SI53152-A01AGMR [SILICON]

Low Skew Clock Driver, 53152 Series, 4 True Output(s), 0 Inverted Output(s), QFN-24;
SI53152-A01AGMR
型号: SI53152-A01AGMR
厂家: SILICON    SILICON
描述:

Low Skew Clock Driver, 53152 Series, 4 True Output(s), 0 Inverted Output(s), QFN-24

驱动 逻辑集成电路
文件: 总22页 (文件大小:393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si53152  
PCI-EXPRESS  
G
EN 1, GEN 2, GEN 3, AND  
G
EN  
4
F
ANOUT  
B
UFFER  
Features  
PCI-Express Gen 1, Gen 2, Gen 3, Dedicated output enable pin for  
and Gen 4 common clock  
compliant  
Supports Serial ATA (SATA) at  
100 MHz  
100–210 MHz operation  
Low power, push pull, differential  
output buffers  
Internal termination for maximum  
integration  
each clock  
Two PCI-Express buffered clock  
outputs  
Supports LVDS outputs  
I2C support with readback  
capabilities  
Extended temperature:  
–40 to 85 °C  
3.3 V Power supply  
24-pin QFN package  
Ordering Information:  
See page 17  
Applications  
Network attached storage  
Multi-function Printer  
Wireless access point  
Routers  
Pin Assignments  
Description  
24  
23  
22  
21  
20  
19  
OE_DIFF1*  
VDD  
18  
17  
16  
15  
VDD  
1
2
3
4
5
6
The Si53152 is a spread spectrum tolerant PCIe clock buffer that can source  
two PCIe clocks simultaneously. The device has two hardware output enable  
inputs for enabling the respective differential outputs on the fly. The device  
also features output enable control through I2C communication. I2C  
programmability is also available to dynamically control skew, edge rate and  
amplitude on the true, compliment, or both differential signals on the clock  
outputs. This control feature enables optimal signal integrity as well as  
optimal EMI signature on the clock outputs. Measuring PCIe clock jitter is  
quick and easy with the Silicon Labs PCIe Clock Jitter Tool. Download it for  
free at www.silabs.com/pcie-learningcenter.  
NC  
VDD  
DIFF1  
DIFF1  
25  
GND  
VSS  
14 DIFF0  
OE_DIFF0*  
VDD  
13  
DIFF0  
7
8
9
10  
11  
12  
*Note: Internal 100 kohm pull-up.  
Patents pending  
Functional Block Diagram  
DIFF0  
DIFFIN  
DIFFIN  
DIFF1  
Control & Memory  
SCLK  
SDATA  
Control  
RAM  
OE [1:0]  
Rev. 1.2 4/16  
Copyright © 2016 by Silicon Laboratories  
Si53152  
Si53152  
2
Rev. 1.2  
Si53152  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.1. OE Pin Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.2. OE Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.3. OE Deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.1. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.2. Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
5. Pin Descriptions: 24-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
8. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Rev. 1.2  
3
Si53152  
1. Electrical Specifications  
Table 1. DC Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
3.3 V Operating Voltage  
VDD core  
3.3 ± 5%  
3.135  
3.3  
3.465  
V
3.3 V Input High Voltage  
3.3 V Input Low Voltage  
Input High Voltage  
V
Control input pins  
Control input pins  
SDATA, SCLK  
2.0  
V
+ 0.3  
V
V
IH  
DD  
V
V
– 0.3  
0.8  
IL  
SS  
V
2.2  
1.0  
5
V
IHI2C  
Input Low Voltage  
V
SDATA, SCLK  
V
ILI2C  
Input High Leakage Current  
I
Except internal pull-down  
A  
IH  
resistors, 0 < V < V  
IN  
DD  
Input Low Leakage Current  
I
Except internal pull-up resis-  
tors, 0 < V < V  
–5  
A  
IL  
IN  
DD  
3.3 V Output High Voltage  
(Single-Ended Outputs)  
V
I
= –1 mA  
2.4  
0.4  
10  
V
V
OH  
OH  
3.3 V Output Low Voltage  
(Single-Ended Outputs)  
V
I
OL  
= 1 mA  
OL  
OZ  
High-impedance Output  
Current  
I
–10  
µA  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
C
1.5  
5
6
pF  
pF  
IN  
C
OUT  
L
7
nH  
mA  
IN  
DD_3.3V  
Dynamic Supply Current  
I
All outputs enabled. Differ-  
ential clock with 5” traces  
and 2 pF load at 100 MHz.  
20  
4
Rev. 1.2  
 
