOS DC-coupled Single-ended  
PULSED CMOS  
STANDARD  
INx  
50  
INxb  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
LVCMOS  
Si5381/82  
Figure 3.7. Termination of Differential and LVCMOS Input Signals  
silabs.com | Building a more connected world.  
Rev. 0.96 | 14  
Si5381/82 Data Sheet  
Functional Description  
3.7 Fault Monitoring  
All four input clocks (IN0, IN1, IN2, IN3/FB_IN) are monitored for loss of signal (LOS) and out-of-frequency (OOF) as shown in the fig-  
ure below. The reference at the XA/XB pins is also monitored for LOS since it provides a critical reference clock for the DSPLLs. There  
is also a Loss Of Lock (LOL) indicator which is asserted when the DSPLL loses synchronization.  
XB  
XA  
LOS  
DSPLL A  
LOL  
PD  
LPF  
÷M  
IN0  
Precision  
Fast  
LOS  
LOS  
LOS  
LOS  
OOF  
OOF  
OOF  
OOF  
÷P0  
÷P1  
÷P2  
÷P3  
DSPLL B  
IN0b  
LOL  
PD  
LPF  
÷M  
IN1  
Precision  
Fast  
IN1b  
Precision  
Fast  
IN2  
DSPLL C  
LOL  
PD  
IN2b  
LPF  
÷M  
IN3  
Precision  
Fast  
IN3b  
DSPLL D  
LOL  
PD  
LPF  
÷M  
Figure 3.8. Si5381/82 Fault Monitors  
3.7.1 Input LOS Detection  
The loss of signal monitor measures the period of each input clock cycle to detect phase irregularities or missing clock edges. Each of  
the input LOS circuits has its own programmable sensitivity which allows ignoring missing edges or intermittent errors. Loss of signal  
sensitivity is configurable using the ClockBuilder Pro utility.  
The LOS status for each of the monitors is accessible by reading a status register. The live LOS register always displays the current  
LOS state and a sticky register always stays asserted until cleared. An option to disable any of the LOS monitors is also available.  
Sticky  
Monitor  
LOS  
LOS  
en  
Live  
Figure 3.9. LOS Status Indicators  
3.7.2 Reference Clock LOS Detection  
A LOS monitor is available to ensure that the external reference oscillator is valid. By default the output clocks are disabled when  
XAXB_LOS is detected. This feature can be disabled such that the device will continue to produce output clocks when XAXB_LOS is  
detected.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 15  
Si5381/82 Data Sheet  
Functional Description  
3.7.3 OOF Detection  
Each input clock is monitored for frequency accuracy with respect to a OOF reference which it considers as its “0_ppm” reference. This  
OOF reference can be selected as either:  
• The XA/XB reference  
• Any input clock (IN0, IN1, IN2, IN3)  
The final OOF status is determined by the combination of both a precise OOF monitor and a fast OOF monitor as shown in the figure  
below. An option to disable either monitor is also available. The live OOF register always displays the current OOF state, and its sticky  
register bit stays asserted until cleared.  
Sticky  
Monitor  
Precision  
Fast  
en  
en  
OOF  
OOF  
Live  
Figure 3.10. OOF Status Indicator  
3.7.3.1 Precision OOF Monitor  
The precision OOF monitor circuit measures the frequency of all input clocks to within ±1 ppm accuracy with respect to the selected  
OOF frequency reference. A valid input clock frequency is one that remains within the OOF frequency range which is register configura-  
ble up to ±20 ppm in steps of 1/16 ppm. A configurable amount of hysteresis is also available to prevent the OOF status from toggling  
at the failure boundary. An example is shown in the figure below. In this case, the OOF monitor is configured with a valid frequency  
range of ±6 ppm and with 2 ppm of hysteresis. An option to use one of the input pins (IN0–IN3) as the 0 ppm OOF reference instead of  
the external XO reference is available. This option is register configurable.  
OOF Declared  
OOF Cleared  
fIN  
Hysteresis  
Hysteresis  
-4 ppm  
(Clear)  
-6 ppm  
(Set)  
+4 ppm  
(Clear)  
+6 ppm  
(Set)  
0 ppm  
OOF Reference  
Figure 3.11. Example of Precise OOF Monitor Assertion and Deassertion Triggers  
3.7.3.2 Fast OOF Monitor  
Because the precision OOF monitor needs to provide 1/16 ppm of frequency measurement accuracy, it must measure the monitored  
input clock frequencies over a relatively long period of time. This may be too slow to detect an input clock that is quickly ramping in  
frequency. An additional level of OOF monitoring called the Fast OOF monitor runs in parallel with the precision OOF monitors to quick-  
ly detect a ramping input frequency. The Fast OOF monitor asserts OOF on an input clock frequency that has changed by greater than  
±4000 ppm.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 16  
Si5381/82 Data Sheet  
Functional Description  
3.7.4 LOL Detection  
The Loss Of Lock (LOL) monitor asserts a LOL register bit when the DSPLL has lost synchronization with its selected input clock.  
There is also a dedicated loss of lock pin that reflects the loss of lock condition. The LOL monitor functions by measuring the frequency  
difference between the input and feedback clocks at the phase detector. There are two LOL frequency monitors, one that sets the LOL  
indicator (LOL Set) and another that clears the indicator (LOL Clear). An optional timer is available to delay clearing of the LOL indicator  
to allow additional time for the DSPLL to completely lock to the input clock. The timer is also useful to prevent the LOL indicator from  
toggling or chattering as the DSPLL completes lock acquisition. A block diagram of the LOL monitor is shown in the figure below. The  
live LOL register always displays the current LOL state and a sticky register always stays asserted until cleared. The LOL pin reflects  
the current state of the LOL monitor.  
Sticky  
Si5381/82  
LOL Status Registers  
Live  
LOLb  
DSPLL D  
DSPLL C  
DSPLL B  
DSPLL A  
LOL Monitor  
LOL  
Clear  
t
LOL  
Set  
DSPLL A  
fIN  
PD  
LPF  
÷M  
Figure 3.12. LOL Status Indicators  
Each of the LOL frequency monitors has an adjustable sensitivity which is register configurable from 0.1 ppm to 10,000 ppm. Having  
two separate frequency monitors allows for hysteresis to help prevent chattering of LOL status.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 17  
Si5381/82 Data Sheet  
Functional Description  
An example configuration where LOCK is indicated when there is less than 0.1 ppm frequency difference at the inputs of the phase  
detector and LOL is indicated when there’s more than 1 ppm frequency difference is shown in the following figure.  
Clear LOL  
Threshold  
Set LOL  
Threshold  
Lock Acquisition  
Lost Lock  
LOL  
Hysteresis  
LOCKED  
0
0.1  
1
10,000  
Phase Detector Frequency Difference (ppm)  
Figure 3.13. LOL Set and Clear Thresholds  
Note: In this document, the terms, LVDS and LVPECL, refer to driver formats that are compatible with these signaling standards.  
An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to completely lock to the input  
clock. The timer is also useful to prevent the LOL indicator from toggling or chattering as the DSPLL completes lock acquisition. The  
