SI53156-A01AGM [SILICON]

Low Skew Clock Driver, 53156 Series, 12 True Output(s), 0 Inverted Output(s), QFN-32;
SI53156-A01AGM
型号: SI53156-A01AGM
厂家: SILICON    SILICON
描述:

Low Skew Clock Driver, 53156 Series, 12 True Output(s), 0 Inverted Output(s), QFN-32

驱动 逻辑集成电路
文件: 总22页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si53156  
PCI-EXPRESS  
G
EN 1, GEN 2, GEN 3, AND  
G
EN  
4
F
ANOUT  
B
UFFER  
Features  
PCI-Express Gen 1, Gen 2, Gen 3,  
and Gen 4 common clock compliant  
Supports Serial ATA (SATA) at  
100 MHz  
Six PCI-Express buffered clock  
outputs  
Clock input spread tolerable  
Supports LVDS outputs  
100–210 MHz operation  
Low power, push pull, differential  
output buffers  
Internal termination for maximum  
integration  
I2C support with readback  
capabilities  
Extended temperature:  
–40 to 85 oC  
3.3 V power supply  
32-pin QFN package  
Dedicated output enable pin for each  
output  
Ordering Information:  
See page 17.  
Applications  
Network attached storage  
Multi-function printers  
Wireless access point  
Routers  
Pin Assignments  
Description  
The Si53156 is a spread spectrum tolerant PCIe clock buffer that can source six  
PCIe clocks simultaneously. The device has six hardware output enable control  
inputs for enabling the respective differential outputs on the fly. The device also  
features output enable control through I2C communication. I2C programmability is  
also available to dynamically control skew, edge rate and amplitude on the true,  
compliment, or both differential signals on the clock outputs. This control feature  
enables optimal signal integrity as well as optimal EMI signature on the clock  
outputs. Measuring PCIe clock jitter is quick and easy with the Silicon Labs PCIe  
Clock Jitter Tool. Download it for free at www.silabs.com/pcie-learningcenter.  
Functional Block Diagram  
Patents pending  
Rev. 1.3 11/17  
Copyright © 2017 by Silicon Laboratories  
Si53156  
Si53156  
2
Rev. 1.3  
Si53156  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.1. OE Pin Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.2. OE Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.3. OE Deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.1. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.2. Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
5. Pin Descriptions: 32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
8. Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Rev. 1.3  
3
Si53156  
1. Electrical Specifications  
Table 1. DC Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
3.3 V Operating Voltage  
VDD core  
3.3 ± 5%  
3.135  
3.465  
V
3.3 V Input High Voltage  
3.3 V Input Low Voltage  
Input High Voltage  
V
Control input pins  
Control input pins  
SDATA, SCLK  
2.0  
V
+ 0.3  
DD  
V
V
V
V
IH  
V
V
– 0.3  
SS  
0.8  
IL  
V
2.2  
IHI2C  
Input Low Voltage  
V
SDATA, SCLK  
1.0  
ILI2C  
Input High Leakage Current  
Except internal pull-down  
I
5
A  
IH  
resistors, 0 < V < V  
IN  
DD  
Input Low Leakage Current  
Except internal pull-up  
resistors, 0 < V < V  
I
–5  
A  
IL  
IN  
DD  
3.3 V Output High Voltage  
(Single-Ended Outputs)  
V
I
= –1 mA  
2.4  
V
OH  
OH  
3.3 V Output Low Voltage  
(Single-Ended Outputs)  
V
I
= 1 mA  
0.4  
10  
V
OL  
OZ  
OL  
High-impedance Output  
Current  
I
–10  
A  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
C
1.5  
5
6
7
1
pF  
pF  
IN  
C
OUT  
L
nH  
mA  
IN  
Power Down Current  
I
_
DD PD  
Dynamic Supply Current in  
Fanout Mode  
Differential clocks with 5”  
traces and 2 pF load, fre-  
quency at 100 MHz  
I
45  
mA  
DD_3.3V  
4
Rev. 1.3  
 