Si53152  
Table 2. AC Electrical Specifications  
Parameter  
DIFFIN at 0.7 V  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
Input Frequency Range  
f
100  
0.6  
210  
4
MHz  
V/ns  
in  
Rising and Falling Slew Rates for  
Each Clock Output Signal in a  
Given Differential Pair  
T / T  
Single ended measurement:  
R
F
V
= 0.175 to V = 0.525 V  
OL  
OH  
(Averaged)  
Differential Input High Voltage  
Differential Input Low Voltage  
V
150  
mV  
mV  
mV  
IH  
V
–150  
550  
IL  
Crossing Point Voltage at 0.7 V  
Swing  
V
Single-ended measurement  
Single-ended measurement  
250  
OX  
Vcross Variation over all edges  
Differential Ringback Voltage  
Time before ringback allowed  
V  
140  
100  
mV  
mV  
ps  
OX  
V
–100  
500  
RB  
STABLE  
T
Absolute Maximum Input  
Voltage  
V
1.15  
V
MAX  
Absolute Minimum Input  
Voltage  
V
–0.3  
45  
V
MIN  
Duty Cycle for Each Clock  
Output Signal in a Given  
Differential Pair  
T
Measured at crossing point V  
Determined as a fraction of  
55  
%
DC  
OX  
Rise/Fall Matching  
T
20  
%
RFM  
2 x (T – T )/(T + T )  
R
F
R
F
DIFF at 0.7 V  
Duty Cycle  
T
Measured at 0 V differential  
Measured at 0 V differential  
45  
0
55  
50  
%
ps  
ps  
ps  
ps  
ps  
DC  
Clock Skew  
T
SKEW  
Additive Peak Jitter  
Pk-Pk  
10  
Additive PCIe Gen 2  
Phase Jitter  
RMS  
10 kHz < F < 1.5 MHz  
0
0.5  
0.5  
0.10  
GEN2  
1.5 MHz< F < Nyquist Rate  
0
Additive PCIe Gen 3  
Phase Jitter  
RMS  
Includes PLL BW 2–4 MHz  
(CDR = 10 MHz)  
0
GEN3  
GEN4  
Additive PCIe Gen 4 Phase Jitter RMS  
PCIe Gen 4  
0.10  
50  
ps  
ps  
Additive Cycle to Cycle Jitter  
Long Term Accuracy  
Notes:  
T
Measured at 0 V differential  
Measured at 0 V differential  
CCJ  
L
100  
ppm  
ACC  
1. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
2. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
Rev. 1.2  
5
 