configurable delay value depends on frequency configuration and loop bandwidth of the DSPLL and is automatically calculated using  
the ClockBuilder Pro utility.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 18  
Si5381/82 Data Sheet  
Functional Description  
3.7.5 Interrupt Pin (INTRb)  
An interrupt pin (INTRb) indicates a change in state with any of the status indicators for any of the DSPLLs. All status indicators are  
maskable to prevent assertion of the interrupt pin. The state of the INTRb pin is reset by clearing the sticky status registers.  
mask  
IN0_LOS_FLG  
IN0  
mask  
IN0_OOF_FLG  
mask  
IN1_LOS_FLG  
IN1  
mask  
IN1_OOF_FLG  
mask  
IN2_LOS_FLG  
IN2  
mask  
IN2_OOF_FLG  
INTRb  
mask  
IN3_LOS_FLG  
IN3  
mask  
IN3_OOF_FLG  
mask  
XAXB_LOS_FLG  
mask  
LOLA_FLG  
mask  
LOLB_FLG  
mask  
LOL  
LOLC_FLG  
mask  
LOLD_FLG  
mask  
HOLDA_FLG  
mask  
HOLDB_FLG  
mask  
HOLD  
HOLDC_FLG  
mask  
HOLDD_FLG  
Figure 3.14. Interrupt Triggers and Masks  
3.8 Outputs  
The Si5381/82 supports up to twelve differential output drivers. Each driver has a configurable voltage swing and common mode volt-  
age covering a wide variety of differential signal formats. In addition to supporting differential signals, any of the outputs can be config-  
ured as single-ended LVCMOS (3.3 V, 2.5 V, or 1.8 V) providing up to 24 single-ended outputs, or any combination of differential and  
single-ended outputs.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 19  
Si5381/82 Data Sheet  
Functional Description  
3.8.1 Output Crosspoint  
A crosspoint allows any of the output drivers to connect with any of the MultiSynths as shown in the figure below. The crosspoint config-  
uration is programmable and can be stored in NVM so that the desired output configuration is ready at power up.  
Figure 3.15. MultiSynth to Output Driver Crosspoint  
3.8.2 Output Signal Format  
The differential output swing and common mode voltage are both fully programmable covering a wide variety of signal formats including  
LVDS and LVPECL. In addition to supporting differential signals, any of the outputs can be configured as LVCMOS (3.3 V, 2.5 V, or 1.8  
V) drivers providing up to 24 single-ended outputs, or any combination of differential and single-ended outputs.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 20  
Si5381/82 Data Sheet  
Functional Description  
3.8.3 Output Terminations  
The output drivers support both ac-coupled and dc-coupled terminations as shown in the following figure.  
AC-coupled LVDS/LVPECL  
DC-coupled LVDS  
VDDO = 3.3 V, 2.5 V, 1.8 V  
VDDO = 3.3 V, 2.5 V  
50  
50  
50  
50  
OUTx  
OUTx  
100  
OUTxb  
100  
OUTxb  
Internally  
self-biased  
Si5386  
Si5386  
AC-coupled LVPECL / CML  
DC-coupled LVCMOS  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
VDD – 1.3 V  
VDDO = 3.3 V, 2.5 V, 1.8 V  
VDDO = 3.3 V, 2.5 V  
50  
50  
50  
50  
Rs  
Rs  
OUTx  
50  
50  
OUTx  
OUTxb  
OUTxb  
Si5386  
Si5386  
AC-coupled HCSL  
VDDRX  
VDDO = 3.3 V, 2.5 V, 1.8 V  
R1  
R1  
OUTx  
OUTxb  
50  
50  
Standard  
HCSL  
Receiver  
Si5386  
R2  
R2  
For VCM = 0.35 V  
VDDRX  
R1  
R2  
442 Ω  
56.2 Ω  
59 Ω  
3.3 V  
2.5 V  
1.8 V  
332 Ω  
243 Ω  
63.4 Ω  
Figure 3.16. Supported Output Terminations  
3.8.4 Programmable Common Mode Voltage For Differential Outputs  
The common mode voltage (VCM) for the differential modes are programmable so that LVDS specifications can be met and for the best  
signal integrity with different supply voltages. When dc coupling the output driver, it is essential that the receiver have a relatively high  
common mode impedance so that the common mode current from the output driver is very small.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 21  
Si5381/82 Data Sheet  
Functional Description  
3.8.5 LVCMOS Output Impedance and Drive Strength Selection  
Each LVCMOS driver has a configurable output impedance to accommodate different trace impedances and drive strengths. A source  
termination resistor is recommended to help match the selected output impedance to the trace impedance. There are three programma-  
ble output impedance selections for each VDDO options as shown in the table below.  
Table 3.3. LVCMOS Output Impedance and Drive Strength Selections  
VDDO  
OUTx_CMOS_DRV  
Source Impedance (Zs)  
Drive Strength (Iol/Ioh)  
3.3 V  
0x01  
0x02  
0x03*  
0x01  
0x02  
0x03*  
0x03*  
38 Ω  
30 Ω  
22 Ω  
43 Ω  
35 Ω  
24 Ω  
31 Ω  
10 mA  
12 mA  
17 mA  
6 mA  
2.5 V  
1.8 V  
8 mA  
11 mA  
5 mA  
Note: Use of the lowest impedance setting is recommended for all supply voltages for best edge rates.  
3.8.6 LVCMOS Output Signal Swing  
The signal swing (VOL/VOH) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output driver has its own  
VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers.  
3.8.7 LVCMOS Output Polarity  
When a driver is configured as an LVCMOS output, it generates a clock signal on both pins (OUTx and OUTxb). By default, the clock  
on the OUTx pin is generated with the same polarity (in phase) as the clock on the OUTxb pin. The polarity of these clocks is configura-  
ble, enabling complementary clock generation and/or inverted polarity with respect to other output drivers.  
3.8.8 Output Enable/Disable  
The OEb pin provides a convenient method of disabling or enabling all of the output drivers at the same time. When the OEb pin is held  
high all outputs will be disabled. When held low, the outputs will all be enabled. Outputs in the enabled state can still be individually  
disabled through register control.  
3.8.9 Output Disable During LOL  
By default, a DSPLL that is out of lock will generate either free-running clocks or generate clocks in holdover mode. There is an option  
to disable the outputs when a DSPLL is LOL. This option can be useful to force a downstream PLL into holdover.  
3.8.10 Output Disable During Reference LOS  
The external XA/XB reference provides a critical function for the operation of the DSPLLs. In the event of the XO failure, the device will  
assert an XAXB_LOS alarm. By default, all outputs will be disabled during assertion of the XAXB_LOS alarm. There is an option to  
leave the outputs enabled during an XAXB_LOS alarm, but the frequency accuracy and stability is indeterminate during this fault condi-  
tion.  
3.8.11 Output Driver State When Disabled  
The disabled state of an output driver is configurable as disable low or disable high.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 22  
Si5381/82 Data Sheet  
Functional Description  
3.8.12 Synchronous Output Disable Feature  
The output drivers provide a selectable synchronous disable feature. Output drivers with this feature turned on will wait until a clock  
period has completed before the driver is disabled. This prevents unwanted runt pulses from occurring when disabling an output. When  