Si53156  
Table 2. AC Electrical Specifications  
Parameter  
DIFFIN at 0.7 V  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Input Frequency Range  
f
100  
0.6  
210  
4
MHz  
V/ns  
in  
Rising and Falling Slew Rates for  
Each Clock Output Signal in a  
Given Differential Pair  
T /T  
Single ended measurement:  
R
F
V
= 0.175 to V = 0.525 V  
OL  
OH  
(Averaged)  
Differential Input High Voltage  
Differential Input Low Voltage  
V
150  
mV  
mV  
mV  
IH  
V
–150  
550  
IL  
Crossing Point Voltage at 0.7 V  
Swing  
V
Single-ended measurement  
Single-ended measurement  
250  
OX  
Vcross Variation over all edges  
Differential Ringback Voltage  
Time before ringback allowed  
Absolute maximum input voltage  
Absolute minimum input voltage  
V  
–100  
500  
140  
100  
mV  
mV  
ps  
V
OX  
V
RB  
STABLE  
T
V
1.15  
MAX  
V
–0.3  
45  
V
MIN  
Duty Cycle for Each Clock Output  
Signal in a Given  
Differential Pair  
T
Measured at crossing point V  
Determined as a fraction of  
55  
%
DC  
OX  
Rise/Fall Matching  
T
20  
%
RFM  
2 x (T – T )/(T + T )  
R
F
R
F
DIFF at 0.7 V  
Duty Cycle  
T
Measured at 0 V differential  
Measured at 0 V differential  
45  
0
55  
50  
%
ps  
ps  
ps  
ps  
ps  
DC  
Clock Skew  
T
SKEW  
Additive Peak Jitter  
Pk-Pk  
10  
Additive PCIe Gen 2 Phase Jitter RMS  
10 kHz < F < 1.5 MHz  
0
0.5  
0.5  
0.10  
GEN2  
1.5 MHz< F < Nyquist Rate  
0
Additive PCIe Gen 3 Phase Jitter RMS  
Additive PCIe Gen 4 Phase Jitter RMS  
Includes PLL BW 2–4 MHz  
(CDR = 10 MHz)  
0
GEN3  
GEN4  
PCIe Gen 4  
0.10  
50  
ps  
ps  
Additive Cycle to Cycle Jitter  
Long-term Accuracy  
T
Measured at 0 V differential  
Measured at 0 V differential  
CCJ  
L
100  
8
ppm  
V/ns  
ACC  
Rising/Falling Slew rate  
T / T  
Measured differentially from  
±150 mV  
2.5  
R
F
Crossing Point Voltage at 0.7 V  
Swing  
V
300  
550  
mV  
OX  
Notes:  
1. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
2. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
Rev. 1.3  
5
 