Si53152  
Table 2. AC Electrical Specifications (Continued)  
Parameter  
Symbol  
T / T  
Test Condition  
Min  
Typ  
Max Unit  
Rising/Falling Slew Rate  
Measured differentially from  
±150 mV  
2.5  
8
V/ns  
R
F
Crossing Point Voltage at 0.7 V  
Swing  
V
300  
550  
mV  
OX  
Enable/Disable and Set-Up  
Clock Stabilization from  
Power-up  
T
Measured from the point when  
5
ms  
ns  
STABLE  
both V and clock input are valid  
DD  
Stopclock Set-up Time  
T
10.0  
SS  
Notes:  
1. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
2. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
Table 3. Absolute Maximum Conditions  
Parameter  
Main Supply Voltage  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
V
Functional  
4.6  
4.6  
150  
85  
V
DD_3.3V  
Input Voltage  
V
Relative to V  
–0.5  
–65  
–40  
V
DC  
IN  
SS  
Temperature, Storage  
T
Non-functional  
Functional  
°C  
S
Temperature, Operating Ambient  
Temperature, Junction  
T
°C  
°C  
A
T
Functional  
150  
35  
J
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
ESD Protection (Human Body Model)  
Flammability Rating  
Ø
Ø
JEDEC (JESD 51)  
JEDEC (JESD 51)  
°C/W  
°C/W  
V
JC  
JA  
37  
ESD  
JEDEC (JESD 22-A114) 2000  
UL (Class)  
HBM  
UL-94  
V–0  
Note: While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up.  
Power supply sequencing is not required.  
6
Rev. 1.2  
Si53152  
2. Functional Description  
2.1. OE Pin Definition  
The OE pins are active high inputs used to enable and disable the output clocks. To enable the output clock, the OE  
2
pin needs to be logic high and the I C output enable bit needs to be logic high. There are two methods to disable  
2
the output clocks: the OE is pulled to a logic low, or the I C enable bit is set to a logic low. The OE pins are required  
to be driven at all times even though they have an internal 100 kresistor.  
2.2. OE Assertion  
The OE signals are active high inputs used for synchronous stopping and starting the DIFF output clocks respectively  
while the rest of the clock generator continues to function. The assertion of the OE signal by making it logic high  
causes stopped respective DIFF outputs to resume normal operation. No short or stretched clock pulses are  
produced when the clock resumes. The maximum latency from the assertion to active outputs is no more than two  
to six output clock cycles.  
2.3. OE Deassertion  
When the OE pin is deasserted by making it logic low, the corresponding DIFF output is stopped, and the final output  
state is driven low.  
Rev. 1.2  
7
Si53152  
3. Test and Measurement Setup  
This diagram shows the test load configuration for differential clock signals.  
M easurem ent  
P oint  
L1  
O U T+  
50  
2 pF  
2 pF  
L1 = 5"  
M easurem ent  
P oint  
L1  
O U T-  
50  
Figure 1. 0.7 V Differential Load Configuration  
Figure 2. Differential Output Signals (for AC Parameters Measurement)  
8
Rev. 1.2  
Si53152  
VMIN = –0.30V  
VMIN = –0.30V  
Figure 3. Single-ended Measurement for Differential Output Signals  
(for AC Parameters Measurement)  
Rev. 1.2  
9
Si53152  
4. Control Registers  
2
4.1. I C Interface  
2
2
To enhance the flexibility and function of the clock buffer, an I C interface is provided. Through the I C Interface,  
various device functions are available, such as individual clock output enable. The registers associated with the I C  
2
Interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register  
changes are normally made at system initialization, if any are required. Power management functions can only be  
programed in program mode and not in normal operation modes.  
4.2. Data Protocol  
2
The I C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block  
write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the  
ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller  
can access individually indexed bytes.  
The block write and block read protocol is outlined in Table 4 while Table 5 outlines byte write and byte read  
protocol. The slave receiver address is 11010110 (D6h).  
Table 4. Block Read and Block Write Protocol  
Block Write Protocol  
Description  
Block Read Protocol  
Description  
Bit  
1
Bit  
1
Start  
Start  
8:2  
9
8:2  
9
Slave address—7 bits  
Write  
Slave address—7 bits  
Write  
10  
10  
Acknowledge from slave  
Command Code—8 bits  
Acknowledge from slave  
Byte Count—8 bits  
Acknowledge from slave  
Command Code—8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
27:21  
28  
Acknowledge from slave  
Data byte 1—8 bits  
Acknowledge from slave  
Data byte 2—8 bits  
Acknowledge from slave  
Data Byte /Slave Acknowledges  
Data Byte N—8 bits  
Acknowledge from slave  
Stop  
Slave address—7 bits  
Read = 1  
36:29  
37  
29  
Acknowledge from slave  
Byte Count from slave—8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
....  
46:39  
47  
Data byte 1 from slave—8 bits  
Acknowledge  
....  
....  
55:48  
56  
Data byte 2 from slave—8 bits  
Acknowledge  
....  
....  
Data bytes from slave/Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
Stop  
....  
....  
....  
10  
Rev. 1.2  
 