this feature is turned off, the output clock will disable immediately without waiting for the period to complete.  
3.8.13 Zero Delay Mode  
A zero delay mode is available for applications that require fixed and consistent minimum delay between the selected input and outputs.  
The zero delay mode is configured for DSPLL_B only by opening the internal feedback loop through software configuration and closing  
the loop externally as shown in the figure below.  
This helps to cancel out the internal delay introduced by the dividers, the crosspoint, the input, and the output drivers. Any one of the  
outputs can be fed back to the FB_IN pins, although using the output driver that achieves the shortest trace length will help to minimize  
the input-to-output delay. Note that the nominal input-to-output delay is the trace delay from OUTx to FB_IN. The OUT9A and FB_IN  
pins are recommended for the external feedback connection. The FB_IN input pins must be terminated and ac-coupled when zero de-  
lay mode is used. A differential external feedback path connection is necessary for best performance. Note that the hitless switching  
feature is not available when zero delay mode is enabled.  
IN0  
IN0b  
IN1  
Si5381/82  
÷P0  
÷P1  
÷P2  
DSPLL B  
÷M  
IN1b  
PD LPF  
IN2  
IN2b  
÷5  
IN3/FB_IN  
÷P3  
VDDO0  
IN3b/FB_INb  
OUT0A  
OUT0Ab  
÷R0A  
÷R0  
OUT0  
OUT0b  
VDDO2  
OUT2  
OUT2b  
t1  
÷N1  
÷R2  
VDDO8  
OUT8  
OUT8b  
÷R8  
t4  
÷N4  
OUT9  
OUT9b  
÷R9  
OUT9A  
÷R9A  
OUT9Ab  
VDDO9  
External Feedback Path  
Figure 3.17. Si5381/82 Zero Delay Mode Setup  
3.8.14 Output Divider (R) Synchronization  
All the output R dividers are reset to a known state during the power-up initialization period. This ensures consistent and repeatable  
phase alignment across all output drivers. Resetting the device using the RSTb pin or asserting the hard reset bit will have the same  
result. R divider setting of 2 produces a 180 degree phase change compared to high R divider settings.  
3.9 Power Management  
Unused inputs and output drivers can be powered down when unused. Consult the Reference Manual and ClockBuilder Pro configura-  
tion utility for details.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 23  
Si5381/82 Data Sheet  
Functional Description  
3.10 In-Circuit Programming  
The Si5381/82 is fully configurable using the serial interface (I2C or SPI). At power-up the device downloads its default register values  
from internal non-volatile memory (NVM). Application specific default configurations can be written into NVM allowing the device to  
generate specific clock frequencies at power-up. Writing default values to NVM is in-circuit programmable with normal operating power  
supply voltages applied to its VDD and VDDA pins. The NVM is two time writable. Once a new configuration has been written to NVM,  
the old configuration is no longer accessible. Refer to the Reference Manual for a detailed procedure for writing registers to NVM.  
3.11 Serial Interface  
Configuration and operation of the Si5381/82 is controlled by reading and writing registers using the I2C or SPI interface. The I2C_SEL  
pin selects I2C or SPI operation. Communication with both 3.3 V and 1.8 V host is supported. The SPI mode operates in either 4-wire or  
3-wire. See the Reference Manual for details.  
3.12 Custom Factory Preprogrammed Parts  
For applications where a serial interface is not available for programming the device, custom pre-programmed parts can be ordered  
with a specific configuration written into NVM. A factory preprogrammed part will generate clocks at power-up. Custom, factory-preprog-  
rammed devices are available. The ClockBuilder Pro custom part number wizard can be used to quickly and easily generate a custom  
part number for your configuration.  
In less than three minutes, you will be able to generate a custom part number with a detailed data sheet addendum matching your  
design’s configuration. Once you receive the confirmation email with the data sheet addendum, simply place an order with your local  
Silicon Labs sales representative. Samples of your preprogrammed device will typically ship in about two weeks.  
3.13 Enabling Features and/or Configuration Settings Unavailable in ClockBuilder Pro for Factory Preprogrammed Devices  
As with essentially all modern software utilities, ClockBuilder Pro is continually being updated and enhanced. By registering at www.si-  
labs.com, you will be notified about changes and their impact. This update process will ultimately enable ClockBuilder Pro users to ac-  
cess all features and register setting values documented in this data sheet and the Reference Manual.  
However, if you must enable or access a feature or register setting value so that the device starts up with this feature or a register  
setting, but the feature or register setting is not yet available in CBPro, you must contact a Silicon Labs applications engineer for assis-  
tance. One example of this type of feature or custom setting is the customizable output amplitude and common voltages for the clock  
outputs. After careful review of your project file and requirements, the Silicon Labs applications engineer will email back your CBPro  
project file with your specific features and register settings enabled using what's referred to as the manual "settings override" feature of  
CBPro. "Override" settings to match your request(s) will be listed in your design report file. Examples of setting "overrides" in a CBPro  
design report are shown in the following table.  
Table 3.4. Setting Overrides  
Location  
Customer Name  
FORCE_HOLD_PLLA  
OOF_DIV_CLK_DIS  
Engineering Name  
OLA_HO_FORCE  
OOF_DIV_CLK_DIS  
Type  
No NVM  
User  
Target  
N/A  
Dec Value  
Hex Value  
0x1  
0x0435[0]  
0x0B48[0:4]  
1
0
OPN and EVB  
0x00  
silabs.com | Building a more connected world.  
Rev. 0.96 | 24  
Si5381/82 Data Sheet  
Functional Description  
Once you receive the updated design file, simply open it in CBPro. The device will begin operation after startup with the values in the  
NVM file. The flowchart for this process is shown in the following figure.  
End: Place  
sample order  
Start  
Do I need a  
pre-programmed device with  
a feature or setting which is  
unavailable in ClockBuilder  
Pro?  
Generate  
Custom OPN  
in CBPro  
Configure device  
using CBPro  
No  
Yes  
Contact Silicon Labs  
Technical Support  
to submit & review  
your  
Yes  
non-standard  
configuration  
request & CBPro  
project file  
Receive  
updated CBPro  
project file  
from  
Silicon Labs  
with “Settings  
Override”  
Does the updated  
CBPro Project file  
match your  
Load project file  
into CBPro and test  
requirements?  
Figure 3.18. Process for Requesting Non-Standard CBPro Features  
Note: Contact Silicon Labs Technical Support at www.silabs.com/support/Pages/default.aspx.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 25  
Si5381/82 Data Sheet  