Si53156  
Table 2. AC Electrical Specifications (Continued)  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Enable/Disable and Setup  
Clock Stabilization from Power-Up  
T
Measured from the point when  
5
ms  
STABLE  
both V and clock input are  
DD  
valid  
Stopclock Set-up Time  
T
10.0  
ns  
SS  
Notes:  
1. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
2. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
Table 3. Absolute Maximum Conditions  
Parameter  
Main Supply Voltage  
Symbol  
Condition  
Min  
Typ  
Max Unit  
V
Functional  
4.6  
4.6  
150  
85  
V
DD_3.3V  
Input Voltage  
V
Relative to V  
–0.5  
–65  
–40  
V
DC  
IN  
SS  
Temperature, Storage  
T
Non-functional  
Functional  
°C  
S
Industrial Temperature, Operating  
Ambient  
T
°C  
A
Commercial Temperature, Operating  
Ambient  
T
Functional  
0
85  
°C  
A
Temperature, Junction  
T
Functional  
150  
17  
35  
°C  
°C/W  
°C/W  
V
J
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
ESD Protection (Human Body Model)  
Flammability Rating  
Ø
Ø
JEDEC (JESD 51)  
JEDEC (JESD 51)  
JC  
JA  
ESD  
JEDEC (JESD 22 - A114) 2000  
UL (Class)  
HBM  
UL-94  
V–0  
Note: Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply  
sequencing is not required.  
6
Rev. 1.3  
Si53156  
2. Functional Description  
2.1. OE Pin Definition  
The OE pins are active high inputs used to enable and disable the output clocks. To enable the output clock, the  
2
OE pin needs to be logic high and the I C output enable bit needs to be logic high. There are two methods to  
2
disable the output clocks: the OE is pulled to a logic low, or the I C enable bit is set to a logic low. The OE pins are  
required to be driven at all times even though they have an internal 100 kresistor.  
2.2. OE Assertion  
The OE signals are active high inputs used for synchronous stopping and starting the DIFF output clocks  
respectively while the rest of the clock generator continues to function. The assertion of the OE signal by making it  
logic high causes stopped respective DIFF outputs to resume normal operation. No short or stretched clock pulses  
are produced when the clock resumes. The maximum latency from the assertion to active outputs is no more than  
two to six output clock cycles.  
2.3. OE Deassertion  
When the OE pin is deasserted by making it logic low, the corresponding DIFF output is stopped, and the final output  
state is driven low.  
Rev. 1.3  
7
Si53156  
3. Test and Measurement Setup  
This diagram shows the test load configuration for differential clock signals.  
Figure 1. 0.7 V Differential Load Configuration  
Figure 2. Differential Measurement for Differential Output Signals  
(for AC Parameters Measurement)  
8
Rev. 1.3  
Si53156  
Figure 3. Single-Ended Measurement for Differential Output Signals  
(for AC Parameters Measurement)  
Rev. 1.3  
9
Si53156  
4. Control Registers  
2
4.1. I C Interface  
2
2
To enhance the flexibility and function of the clock buffer, an I C interface is provided. Through the I C Interface,  
various device functions are available, such as individual clock output enable. The registers associated with the I C  
2
Interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register  
changes are normally made at system initialization, if any are required. Power management functions can only be  
programed in program mode and not in normal operation modes.  
4.2. Data Protocol  
2
The I C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block  
write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the  
ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller  
can access individually indexed bytes.  
The block write and block read protocol is outlined in Table 4 on page 10 while Table 5 on page 11 outlines byte  
write and byte read protocol. The slave receiver address is 11010110 (D6h).  
Table 4. Block Read and Block Write Protocol  
Block Write Protocol  
Description  
Block Read Protocol  
Description  
Bit  
1
Bit  
1
Start  
Start  
8:2  
9
Slave address—7 bits  
Write  
8:2  
9
Slave address—7 bits  
Write  
10  
Acknowledge from slave  
Command Code—8 bits  
Acknowledge from slave  
Byte Count—8 bits  
Acknowledge from slave  
Data byte 1–8 bits  
10  
Acknowledge from slave  
18:11  
19  
18:11 Command Code–8 bits  
19  
20  
Acknowledge from slave  
Repeat start  
27:20  
28  
27:21 Slave address—7 bits  
36:29  
37  
28  
29  
Read = 1  
Acknowledge from slave  
Data byte 2–8 bits  
Acknowledge from slave  
45:38  
46  
37:30 Byte Count from slave—8 bits  
38 Acknowledge  
46:39 Data byte 1 from slave—8 bits  
47 Acknowledge  
55:48 Data byte 2 from slave—8 bits  
Acknowledge from slave  
Data Byte/Slave Acknowledges  
Data Byte N–8 bits  
Acknowledge from slave  
Stop  
....  
....  
....  
....  
56  
....  
....  
....  
....  
Acknowledge  
Data bytes from slave/Acknowledge  
Data Byte N from slave—8 bits  
NOT Acknowledge  
Stop  
10  
Rev. 1.3  
 