Si53152  
Table 5. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Description  
Byte Read Protocol  
Description  
Bit  
Bit  
1
Start  
1
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
Rev. 1.2  
11  
Si53152  
Control Register 0. Byte 0  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00000000  
Bit  
Name  
Reserved  
Function  
7:0  
Control Register 1. Byte 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00000000  
Bit  
Name  
Reserved  
Function  
7:0  
12  
Rev. 1.2  
Si53152  
Control Register 2. Byte 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DIFF0_OE  
DIFF1_OE  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 11000000  
Bit  
Name  
Function  
7
DIFF0_OE  
Output Enable for DIFF0.  
0: Output disabled.  
1: Output enabled.  
6
DIFF1_OE  
Reserved  
Output Enable for DIFF1  
0: Output disabled.  
1: Output enabled.  
5:0  
Control Register 3. Byte 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Rev Code[3:0]  
Vendor ID[3:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00001000  
Bit  
Name  
Function  
7:4  
Rev Code[3:0]  
Vendor ID[3:0]  
Program Revision Code.  
3:0  
Vendor Identification Code.  
Control Register 4. Byte 4  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
BC[7:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00000110  
Bit  
Name  
BC[7:0]  
Function  
7:0  
Byte Count Register.  
Rev. 1.2  
13  
Si53152  
Control Register 5. Byte 5  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name DIFF_Amp_Sel DIFF_Amp_Cntl[2] DIFF_Amp_Cntl[1] DIFF_Amp_Cntl[0]  
Type  
R/W  
R/W  
R/W  
R/W  
R/W R/W R/W R/W  
Reset settings = 11011000  
Bit  
Name  
Function  
7
DIFF_Amp_Sel  
Amplitude Control for DIFF Differential Outputs.  
0: Differential outputs with Default amplitude.  
1: Differential outputs amplitude is set by Byte 5[6:4].  
6
5
DIFF_Amp_Cntl[2]  
DIFF_Amp_Cntl[1]  
DIFF_Amp_Cntl[0]  
Reserved  
DIFF Differential Outputs Amplitude Adjustment.  
000: 300 mV 001: 400 mV 010: 500 mV 011: 600 mV  
100: 700 mV 101: 800 mV 110: 900 mV 111: 1000 mV  
4
3:0  
14  
Rev. 1.2  
Si53152  
5. Pin Descriptions: 24-Pin QFN  
24  
23  
22  
21  
20  
19  
OE_DIFF1*  
VDD  
18  
17  
16  
15  
VDD  
1
2
3
4
5
6
NC  
VDD  
DIFF1  
DIFF1  
25  
GND  
VSS  
14 DIFF0  
13  
OE_DIFF0*  
VDD  
DIFF0  
7
8
9
10  
11  
12  
*Note: Internal 100 kohm pull-up.  
Figure 4. 24-Pin QFN  
Table 6. Si53152 24-Pin QFN Descriptions  
Pin #  
Name  
Type  
Description  
PWR 3.3 V power supply.  
1
VDD  
NC No connect.  
PWR 3.3 V power supply.  
GND Ground.  
2
3
4
5
NC  
VDD  
VSS  
I,PU Active high input pin enables DIFF0 (internal 100 kpull-up).  
OE_DIFF0  
Refer to Table 1 on page 4 for OE specifications.  
PWR 3.3 V power supply.  
NC No connect.  
6
7
VDD  
NC  
NC No connect.  
8
NC  
NC No connect.  
9
NC  
NC No connect.  
10  
11  
12  
13  
14  
15  
NC  
NC No connect.  
NC  
PWR 3.3 V power supply.  
O, DIF 0.7 V, 100 MHz differential clock.  
O, DIF 0.7 V, 100 MHz differential clock.  
O, DIF 0.7 V, 100 MHz differential clock.  
VDD  
DIFF0  
DIFF0  
DIFF1  
Rev. 1.2  
15  
Si53152  
Table 6. Si53152 24-Pin QFN Descriptions (Continued)  
Pin #  
Name  
Type  
Description  
O, DIF 0.7 V, 100 MHz differential clock.  
PWR 3.3 V power supply.  
16  
DIFF1  
VDD  
17  
18  
I,PU Active high input pin enables DIFF1 (internal 100 kpull-up).  
OE_DIFF1  
Refer to Table 1 on page 4 for OE specifications.  
I
SMBus compatible SCLOCK.  
19  
20  
21  
22  
SCLK  
SDATA  
VDD  
I/O SMBus compatible SDATA.  
PWR 3.3 V power supply.  
I
0.7 V Differential True Input, typically 100 MHz. Input frequency range  
100 to 210 MHz.  
DIFFIN  
O
0.7 V Differential Complement Input, typically 100 MHz. Input frequency  
range 100 to 210 MHz.  
23  
DIFFIN  
GND Ground.  
24  
25  
VSS  
GND  
GND Ground for bottom pad of the IC.  
16  
Rev. 1.2  
Si53152  
6. Ordering Guide  
Part Number  
Lead-free  
Package Type  
Temperature  
Si53152-A01AGM  
Si53152-A01AGMR  
24-pin QFN  
Extended, –40 to 85 C  
Extended, –40 to 85 C  
24-pin QFN—Tape and Reel  
Rev. 1.2  
17  
Si53152  
7. Package Outline  
Figure 5 illustrates the package details for the Si53152. Table 7 lists the values for the dimensions shown in the  
illustration.  
Figure 5. 24-Pin Quad Flat No Lead (QFN) Package  
Table 7. Package Diagram Dimensions  
Symbol  
Millimeters  
Nom  
Min  
0.70  
0.00  
0.20  
Max  
0.80  
0.05  
0.30  
A
A1  
b
0.75  
0.025  
0.25  
D
4.00 BSC  
2.70  
D2  
e
2.60  
2.80  
0.50 BSC  
4.00 BSC  
2.70  
E
E2  
L
2.60  
0.30  
2.80  
0.50  
0.40  
aaa  
bbb  
ccc  
ddd  
0.10  
0.10  
0.08  
0.07  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise  
noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components  
18  
Rev. 1.2  
 
 
Si53152  
8. PCB Land Pattern  
Figure 6. Si53152 24-Pin TDFN Land Pattern  
Table 8. Si53152 24-Pin Land Pattern Dimensions  
Dimension  
mm  
4.0  
C1  
C2  
E
4.0  
0.50 BSC  
0.30  
X1  
X2  
Y1  
2.70  
0.80  
Rev. 1.2  
19  
Si53152  
Table 8. Si53152 24-Pin Land Pattern Dimensions (Continued)  
Y2  
2.70  
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication Allowance of  
0.05 mm.  
Solder Mask Design  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all the  
way around the pad.  
Stencil Design  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal  
walls should be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1 for all pads.  
Card Assembly  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
20  
Rev. 1.2  
Si53152  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 1.0  
Updated Features and Description.  
Updated Table 2.  
Updated Table 3.  
Updated Section 4.1.  
Revision 1.0 to Revision 1.1  
Updated Features on page 1.  
Updated Description on page 1.  
Updated specs in Table 2, “AC Electrical  
Specifications,” on page 5.  
Revision 1.1 to Revision 1.2  
Added condition for Clock Stabilization from Power-  
up, T  
, in Table 2.  
STABLE  
Rev. 1.2  
21  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

Si53154-A01AGM

This change is considered a minor change which does not affect form, fit, function, quality, or reliability.
SILICON

Si53154-A01AGMR

This change is considered a minor change which does not affect form, fit, function, quality, or reliability.
SILICON

SI53156-A01AGM

Low Skew Clock Driver, 53156 Series, 12 True Output(s), 0 Inverted Output(s), QFN-32
SILICON

SI53156-A01AGMR

Low Skew Clock Driver, 53156 Series, 12 True Output(s), 0 Inverted Output(s), QFN-32
SILICON

SI53156-A13AGM

Low Skew Clock Driver,
SILICON

SI53156-A13AGMR

Low Skew Clock Driver,
SILICON

Si53159-A01AGM

This change is considered a minor change which does not affect form, fit, function, quality, or reliability.
SILICON

SI53159-A01AGMR

Low Skew Clock Driver, 53159 Series, 18 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220-VGGD8, QFN-48
SILICON

SI5315A-C-GM

Provides jitter attenuation and frequency translation between SONET/PDH and Ethemet
SILICON

SI5315A-C-GMR

ATM Switching Circuit, 1-Func, QFN-36
SILICON

SI5315B-C-GM

Provides jitter attenuation and frequency translation between SONET/PDH and Ethemet
SILICON

SI5315B-C-GMR

ATM Switching Circuit, 1-Func, QFN-36
SILICON