Register Map  
4. Register Map  
The register map is divided into multiple pages where each page has 256 addressable registers. Page 0 contains frequently accessible  
registers, such as alarm status, resets, device identification, etc. Other pages contain registers that need less frequent access such as  
frequency configuration, and general device settings. A high level map of the registers is shown in “6.2. High-Level Register Map” .  
Refer to the Reference Manual for a complete list of register descriptions and settings. Silicon Labs strongly recommends using Clock-  
Builder Pro to create and manage register settings.  
4.1 Addressing Scheme  
The device registers are accessible using a 16-bit address that consists of an 8-bit page address plus an 8-bit register address. By  
default, the page address is set to 0x00. Changing to another page is accomplished by writing to the "Set Page Address" byte located  
at address 0x01 of each page.  
4.2 High-Level Register Map  
Table 4.1. High-Level Register Map  
16-Bit Address  
Content  
8-bit Page Address  
8-bit Register Address Range  
00  
01  
Revision IDs  
Set Page Address  
02–0A  
0B–15  
17–1B  
1C  
Device IDs  
Alarm Status  
INTR Masks  
00  
Reset controls  
1D  
FINC, FDEC Control Bits  
SPI (3-Wire vs 4-Wire)  
Alarm Configuration  
NVM Controls  
2B  
2C–E1  
E2–E4  
FE  
Device Ready Status  
Set Page Address  
01  
08–3A  
41–42  
FE  
Output Driver Controls  
Output Driver Disable Masks  
Device Ready Status  
Set Page Address  
01  
01  
02–05  
08–2F  
30  
Reference Clock Frequency Adjust  
Input Divider (P) Settings  
Input Divider (P) Update Bits  
Output Divider (R) Settings  
User Scratch Pad Memory  
Device Ready Status  
02  
47–6A  
6B–72  
FE  
silabs.com | Building a more connected world.  
Rev. 0.96 | 26  
Si5381/82 Data Sheet  
Register Map  
16-Bit Address  
Content  
8-bit Page Address  
8-bit Register Address Range  
01  
02–37  
0C  
Set Page Address  
MultiSynth Divider (N0–N4) Settings  
MultiSynth Divider (N0) Update Bit  
MultiSynth Divider (N1) Update Bit  
MultiSynth Divider (N2) Update Bit  
MultiSynth Divider (N3) Update Bit  
MultiSynth Divider (N4) Update Bit  
FINC/FDEC Settings N0–N4  
Output Delay (Δt) Settings  
Device Ready Status  
17  
22  
03  
2D  
38  
39–58  
59–62  
FE  
04  
05  
87  
Zero Delay Mode Set Up  
Fast Lock Loop Bandwidth  
Feedback Divider (M) Settings  
Input Select Control  
0E–14  
15–1F  
2A  
2B  
Fast Lock Control  
2C–35  
36  
Holdover Settings  
Input Clock Switching Mode Select  
Input Priority Settings  
38–39  
3F  
Holdover History Valid Data  
Reserved  
06–08  
09  
00–FF  
01  
Set Page Address  
1C  
Zero Delay Mode Settings  
Control I/O Voltage Select  
Input Settings  
43  
49  
10–FF  
00–FF  
Reserved  
silabs.com | Building a more connected world.  
Rev. 0.96 | 27  
Si5381/82 Data Sheet  
Electrical Specifications  
5. Electrical Specifications  
Table 5.1. Recommended Operating Conditions  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
°C  
°C  
V
Ambient Temperature  
Maximum Junction Temperature  
Core Supply Voltage  
TA  
TJMAX  
VDD  
125  
1.89  
3.47  
3.47  
1.71  
3.14  
3.14  
1.80  
3.30  
3.30  
VDDA  
VDDO  
V
Output Driver Supply Voltage  
V
V
V
2.38  
1.71  
2.50  
1.80  
2.62  
1.89  
Note:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical val-  
ues apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Table 5.2. DC Characteristics  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
IDD  
Test Condition  
Min  
Typ  
175  
120  
21  
Max  
Unit  
mA  
mA  
mA  
Core Supply Current  
Notes 1, 2  
IDDA  
LVPECL Output3  
@ 156.25 MHz  
LVDS Output3  
@ 156.25 MHz  
3.3 V LVCMOS4  
Output  
Output Buffer Supply Current  
IDDO  
25  
15  
21  
18  
25  
mA  
mA  
@ 156.25 MHz  
2.5 V LVCMOS4  
Output  
16  
12  
18  
13  
mA  
mA  
@ 156.25 MHz  
1.8 V LVCMOS4  
Output  
@ 156.25 MHz  
Note 1,5  
Total Power Dissipation  
Pd  
1125  
mW  
silabs.com | Building a more connected world.  
Rev. 0.96 | 28  
Si5381/82 Data Sheet  
Electrical Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Si5381/82 test configuration: 8 clock outputs enabled (2 x 983.04 MHz, 2 x 491.52 MHz, 1 x 245.76 MHz, 3 x 122.88 MHz; 2.5  
LVDS). Excludes power in termination resistors.  
2. VDDO0 supplies power to both OUT0 and OUT0A buffers. Similarly, VDDO9 supplies power to both OUT9 and OUT9A buffers.  
3. Differential outputs terminated into an AC coupled 100 Ω load.  
4. LVCMOS outputs measured into a 6-inch 50 Ω PCB trace with 5 pF load. The LVCMOS outputs were set to OUTx_CMOS_DRV  
= 3, which is the strongest driver setting.  
5. Detailed power consumption for any configuration can be estimated using ClockBuilder Pro when an evaluation board (EVB) is  
not available. All EVBs support detailed current measurements for any configuration.  
LVCMOS Output Test Configuration  
Differential Output Test Configuration  
Trace length 5  
inches  
IDDO  
0.1 uF  
0.1 uF  
56 Ω  
0.1 uF  
56 Ω  
499 Ω  
4.7 pF  
50  
IDDO  
50 Ω Scope Input  
50 Ω Scope Input  
50  
50  
OUT  
100  
OUT  
OUTb  
OUTb  
50  
499 Ω  
4.7 pF  
0.1 uF  
Table 5.3. Input Clock Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Standard Differential or Single-Ended/LVCMOS — AC-coupled (IN0, IN1, IN2, IN3)  
Input Frequency Range  
Input Voltage Amplitude  
Single-Ended Input Amplitude  
fIN_DIFF  
fIN_SE  
Differential  
0.008  
0.008  
750  
250  
MHz  
Single-ended/  
LVCMOS  
VIN_DIFF  
fIN_DIFF < 250 MHz  
100  
225  
1800  
1800  
mVpp_se  
mVpp_se  
250 MHz < fIN_DIFF  
750 MHz  
<
VIN_SE  
SR  
fIN_SE< 250 MHz  
100  
400  
3600  
mVpp_se  
V/µs  
Slew Rate1, 2  
Duty Cycle  
DC  
CIN  
40  
60  
%
Capacitance  
2.4  
pF  
Pulsed CMOS — DC-coupled (IN0, IN1, IN2, IN3)3  
Input Frequency  
Input Voltage  
fIN_CMOS  
VIL  
0.008  
–0.2  
0.49  
400  
40  
250  
0.33  
MHz  
V
VIH  
V
Slew Rate1, 2  
Duty Cycle  
SR  
V/µs  
%
DC  
Clock Input  
60  
silabs.com | Building a more connected world.  
Rev. 0.96 | 29  
Si5381/82 Data Sheet  
Electrical Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
PW  
Test Condition  
Min  
1.6  
Typ  
Max  
Unit  
ns  
Minimum Pulse Width  
Input Resistance  
Pulse Input  
RIN  
8
kΩ  
XO (applied to XA/XB)4  
Frequency  
fIN_REF  
fRANGE  
54  
MHz  
ppm  
Total Frequency Tolerance5  
Input Voltage Amplitude  
-50  
+50  
VIN_SE  
VIN_DIFF  
SR  
Single-ended Input  
Differential Input  
Single-ended Input  
Differential Input  
365  
365  
1500  
400  
40  
2000  
2500  
mVpp_se  
mVpp_diff  
V/µs  
Slew Rate1, 2  
SRIN_DIFF  
DC  
V/µs  
Input Duty Cycle  
Activity Dip6  
60  
%
2
ppm/C  
Note:  
1. Imposed for phase noise performance.  
2. Rise and fall times can be estimated using the following simplified equation: tr/tf80-20 = ((0.8 - 0.2) * VIN_Vpp_se) / SR.  
3. Pulsed CMOS mode is intended primarily for single-ended LVCMOS input clocks <1 MHz, which must be dc-coupled, having a  