Si53156  
Table 5. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Description  
Byte Read Protocol  
Description  
Bit  
Bit  
1
Start  
1
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
Rev. 1.3  
11  
Si53156  
Control Register 0. Byte 0  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00000000  
Bit  
Name  
Reserved  
Function  
7:0  
Control Register 1. Byte 1  
Bit  
D7  
D6  
D5  
D4  
DIFF0_OE  
R/W  
D3  
D2  
DIFF1_OE  
R/W  
D1  
D0  
DIFF2_OE  
R/W  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00010101  
Bit  
7:5  
4
Name  
Function  
Reserved  
DIFF0_OE  
Output Enable for DIFF0.  
0: Output disabled.  
1: Output Enabled.  
3
2
Reserved  
DIFF1_OE  
Output Enable for DIFF1.  
0: Output disabled.  
1: Output enabled.  
1
0
Reserved  
DIFF2_OE  
Output Enable for DIFF2.  
0: Output disabled.  
1: Output enabled.  
12  
Rev. 1.3  
Si53156  
Control Register 2. Byte 2  
Bit  
D7  
DIFF3_OE  
R/W  
D6  
DIFF4_OE  
R/W  
D5  
DIFF5_OE  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 11100000  
Bit  
Name  
Function  
7
DIFF3_OE  
Output Enable for DIFF3.  
0: Output disabled.  
1: Output enabled.  
6
5
DIFF4_OE  
Output Enable for DIFF4.  
0: Output disabled.  
1: Output enabled.  
DIFF5_OE  
Reserved  
Output Enable for DIFF5.  
0: Output disabled.  
1: Output enabled.  
4:0  
Control Register 3. Byte 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Rev Code[3:0]  
Vendor ID[3:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00001000  
Bit  
Name  
Function  
7:4  
Rev Code[3:0]  
Vendor ID[3:0]  
Program Revision Code.  
3:0  
Vendor Identification Code.  
Rev. 1.3  
13  
Si53156  
Control Register 4. Byte 4  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
BC[7:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset settings = 00000110  
Bit  
Name  
BC[7:0]  
Function  
7:0  
Byte Count Register.  
Control Register 5. Byte 5  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name DIFF_Amp_Sel DIFF_Amp_Cntl[2] DIFF_Amp_Cntl[1] DIFF_Amp_Cntl[0]  
Type  
R/W  
R/W  
R/W  
R/W  
R/W R/W R/W R/W  
Reset settings = 11011000  
Bit  
Name  
Function  
7
DIFF_Amp_Sel  
Amplitude Control for DIFF Differential Outputs.  
0: Differential outputs with Default amplitude.  
1: Differential outputs amplitude is set by Byte 5[6:4].  
6
5
DIFF_Amp_Cntl[2]  
DIFF_Amp_Cntl[1]  
DIFF_Amp_Cntl[0]  
Reserved  
DIFF Differential Outputs Amplitude Adjustment.  
000: 300 mV 001: 400 mV 010: 500 mV 011: 600 mV  
100: 700 mV 101: 800 mV 110: 900 mV 111: 1000 mV  
4
3:0  
14  
Rev. 1.3  
Si53156  
5. Pin Descriptions: 32-Pin QFN  
Figure 4. 32-Pin QFN  
Table 6. Si53156 32-Pin QFN Descriptions  
Pin #  
Name  
Type  
Description  
PWR 3.3 V power supply.  
1
VDD  
I,PU Active high input pin enables DIFF2 (internal 100 kpull-up).  
2
OE2  
Refer to Table 1 on page 4 for OE specifications.  
PWR 3.3 V Power Supply  
3
4
VDD  
OE3  
I,PU Active high input pin enables DIFF3 (internal 100 kpull-up).  
Refer to Table 1 on page 4 for OE specifications.  
I,PU Active high input pin enables DIFF4 (internal 100 kpull-up).  
5
6
OE4  
OE5  
Refer to Table 1 on page 4 for OE specifications.  
I,PU Active high input pin enables DIFF5 (internal 100 kpull-up).  
Refer to Table 1 on page 4 for OE specifications.  
NC No connect.  
7
8
NC  
PWR 3.3 V power supply.  
VDD  
O, DIF 0.7 V, 100 MHz differential clock.  
O, DIF 0.7 V, 100 MHz differential clock.  
O, DIF 0.7 V, 100 MHz differential clock.  
9
DIFF0  
DIFF0  
DIFF1  
10  
11  
Rev. 1.3  
15  
Si53156  
Table 6. Si53156 32-Pin QFN Descriptions  
Pin #  
Name  
Type  
Description  
12  
DIFF1  
VDD  
O, DIF 0.7 V, 100 MHz differential clock.  
PWR 3.3 V power supply.  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
DIFF2  
DIFF2  
VDD  
O, DIF 0.7 V, 100 MHz differential clock.  
O, DIF 0.7 V, 100 MHz differential clock.  
PWR 3.3 V power supply.  
DIFF3  
DIFF3  
DIFF4  
DIFF4  
VDD  
O, DIF 0.7 V, 100 MHz differential clock.  
O, DIF 0.7 V, 100 MHz differential clock.  
O, DIF 0.7 V, 100 MHz differential clock.  
O, DIF 0.7 V, 100 MHz differential clock.  
PWR 3.3 V power supply.  
DIFF5  
DIFF5  
VDD  
O, DIF 0.7 V, 100 MHz differential clock.  
O, DIF 0.7 V, 100 MHz differential clock.  
PWR 3.3 V power supply.  
SCLK  
SDATA  
I
SMBus compatible SCLOCK.  
I/O SMBus compatible SDATA.  
3.3 V LVTTL input. This pin is a level sensitive strobe used to determine  
when latch inputs are valid and are ready to be sampled. A real-time  
active low input for asserting power down (PDB) and disabling all outputs  
27  
CKPWRGD_PDB  
I, PU  
(internal 100 kpull-up).  
28  
29  
VDD  
PWR 3.3 V power supply.  
0.7 V Differential True Input, typically 100 MHz. Input frequency range  
DIFFIN  
I
100 to 210 MHz.  
0.7 V Differential Complement Input, typically 100 MHz. Input frequency  
range 100 to 210 MHz.  
30  
31  
DIFFIN  
OE0  
O
Active high input pin enables DIFF0 (internal 100 kpull-up).  
Refer to Table 1 on page 4 for OE specifications.  
I,PU  
Active high input pin enables DIFF1 (internal 100 kpull-up).  
32  
33  
OE1  
I,PU  
Refer to Table 1 on page 4 for OE specifications.  
GND  
GND Ground for bottom pad of the IC.  
16  
Rev. 1.3  
Si53156  
6. Ordering Guide  
Part Number  
Lead-free  
Package Type  
Temperature  
Si53156-A01AGM  
Si53156-A01AGMR  
32-pin QFN  
Extended, –40 to 85 C  
Extended, –40 to 85 C  
32-pin QFN—Tape and Reel  
Rev. 1.3  
17  
Si53156  
7. Package Outline  
Figure 5 illustrates the package details for the Si53156. Table 7 lists the values for the dimensions shown in the  
illustration.  
Figure 5. 32-Pin Quad Flat No Lead (QFN) Package  
Table 7. Package Diagram Dimensions  
Min  
Nom  
Max  
Dimension  
A
A1  
b
0.70  
0.00  
0.18  
0.75  
0.02  
0.25  
0.80  
0.05  
0.30  
D
D2  
e
E
E2  
L
5.00 BSC  
3.20  
0.50 BSC  
5.00 BSC  
3.20  
3.15  
3.25  
3.15  
0.30  
3.25  
0.50  
0.40  
aaa  
bbb  
ccc  
ddd  
0.10  
0.10  
0.08  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
4. Coplanarity less than 0.08 mm.  
5. Terminal #1 identifier and terminal numbering convention conform to JESD 95-1 SPP-012.  
18  
Rev. 1.3  
 