duty cycle significantly less than 50%. A typical application example is a low frequency video frame sync pulse. Since the input  
thresholds (VIL, VIH) of this buffer are non-standard, refer to the input attenuator circuit for dc-coupled Pulsed LVCMOS in the  
Si5381/82 Reference Manual. Otherwise, for standard LVCMOS input clocks, use the “AC-coupled Singled-Ended” mode as  
shown in 3.6.6 Input Configuration and Terminations.  
4. Refer to the Si534x/8x Jitter Attenuators Recommended Crystal, TCXO and OCXOs Reference Manual for recommended 54  
MHz XOs.  
5. Includes aging and temperature impacts from -40C to 85C.  
6. Activity dip is also called frequency perturbation.  
Table 5.4. Serial and Control Input Pin Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Serial and Control Input Pins (IN_SEL[1:0], RSTb, OEb, PDNb, A1/SDO, SCLK, A0/CSb, SDA/SDIO)  
1
Input Voltage Thresholds  
VIL  
VIH  
V
V
0.3 x VDDIO  
1
0.7 x VDDIO  
Input Capacitance  
Input Resistance  
Minimum Pulse Width  
Note:  
CIN  
IL  
2
pF  
kΩ  
ns  
20  
PW  
RSTb, PDNb  
100  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Si5381/82 Reference Manual for more  
details on the register settings.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 30  
Si5381/82 Data Sheet  
Electrical Specifications  
Table 5.5. Differential Clock Output Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
N >= 10  
N = 9  
Min  
0.0001  
Typ  
Max  
1474.56  
Unit  
MHz  
MHz  
MHz  
MHz  
Output Frequency6  
fOUT  
1638.4  
1843.2  
2106.53  
N = 8  
N = 77  
N = 6  
48  
45  
40  
25  
2457.6  
52  
55  
60  
75  
75  
MHz  
MHz  
%
N = 5  
2949.12  
Duty Cycle  
DC  
fOUT < 400 MHz  
400 MHz < fOUT < 800 MHz  
800 MHz < fOUT < 1474.56 MHz  
f > 1474.56 MHz  
Differential output  
0
%
%
%
Output-Output Skew7  
TSK  
ps  
Specified for outputs using the same  
DSPLL  
Differential output Specified for outputs  
using different DSPLLs  
-150  
0
0
150  
50  
ps  
ps  
OUT-OUTb Skew  
TSK_OUT  
Measured from the positive to negative  
output pins  
Output Voltage Amplitude1  
Normal Mode  
VOUT  
VDDO = 3.3 V, 2.5  
V, or 1.8 V  
LVDS  
350  
660  
470  
810  
550  
mVpp_se  
VDDO = 3.3 V, 2.5  
V
LVPECL  
1000  
Common Mode Voltage 1,2, 3  
Normal Mode  
LVDS  
VCM  
VDDO = 3.3 V  
1.10  
1.90  
1.15  
0.87  
1.25  
2.05  
1.25  
0.93  
170  
1.35  
2.15  
1.35  
1.00  
240  
V
LVPECL  
VDDO = 2.5 V  
VDDO = 1.8 V  
LVPECL, LVDS  
sub-LVDS  
Rise and Fall Times  
(20% to 80%)  
tR/tF  
Normal Mode  
ps  
Ω
Differential Output Impe-  
dance2  
ZO  
Normal Mode  
100  
Power Supply Noise Rejec-  
tion4  
PSRR  
Normal Mode  
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
–93  
–93  
–84  
–79  
dBc  
silabs.com | Building a more connected world.  
Rev. 0.96 | 31  
Si5381/82 Data Sheet  
Electrical Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output-output Crosstalk5  
XTALK  
Differential  
–75  
dB  
Note:  
1. Output amplitude and common mode voltage are programmable through register settings and can be stored in NVM. Each output  
driver can be programmed independently. The typical normal mode (or low power mode) LVDS maximum is 100 mV (or 80 mV)  
higher than the TIA/EIA-644 maximum. Refer to the Si5381/82 Reference Manual for recommended output settings.  
2. Not all combinations of voltage amplitude and common mode voltages settings are possible.  
3. Driver output impedance depends on selected output mode (Normal, Low Power). Refer to the Si5381/82 Reference Manual for  
more information.  
4. Measured for 156.25 MHz carrier frequency. Sinewave noise added to VDDO (1.8 V = 50 mVpp, 2.5 V/3.3 V = 100 mVpp) and  
noise spur amplitude measured.  
5. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 122.88 MHz and the aggressor at 156.25  
MHz. Refer to application note, "AN862: Optimizing Si534x Jitter Performance in Next Generation Internet Infrastructure Sys-  
tems”, guidance on crosstalk minimization. Note that all active outputs must be terminated when measuring crosstalk.  
6. VDDO = 2.5 V or 3.3 V required for fOUT > 1474.56 MHz  
7. For any R divider settings that differ by a power of 2.  
OUTx  
Vpp_se  
Vpp_se  
Vcm  
Vcm  
Vpp_diff = 2*Vpp_se  
OUTxb  
Table 5.6. LVCMOS Clock Output Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
fOUT  
Test Condition  
Min  
0.0001  
47  
Typ  
Max  
250  
53  
Unit  
MHz  
%
Output Frequency  
Duty Cycle  
DC  
fOUT <100 MHz  
100 MHz < fOUT < 250 MHz  
44  
55  
Output Voltage High1, 2, 3  
VOH  
VDDO = 3.3 V  
OUTx_CMOS_DRV=1  
IOH = –10 mA  
IOH = –12 mA  
IOH = –17 mA  
VDDO x  
0.75  
V
V
V
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
VDDO = 2.5 V  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –6 mA  
IOH = –8 mA  
IOH = –11 mA  
VDDO x  
0.75  
VDDO = 1.8 V  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –4 mA  
IOH = –5 mA  
VDDO x  
0.75  
silabs.com | Building a more connected world.  
Rev. 0.96 | 32  
Si5381/82 Data Sheet  
Electrical Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Voltage Low1, 2, 3  
VOL  
VDDO = 3.3 V  
IOL = 10 mA  
OUTx_CMOS_DRV=1  
VDDO x  
0.15  
V
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 12 mA  
IOL = 17 mA  
VDDO = 2.5 V  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 6 mA  
IOL = 8 mA  
IOL = 11 mA  
VDDO x  
0.15  
V
V
VDDO = 1.8 V  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 4 mA  
IOL = 5 mA  
VDDO x  
0.15  
LVCMOS Rise and Fall  
Times3  
tr/tf  
VDDO = 3.3 V  
420  
475  
525  
550  
625  
705  
ps  
ps  
ps  
VDDO = 2.5 V  
VDDO = 1.8 V  
(20% to 80%)  
Note:  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer to the  
Si5381/82 Reference Manual for more details on register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the dc test configuration.  
3. A 5 pF capacitive load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3.  
AC Output Test Configuration  
DC Test Configuration  
Trace length 5 inches  
0.1 uF  
499 Ω  
4.7 pF  
IDDO  
50  
50  
IOL/IOH  
50 Ω Scope Input  
50 Ω Scope Input  
OUT  
56 Ω  
0.1 uF  
Zs  
OUTb  
VOL/VOH  
499 Ω  
4.7 pF  
56 Ω  
Table 5.7. Output Serial and Status Pin Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Serial and Status Output Pins (INTRb, LOLb, SDA/SDIO2, A1/SDO)  
VDDIO1 x 0.75  
Output Voltage  
VOH  
VOL  
IOH = –2 mA  
IOL = 2 mA  
V
VDDIO1 x 0.15  
V
silabs.com | Building a more connected world.  
Rev. 0.96 | 33  
Si5381/82 Data Sheet  
Electrical Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C)  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. Users normally select this option in the Clock-  
Builder Pro GUI. Alternatively, refer to the Si5381/82 Reference Manual for more details on register settings.  
2. The VOH specification does not apply to the open-drain SDA/SDIO output when the serial interface is in I2C mode or is unused  
with I2C_SEL pulled high internally. VOL remains valid in all cases.  
Table 5.8. Performance Characteristics  
(VDD = 1.8 V ±5%, or 3.3 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
PLL Loop Bandwidth  
fBW  
1
4000  
Hz  
Programming Range1  
Initial Start-Up Time  
tSTART  
Time from power-up or de-as-  
sertion of PDNb to when the  
device generates free-running  
clocks  
30  
45  
ms  
PLL Lock Time  
tACQ  
Fastlock enabled,  
500  
700  
600  
ms  
ms  
fIN = 19.44 MHz2  
Fastlock enabled, ZDM,  
fIN = 19.44 MHz2  
POR to Serial Interface Ready3  
Input-to-Output Delay Variation  
Jitter Peaking  
tRDY  
tIODELAY  
JPK  
15  
ms  
ns  
Different parts and outputs  
1.2  
0.1  
25 MHz input, 25 MHz output,  
loop bandwidth of 4 Hz  
dB  
Jitter Tolerance  
JTOL  
Compliant with G.8262 Op-  
tions 1&2  
3180  
UI pk-pk  
Carrier Frequency = 10.3125  
GHz  
Jitter Modulation Frequency =  
10 Hz  
Maximum Phase Transient  
tSWITCH  
Single automatic switch be-  
tween two 2 MHz inputs,  
DSPLL BW = 400 Hz  
0.2  
0.2  
0.3  
ns  
ns  
Single manual switch between  
two 2 MHz inputs, DSPLL BW  
= 400 Hz  
0.25  
Pull-in Range  
ωP  
-20  
20  
ppm  
RMS Jitter Generation4  
JGEN  
12 kHz to 20 MHz  
72  
fs RMS  
silabs.com | Building a more connected world.  
Rev. 0.96 | 34  
Si5381/82 Data Sheet  
Electrical Specifications  
(VDD = 1.8 V ±5%, or 3.3 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
-118  
-133  
-142  
-149  
-154  
-165  
-95  
Max  
Unit  
Phase Noise Performance4 (122.88  
MHz Carrier Frequency)  
PN  
100 Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
Spur Performance (122.88 MHz Carri-  
er Frequency)  
SPUR  
From 1 MHz to 30 MHz offset  
Note:  
1. Actual loop bandwidth may be lower; please refer to CBPro for actual value on your frequency plan.  
2. Lock Time can vary significantly depending on several parameters, such as bandwidths, LOL thresholds, etc. For this case, lock  
time was measured with nominal and fastlock bandwidths, both set to 100 Hz, LOL set/clear thresholds of 3/0.3 ppm respectively,  
using IN0 as clock reference by removing the reference and enabling it again, then measuring the delta time between the first  
rising edge of the clock reference and the LOL indicator de-assertion.  
3. Measured as time from valid VDD/VDDA rails (90% of their value) to when the serial interface is ready to respond to commands.  
4. Jitter generation test conditions: fIN=156.25MHz, DSPLL LBW = 40Hz. Jitter integrated from 12 kHz to 20 MHz offset. Does not  
include jitter from PLL input reference.  
Table 5.9. I2C Timing Specifications (SCL,SDA)  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Min  
Fast Mode  
400 kbps  
Max  
Unit  
Standard Mode  
100 kbps  
SCL Clock Frequency  
SMBus Timeout  
fSCL  
25  
100  
400  
35  
kHz  
ms  
µs  
When Timeout is Enabled  
35  
25  
Hold Time (Repeated)  
START Condition  
tHD:STA  
4.0  
0.6  
Low Period of the SCL  
Clock  
tLOW  
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
µs  
µs  
µs  
HIGH Period of the SCL  
Clock  
tHIGH  
Set-up Time for a Repea-  
ted START Condition  
tSU:STA  
Data Hold Time  
tHD:DAT  
tSU:DAT  
tr  
100  
250  
100  
100  
20  
ns  
ns  
ns  
Data Set-up Time  
Rise Time of Both SDA  
and SCL Signals  
1000  
300  
Fall Time of Both SDA and  
SCL Signals  
tf  
300  
300  
ns  
µs  
Set-up Time for STOP  
Condition  
tSU:STO  
4.0  
0.6  
silabs.com | Building a more connected world.  
Rev. 0.96 | 35  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Min  
Max  
Unit  
Bus Free Time between a  
STOP and START Condi-  
tion  
tBUF  
4.7  
1.3  
µs  
Data Valid Time  
tVD:DAT  
tVD:ACK  
3.45  
3.45  
0.9  
0.9  
µs  
µs  
Data Valid Acknowledge  
Time  
Figure 5.1. I2C Serial Port Timing Standard and Fast Modes  
Table 5.10. SPI Timing Specifications (4-Wire)  
Parameter  
Symbol  
fSPI  
Min  
Typ  
Max  
20  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
SCLK Period  
TDC  
40  
50  
60  
TC  
ns  
Delay Time, SCLK Fall to SDO  
Active  
TD1  
18  
ns  
Delay Time, SCLK Fall to SDO  
TD2  
TD3  
15  
15  
ns  
ns  
Delay Time, CSb Rise to SDO  
Tri-State  
Setup Time, CSb to SCLK  
TSU1  
TH1  
TSU2  
TH2  
5
5
5
5
ns  
ns  
ns  
ns  
Hold Time, SCLK Fall to CSb  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
silabs.com | Building a more connected world.  
Rev. 0.96 | 36  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Delay Time Between Chip Selects  
(CSb)  
TCS  
2
Tc  
TD1  
TC  
TSU1  
SCLK  
TH1  
CSb  
TSU2  
TH2  
TCS  
SDI  
TD2  
TD3  
SDO  
Figure 5.2. 4-Wire SPI Serial Interface Timing  
Table 5.11. SPI Timing Specifications (3-Wire)  
Parameter  
Symbol  
fSPI  
Min  
40  
50  
5
Typ  
Max  
20  
60  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
TDC  
TC  
SCLK Period  
ns  
Delay Time, SCLK Fall to SDIO Turn-on  
Delay Time, SCLK Fall to SDIO Next-bit  
Delay Time, CSb Rise to SDIO Tri-State  
Setup Time, CSb to SCLK  
Hold Time, SCLK Fall to CSb  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
Delay Time Between Chip Selects (CSb)  
TD1  
20  
15  
15  
ns  
TD2  
ns  
TD3  
ns  
TSU1  
TH1  
TSU2  
TH2  
ns  
5
ns  
5
ns  
5
ns  
TCS  
2
Tc  
TSU1  
TC  
SCLK  
TH1  
TD1  
TD2  
CSb  
TSU2  
TH2  
TCS  
SDIO  
TD3  
Figure 5.3. 3-Wire SPI Serial Interface Timing  
silabs.com | Building a more connected world.  
Rev. 0.96 | 37  
Si5381/82 Data Sheet  
Electrical Specifications  
Table 5.12. Thermal Characteristics (QFN-64)  
Parameter  
Symbol  
Test Condition1  
Still Air  
Value  
22  
Unit  
Thermal Resistance  
Junction to Ambient  
ϴJA  
°C/W  
Air Flow 1 m/s  
Air Flow 2 m/s  
19.4  
18.3  
9.5  
Thermal Resistance  
Junction to Case  
ϴJC  
Thermal Resistance  
Junction to Board  
ϴJB  
ΨJB  
ΨJT  
9.4  
9.3  
0.2  
Thermal Resistance  
Junction to Top Center  
Note:  
1. Based on PCB Dimension: 3” x 4.5”, PCB Thickness: 1.6 mm, PCB Land/Via under GNP pad: 36, Number of Cu Layers: 4  
Table 5.13. Absolute Maximum1, Electrical Specifications, 2  
Parameter  
Symbol  
VDD  
Test Condition  
Value  
Unit  
V
DC Supply Voltage  
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–1.0 to 3.8  
–0.5 to 3.8  
VDDA  
VDDO  
VI1  
V
V
Input Voltage Range  
IN0 – IN3  
V
VI2  
IN_SEL[1:0], RSTb, PDNb,  
OEb, I2C_SEL, SYNC  
V
SDA/SDIO, A1/SDO, SCLK,  
A0/CSb  
VI3  
LU  
XA/XB  
–0.5 to 2.7  
V
Latch-up Tolerance  
JESD78 Compliant  
ESD Tolerance  
HBM  
TJCT  
TSTG  
TPEAK  
100 pF, 1.5 kΩ  
2.0  
kV  
°C  
°C  
°C  
Junction Temperature  
Storage Temperature Range  
Soldering Temperature  
–55 to 125  
–55 to +150  
260  
(Pb-free profile)2  
Soldering Temperature Time at TPEAK(Pb-  
free profile)3  
TP  
20–40  
sec  
silabs.com | Building a more connected world.  
Rev. 0.96 | 38  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Value  
Unit  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect device reliability.  
2. For detailed MSL and packaging information, go to RoHS Information.  
3. The device is compliant with JEDEC J-STD-020.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 39  
Si5381/82 Data Sheet  
Typical Application Schematic  
6. Typical Application Schematic  
SysClk  
PHY1  
PHY2  
Si5381/82  
RX1  
TX1  
PCIe  
SerDes  
RFFE  
RF  
JESD204B  
Transceiver  
RX2  
TX2  
RFFE  
DFE  
ASIC/  
FPGA  
Baseband  
Processor  
RX1  
TX1  
RFFE  
RFFE  
RF  
JESD204B  
Transceiver  
RX2  
TX2  
Figure 6.1. Application Block Diagram of μBTS  
silabs.com | Building a more connected world.  
Rev. 0.96 | 40  
Si5381/82 Data Sheet  
Detailed Block Diagrams  
7. Detailed Block Diagrams  
54 MHz  
OSC  
3
Si5381/82  
IN_SEL[1:0]  
Si5381  
VDDO0  
Si5382  
OUT0A  
OUT0Ab  
÷R0A  
÷R0  
PD LPF  
Mn_A  
OUT0  
OUT0b  
÷
Md_A  
DSPLL B  
VDDO1  
OUT1  
OUT1b  
14.7456 GHz PLL  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
VDDO2  
OUT2  
OUT2b  
IN0  
÷P0  
÷P1  
IN0b  
PD LPF  
Mn_B  
÷N1  
÷N4  
VDDO3  
OUT3  
OUT3b  
÷5  
IN1  
÷
Md_B  
DSPLL A  
IN1b  
VDDO4  
OUT4  
OUT4b  
IN2  
÷P2  
÷P3  
IN2b  
PD LPF  
Mn_C  
VDDO5  
OUT5  
OUT5b  
IN3/FB_IN  
÷
IN3b/FB_INb  
Md_C  
DSPLL C  
VDDO6  
OUT6  
OUT6b  
VDDO7  
OUT7  
OUT7b  
PD LPF  
Mn_D  
÷
Md_D  
VDDO8  
OUT8  
OUT8b  
DSPLL D  
Any Rate PLLs  
I2C_SEL  
OUT9  
OUT9b  
SDA/SDIO  
÷R9  
SPI/  
NVM  
I2C  
A1/SDO  
SCLK  
OUT9A  
OUT9Ab  
÷R9A  
A0/CSb  
VDDO9  
Status  
Monitors  
INTRb  
Figure 7.1. Si5381/82 Block Diagram  
silabs.com | Building a more connected world.  
Rev. 0.96 | 41  
Si5381/82 Data Sheet  
Typical Operating Characteristics  
8. Typical Operating Characteristics  
The phase noise plots below were taken under the following conditions: VDD = 1.8 V; VDDA = 3.3 V; VDDS = 3.3 V, 1.8 V; OLBW =  
40Hz; Ta = 25 °C.  
Figure 8.1. fIN = 156.25 MHz, fOUT = 122.88 MHz  
Figure 8.2. fIN = 156.25 MHz, fOUT = 156.25 MHz  
silabs.com | Building a more connected world.  
Rev. 0.96 | 42  
Si5381/82 Data Sheet  
Typical Operating Characteristics  
Figure 8.3. fIN = 322.265625 MHz, fOUT = 322.265625 MHz  
silabs.com | Building a more connected world.  
Rev. 0.96 | 43  
Si5381/82 Data Sheet  
Pin Descriptions  
9. Pin Descriptions  
Top View  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
IN1  
IN1  
SYNC  
LOL  
3
IN_SEL0  
IN_SEL1  
PDN  
RST  
X1  
VDD  
4
OUT6  
OUT6  
VDDO6  
OUT5  
OUT5  
VDDO5  
I2C_SEL  
OUT4  
OUT4  
VDDO4  
OUT3  
OUT3  
VDDO3  
5
6
7
8
XA  
GND  
Pad  
9
XB  
10  
11  
12  
13  
14  
15  
X2  
OE  
INTR  
VDDA  
IN2  
IN2  
SCLK 16  
silabs.com | Building a more connected world.  
Rev. 0.96 | 44  
Si5381/82 Data Sheet  
Pin Descriptions  
Table 9.1. Si5381/82 Pin Descriptions  
Pin  
Pin Number  
Pin  
Function  
Type1  
Name  
Inputs  
IN0  
IN0b  
IN1  
63  
64  
1
I
I
I
I
I
I
Clock Inputs. These pins accept  
an input clock for synchronizing  
the device. They support both  
differential and single-ended  
clock signals. Refer to section  
3.6 Inputs (IN0, IN1, IN2, IN3)  
for input termination options.  
These pins are high-impedance  
and must be terminated exter-  
nally, when being used. The  
negative side of the differential  
input must be ac-grounded  
when accepting a single-ended  
clock. Unused inputs may be  
left unconnected.  
IN1b  
IN2  
2
14  
15  
IN2b  
IN3/FB_IN  
61  
62  
I
I
Clock Input 3/External Feed-  
back Input.  
IN3/FB_INb  
By default, these pins are used  
as the 4th clock input (IN3/IN3).  
They can also be used as the  
external feedback input (FB_IN/  
FB_IN) for the optional zero de-  
lay mode. See section  
3.6.1 Manual Input Switching  
(IN0, IN1, IN2, IN3) for details  
on the optional zero delay  
mode.  
Outputs  
silabs.com | Building a more connected world.  
Rev. 0.96 | 45  
Si5381/82 Data Sheet  
Pin Descriptions  
Pin  
Pin Number  
Pin  
Function  
Type1  
O
Name  
OUT0A  
OUT0Ab  
OUT0  
21  
20  
24  
23  
28  
27  
31  
30  
35  
34  
38  
37  
42  
41  
45  
44  
51  
50  
54  
53  
56  
55  
59  
58  
Output Clocks. These output  
clocks support a programmable  
signal swing and common mode  
voltage. Desired output signal  
format is configurable using reg-  
ister control. Termination rec-  
ommendations are provided in  
section 3.8.3 Output Termina-  
tions and section . Unused out-  
puts should be left unconnec-  
ted.  
O
O
OUT0b  
OUT1  
O
O
OUT1b  
OUT2  
O
O
OUT2b  
OUT3  
O
O
OUT3b  
OUT4  
O
O
OUT4b  
OUT5  
O
O
OUT5b  
OUT6  
O
O
OUT6b  
OUT7  
O
O
OUT7b  
OUT8  
O
O
OUT8b  
OUT9  
O
O
OUT9b  
OUT9A  
OUT9Ab  
O
O
O
Serial Interface  
I2C_SEL  
39  
18  
I
I2C Select. This pin selects the  
serial interface mode as I2C  
(I2C_SEL = 1) or SPI (I2C_SEL  
= 0). This pin is internally  
pulled high.  
SDA/SDIO  
I/O  
Serial Data Interface. This is  
the bidirectional data pin (SDA)  
for the I2C mode, the bidirec-  
tional data pin (SDIO) in the 3-  
wire SPI mode, or the input  
data pin (SDI) in 4-wire SPI  
mode. When in I2C mode, this  
pin must be pulled-up using  
an external resistor of at least  
1 kW. No pull-up resistor is  
needed when in SPI mode.  
This pin is 3.3 V tolerant.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 46  
Si5381/82 Data Sheet  
Pin Descriptions  
Pin  
Pin Number  
Pin  
Function  
Type1  
Name  
A1/SDO  
17  
I/O  
Address Select 1/Serial Data  
Output. In I2C mode this pin  
functions as the A1 address  
input pin. In 4-wire SPI mode,  
this is the serial data output  
(SDO) pin. This pin is 3.3 V  
tolerant.  
SCLK  
16  
I
Serial Clock Input. This pin  
functions as the serial clock in-  
put for both I2C and SPI  
modes. When in I2C mode,  
this pin must be pulled-up us-  
ing an external resistor of at  
least 1 kW. No pull-up resistor  
is needed when in SPI mode.  
This pin is 3.3 V tolerant.  
A0/CSb  
19  
I
Address Select 0/Chip Select.  
This pin functions as the hard-  
ware controlled address A0 in  
I2C mode. In SPI mode, this pin  
functions as the chip select in-  
put (active low). This pin is inter-  
nally pulled-up. This pin is 3.3 V  
tolerant.  
Control/Status  
Interrupt2. This pin is asserted  
low when a change in device  
status has occurred. This pin  
must be pulled-up using an ex-  
ternal resistor of at least 1 kW. It  
should be left unconnected  
when not in use.  
INTRb  
PDNb  
RSTb  
12  
O
Power Down2. The device en-  
ters into a low power mode  
when this pin is pulled low. This  
pin is internally pulled-up. This  
pin is 3.3 V tolerant. It can be  
left unconnected when not in  
use.  
5
I
Device Reset.2 Active low input  
that performs power-on reset  
(POR) of the device. Resets all  
internal logic to a known state  
and forces the device registers  
to their default values. Clock  
outputs are disabled during re-  
set. This pin is internally pulled-  
up. This pin is 3.3 V tolerant.  
6
I
Output Enable2. This pin disa-  
bles all outputs when held high.  
This pin is internally pulled low  
and can be left unconnected  
when not in use. This pin is 3.3  
V tolerant.  
OEb  
11  
I
silabs.com | Building a more connected world.  
Rev. 0.96 | 47  
Si5381/82 Data Sheet  
Pin Descriptions  
Pin  
Pin Number  
Pin  
Function  
Type1  
Name  
LOLb  
Loss Of Lock2. This output pin  
indicates when the DSPLL is  
locked (high) or out-of-lock  
(low). It can be left unconnected  
when not in use.  
47  
O
SYNC  
48  
I
Output Clock Synchroniza-  
tion2. An active low signal on  
this pin resets the output divid-  
ers for the purpose of re-align-  
ing the output clocks. This pin is  
internally pulled-up and can be  
left unconnected when not in  
use.  
Input Reference Select2. The  
IN_SEL[1:0] pins are used in  
manual pin controlled mode to  
select the active clock input as  
shown in Table 3.2 Manual In-  
put Selection Using IN_SEL[1:0]  
Pins on page 12  
IN_SEL0  
IN_SEL1  
3
4
I
I
XA  
XB  
8
9
I
I
Oscillator input. Single-ended  
input must be connected to the  
XA pin, with the XB pin appro-  
priately terminated.  
RSVD  
7
NC  
NC  
NC  
Reserved. Leave disconnected.  
10  
25  
Power  
VDD  
VDD  
VDD  
32  
46  
60  
P
P
P
Core Supply Voltage. The de-  
vice operates from a 1.8 V sup-  
ply. A 1 uF bypass capacitor  
should be placed very close to  
each pin.  
VDDA  
13  
P
Core Supply Voltage 3.3 V. This  
core supply pin requires a 3.3 V  
power source. A 1 uF bypass  
capacitor should be placed very  
close to this pin.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 48  
Si5381/82 Data Sheet  
Pin Descriptions  
Pin  
Pin Number  
Pin  
Function  
Type1  
Name  
VDDO0  
VDDO1  
VDDO2  
VDDO3  
VDDO4  
VDDO5  
VDDO6  
VDDO7  
VDDO8  
VDDO9  
GND PAD  
22  
26  
29  
33  
36  
40  
43  
49  
52  
57  
P
P
P
P
P
P
P
P
P
P
P
Output Clock Supply Voltage.  
Supply voltage (3.3 V, 2.5 V, 1.8  
V) for OUTn, OUTn outputs.  
Note that VDDO0 supplies pow-  
er to OUT0 and OUT0A;  
VDDO9 supplies power to  
OUT9 and OUT9A. Leave  
VDDO pins of unused output  
drivers unconnected. An alter-  
native option is to connect the  
VDDO pin to a power supply  
and disable the output driver to  
minimize current consumption.  
Ground Pad. This pad provides  
connection to ground and must  
be connected for proper opera-  
tion.  
Note:  
1. I = Input, O = Output, P = Power  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 49  
Si5381/82 Data Sheet  
Package Outlines  
10. Package Outlines  
10.1 Si5381/82 9x9 mm 64-QFN Package Diagram  
Figure 10.1. Si5381/82 9x9 mm 64-QFN Package Diagram  
Table 10.1. Package Diagram Dimensions  
Dimension  
MIN  
0.80  
0.00  
0.18  
NOM  
0.85  
MAX  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
9.00 BSC  
5.20  
D2  
e
5.10  
5.30  
0.50 BSC  
9.00 BSC  
5.20  
E
E2  
L
5.10  
0.30  
5.30  
0.50  
0.15  
0.10  
0.08  
0.10  
0.40  
aaa  
bbb  
ccc  
ddd  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 50  
Si5381/82 Data Sheet  
PCB Land Pattern  
11. PCB Land Pattern  
The following figure illustrates the PCB land pattern details for the devices. The table lists the values for the dimensions shown in the  
illustration.  
Figure 11.1. PCB Land Pattern  
silabs.com | Building a more connected world.  
Rev. 0.96 | 51  
Si5381/82 Data Sheet  
PCB Land Pattern  
Table 11.1. PCB Land Pattern Dimensions  
Dimension  
Si5381/82 (Max)  
C1  
C2  
E
8.6  
8.6  
0.50  
0.30  
0.50  
5.5  
X1  
Y1  
X2  
Y2  
5.5  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition is calculated based on a fabrication  
Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electropolished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 2x2 array of 0.65mm square openings on a 0.90mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 52  
Si5381/82 Data Sheet  
Top Marking  
12. Top Marking  
Si538fg-  
Rxxxxx-GM  
YYWWTTTTTT  
e4  
TW  
Figure 12.1. Si5381/82 Top Marking  
Table 12.1. Top Marking Explanation  
Line  
Characters  
Description  
Base part number and Device Grade for Any-frequency, Any-output, Jitter  
Cleaning Clock:  
f = 1, Quad DSPLL Clock  
f = 2, Dual DSPLL Clock  
1
Si538fg-  
g = A (External XO)  
R = Product revision. (Refer to 2. Ordering Guide for latest revision).  
xxxxx = Customer specific NVM sequence number. Optional NVM code as-  
signed for custom, factory pre-programmed devices.  
2
3
Rxxxxx-GM  
Characters are not included for standard, factory default configured devices.  
See 2. Ordering Guide for more information.  
-GM = Package (QFN) and temperature range (–40 to +85 °C)  
YYWW = Characters correspond to the year (YY) and work week (WW) of  
package assembly.  
YYWWTTTTTT  
TTTTTT = Manufacturing trace code.  
Circle w/ 1.6 mm (64-QFN) diameter Pin 1 indicator; left-justified  
4
e4  
Pb-free symbol; Center-Justified  
TW  
TW = Taiwan; Country of Origin (ISO Abbreviation)  
silabs.com | Building a more connected world.  
Rev. 0.96 | 53  
Si5381/82 Data Sheet  
Device Errata  
13. Device Errata  
Log in or register at https://www.silabs.com/support/resources.ct-errata.p-timing_clocks to access the device errata document.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 54  
Si5381/82 Data Sheet  
Document Change List  
14. Document Change List  
14.1 Revision 0.96  
April, 2019  
• Tightened Output-Out Skew (different MultiSynths) specifications.  
• Added Input-Output Delay Variation specifications.  
14.2 Revision 0.95  
September, 2018  
• Reorganized and rewritten to address updates that are focused on the ultra-high performance wireless jitter attenuator feature for  
optimized wireless BBU (Baseband Unit) and DU (Distribution Unit) applications.  
14.3 Revision 0.9  
September, 2017  
• Initial release.  
silabs.com | Building a more connected world.  
Rev. 0.96 | 55  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without  
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior  
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance  
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to  
design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required  
or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails,  
can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs  
disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko  
OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®,  
and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered  
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

Si5381A-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5381E-E-EVB

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5381E-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382A-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382E-E-EVB

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382E-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

SI5383A-D07172-GMR

Telecom Circuit,
SILICON

SI5383A-D10188-GM

Telecom Circuit,
SILICON

SI5383A-D10188-GMR

Telecom Circuit,
SILICON

SI5383A-D10809-GM

Telecom Circuit,
SILICON

SI5383A-D10809-GMR

Telecom Circuit,
SILICON

SI5394B-A10605-GM

Processor Specific Clock Generator,
SILICON