 
Si53156  
8. Land Pattern  
Figure 6 illustrates the recommended land pattern details for the Si53156 in a 32-pin QFN package. Table 8 lists  
the values for the dimensions shown in the illustration.  
Figure 6. Land Pattern  
Rev. 1.3  
19  
 
Si53156  
Table 8. PCB Land Pattern Dimensions  
Dimension  
mm  
4.01  
4.01  
3.20  
3.20  
0.50  
0.26  
0.86  
S1  
S
L1  
W1  
e
W
L
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 m minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls  
should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125mm (5 mils).  
3. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.  
4. A 3x3 array of 0.85mm square openings on a 1.00mm pitch can be used for the  
center ground pad..  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
20  
Rev. 1.3  
Si53156  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 1.0  
Updated Features and Description.  
Updated Table 2.  
Updated Table 3.  
Updated Section 4.1.  
Revision 1.0 to Revision 1.1  
Updated Features on page 1.  
Updated Description on page 1.  
Updated specs in Table 2, “AC Electrical  
Specifications,” on page 5.  
Added Land Pattern  
Revision 1.1 to Revision 1.2  
Added condition for Clock Stabilization from Power-  
up, T  
, in Table 2.  
STABLE  
Revision 1.2 to Revision 1.3  
Updated Package Outline on page 18.  
21  
Rev. 1.3  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of  
Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or  
brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI53156-A01AGMR

Low Skew Clock Driver, 53156 Series, 12 True Output(s), 0 Inverted Output(s), QFN-32
SILICON

SI53156-A13AGM

Low Skew Clock Driver,
SILICON

SI53156-A13AGMR

Low Skew Clock Driver,
SILICON

Si53159-A01AGM

This change is considered a minor change which does not affect form, fit, function, quality, or reliability.
SILICON

SI53159-A01AGMR

Low Skew Clock Driver, 53159 Series, 18 True Output(s), 0 Inverted Output(s), LEAD FREE, MO-220-VGGD8, QFN-48
SILICON

SI5315A-C-GM

Provides jitter attenuation and frequency translation between SONET/PDH and Ethemet
SILICON

SI5315A-C-GMR

ATM Switching Circuit, 1-Func, QFN-36
SILICON

SI5315B-C-GM

Provides jitter attenuation and frequency translation between SONET/PDH and Ethemet
SILICON

SI5315B-C-GMR

ATM Switching Circuit, 1-Func, QFN-36
SILICON

SI5316

PRELIMINARY DATA SHEET PRECISION CLOCK JITTER ATTENUATOR
SILICON

SI5316-B-GM

PRELIMINARY DATA SHEET PRECISION CLOCK JITTER ATTENUATOR
SILICON

SI5316-B-GMR

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON